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Résumé

La reconnaissance de formes planes partiellement masquées ne peut se faire que localement
en calculant des points caractéristiques (extremas de courbure, points d’inflexions,...), et ce cal-
cul requiert un procédé de lissage des formes. Si 'on veut effectuer cette reconnaissance modulo
toutes les déformations affines du plan, alors ce procédé est unique : c’est le scale space affine,
découvert en 1993, qui peut étre décrit par une équation d’évolution. Dans la premiere partie
de cette these, nous montrons comment résoudre cette équation numériquement avec précision,
en itérant un opérateur continu, géométrique, global et exactement calculable. Des propriétés
de consistance forte et de convergence sont établies et validées par de nombreuses expériences
numériques. Ce procédé offre des performances bien supérieures aux schémas classiques aux dif-
férences finies, qui ne peuvent vérifier rigoureusement I’'invariance affine et le principe d’inclusion.

Dans une deuxieme partie, nous étudions 'un des problemes fondamentaux de la robotique,
la reconstruction du relief a partir d’une séquence d’images. Il s’avere que lorsque le mouvement
de Dobservateur peut étre déterminé, il n’existe fondamentalement qu’une seule maniere de
filtrer la séquence d’images tout en préservant le relief sous-jacent. Ce filtrage, obtenu grace
a une démarche axiomatique, se formule par une équation aux dérivées partielles non linéaire
du second ordre, parabolique dégénérée, qui présente une singularité tres forte inhérente au
probleme de reconstruction. Nous établissons des résultats d’existence et d’unicité pour cette
équation, puis mettons en évidence certaines propriétés mathématiques qui se prétent facilement
a une interprétation physique. Enfin, nous décrivons un schéma numérique adapté, et réalisons
des expériences qui montrent que ce filtrage, par la cohérence qu’il induit, ramene le procédé de
reconstruction a un calcul élémentaire et fiable.

Abstract

The recognition of partially occluded planar shapes necessarily involves a local computation
of characteristic points (curvature extrema, inflexion points,...), and this computation requires
a shape smoothing process. If the recognition is considered up to all affine transformations of
the plane, then this process is unique : this is the affine scale space, discovered in 1993, which
can be described by an evolution equation. In the first part of this study, we show how this
equation can be solved numerically with a high accuracy, by iterating a continuous, geometric
and global operator which can be exactly computed. Full consistency and convergence results
are provided, as well as conclusive numerical experiments. This method goes beyond classical
finite differences schemes that never manage to satisfy rigorously the affine invariance and the
inclusion principle.

In a second part, we study a fundamental problem of robotics : the depth recovery from a
sequence of images. We prove that when the camera motion can be controlled, there fundamen-
tally exists only one way to process the image sequence and preserve the underlying depth in the
same time. This process, obtained from an axiomatic formulation, can be described by a non-
linear second-order degenerate parabolic partial differential equation, which presents a strong
singularity inherent to the depth recovery problem. We establish existence and uniqueness re-
sults for this equation, and we highlight several properties which can be easily interpreted from
a physical point of view. Last, we describe a numerical scheme, and show on experiments how
the filtering process, thanks to the coherence it induces, brings back the depth recovery to an
elementary and robust computation.
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Chapter 1

Introduction

Le traitement d’images a fait son apparition dans les années 1970, lorsque le développe-
ment des ordinateurs a rendu possibles les premiers calculs numériques sur des images digitales.
Pendant longtemps, il fut un domaine presque exclusivement réservé a des équipes d’ingénieurs
motivés par des applications immédiates ; ce n’est que depuis quelques années qu’il a fait 'objet
d’une étude mathématique plus rigoureuse, qui a permis de classifier bon nombre de techniques

antérieures, et d’en expliquer le succes ou I’échec.

1.1 Problemes et Enjeux du traitement d’images

Aujourd’hui encore, le traitement d’images (et de films) pose essentiellement trois grands pro-
blemes : celui de I’analyse (comment obtenir des informations concernant les “objets” présents
sur une image donnée 7), celui de la restauration (comment améliorer la qualité d’une image,
la rendre plus nette 7) et celui de la compression (comment coder une image sous la forme
la plus compacte possible 7). Nous ne parlerons pas ici de la synthese d’images, qui ne reléve
pas a proprement parler du traitement d’images, méme si elle lui est souvent complémentaire.
L’analyse d’images est un maillon essentiel de la robotique, puisqu’elle doit définir les mécanismes
de perception visuelle des robots. Elle a aussi beaucoup d’autres applications : reconnaissance
de formes, cartographie aérienne, controle de qualité sur une chaine de production, etc... La
restauration d’images, quant a elle, est un outil tres appréciable pour corriger des défauts qui
apparaissent lors de la production d’une image : flou de focalisation ou flou de bougé, présence
de “bruit”, etc... Enfin, la compression d’images est un domaine relativement nouveau, devenu
indispensable avec le développement massif des moyens de communication ; le débit de trans-
mission d’un canal (hertzien ou filaire) étant toujours limité par des contraintes physiques, la
compression apparalt comme un moyen simple d’augmenter le débit d’information. Malgré les
apparences, ces trois probléemes ne sont pas indépendants : par exemple, le débruitage (suppres-
sion d’artefacts créés lors de I’acquisition) est une forme de restauration quasiment indispensable

pour I'analyse. De méme, le processus de simplification induit par I’analyse d’une image est une

13



14 CHAPTER 1. INTRODUCTION

étape préliminaire a certains algorithmes de compression. Enfin, certains algorithmes de com-
pression avec perte d’information (cas de la norme JPEG par exemple) justifient une étape de
restauration visant a corriger les défauts induits par la boucle compression-décompression. Dans
toute cette étude, notre point de vue sera celui de I’analyse des images, méme si nous aurons

I’occasion d’illustrer quelques applications de ces procédés a la restauration.

1.2 Analyse des images : la notion de scale space

Quelles informations peut-on extraire d’une image donnée ¢ Cette question trés générale
est le point de départ de 'analyse d’images, qui précede souvent une phase d’interprétation.
Par exemple, le fait que deux objets se déplacent & des vitesses différentes dans une séquence
d’images est une information objective ; mais si on sait que ces deux objets sont en réalité
fixes et que leur mouvement apparent est di au déplacement de la caméra, on peut alors en
déduire que 'objet qui se déplace le plus vite est plus proche de la caméra que 'autre, et méme

quantifier la distance de chaque objet au plan focal de la caméra.

Historique. Dans les années 1970, Bela Julesz mit en évidence I’existence de mécanismes
réflexes dans la vision humaine. Il montra notamment que cette vision “bas niveau”, opérée dans
les premieres millisecondes du processus de vision, permet & I’homme de percevoir le relief et
de discriminer des textures. Ses conclusions amenerent les scientifiques a conjecturer I'existence
d’un modeéle mathématique simple de la vision préattentive. C’est ainsi que David Marr [53]
formula quelques années plus tard le concept de “raw primal sketch”, ou pyramide visuelle. Selon
lui, I"analyse visuelle résulte d’une représentation de I'image a des échelles différentes, allant
d’une description tres fine a I’échelle 0 vers une description de plus en plus globale et simplifiée a
mesure que ’échelle augmente. Ainsi, une image brute est en réalité “vue” comme une collection
d’images indexées par un parametre d’échelle correspondant au degré de simplification opéré par
rapport a I'image brute (échelle 0). Ce parametre d’échelle peut d’ailleurs étre identifié au temps
d’analyse dans le systeme visuel humain. Cette représentation multiéchelle d’une image, qui fait
donc intervenir une variable d’espace et une variable d’échelle, est appelée scale space [80] : son
adéquation a modéliser la vision humaine préattentive a été bien vérifiée depuis, tant d’un point
de vue psychophysique que biologique.

Le premier exemple de scale space, basé sur un filtrage linéaire, a rapidement montré ses
limites. En effet, alors que la structure des appareils d’acquisition d’images rend, par la présence
de filtres passe-bas, les théories linéaires bien adaptées a la compression (cf. la compression par
ondelettes : [56], [28]), voire a la restauration (pour le déflouage par exemple), en revanche
la nature “occlusive” des images a des échelles supérieures rend ces théories peu adaptées a

’analyse. En fait, le processus de formation d’une image naturelle! (un paysage, une scéne

1 N . . .. .. . . . e ,
c’est-a-dire issue d’un processus de vision, par opposition a une image scientifique utilisée pour représenter

des données abstraites.
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urbaine, ...) résulte d’un principe d’occlusion : lorsqu’un objet (non transparent) en cache un
autre, seul le premier est visible, et I’on n’observe pas une espece de superposition des images
des deux objets. Cette constatation condamne immédiatement la généralisation hative des
techniques linéaires employées en traitement du signal, pour ’analyse de la parole notamment,

ou il est clair que la nature méme des ondes sonores implique un principe de superposition.

Le principe morphologique. Une alternative aux scale spaces linéaires apparut lors du
développement de la Morphologie Mathématique ([70], [54]). Poussé a I'extréme, le principe
morphologique s’énonce de la maniéere suivante : “Dans une tmage, seul compte le fait qu’un
point est plus clair ou plus foncé qu’un autre ; la valeur absolue de l'intensité n'est pas une
information en soi.” Cette hypothese est d’ailleurs légitimée par 'exemple de la vision humaine :
on ne voit pas différemment a travers une vitre teintée ! Concretement, si ’on représente une
image par une fonction u : R? — R qui mesure en chaque point du plan I'intensité lumineuse
regue (le niveau de gris), ce principe dit que I’analyse de I'image u et d’une image de type g(u)
(avec ¢ : R — R monotone) doit étre la méme. De tels changements de contraste g, qui opérent
une redistribution des niveaux de gris, sont de toute facon présents dans la chaine d’acquisition.
En pratique, le principe morphologique implique que le scale space opere indépendamment sur
les lignes de niveau uw = cte : lanalyse d’images se ramene donc & une analyse purement

géométrique.

Une classification axiomatique. Peu a peu, de nouveaux modeles morphologiques sont
apparus, et c’est en 1993 qu’une démarche axiomatique rigoureuse (cf. [4]) a permis de classifier
completement les théories existantes. Dans cette approche, chaque scale space est caractérisé

en fonction de ses propriétés :

e Comment le scale space opere-t-il sur les niveaux de gris d’une image : est-il linéaire,

morphologique, ... 7

e Avec quel groupe de transformations du plan le scale space commute-t-il : translations,

rotations, symétries, affinités 7

D’autres propriétés, notamment le principe de comparaison (ou principe du maximum) qui
assure qu’un scale space est un processus de simplification, avaient déja été identifiées comme
des propriétés fondamentales. De cette classification axiomatique, qui permit de regrouper
au sein d’un méme formalisme de nombreuses théories existantes, a alors émergé un nouveau
modele, baptisé Affine Morphological Scale Space. Ce scale space morphologique possede le

- . , , . .
groupe d’invariance le plus gros (en I'occurence le groupe affine) que 'on puisse obtenir pour
simplifier des images. La démarche axiomatique a aussi été appliquée en dimension supérieure,

par exemple pour obtenir le premier scale space de films ([40]).
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1.3 Plan de ’exposé.

Cette these est divisée en deux parties indépendantes. La premiere est consacrée a la re-
connaissance de formes : nous élaborons et étudions un algorithme géométrique permettant de
calculer avec précision le scale space affine d’une courbe plane. Dans la deuxieme partie, nous
rappelons comment, a partir d’un film, il est possible — en théorie — de retrouver le relief des
objets apparaissant sur chaque image. Nous montrons ensuite comment le film doit étre analysé

pour qu’une telle opération soit effectivement réalisable.

La reconnaissance de formes. Le probleme de la reconnaissance de formes peut étre
posé comme suit : “Ftant donné une base de formes de référence, comment reconnaitre une
nouvelle forme (ou la rejeter si elle n'est pas référencée dans la base), sachant qu’elle peut avoir
été déformée et altérée 27 Dans ce qui suit, nous entendrons par forme une région du plan
délimitée par un nombre fini de courbes de Jordan. D’un point de vue pratique, I’approche mor-
phologique permet d’extraire naturellement des formes d’une image en considérant simplement

ses ensembles de niveau

(u) = {z e R, u(z) > A}

Grace a cette décomposition, il devient alors équivalent de traiter une forme (c’est-a-dire un
ensemble de courbes) et une image. Nous devons bien siir préciser sous quelles conditions nous
considérons deux formes comme semblables : par exemple, il semble naturel que la reconnais-
sance d’une forme ne dépende pas de sa position dans I'image. Mathématiquement, cela se
traduit par l'identification d’un groupe de transformations du plan (contenant les translations

d’apres ce que nous venons de voir) qui induira une classe d’équivalence sur les formes.

Lorsque la reconnaissance est globale, un processus de normalisation peut étre effectué : on
choisit un représentant canonique dans la classe d’équivalence de chaque forme connue, et la re-
connaissance se ramene alors & une comparaison entre deux représentants. Mais si [’on suppose
que des masquages partiels peuvent intervenir, c’est a dire que les formes & reconnaitre ne sont
pas nécessairement “entieres”, une telle normalisation devient impossible, a cause de la perte
d’information induite par le masquage. Il faut alors tenter une reconnaissance locale, générale-
ment basée sur un calcul de points caractéristiques (extremas de courbure, points d’inflexion, cf.
[26]). Ces points caractéristiques, définis localement, impliquent souvent ’estimation de dérivées
le long de la courbe, ce qui n’a en général pas de sens sur une courbe brute, dont le contour peut
avoit été rendu tres irrégulier par la présence de bruit dans "image originale. Ainsi, un lissage
préalable est nécessaire, et s’exprime naturellement sous la forme d’un scale space géométrique.
Pour qu’un scale space géométrique soit effectivement un procédé de simplification, il faut qu’il
satisfasse ce que l'on appelle le principe d’inclusion locale (cf. figure 1.1) : “Si une forme est
localement contenue dans une autre, alors cette inclusion doit persister localement pour une

échelle d’analyse suffisamment petite.” Ce principe est fondamental : il garantit notamment la
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stabilité des algorithmes qui le vérifient. Formulé en termes d’images, il est alors équivalent au

principe du maximum.

Ok

D
N 4
-

Al

échelle O échellet

Bl |

Figure 1.1: Hlustration du principe d’inclusion locale.

Une analyse multiéchelle vérifie le principe d’inclusion locale lorsque la condition suivante est
vérifiée : “si une forme A est localement contenue dans une forme B (i.e AN D C BN D pour
un certain voisinage D), alors cette propriété reste vraie pour les formes analysées a une échelle
suffisamment petite”. Ce principe garantit qu’une telle analyse multiéchelle est un processus de
stmplification, et assure la stabilité des algorithmes qui le vérifient.

Moyennant une hypothese supplémentaire de régularité relevant plus d’un artifice mathé-
matique que d’une hypothese physique, on obtient alors un unique modele de scale space “max-
imal”, c’est & dire commutant avec le plus gros groupe possible de transformations du plan, en
I'occurence le groupe affine, engendré par les translations et les applications linéaires inversibles.
Ce scale space affine, que nous avons évoqué précedemment, fut découvert simultanément deux
équipes de chercheurs : L.Alvarez, F.Guichard, P.-L.Lions et J.-M.Morel [4] en termes d’analyse
d’images, et par G.Sapiro et A.Tannenbaum dans sa version géométrique. Pour ’analyse de
courbes, c’est cette derniére formulation qui est la plus adaptée : une courbe initiale s — C(s,0)

évolue selon 1’équation

%—f(s,t) = (s, )3 N(s,1), (1.1)
ou ¥(s,t) et N(s,t) représentent respectivement la courbure et la normale au point C(s,t) a
la courbe s — C(s,t). La variable ¢ représente le parametre d’échelle que nous avons évoqué
précédemment. Ainsi, la reconnaissance locale et affine-invariante de formes peut étre effectuée
de la maniere suivante : on calcule le scale space affine a différentes échelles de la forme a
reconnaltre, puis on calcule des points caractéristiques sur la courbe obtenue a partir d’invariants
affines locaux (la courbure affine par exemple) ou semi-locaux (cf. [26]). Enfin, on compare ces

points caractéristiques avec ceux des formes de référence, ceci d’'une maniere affine invariante.

D’un point de vue numérique, la difficulté majeure qui intervient dans ce procédé est le calcul
du scale space affine de la forme initiale. En effet, il n’existait jusqu’a présent qu’une maniere

raisonnable de calculer le scale space affine d’une forme, la méthode étant due a S.Osher et
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J.A.Sethian. L’idée était de considérer I'image “fonction-distance” associée & la forme S C R? :

(2,0) = —dist(z,05) si z€ S,
st = +dist(z,09) si z ¢S,

et de lui appliquer un schéma aux différences finies pour calculer son scale space morphologique
affine (u(+,¢))¢s0. Grace au principe morphologique, I'analyse de la forme S & I’échelle ¢ était
alors donnée par {z € R?, u(z,t) <0}.

Pourquoi le seul schéma “raisonnable” de scale space affine semblait-il nécessiter une for-
mulation en termes d’images 7 Simplement parce qu’un schéma géométrique aux différences
finies basé sur une évolution de points est condamné a €chouer : un tel schéma ne peut pas
vérifier le principle d’inclusion, pourtant crucial pour assurer la stabilité de l'algorithme et sa
consistance avec le scale space affine. En termes d’évolution d’images, le principe correspondant
au principe d’inclusion (principe de comparaison, ou principe du maximum) est beaucoup plus
facile a garantir numériquement, ce qui explique I'intérét de la méthode d’Osher-Sethian. En
revanche, I'invariance affine devient quelque peu illusoire, ne serait-ce qu’a cause de la grille fixe
sur laquelle se placent les pixels de I'image. De plus, outre une certaine lourdeur, ce procédé est

limité dans la précision de ses résultats a cause du pas de la grille sous-jacente.

Dans la premiere partie de cette these, nous proposons une alternative géométrique a la
méthode d’Osher-Sethian pour calculer numériquement le scale space affine d’une courbe. Le
schéma que nous décrivons est basé sur 'itération d’un opérateur géométrique et non-local
(cf. figure 1.2), qui vérifie le principe d’inclusion et I'invariance affine, et qui peut étre calculé
facilement pour des courbes polygonales. L’algorithme obtenu est rapide, stable et tres précis,

comme l’illustrent les nombreuses expériences que nous effectuons.

Figure 1.2: “Erosion affine” d’une courbe convexe.

Représentée en pointillés, [’érosion affine de paramétre o de la courbe convexe C est obtenue en
éliminant de Uintérieur de C toutes les régions d’aire o délimitées par un arc de courbe et une
corde de C. Cela revient en général a considérer 'enveloppe (ou encore les milieux) de telles
cordes. En itérant un tel opérateur, on obtient alors une approximation fine et numériquement
stable du scale space affine de C.
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La détermination du relief. Comme nous ’avons évoqué auparavant, I'un des enjeux
majeurs de la robotique est de résoudre le probleme de la perception. Lorsqu’un robot se
déplace dans un environnement connu ou inconnu, il lui est nécessaire de pouvoir se repérer,
voire d’établir une carte tridimensionnelle du monde qui I’entoure. Ce genre d’opération est
effectué en permanence par le systeme visuel humain, qui utilise conjointement differents types
d’informations. Par exemple, la quantité de lumiere réfléchie en chaque point d’une surface
donne en général une information sur la direction de la normale & cette surface : c’est le shape
from shading. L’utilisation de la stéréovision, basée sur ’analyse des petites différences entre les
images recues par chaque oeil, permet aussi de déterminer le relief. Mais méme lorsque I'on ferme
un oeil, notre systeme visuel reconstruit sans probleme le relief observé pour peu que ’on se
déplace un peu : le mouvement apparent des objets nous renseigne sur leur distance effective, les
objets les plus pres étant animés d’un mouvement apparent plus rapide, alors que les objets tres
éloignés restent quasiment fixes. D’autres informations, relevant de connaissances a priori, sont
aussi couramment utilisées par le systéeme visuel humain : connaissant la taille approximative
d’une voiture, nous pouvons facilement déduire de sa taille apparente la distance a laquelle elle
se trouve. Ce type de perception du relief est cependant beaucoup plus complexe, et ne résulte

pas d’un processus de vision préattentive, contrairement a la stéréovision par exemple.

Les premiers essais de reconstruction automatique du relief furent basés en toute logique sur
le procédé de stéréovision. A partir de deux images obtenues grace a deux caméras légerement
décalées, il semblait possible de reconstruire entierement le relief de la scene observée. Bien
que correcte d’un point de vue théorique, cette méthode se heurta assez rapidement a deux
problemes majeurs. Le premier, structurel, fut mis en évidence par un calcul simple montrant
I'impossibilité d’obtenir a la fois un algorithme robuste (la comparaison des deux images est
d’autant plus facile que les deux caméras sont proches) et une bonne estimation du relief (cet
estimation est d’autant plus précise que les deux caméras sont éloignées). Le deuxieme probleme
majeur survint a cause des techniques développées pour comparer les deux images : généralement
basée sur 'extraction de contours rectilignes fortement contrastés, la comparaison n’est vraiment
efficace que pour des sceénes artificielles (batiments, routes, machines, ...), et ses performances
chutent completement dans le cas de scenes naturelles ou des textures apparaissent plutot que

des arétes vives (champs, herbe, feuillage, ...).

Ainsi, il était naturel de se tourner vers un procédé plus robuste, le shape from motion.
L’idée est de considérer non plus deux images mais une séquence de plusieurs dizaines d’images,
et d’analyser le déplacement apparent des objets entre chaque couple d’images successives, sous
I’hypothese que les objets sont en réalité fixes et que leur mouvement apparent n’est du qu’au
déplacement de la caméra. Une telle approche est en quelque sorte une généralisation du principe
de stéréovision, et l'on devine que la redondance de l'information disponible (théoriquement,
chaque couple d’images de la séquence produit une interprétation du relief d’apres le principe

de stéréovision) doit permettre de vaincre les problemes de robustesse et de précision inhérents
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au procédé de stéréovision. Si une telle approche semble en effet beaucoup plus fiable, de
nouveaux problemes apparaissent néanmoins. Dans I’approche continue généralement adoptée
pour représenter la séquence d’images obtenue, la reconstruction du relief implique le calcul d’un
rapport de dérivées, qui s’avere étre tres instable a cause de l'irrégularité spatiale des images et
de leur trop rapide évolution temporelle tout au long de la séquence. D’autre part, la redondance
de I'information contenue dans la séquence ne peut étre pleinement exploitée que par une analyse

globale de la séquence, et non par le calcul de dérivées a un instant donné.

Dans la deuxieme partie de cette these, nous montrons comment, sous I'hypothese que le
mouvement de la caméra est donné, le probleme de ’analyse du relief peut étre résolu a I’aide
d’un filtrage adéquat de la séquence d’images, qui permet d’induire une cohérence temporelle
globale entre toutes les images de la séquence, ramenant ainsi ’analyse globale du relief & un
calcul local. Ce processus de filtrage — un scale space faisant intervenir le temps, 'espace et
I’échelle — est méme unique, caractérisé par un ensemble de propriétés imposées par la géométrie
du probleme de la détermination du relief. Si le mouvement est donné par la variable spatiale
z, 'analyse d’un film u(z,y, 8,0) (0 représentant le temps et la derniére coordonnée ’échelle )

est décrit par I’équation d’évolution?

2
Up = Ugg — Q%Uex + (ﬁ) Uy - (1.2)
U U

xr xr

Cette équation aux dérivées partielles non linéaire du second ordre, parabolique dégénérée,
présente une singularité tres forte lorsque la dérivée u, s’annule, ce qui 'empéche de relever de
la théorie classique des solutions de viscosité (cf. [27]), seule théorie de solutions faibles a priori
adaptée a ce type d’équation. Néanmoins, nous établissons des résultats d’existence et d’unicité
pour (1.2), et mettons en évidence certaines de ses propriétés qui se prétent facilement a une
interprétation physique. En particulier, il apparalt que ce scale space est vraiment compatible
avec la reconstruction du relief, puisqu’il préserve tout film idéal, c’est-a-dire possédant déja
une interprétation cohérente en termes de relief observé et de mouvement de la caméra. Nous
décrivons ensuite un schéma numérique pour résoudre (1.2), basé sur l'itération d’opérateurs
morphologiques de type inf-sup. Enfin, par quelques expériences, nous confirmons numérique-
ment les effets de cet équation : I’établissement d’une cohérence globale entre toutes les images

du film qui ramene le calcul du relief & un processus simple et fiable.

2Selon la convention habituelle, les indices désignent des dérivées partielles.
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Chapter 2

The Affine Scale Space

2.1 Image analysis and scale spaces

When devising an algorithm to analyze images, a major question must be raised : what kind
of information are we looking for, and how can we extract it from the image ? In particular, it
is clear that what we can see on an image depends on the focalization of the look we take at
it : we cannot at the same time examine small details and recognize large structures. Hence,
there is a natural scale parameter that cannot be eluded in the analysis process. This suggests
that an image should be represented in a multiscale way, the smallest details being described at
small scales and the largest ones at large scales. Such a multiscale representation of an image
is called a scale-space : to a raw image ug we associate a continuous collection of images
(u(t))s>0 that are obtained from ug by a simplification process which “eliminates” details as the
scale increases. The collection of operators (73) that define u(¢) from ug is called a multiscale

analysis of images.

From a mathematical point of view, an image shall be regarded in the following as a map

up : R* — R, the value u(z) corresponding to the grey-level! (the luminance) at point = (z,y)

2

of the plane?. Then, a scale space is represented by a map u : R? x [0, +00[— R, the third

coordinate being the scale t. A simple example of a linear scale space can be defined by the heat

equation
88—? = Au
(2.1)
u(+0) = uo(-),
where A = % + % is the two-dimensional Laplacian operator. The simplification process

induced by Equation 2.1 is an isotropic diffusion that can also be described by the convolution
of wp with a two-dimensional Gaussian kernel. Although Equation 2.1 satisfies the required

properties to define an interesting scale space, as we shall see later, it is not well adapted to

"We do not consider the case of color images.
?In practice, a grey-level image is represented by computers as a finite two-dimensional array of integer values.

23
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image analysis due to its linear nature. The main reason is that the image formation process

results from a superimposition of objects rather than from a linear combination of them.

2.2 Definition

The affine scale space has been discovered a few years ago in its image and geometrical formu-

lation (see [4] and [68]).

2.2.1 Image formulation

Let us first express it in terms of image processing. The affine morphological scale space (shortly
written AMSS) is defined by the degenerated parabolic evolution equation

Ou
ot

ul:,0) = uo(-).

The term Du = (ug, u,) represents the spatial gradient of u, u, and u, being short notations

for the partial derivatives g—g and g—;‘. The second order operator

= |Du|curv(u)%
(2.2)

) = () (0Tt Bty 0

[Dul) ~ |Duf?
can be viewed as the curvature at point z of the level line® of u going through . In the following,

we take the convention that r? means —|r|% when r is negative. When Du = 0, curv(u) is not

defined, but

W=

|Du|curv(u)% = {(ux)zuyy — 2Up Uy Uy + (uy)zum}

is naturally equal to zero, so that Equation 2.2 remains defined. Hence, from now on we assume
that |Du|curv(u)% is defined and equal to 0 when Du = 0.
In fact, Equation 2.2 is a parabolic PDE of the kind

J

8—?: = F(D%u, Du),
where F : S(R?*) x R* — R is a continuous function, nondecreasing with respect to its first
argument (for the usual order defined on S(R?), the set of symmetric 2 x 2 real matrices). For
this kind of evolution equations, weak solutions —only continuous— have been defined, and
are called for historical reasons wviscosity solutions. We shall be more precise in Chapter 5, but
one may refer to [10] or [27] for further details. The reason why Equation 2.2 is called Affine
Morphological Scale Space comes from important properties of the associated multiscale analysis
(T%)t>0, defined by

(T uo) () = u(a,t).

2Of course, this makes sense only at points where the equation u = cte defines locally a smooth curve.
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First, the nature of Equation 2.2 concedes a semi-group structure to this family of operators,
inasmuch as
Tt-l—s = Tt o TS.

Secondly, these operators are morphological, that is, they satisfy the property

[Morphological Invariance] : For any nondecreasing (or nonincreasing) continuous function
g:R—=>R,
Yu, Vt, Ti(gou)=goTiu).

The fact that T; commutes with any contrast change g implies that it operates on the level lines
of u ; we shall give a geometric interpretation of this later. The word “affine” comes from an

interesting geometrical invariance :

[Affine invariance] : For any bijective affine map ¢,
Vi, ', Vu, Ti(uo @) =Ty(u)o ¢.

By affine map, we mean any linear operator on R%. If ¢ belongs to the special linear group —
i.e. det¢p =1 —, we have Ty(uo ¢) = T;(u) o ¢. Another relevant property of the semi-group
(T}) is the maximum principle, which gives sense to viscosity solutions for (2.2). This principle

can be expressed by
[Comparison Principle] : Yu,v, u<v = V>0, Tiu<Tiv.

A local version of this principle (called Local Comparison Principle) is also satisfied (see Chap-
ter 5). These principles are very important, and they guarantee that Equation 2.2 “simplifies”
the initial image wug as the scale t increases. They also ensure numerical stability to associated

algorithms.

We shall come back to these fundamental properties, but it is interesting to mention that
the AMSS is the only regular multiscale analysis which satisfies them. This was proved by
L.Alvarez, F.Guichard, P.-L.Lions and J.-M.Morel in [4]. As regards the linear scale space
we defined in introduction by Equation 2.1, it also satisfies the semi-group property and the
comparison principle, but it is neither affine invariant nor morphological. Figure 2.1 compares

this scale space with the AMSS for an image of a cheetah.
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Figure 2.1: Two scale spaces of a cheetah image.

The two images of first column are the same original image of a cheetah head. This image is
analyzed with two different scale spaces : the affine morphological scale space (row 1) and the
linear scale space (row 2). Column 2 corresponds to a medium scale of analysis and column 3 to
a larger scale. Notice how the affine morphological scale space preserves geometrical structures,
whereas the linear scale space performs mainly a global blur.

2.2.2 Geometric formulation

We now come to the geometric formulation of the affine scale space. Because of the morphological
invariance, the evolution of ug according to Equation 2.2 is formally equivalent to the evolution
of its level curves. This curve evolution was discovered by G.Sapiro and A.Tannenbaum : it
is the affine analog of the Fuclidean shortening flow studied by M.Gage and R.S.Hamilton in
[36] and M.A.Grayson in [39]. An initial curve p — Cy(p) = C(p,0) evolves according to the

equation

6;_?(% t) = v(p,t)

e

N(p.1), (2.3)

where v(p,t) and N(p,t) are respectively the curvature and the normal vector of the curve C(-,¢)
in C(p,t). Replacing p with an affine arclength parameter s satisfying the constant determinant
relation

00 ]
ds’ os2 |
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Figure 2.2: Affine Scale Space of a “hand” curve.

The scale of analysis is, from left to right, and then top to bottom : 0 (original curve), 1, 8, 200.
It is clear that the original curve (top-left) cannot be directly analyzed by a shape recognition
device due to its very noisy aspect. This is the reason why we need to simplify it in the most
natural possible way, which has been theoretically proven to be the affine scale space. To ensure
good performances of the shape recognition process, a high accuracy is needed in the computation

of the scale space, even for large scales.
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Equation 2.3 reduces to a nonlinear intrinsic heat equation

00 _oc
ot 0s?’

As for the image formulation, the collection of curves (C(-,t))s»0 is called Affine Scale Space.

We must mention the fact that the existence and uniqueness of a solution of (2.3) for an
initial non-convex curve has not been proved so far (whereas it has been proved in [36], [39] in
the Euclidean case). Hence, although the image and the geometrical formulations of the affine

scale space are formally equivalent, we shall rather use the first one to establish precise results.

Figure 2.2 shows the geometrical affine scale space of a “real-world” curve that was obtained

from the photograph of a hand.

2.2.3 Applications

By now, the main application of the affine scale space is probably shape analysis. It was used
by T.Cohignac in [26] to perform an affine invariant shape recognition algorithm for partially
occluded shapes. In this case, classical methods based on a global affine normalization cannot
be used anymore, and one needs to characterize a shape locally by affine invariant descriptors.
This was done by T.Cohignac by means of a technique which is directly related to the affine scale
space (see Figure 2.3). To perform an efficient shape recognition, an accurate implementation

of the affine scale space is required, both for small and for large scales.

ca(N)

caM)< 0
ca(N)>0

caP)=0

Figure 2.3: Characteristic area as defined by T.Cohignac.

The original curve Cy is smoothed by the affine scale space at scale t into a new curve C(t).
Then, to each point M of C(t) we associate the (algebraic) area ca(M) of the domain bounded
by Co and the tangent to C(t) in M. The characteristic points are defined on C(t) as the points
M where the characteristic area ca(M) attains an extremum. A local affine invariant shape
recognition device is obtained by identifying these characteristic points in all intrinsic affine
bases (see [26] for more details).
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The AMSS model can also be viewed, when applied at small scales, as an affine invariant
denoising process, very efficient —like the median filter— in the case of non-additive noises

(impulse noise? for example). This property is illustrated on Figure 2.4.

Figure 2.4: Denoising effects of scale spaces.

Top-Left : original Lena image,
Top-Right : Lena image corrupted with 30% impulse noise ,
Bottom-Left : Top-Right image smoothed by the linear scale space,

Bottom-Right : Top-Right image smoothed by the AMSS

Due to its morphological nature, the Affine Morphological Scale Space (AMSS) performs a much
better noise removal than any linear process, especially in the case of a non-additive noise.

*Corrupting an image with a 10% impulse noise means that random, independent and uniformly distributed
values are attributed to a uncorrelated random 10% amount of the image pixels.
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2.3 Numerical schemes for the Affine Scale Space
2.3.1 Definitions

Consider a numerical scheme for the AMSS, described by the iteration of an operator T depend-
ing on a scale step At and a space step Az. As in [40], we shall say that T" is consistent with

the AMSS if
Tu—u

At

when the steps Az and At tend to 0 in a suitable way. The scheme is convergent if the iterated

filter 7" =T oTo...T converges® towards the AMSS at scale ¢t when At and Az tend to 0 in

— |Du|curv(u)%

a suitable way, and nAt — .

2.3.2 The Osher-Sethian’s method

Since the image formulation of the affine scale space (Equation 2.2) and the geometrical formu-
lation (Equation 2.3) are equivalent, a numerical scheme for a formulation can be transposed
into a numerical scheme for the other one. S.Osher and J.A.Sethian successfully used an image
formulation to compute the affine scale space of a planar set (see [65], [71]). They also applied
to several other evolution equations the general idea of viewing a hypersurface as the level set
of a scalar function. The great advantage of this method is that the topological changes on
the evolving set (e.g. loss of connectedness) are automatically handled by the function ; this
approach permits complicated curve evolutions, but it inherits the drawbacks of the numerical
scheme used for the associated scalar function. Moreover, it is likely — though not proven by
now — that no topological change can occur in the special case of the planar afline scale space
(that is, a Jordan curve remains a Jordan curve), so that such an image formulation is not

absolutely required to compute the affine scale space of a curve.

2.3.3 State of the art

The Bence-Merriman-Osher Algorithm for Mean Curvature Motion

In [12], J.Bence, B.Merriman and S.Osher proposed a very simple algorithm for computing the

mean curvature flow. The mean curvature scale space is defined by

du
ot

ul:,0) = uo(-).

It is quite similar to the AMSS, except that it is not affine invariant. The Bence-Merriman-

= |Dulcurv(u)
(2.4)

Osher scheme seems difficult to extend to the affine case, but we would still like to mention it.

The idea is to compute the evolution of a set by applying the heat equation to its characteristic

5We shall be more precise later about the kind of convergence we mean (simple, uniform, ...).
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function, the result being thresholded after each iteration. In other words, the evolution of a set

So is obtained by iterating the kernel
%(t) = QOGL‘OX7

where
lifxze S,
0 otherwise,

Qu)={zc R", u(a,t) >

N | —

b x(9)(@) :{

and G is the Gaussian convolution kernel solving the heat equation

du

— = Au.

ot
As n — oo, H(t/m)™ S, tends towards the mean curvature flow of Sy at scale ¢, at least in the
viscosity sense for the associated characteristic function. This convergence property has been
proved by G.Barles and C.Georgelin in [9], and by L.C.Evans in [30]. H.Ishii also proposed
a generalization in [45]. However, such a scheme does not remain consistent in its discrete

implementation, as F.Guichard remarked in [40].

A quasilinear scheme

An efficient quasilinear finite difference scheme was proposed in 1993 by L.Alvarez and F.Guichard

(see [40] for example). The idea is to iterate the discrete evolution
1 (2) = 0 (2) + At A(un) (2,

where A(u)(z) is a discrete approximation at point z of |Du|curv(u)% using the 9 values of u on
a 3x3 neighborhood of z. They proved that one can choose A(u) in order that the approximation
Au) ~ |Du|curv(u)% is exact for any polynomial u of degree 3. The resulting scheme is neither
morphological nor monotone, but is experimentally stable. Of course, such a local scheme cannot

be really affine invariant, because the neighborhood size is fixed in advance.

Inf-Sup operators

In [41], F.Guichard and J.-M.Morel showed that appropriate iterated inf-sup operators converge
towards the affine morphological scale space. We shall describe these operators more precisely
in Chapter 5. The Euclidean case had been treated before by F. Catté and F. Dibos in [22].
However, because of the spatial quantization and the morphological invariance (no new grey-
level is created on the image), the discrete alternate iterated inf-sup operator gets “stuck” after
several iterations (that is, no evolution occurs any longer). Indeed, on a spatial grid, a level
curve is constrained to move at entire speeds : at each step, either it does not move, or it jumps

over one pixel at least (see [26]).
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A multiscale spline representation

In [17], G.Sapiro, A.Cohen and A.M.Bruckstein described a multiscale representation of planar
shapes using B-splines. This representation is affine invariant, but it cannot be described by an
evolution equation, and in particular it does not satisfy the inclusion principle (analog for sets

to the comparison principle for images) :
ACB = Vt>0, Ty(A) CTyB). (2.5)

For that reason, it is not well adapted to image analysis and has little to do with the affine

morphological scale space.

The Osher-Sethian algorithm

As we described in Introduction, one can apply a numerical scheme for the AMSS to a set S
by considering its signed distance image u(z) = e(z)dist(z,5), where e(z) = -1 if 2 € 9, 1
otherwise. With this method, S.Osher and J.A.Sethian transposed the difficult problem of a
geometric curve evolution into the implementation of the AMSS. However, the major drawback
is that the full affine invariance is impossible to obtain with such a method, since no image
representation can be affine invariant. In addition, the large image size required to achieve a

reasonable precision in the curve evolution makes the process rather slow.

2.3.4 Point evolution schemes

For the affine scale space of curves, all geometrical schemes that have been proposed so far suffer
from the space quantization of the curves (see [40]), which prevents the inclusion principle (2.5)
from being satisfied. The main difficulty comes from the fact that there is no a priori relation
between the number of vertices of a polygon and the number of the vertices needed to represent
its affine shortening® (this number increases drastically for a triangle, but decreases as much
for a very irregular curve). Thus, any algorithm based on a point-by-point evolution cannot

implement the affine scale space successfully.

However, it is likely that the most accurate implementation of the Affine Scale Space is a
curve evolution one, because it seems impossible to achieve precise evolutions and to guarantee

a full affine invariance in any image evolution algorithm.

2.4 A fully consistent scheme

How can we implement the affine scale space with a geometrical algorithm 7 Since no point

evolution scheme can be efficient, we have to consider the problem globally, that is, to find an

6. . .
i.e. its affine scale space at a given scale.
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operator T acting on curves and consistent with the affine scale space : this way, we can hope to
build a numerical scheme for the affine scale space by iterating T'. Moreover, we would like this
operator to be affine invariant, monotone (i.e. preserving global inclusion), and easy to compute

on a general kind of discrete curves (on polygons for example).

We shall propose such an operator and call it affine erosion. It is more or less a continuous
generalization of a discrete operator briefly described in [40]. It is also somewhat related to the
notion of characteristic area introduced by T.Cohignac (see [26]) : indeed, the following study
proves that as the scale ¢t tends towards 0, the characteristic area of all non-inflexion points
of the curve is equivalent to +c.t*, ¢ and « being universal constants. This can suggest our

definition of the affine erosion.

In Chapter 3, we define precisely the affine erosion for a certain kind of curves and sets. We
investigate some properties of this operator, and point out an important characterization for
convex curves. We also prove that the number of inflexion points (in a generalized sense) cannot
increase when this operator is applied to a non-convex curve. Last, we establish the geometrical

consistency of the afline erosion with respect to the geometrical affine scale space.

In Chapter 4, we compare the Affine Scale Space and the affine erosion on a few examples,
namely conics. We compute explicitly the action of these operators, and show that the affine
erosion remains a good approximation of the affine scale space not only for small scales. This
suggests that the affine erosion can be iterated using rather large scale steps to approximate the

affine scale space efficiently.

We extend the affine erosion to grey-level images in Chapter 5, by applying the geometrical
affine erosion to the level sets of an image. The resulting operator is fully consistent, inasmuch as
it satisfies the most important properties of the affine scale space (the affine and morphological
invariances and the comparison principle), except —naturally— the semi-group property (this is
why we need to iterate the affine erosion). We also make a comparison with the inf-sup operators
studied in [41], and in particular we prove that for C! curves, a classical affine invariant inf-
sup operator acts exactly like the affine erosion for small scales. Then, we establish precise
consistency and convergence properties for the alternated iterated scheme associated with the

affine erosion. We link these results with Matheron’s Theorem and techniques used in [41].

Chapter 6 is devoted to the numerical scheme. We prove that the affine erosion of a polygon
is made of the concatenation of hyperbola pieces and segments. We present an algorithm to
compute exactly the affine erosion of a polygon, and show that the resulting curve can be
quantized in an affine invariant way. We compare the space and scale discretizations, and show
that our algorithm has little to do with classical finite element methods. Then we present an
approximate algorithm, which is very close to the first one, much faster, and which also gives

accurate results.
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Last, we present in Chapter 7 several experiments. Affline erosions and scale spaces are
computed for simple polygons and more complicated curves, including “real-world” curves given

by level curves of digitized photographs.

We conclude in Chapter 8 on the possible application of such a global technique to other

evolution equations, and we indicate further axes of development.



Chapter 3

Affine erosion of curves and sets

3.1 Preliminaries

In order to define what we shall call the affine erosion of a curve or a set, we first need to make
clear what kind of curves and sets we are going to consider, since it is impossible to dissociate
the relation between a set and its boundary in the definition. We first restrain our study to sets
whose boundaries can be described by piecewise convex curves, for which the definition and the
basic properties of the affine erosion are natural. In a further chapter, we shall extend the affine

erosion to any set of the plane and to grey-level images.

Let us begin with some notations and definitions. We write dist(A, B) for the Euclidean
distance between two points A and B of the plane, AB for the vector B — A, |AB| = dist(4, B)
for the Euclidean norm of AB and [AB] (resp. JABJ) for the closed (resp. open) segment with
endpoints A and B. The determinant of two vectors v; and vy will be noted [vy, v2], and if they

are both nonzero we note Z(vy, v;) € St = R/%Z the angle from vy to wvs.

When s and ¢ belong to the circle S, [s,¢] means the class of the interval [s','] where s
and t’ are real number such that s’ = s and ¢/ = ¢ modulo 27 and s’ <t < s’ +27. As well, the
inequality a1 < ag < ... < @, on S! means that we can find some real numbers a}, a), ...a’, equal

to a1, ag, ...a, modulo 27 such that a] < df, < ... <al, < a}+ 27 (which makes sense for n > 3).

We choose to call a simple curve any subset of R? homeomorphic to the circle S (closed
curve) or R (non closed curve). We shall often refer to a simple curve using the notation
C'(I), which means implicitly that C' : [ — C([) is a parameterization of the curve ; unless
additional specification is given, we shall suppose in general that I = R or I = S!. Among
all possible parameterizations of a curve, two classes can be distinguished according to the set
{C([s,t]); s,t € I}. Choosing a class of parameterization defines an orientation of the curve. As
usual, a curve C is of class C'! if it admits a parameterization C': I — C of class C'! such that
C' never vanishes (such a parameterization is called regular). A curve is of class C™ (n > 1) if

it admits a regular parameterization of class C™.

35
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We define a semi-closed curve as an oriented simple curve C such that R? — C has exactly
two connected components, called the inside part and the outside part of C according to the
orientation of C (with the classical convention that the inside part of C, noted Z(C), is “on the
left” when one runs positively on C). A semi-closed curve can also be viewed as a simple oriented
closed curve defined on the Alexandroff compactification of the plane R? U {oo} ; in particular,

a closed curve is semi-closed.

Let C'(I) be a simple curve. Then, (s,t) € I? is a chord of C if and only if the piece of
curve ('(]s, t]) and the open segment |C'(s)C'(¢)[ are disjoint or equal. The connected closed set
enclosed by C'(]s,t[) and the chord segment |C'(s)C(¢)[ is a chord set of C', written Cy; (see
Figure 3.1). If area (C4) = o, then (s,t) is called a o-chord and C; a o-chord set of C'.

C(t)

C(s)

_

Figure 3.1: A chord set of a simple curve.
Notice that the chord segment [C'(s)C'(t)] can intersect C \ C'([s,1]).

Following this idea, if C(]a,b[) is a semi-closed curve ({a,b} C R), we say that (s,b) is an
infinite o-chord of C'if there exists a half line D with start-point C'(s) such that C'(]s,b))ND =
() and the chord set C;; enclosed by D and C'(]s, b[) is of finite area 0. The case of the infinite
chord (a, s) is symmetric. Last, (a,b) is an infinite o-chord of C' if there exists a line D such
that C'(Ja, b[) N D = () and the chord set C ; enclosed by D and C/(]s, b[) is of finite area o. For
example, if we consider the curve C'(R) defined by C'(z) = (2,e™*") in an orthonormal basis
of the plane, then the line {y = 0} is an infinite chord segment associated to the y/7-chord set
C_ o 400 (from now on, we assume that a “chord segment” can be finite or infinite, i.e. either a

true segment, a half line, or a line).

If C is oriented and area (Cs;) # 0, the orientation induced by C' on the boundary of Cj;
tells whether (s,¢) is a positive or a negative chord. We take the convention that a 0-chord set
is both positive and negative. The collection of all positive (resp. negative) o-chord sets of C'
will be written KX (C) (resp. K;(C)). Since the previous definition of a chord set does not
depend on the parameterization of the curve, it makes sense to write K} (C) (resp. K (C)) for

the collection of all positive (resp. negative) o-chord sets of an oriented curve C.

Now we give a definition of convex curves which makes also sense in the case of non semi-

closed curves.
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Definition 1 An oriented simple curve C'(I) is
e locally convex in C(s) if for ¢ > 0 small enough,
[C'(s = 2)C(s), C(s)C(s+ )] > 0.
e locally concave in C(s) if for ¢ > 0 small enough,
[C(s — £)C(5), C(5)C s+ 2)] < 0.
e convezx (resp. concave) if it is locally convex (resp. concave) everywhere.

A (non oriented) simple curve is convez if it is convex for a certain orientation.

We may use the term “strictly convex” (resp. strictly concave) for an oriented curve which
is convex and nowhere locally concave (resp. concave and nowhere locally convex). In other
words, a curve is strictly convex if it is convex and does not contain any segment of nonzero

length.

For a convex curve, it is not true in general that any chord set is convex (see Figure 3.2).
However, if the curve is convex and semi-closed, then its inside part is convex and any couple
(s,t) € I? (with s < tif T C R) defines a convex chord set. Conversely, any convex subset of

the plane is the inside part of a semi-closed convex curve.

C(s)
Cst

C(t)

Figure 3.2: A non convex chord-set of a convex curve.

We recall that if C is a convex curve, one can find a regular parameterization C' admitting
everywhere a non-vanishing left and right derivative C’ and C”_ (which can differ at most on a
countable number of points). Given a point A of an oriented convex curve C, we note T (resp.
T) the unitary left-tangent (resp. right-tangent) of C in A. Thus, if C = C(I) and A = C(s),
we have C*, (s) = |C (s)| T and C”_(s) = |C”(s)| T.

Definition 2 A piecewise convexr curve is a simple curve C(I) for which there exists a finite

subdivision (s1, g, ...5,) of I such that each sub-curve C(]s;, s;y1[) is convez.

In general, we shall suppose that the subdivision (s;) is optimal, i.e. that n is minimal.
However, even with this constraint the decomposition is not necessarily unique (consider the case

of a polygonal curve for example). We shall see later that there exists a canonical decomposition.
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Definition 3 An open subset S of the plane R* is a C-set if
(i) it has a finite number of connected components

(ii) the boundary of any connected component is a finite disjoint union of semi-closed piecewise

CONVEX CUrves.

These oriented curves enclosing the connected components of S are called the components of

as.

Remark : One should be careful not to mix up the connected components of a C-set S with
the components of d5. In particular, the components of 3.5 are not necessarily digjoint : if S is
the inside of a “8”, the boundary of S is connected but has two components. On Figure 3.3 for

example, the initial C-set S has 3 connected components and 35 has 4 components.

The previous definition of a C-set is a compromise between regularity (the boundary of a
C-set admits a tangent almost everywhere) and generality (any finite union of convex sets is a

C-set, as well as the inside part of any polygon).
Definition 4 A C-set is simple if its boundary has only one component.

A simple C-set S shall often be written Z(C), which means that C is a semi-closed piecewise

convex curve whose inside part is S. Notice that a C-set S can always be written
S=1] (Si\UTm) ,
4 J

where the S; and T;; are finite collections of simple C-sets and the symbols U and A mean

respectively a disjoint union of sets and the topological closure of a set A.

3.2 Affine erosion of sets

In this section, we define the affine erosion of a C-set, and we establish some basic properties of

this operator.

3.2.1 Definition

Definition 5 The o-affine erosion of a C-set S is the set of the points of S which cannot be

enclosed in any positive chord set with area less than o of a component of 05.

E,(S)=5 \ UJ K.
o' <o

K € K} (95)
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Here, IC;',(@S) means all the o’-chord sets of all components of 85. Figure 3.3 represents an
intricate C-set and its affine erosion (only the oriented boundaries of the sets have been drawn

for a better understanding).

Figure 3.3: Affine erosion of an intricate C-set

3.2.2 Example

Before we go further, let us compute explicitly the affine erosion of a “corner”. This computation
has strong consequences on the numerical scheme we present later. Other exact computations

can be found in the next chapter.

Proposition 1 The o-affine erosion of the “corner”
W={0+zvi+yvy >0,y >0}

is the inside (convex) part of a hyperbola, given in the affine basis (O, vy, vy) by the equation

g

.y > , >0,y>0. (3.1)

2 [’l)l7 1)2]

In what follows, o will be called the apparent area of the hyperbola defined by Fquation 3.1.

Proof :

First, we notice that only the positive chord sets with area ¢ are significant to define the
affine erosion of W because W is convex (a positive chord set with area less than o can always

be enclosed in a positive o-chord set).

Now, any positive o-chord segment of W is supported by a line with equation z/a+4y/b =1

(see Figure 3.4) submitted to the area constraint 2¢ = ab[vy, v3]. Consequently, the boundary
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of F,(W) is obtained by the envelope of these lines, given by the system

{_I_a[vhvz]y

D, : =1
a 20
D2t [or, ]y _
“7 a? 20 '
Then, eliminating a yields
o
Ty = ——.
Y 2 [’l)l7 1)2]

Figure 3.4: Affine erosion of a “corner”

3.2.3 Topological structure

We now establish a useful property of the affine erosion : if S is a C-set, each point of the

boundary of E,(5) lies on a chord segment of S.

Definition 6 Let S be a C-set and C'(I) a component of 95, then a o'-chord (s,t) of C is
o-limit chord if o’ < o and C has no chord (s',t') of area lower than o including strictly (s,t)

(i.e. such that ' <s<t <t ors' <s<t<t inl).

Lemma 1 For any C-set S, the boundary of F,(S) is included in the union of the positive

o-limit chord segments of S.

Proof :

1. First, we prove that any M € 9F,(S) belongs to a positive o’-chord segment of a

component of 95, where ¢/ < 0.

M € 0FE,(S) means that we can find a sequence (4,,, B,,) of finite and positive chords with
area less than ¢ and such that dist(M,[A,B,]) — 0 as n — oco. Since S has a finite number of
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components, necessarily one component C of 9 contains a infinite number of chords (A4,,, B,,).
Thus, we can extract from the sequence (A, By) a subsequence (A, By(y)) of oy, chords of

C, and we can suppose that o, — ¢’ < o either (up to another subsequence extraction).

La. If (Ay,) and (By(,)) are bounded, we can extract from (A, By(n)) @ convergent
subsequence in C2. The limit (A, B) satisfies d(M,[AB]) = 0, which means that M € [AB], and
a part of [AB] — or [AB] itself — defines a ¢’-chord segment of S containing M (with o’ < o).

Lb. If (Ay(n)) is bounded and (B,,) is not, we can extract from (A,(,)) a subsequence
that converges towards A € C. If A = M, then M belongs to the chord [A, A] of C and we
have finished. If A # M, then a part of the half line [AM) defines a positive chord segment
of C (finite or infinite) containing M. The case (B(,)) bounded and (A,(,)) not bounded is

symmetric.

Le. If both (A,(,)) and (Bg(,)) are not bounded, then up to a subsequence extraction we
can find a nonzero vector v such that Z(v, Aw(n)Bw(n)) is defined and converges towards zero.
Then, the line (M, v) defines a o’-chord segment of S (finite or infinite) containing A (with

o' < o).

2. Last, we note that only the o-limits chord sets are significant to define F,(9), because if
a chord (A4, B) is not o-limit we can find a o-limit chord set which contains strictly the chord

set associated to (A, B). O

Corollary 1 The affine erosion of a C-set is an open subset of the plane.

Proof :

From Lemma 1 we know that if S is a C-set, the boundary of F,(S) is part of

A= UJ K.

o' <o

K € K1(09)

Therefore, °1,(S) = AUSS is closed (because it contains its boundary) and FE,(S) is open (S
denotes the complementary set of S, i.e. °S = R?*\ S). O

Remark : Lemma 1 highlights the necessity of considering infinite chords for non-bounded
curves. Look at the previous example of the C-set S defined in an orthonormal basis of the
1,2

: if we had not allowed infinite chords in the affine erosion of

S, then the o-affine erosion of S would have been the closed half plane {y < 0} for any ¢ > /7

plane by the equation y < e~

(instead of the open half plane {y < 0}), and Corollary 1 would not have been satisfied any

more.

However, infinite chord are rather rare, because :
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e a bounded C-set has no infinite chord,

e if a non-bounded C-set .S admits an infinite chord, then it contains a half line which is an

asymptote to a component of 5.

We could have restrained our definition of the affine erosion to less general sets (to bounded
sets, for example) in order to avoid the case of infinite chords ; however, in the next chapter we
shall be interested in non-bounded conics like hyperbolae and parabolae. Moreover, it is more

satisfactory to define the affine erosion of any convex set (bounded or not).

3.2.4 Affine dilation

We can define in two equivalent ways the dual operator to affine erosion, that we shall call affine
dilation. The first one is to reverse the orientation of the curves, the second one is to consider

the open complementary of each set (for which the orientation of the boundary is reversed).

Definition 7 The o-affine dilation of a C-set S is defined by
D, (S) = E,(°S).

Proposition 2 The closure of the o-affine dilation of a C-set S is the union of S and all

negative chord-sets with area less than o of the components of 35.

D,(S)=95 U UJ K.
o' <o

K eK_,(05)

Proof :
This is a simple consequence of the identity K (S) = KX (¢S5).

3.2.5 Basic properties of the affine erosion

Lemma 2 F,(S) is nonincreasing with respect to o, i.e.

o1 <02 = Eg2(S) CEgl(S)-

Proof :
We just need to notice that if oy < o9 then

U K C UJ K,

o' <oy o' < og

K € K},(9S) K € K} (95)

and consequently F,,(S) C E,,(95). O
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Definition 8 We call extinction scale of a C-set S and we note o.(S) the lower bound of the

scales o for which E,(S) = 0.

Proposition 3 If S is a simple bounded C-set, then o.(5) < 5 area(S).

1
2

Proof :

Let us prove that for any simple bounded C-set S of area 20, F,(S) = (). Consider M a
point of S : there exist two points A and B lying on 95 such that the open segment JAB]J is
included in S and contains M. This segment defines two positive chord-sets of S of area o1 and
oq such that oy + o3 = area (S5). Necessarily, o1 < 0 or 02 < 0, which means that M belongs to

a positive chord set of area not larger than o, i.e. M ¢ E,(S5). O

One could think that the extinction scale of a simple bounded C-set is exactly half of its
area. Although this is true for convex C-sets symmetric with respect to a point, this result
is generally false for other simple C-sets, even convex. In the next chapter, we show that the

extinction area of a triangle is % of its area.

Figure 3.5: A C-set with small area and large extinction area

Proposition 3 is not true for a non simple bounded C-set. In fact, it is possible to build
a C-set of area as small as we want comparatively to its extinction area. The shaded part of
Figure 3.5 defines a C-set of area less than 2¢(7m + 1), whereas its extinction scale is exactly 7/2,
i.e. half of the area of the enclosing disk. Indeed, we can deduce from Proposition 3 that the
extinction area of any bounded C-set is less than half the external area of its largest connected
component (the external area of a connected C-set is the area enclosed by its external boundary,

i.e. including the area of its “holes”).

Proposition 4 F,(S) is nondecreasing with respect to S, i.e.

S CSy = Eg(Sl) C EU(SQ).
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Proof :
Let S and S5 be two C-sets such that S; C 59, and consider M a point of Sy. If M does not

belong to £, (S2), there exists a positive o’-chord segment D (finite or infinite) of a component

of 855 such that ¢’ < o and M belongs to the associated chord set.
1. If M ¢ Sy, then E,(S1) C Sy yields M ¢ F,(51).

2. If M € Sy, consider the connected component A of S; containing M.

2.a. If AN D = 0, then the external boundary of A encloses a subset of area less than o’, so

that from Proposition 3 we get M ¢ I, (51).

2.b. If AND # 0, then AN D is a disjoint union of chord segments of Sy (finite or infinite),
and one of these chord segments defines a o”-chord set of Sy containing M (see Figure 3.6). But

since S; C Sy, we have ¢” < o/, so that M ¢ F;(S1).

Thus, M ¢ E,(S2) = M ¢ E,(S1), which means that E,(S1) C E,(52). O

X

° S
Figure 3.6: F, is monotone

Proposition 5 The affine erosion is covariant with respect to the affine transformations of the

plane, i.e for any affine map ¢,

¢ (Es(5)) = Esjaerq| (9(5))

det ¢ being the determinant of the linear part of ¢, i.e. det ¢ = det A where ¢(M) = AM + B
and (A, B) € L(R?) x R

Proof :

This elementary result simply arises from the fact that for a C-set .5, we have

6 [KF(0S)] = (6(K); K € KF(0S)} = K7, gu0y (90(S)).
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3.3 Affine erosion of convex curves

Let us first consider two particular kinds of convex C-sets : half planes, and strips (i.e. sets
enclosed by two parallel straight lines). These C-sets (to which we shall refer as trivial C-sets)
are invariant under affine erosion, because they only have 0-chord sets. One easily checks that
they are the only simple C-sets which satisfy this property. So, since they would not satisfy
most of the statements which follow, we shall exclude them most of the time. Another reason

is that any nontrivial convex C-set is simple.

3.3.1 DBasic statements

Proposition 6 The affine erosion of a conver C-set is a convexr C-set.

Proof :

If S is a convex C-set, then S — K is also convex for any positive o-chord set K of 05. It
follows that
E,(S) = ﬂ (S - K)
o' <o
K e K} (9)
is convex as an intersection of convex sets. O

A consequence of this proposition is that we can define the affine erosion for convex curves.
According to the previous remark, we call trivial any convex semi-closed curve made of a straight
line. From now on, we also suppose that a convex semi-closed curve is naturally oriented in such
a way that its inside is convex. Hence, nontrivial convex semi-closed curves and nontrivial convex
C-sets are equivalent since the map C — Z(C) establishes a bijective correspondence between

them. Notice incidentally that any chord set of a convex set is positive and finite (i.e. bounded).

Definition 9 The o-affine erosion of a convex semi-closed curve C is the convexr semi-closed

curve

E,(C) = 0E,(I(C)).

Of course, the notation E,(C) is abusive, but more simple. We shall always avoid any
possibility of confusion between the affine erosion of a set and the affine erosion of a curve

anyway.

Proposition 7 If S is a non-trivial convex C-set, then for any o < 0.(S), only the o-chord sets

matter in the definition of the o-affine erosion of S, i.e.

E,(S)=5- |J K.
KeKt(85)
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Proof :
Let C'(I) be the boundary of S : since S is convex, any couple (s,t) € I? is a chord of C,

and the map ¢t — area (C,;) is continuous and increasing from 0 towards area (S) (which may
be infinite) unless S is trivial, which is not the case here. Consequently, if (s,t) is a o’-chord of
S with ¢’ < ¢ < 0.(5) < area(S), then (s,t 4 <) is a o-chord of S for a judicious choice of ¢,
and Cs; C Cs 4., which means that (s, ¢) is not a o-limit chord of C'. In other words, all o-limit

chords of S are o-chords of S and Lemma 1 achieves the proof. O

3.3.2 The middle point property

We now establish an interesting property of convex semi-closed curves : their o-affine erosion is
always included in the set of the middle points of their o-chord segments, and the equality holds
beyond a limit scale of erosion (which is nonzero for most of the curves). The reason is roughly
explained on Figure 3.7 : given a curve C = C([) and o-chord segment [C'(s)C ()], another
o-chord segment of C intersects [C'(s)C'(¢)] in I(6), and as § — 0, the area equality forces

1 1
57‘%(9) 0= 57‘%(9) -8+ o(0),

so that r;(#) — re(8) — 0 and I(#) converges towards the middle of [C'(s)C'(¢)]. This means

that the envelope of the o-chord segments of C is made of the middle points of these segments.

Under additional conditions, we shall prove that this envelope is exactly the o-affine erosion of

C.

C

C(s

Figure 3.7: The middle point property

We begin with a useful geometric lemma.

Lemma 3 Consider A,B,A’,B’ four distinct points of the plane such that
[AB] A [A'B'] = {M)

and

area (M AA") = area (M BB').
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Then,

dist(A,B) [AA", BB']

dist(A, M) [AB,BB']’

A
AY
M
B
B

Figure 3.8: 4 points Lemma

Proof :

Let us first define A with AM = AAB, which implies M B = (1 — A\)AB. Since the area of
the triangles M AA’ and M BB’ are equal, we have

[AA", AM| = [BB', BM] ,
which gives
AN[AA',AB] = (1- X)) [AB,BB]. (3.2)
Moreover, as M also lies on the segment [A’B’], we can write
[MA', MB|=0=[MA+ AA" MB + BB'] = [-AAB+ AA’,(1- \)AB+ BB'],
so that
—A[AB,BB'| + (1 — ) [AA", AB] + [AA’, BB'] = 0. (3.3)
Now, multiplying Equation 3.3 by A and replacing the second term from Equation 3.2, we obtain
~A[AB,BB'] + (1 - \)?[AB,BB'] + A [AA", BB'] = 0,
and the terms in A? cancel so that
)\ (2[AB,BB'] — [AA', BB']) = [AB, BB'] .
Finally, we obtain as announced

1 dist(A, B) [AA", BB']

i S’ N R
X dist(A, M) [AB, BB']
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A C

Figure 3.9: The middle point property (1)

Proposition 8 [f C is a non-trivial convexr semi-closed curve, then for any scale o, E,(C) is

included in the set of the middle points of the o-chord segments of C.

Proof :

First recall that since C is convex, we can choose a regular parameterization C' of C (i.e. such
that its left and right derivative C” and C” never vanish). Let I be a point of I, (C). Lemma
1 states that we can find a o-chord (s,t) of C' such that [AB] = [C'(s)C(t)] contains /. Defining
A by I =(1—-X)A+ AB, we shall prove that both A < % and A > %, or, in other words, that I
is the middle of [AB].

1. First consider £ > 0 such that s ¢ < ¢. Since the map z +— area (C(s+¢e,t 4+ z)) is
increasing, there exists a unique €', depending on s,t and &, such that (s+<,¢ + ¢’) is another
o-chord of C'. Necessarily, [AB] and [A:.B.] = [C'(s+ £)C(t + £’)] have a common point I, and
the areas of the curved triangles I, AA. and I. BB, are equal.

2. It is clear that there exists a unique real k(¢) such that A, B, A. and B° = B+k(e)C’ (¢)
are four points satisfying the hypotheses of Lemma 3. Moreover, the convexity of C forces the
related intersection point M. = [AB] N [A.B¢] to belong to the segment [BI.] (cf. Figure 3.9).

Since every point of [BI.] belongs to the chord set Cyy. ¢4./, necessarily I ¢ [BM.], which means
that A < A: where A, is defined by I. = (1 — A.)A + A.B.

3. From Lemma 3, we know that

1 [AA., BB] [AA., C (1)]

A7 [AB,BB] T [AB,CL(D)]
and since AA;, — 0 as ¢ — 0, we get
1

— =2 — 0
X as ¢ ,
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which proves that A < % according to Step 2.

4. A symmetrical reasoning proves that A > 5 as well, and consequently A = %, i.e. I is the

middle of the segment associated to the o-chord (s,?). O

From this result, it is natural to wonder whether there is an exact correspondence between
the o-affine erosion of a non-trivial convex semi-closed curve and the set of the middle points
of its o-chord segments. We are going to prove that the answer is positive for a large class
of curves, including C' curves and many polygons, provided that ¢ is small enough. For that

purpose, we introduce the following definitions of regular chord and regular scale.

Definition 10 Let C be a convexr semi-closed curve, then a chord (A, B) of C is regular if
(T, T) € [0,7[.

Definition 11 Let C be a non-trivial convex semi-closed curve. A real o > 0 is a regular scale

for Cif any o-chord of C is reqular. We note o,(C) the upper bound of the reqular scales of C.

Theorem 1 (middle point property) Let C be a non-trivial convex semi-closed curve, and
o a reqular scale of C. Then E,(C) is exactly the set of the middle points of the o-chord segments

of C, and there is a natural homeomorphism between C and E,(C).

Proof :

According to Proposition 8, we only have to prove that the middle point of any o-chord
belongs to E,(C). Consider C' a regular parameterization of C, let (s,¢) be a o-chord of C,
and define « the smallest positive number & such that (s — z,s) is a o-chord of C. Finally, let
DT =] — @, 0] and D~ =]0,¢ — s[ (if C is closed, then these intervals must be considered in S!).
For any a € D~ U D™, we call I(a) the intersection between [C'(s)C(t)] and the chord segment
associated to the o-chord of origin s+ a, and define A(a) by C'(s)I(a) = A(a) C'(s)C(t).

Notice that if a o-chord of C' intersects |C'(s)C'(¢)[ then its origin can be taken in D~ U{0} U
Dt. Hence, to prove that no o-chord set of C contains /, the middle of [C'(s)C'(t)], it is sufficient
to prove that A > on DT as well as A < = on D™,

1. We first establish that for £ > 0 small enough, A(—¢) < 1 < A(e).

Consider £,&’ such that s < s+ <t < t+ ¢ and (s + ¢,t + £') is another o-chord
of C (implicitly, ¢ depends on s, and ¢). Now define k(¢) such that C(¢),C(t + £'),C(s)
and A% = C(s) + k()C'.(s) are four points satisfying the equi-area hypothesis of Lemma 3.

Necessarily, M. = [C(t)C(s)] N [C(t + ") A®] belongs to [I(c)C(s)], so that A(e) > A(e) where
N(e) is deﬁned by C(s)M. = XN (e)C(s)C(t). Moreover, from Lemma 3 we get
1 _ 5 [COC{+e), k) CL(5)]

) ke

T—NE [CHCE),FEICH)
[C4(5), COC (4]

[Ch (), CHICM]

2+
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C

K C(s)

Ct+e")

Figure 3.10: The middle point property (2)

Since C is convex, [, (s),C(s)C'(t)] > 0, and as (s,¢) is a regular chord of C, we have as well,
for £ > 0 small enough, [C*% (s),C(t)C(t+¢')] > 0. Consequently, A(g) > N(g) > L fore > 0

small enough, and a symmetric proof would establish A(—¢) < % for £ > 0 small enough.

2. Let us check that X is continuous. Given a € D~ U DT, there exists a unique b(a) such
that (s+a,t+b(a)) is a o-chord of C. Since the map (s,t) — area (C;4) is continuous, so is the
map a — b(a). Now, as I(a) = [C(s)C(t)]N [C(s+ a(C(t + b(a))], a simple computation gives

Ma) = [C(s+a)C(t + b(a)),C(s)C(t+ b(a))]
N [C(s+a)C(t+b(a),C(s)C(t)]

and the non-vanishing denominator ensures that A is continuous on D* U D~. Last, we know

1

from Proposition 8 that A can be continuously extended to 0 by taking A(0) = 3.

3. Now we prove that A has no local maximum on DT, and no local minimum on D~.

If A has a local maximum in a € DT, then for £ small enough, I(a +¢) and I(a — £) belong
to the segment [/(a)C(s)] (see Figure 3.11). Then, due to the position of C'(s 4+ a + ) and
C(s+a—¢) relatively to C'(s+a), it is clear that the intersection of the o-chords of origin s+a
and s+ a + ¢ lies on [C'(s 4 a)l(a)], whereas the intersection of the o-chords of origin s + a
and s+ a — ¢ cannot lie on [C'(s + a)(a)[. But this is a contradiction with Step 1 applied to
the o-chord of origin s + a, since we would have A'(—¢) > X(e) for the corresponding A'. As a
conclusion, A has no local maximum on DT, and a symmetric proof establishes that A has no

local minimum on D~ either.

4. From Step 2 and 3 we deduce that A is monotone on DT (resp. on D7), and the only
possibility according to Step 1 (and to the fact that A(€) — £ ase — 0) is that X is nondecreasing
on DT (resp. on D7) and remains strictly larger than % on DT (resp. strictly lower than L on

2
D7). Consequently, I does belong to £,(C).
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Cista-9 CO ¢

C(state)

C(t+b(a))

Figure 3.11: The middle property (3)

5. Now we can build a bijective and continuous correspondence between C and F,(C) as
follows : given C(s) € C, there exists a unique 6(s, o) such that (s — §,s+ ) is a o-chord of C'.
According to Theorem 1,

Cols) = 5(Cls = 8) +Cs+9)

belongs to F,(C), and the correspondence C'(s) — C,(s) is one to one and clearly bicontinuous.
a

Notice that the natural correspondence between C and its affine erosion gives sense to F,(C),

meaning the parameterization induced by C' on the o-affine erosion of the curve C'(1).

Corollary 2 If C is a non-trivial convex semi-closed curve and o a regular scale of C, then

E,(C) is of class C'.

Proof :
If this is not the case, then we can find a M € F,(C) such that T}, # T5;. But necessarily

these semi-tangents arise from two distinct o-chord segment containing M, which is impossible

according to Theorem 1. O

We shall estimate the regularity of F,(C) more precisely later . Now, let us compute again
the affine erosion of the “corner” of Proposition 1 using Theorem 1. First, it is clear that the
boundary of the “corner”

{O +zvy +yve; 2 >0,y >0}

is a semi-closed curve C with o,(C) = 400 (any scale is regular) : thus, we know from Theorem

1 that its o-affine erosion is exactly given by the middle of its o-chords.
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The chord set (O, v, v2) of C delimited by the points O + 2z vy and O 4 2y vy has an area
equal to 2 zy. [vy, vy] (cf. figure 3.12). Consequently, the o-affine erosion of C is the set of the
middle points O+ 2wy +yv, constrained by the area equality 2 zy. [vy, v2] = o, which corresponds

to the hyperbola defined in Equation 3.1.

Figure 3.12: Affine erosion of a “corner” (2)

3.3.3 Regular scales

In this section, we characterize the regular scales of a non-trivial convex semi-closed curve.

Proposition 9 Let C be a non-trivial convex semi-closed curve. The set of the regular scales of

C is [0,0.(C)[.

Proof :

Suppose that o,(C) < 4+oo (otherwise there is nothing to prove), and consider C': I — R?
a regular parameterization of C. In what follows, we consider vy an arbitrary nonzero vector
of the plane, and the angle function ay : I — S (respectively a_ : I — S') defined by
oy (s) = ZL(wg, Ch (5)) (a—(s) = Z(wp, C”(s)) respectively).

1. First we show that if o is a regular scale of C and 0 < ¢’ < o, then ¢’ is also a regular scale of
C. Suppose that it is not the case, i.e. that we can find a non-regular o’-chord (s,t) of C'. We can
choose £ > 0 in such a manner that (s,t+¢) is a o-chord of C'. Since ay () < ay(t+¢) < a_(s)
and a4 (t) —a_(s) € [7,27[, we have ag(t +¢) — a_(s) € [7, 27 which means that (s,t4¢) is a
non-regular o-chord of C'. This contradiction proves that ¢’ is a regular scale of C. Hence, the

set of regular scales of C is [0, 0,(C)[ or [0, 0,(C)].

2. Now we prove that ¢,(C) is not a regular scale of C.

2.a. If C'is closed, then I = S, and there exist two sequences (s,,) and (¢,) such that (s,,?,)

is a non-regular o,-chord of C' with ¢,, = ¢,(C) as n — +00. Since S1is compact, we can find
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an increasing map ¢ : N — IN such that

lim (s tom)) = (a,0) € I x 1.

M (S b

Now, because area (C;) is continuous with respect to s and ¢, we have
area (Cyp) = 0,(C).

If we define a,, = min(a, s,(,,)) and b, = max(b,t,(,)), we have, in St and for n large enough,

at(by) —a_(ay,) € [7,27]. (3.4)

Now remark that a_ is left-continuous and ay is right-continuous and deduce from (3.4) that

modulo 27,

a4 () = a_(a) € [r, 2],
and since ay (b) — a_(a) = 27 is impossible, (a,b) is a non-regular chord of C'.

2.b. If C is not closed, then we can suppose that I = R and as C is a semi-closed curve,

Li_m at —lima™ €0,7],

so that if (a,b) is a non-regular o-chord, necessarily a(b) — a_(a) = 7 and C'(] — oo, a[) and
C'([b,4o0[) must be two parallel half lines. Now define o’ = sup{z; a_(z) = a_(a)} and
b =inf{a; ay(z) = ay(b)}: (d’,b) is a non-regular chord of C' and clearly area (Cyy) = 0, (C).
a

Corollary 3 Let C be a non-trivial convex semi-closed curve, then o,.(C) > 0 if and only if no
part of C is a segment [AB] such that (T, TE) € [, 2x][.

Proof :
1. If [AB] is a piece of C such that Z(T7, T§) € [, 2x[, then (A, B) is a non-regular 0-chord
of C, and consequently ¢, (C) = 0.

2. Conversely, let us suppose now that ¢,.(C) = 0. From Proposition 9 we know that
we can find a non-regular O-chord of C, i.e. a part of C which is a segment [AB] such that
(T, TE) € [x,27[. O

This result allows us to check that the characteristic constant o, is non zero for a large
class of convex semi-closed curves, including C'! ones and all polygons such that the sum of two

successive angle steps remains strictly below 7.

Corollary 4 IfC is a convex semi-closed curve of class C*, then a,(C) > 0.
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Proof :

Suppose that C is a convex semi-closed curve of class C'* for which ¢, (C) = 0, from Corollary
3 a part of C should be a segment [AB] such that T, # T§, which is impossible since T = T3
and the regularity of C forces T}; = Ty and TX =T, O

Corollary 5 IfC = AgA;y...A, is a convex polygon, then o,.(C) > 0 iff for all i modulo n,

[Ai A1, AiyaAigs] > 0.

Proof :

This is a simple consequence of Corollary 3, and if [4;4;11, A;42A;43] > 0 for all i we even
know that
0,(A1A2...A,) > minarea (A; A;114;42).

K3

d

What happens for a non-regular chord 7 Considering the proof of Theorem 1, we can see
that if Z(T7, T};) €]r, 27 we have both A > % and A < %, i.e. no point of the o-chord segment
[AB] belongs to F,(C). In other words, the curve described by the middle points of the o-chord
segments has “ghost parts” which must be removed to obtain the desired affine erosion. For
instance, these “ghost parts” appear at any scale of erosion for a triangle, for which o, = 0 (see

Figure 3.13).

Figure 3.13: “ghost parts” always appear in the affine erosion of a triangle

The need to remove these ghost parts is in some way related to the Huygen’s principle

construction used for the propagation of fronts. Behind this construction hides an entropy
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condition : if the propagating front is viewed as a burning flame, then once a particle is burnt
it stays burnt and cannot burn any more (see [65]), so that such “ghost parts” of fronts have no

physical meaning.

If £/(T,,TE) = 7 (ie. T, = —TFE), Definition 10 makes the chord (A, B) non regular
despite the fact that the middle point of the associated chord segment does belong to E,(C).
The reason why we did not allow this configuration in our definition of a regular chord is that
we want not only the reverse inclusion between the middle points and the affine erosion, but
also a bijective correspondence. The case of a square highlights this phenomenon : at any scale,
four points of the affine erosion are the middle points of an infinite number of o-chord segments,

which produces singularities (discontinuity of the tangent) at these points (see Figure 3.14).

Figure 3.14: Four singularities appear in the affine erosion of a square

3.3.4 Consistency

Theorem 2 Let C = C(I) be a semi-closed convex curve of class C™ with n > 1. Then for any
o0 < 0.(C), E;(C) is a semi-closed convex curve of class C™. If n > 2, the infinitesimal evolution

as 0 — 0 of a point C(s) € C is given by

2
3

173

Co(s) =C(s) + w.o3 -'y(s)% N(s) + o(ag) with w = 3 (5) )

where v(s) and N(s) are respectively the curvature of C and the normal vector to C at point
C(s). Moreover, if n > 3, the remaining part is O(U%) at any point where the curvature v(s) is

nonzero.

Proof :
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1. Consider s — C'(s) an Euclidean length parameterization of C (i.e. |C'(s)| = 1 every-
where). Since C is convex, we know from Theorem 1 that £, (C) is exactly made of the middle of
the o-chords of C as soon as 0 < ¢ < ¢,(C) (which makes sense because we know from Corollary

4 that ,(C) > 0). Let (s — 8,54 &) be a o-chord of C' and C,(s) the middle of the associated
segment (see Figure 3.15).

C(s 9

C(s)

C(st+d

Figure 3.15: Affine erosion of a convex semi-closed curve

Since (' is of class C'!, we can use the Green formula to compute the area

1
o= §F(s7 d(s,0)), where

F(s,t) = /:H [C(h),C"(B)] dh + [C(s+1),C(s—t) — C(s+1)].

—t
A simple computation gives
oF

E(SJ) =[C(s+t)—C(s—1),C'(s+1t) —C'(s — 1)]

and aa—F(s,t) =[C(s+1t)—C(s—1),C'(s+ 1)+ C'(s — t)] .

s
C' being convex, we have, for any distinct points C'(a) and C'(b) of C, the inequality

[C"(a),C(b) = C(a)] > 0,

and the equality holds if and only if the piece of curve C'([a, b]) is a segment. Hence, the numbers
[C(s+t)—C(s—1t),C"(s+1t)] and [C(s+t) — C(s—t),—C'(s —t)] are positive and their sum
cannot be zero unless ¢ = 0, which is not the case, or unless C'(s +t) = C'(s — t), which is
impossible as soon as 0 < t < J. As a consequence,

%—ZZ(S, 5)>0
(which simply means that the area o of the chord-set C's_; ;45 increases with §), and the global
inversion theorem allows us to claim that the map s+ §(s, o) is of class C™ as well as the map

(s,t) — F(s,t).
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We just proved that the function
1
s Cy(s) = 3 (C(s—6(s,0))+C(s+6(s,0)))
is of class C. Moreover, since the vectors C'(s — (s, 0)) and C’(s+ (s, 0)) cannot be colinear

for ¢ < 0,(C), the derivative

Q%Cg(s) =(1- %)C’(s -6+ (1+ %)C’(s +9) (3.5)
never vanishes. As a consequence, the curve C, is of class C" in the geometric sense (that is C,
is a regular parameterization).

Incidentally, remark that it can easily check from Equation 3.5 that %Cg and C'(s+§) —

C'(s—0) are colinear, i.e. that the o-chord segments of C are the tangents to F,(C) as expected.

2.a. If C is of class C?, the curvature at point C'(s) is defined by v(s) = [C’(s),C"(s)]. A

simple expansion near t = 0 gives

or
ot

which can be integrated to obtain

(s,t) = [2tC"(s) + o(t), 2tC" (5) + o(t)] = 4t7~(s) + o(t?), (3.6)

20 = %537(8) + 0(8%).

Thus, whenever v(s) # 0 we have

and finally

where N(s) is the normal vector to C'in C'(s).

2.b. If ¥ = 0 we use a geometric argument. Given ¢ > 0, let R = 73,

the disk Dr with center C'(s) + RN(s) and radius R is locally contained in Z(C) near C'(s) (see
Figure 3.16). In particular, there exists o > 0 such that

Since vy(s) = 0,

Vo <oy, C(s)+RN(s) g Cs_5545 and DpNCs_ss4s CZL(C)

(once again, § depends on s and o). Now, calling H the orthogonal projection of C'(s) on the

chord segment [C'(s — §),C'(s+ 6)] and writing d = dist(C'(s), H), we claim that

o>dy/R?— (R-d)2
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C(s 9

Figure 3.16: Case v =0

The reason for this last inequality is that o is larger than the shaded zone of Figure 3.16, which
is itself larger than dv/R? — (R — d)? (the equality happens when the chord is orthogonal to N).

Hence,

o> dvV2Rd — &

and

3 a g
A2 ¢ ——— < —
V2R—d " VR

since d < R due to the fact that C'(s) + RN(s) € Cs_5 s45. Consequently,

which means that

d= o(ag). (3.7)

Now, we constrain o to be small enough in order to ensure that Z(C’(s — ¢),C’(s)) and
Z(C'(s),C"(s+6)) belong to [0, 7/2]. Recalling that the pieces of curve C'([s—4, s]) and C'([s, s+
d]) have length §, we deduce that both dist(C'(s—§), H) and dist(H, C'(s+3)) belong to [6 —d, 6],
so that

N

dist(H,Cy(s)) <

Then, Equation 3.7 implies that

as announced.
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3. If n > 3, the expansion of Equation 3.6 can be improved into
oF
E(Sv t) = 4t27(8) + O(tS)v

and following the same computation as in Step 2.a, on can establish that

).

Wl

Co(s) = C(s)+w-0F -47(s) N(s)+O(c

d

Remark : If the curvature vanishes, we can be more precise. Suppose that C'is locally C'® near

s where y(s) = 0 and 7"(s) # 0. At point s, we have, writing T = C’(s),

" = yN=20

C/// — —’)/2T+’)//N:’)//N
CW = =39y'T+ (y"~+)N=17"N
Consequently,
F 3 ¢t
O ety = [ztc%s) +o), o) + O<t5>] = 2L4"(s) + 0(°)
and an integration yields
2 = £3%"(s) + O(F7),
or equivalently
1
150 \ & 3
5(s,0) = (7,,(8)) +0(od).
Therefore, the point C'(s) is mapped onto
1
Co(s) = 5lC(s=08) +C(s+9)]
4
= O+ W) + O
15% 4 1 AL 4
= ()4 2ot () N(s) + O

Incidentally, we check that

Cols) = C(s) + o(0?),
but we can see that the expansion

Co(s) = C(s) +0(%)
is not generally true when v(s) = 0 (and is false as soon as y"(s) # 0). O

Remark : Theorem 2 proves that the affine erosion preserves the regularity of a convex curve.
Unfortunately, it does not regularize a convex curve of class C™ into a convex curve of class C™
with m > n. One can check this on the C'* curve C made of the half line {y = 0,2 < 0} and the
half parabola {y = 2%, 2 > 0} : for any ¢ > 0, E,(C) is not 2.
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3.4 Affine erosion of non convex curves
3.4.1 Structure

Lemma 4 If S is a simple C-set and M € 0L,(5) — 0S, then 0E,(S) is locally a convex curve

near M.

Proof :

Let M belong to 0E,(S) — dS. We know from Lemma 1 that M belongs to a (possibly
infinite) chord segment of a component of 35. As S is open and M € S, for € > 0 small enough,
the open disk D(M, ) is included in S (see Figure 3.17). But since the complementary set to any
chord set of S in D(M, ¢) is convex, necessarily I, (5)ND(M,e) is convex (it is the intersection
of convex subsets of D(M,¢)). Consequently, 0F,(5) is near M a convex curve, because it is

locally the boundary of a convex set. O

Figure 3.17: local convexity in M € 0F,(S) — S

Lemma 5 If S is a simple C-set and M € 0F,(S) N 0S with ¢ > 0, then 95 is not locally

concave near M.

Proof :

Suppose that M € dF,(S)NdS and 99 is not locally concave near M. Using a parameteri-
zation C' of 05 near M = C'(s), we have for £ > 0 small enough,

[C(s—e)C(s),C(s)C(s+¢)] > 0.

Thus, M belongs to the topological opening of a o-chord set Cs_. s4. for € > 0 small enough,
which is in contradiction with M € dF,(9). O
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According to Lemma 4 and Lemma 5, the boundary of the affine erosion of a simple C-set
is everywhere locally concave or locally convex. Thus, it is a collection of curves. Hence, we
can give sense to the affine erosion of a piecewise convex semi-closed curve as a collection of

semi-closed curves (and we shall prove later that these curves are also piecewise convex).

Definition 12 The o-affine erosion of a piecewise convexr semi-closed curve C is the collection

of semi-closed curves

E,(C) = 0E,(I(C)).

Proposition 10 The affine erosion of a piecewise convex semi-closed curve C is, up to a finite

number of points, the disjoint union of a finite union of concave curves (C;) and convex curves

(D]‘), with
o Vi, C; CC, and no concave sub-curve of C contains more than one C;.

o Yy, D]‘QC:@.

Proof :

Let us define the curves Cy as the connected components of F,(C) NC (minus their extremal
points if any). According to Lemma 5, these curves are concave, and if C; and C; belong to the
same concave component of C, necessarily ¢ = ¢’ (a nonnegative chord segment of C cannot have
both its endpoints on the same concave component of C). Hence, there is a finite number of

curves C;. Now, call D; the connected components of
E,(C)\JCi.
7
We have to prove that there is a finite number of such curves.

First, there can be only a finite number of non semi-closed D;, because these D; are connected
to some C; according to Lemma 5. Second, let us choose an arbitrary direction v of the plane,
and consider the multivalued map ¢ which associate, to any line D directed by v, all area values
of all chord sets of C defined from a piece of D. Because C has a finite number of components,
¢ can be described by a finite set of continuously increasing single-valued maps (@) (only a
finite number of accidents happen to ¢ when D sweeps the plane). Then, to each map ¢y is
associated at most one closed D;, so that the number of closed D;’s is finite. Last, as for the

semi-closed but nonclosed D;’s, there is at most two of them. O

Corollary 6 The affine erosion of a piecewise convex semi-closed curve is a collection of piece-

wise convex semi-closed curves. Fquivalently, the affine erosion of a C-set is a C-sel.

Proof :

The first part is a direct consequence of Proposition 10. As for a C-set S, it is sufficient to

notice that the boundary of E,(5) is included in the affine erosion of the components of 95. O
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3.4.2 Inflexion points

We would like to prove that the number of inflexion points (in a generalized sense) cannot
increase when we compute the affine erosion of a piecewise convex closed curve. This is another

stability property of the affine erosion, complementary to the inclusion principle.

Let C = C'(I) be a piecewise convex curve. We define a canonical decomposition of C into

convex curves. We say that a point M of C is

e convex if C is locally convex near M,

e concave if C is locally concave near M,

We consider the sub-curves CZ»‘" of C defined as the open connected components of the set of all
convex points of C, and the concave sub-curves C; symmetrically defined. If a convex curve
CZ»'" and a concave curve C; overlap, either they are equal to the same segment, or, if not, they
have each a segment in common at one of their endpoints. In that case, we remove from CZ»‘"
and € half of this segment. This way, we obtain a canonical (and minimal) decomposition of
C into convex and concave parts. A junction between some CZ»‘" and some C; is called a simple
junction, while a junction between two C’s or two C;’s is called a double junction (see
Figure 3.18).

C

Figure 3.18: Simple (S) and double (D) junctions of a closed curve C.

We define #7(C), the number of junctions of C as the number of simple junctions of
C plus twice the number of double junctions of C. If C is a C? closed curve whose curvature
vanishes at a finite number of points, the junctions of C are all simple and correspond to the

inflexion points of C. A polygon has no double junction either.

Proposition 11 If C is a piecewise convex closed curve and o > 0, then F,(C) has no double

junction and

#J (E(C)) < #T(C).
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— E,©

- - - C+E/C)

Figure 3.19: Simple junctions of E,(C).

Proof :
1. Suppose that a component D(J) of I, (C) has a double junction M = D(s). Since D(I) is

not locally convex near M, necessarily M belongs to C = C'(I) and C is locally concave near M.
Hence, near M, C N D(J) = {M}. This means that D(]s — e, s[) and D(]t,t + [) are segments
for £ > 0 small enough. Thus, M cannot be a double junction of D(.J), which is a contradiction.

We deduce that F,(C) has no double junction as soon as ¢ > 0.
2. We prove that
#J (Es(C)) < #T(C)-

2.a. Let us consider D; a maximum convex piece of I,(C), i.e. such that £,(C) is not locally
convex at the extremal points A and B of D;. From Lemma 4 we know that A and B must

belong to C.

If D; C C, it is a segment and neither C nor F,(C) can have any junction on D;. If D; ¢ C
but D; is a segment, then [,(C) has no junction between A and B (see Figure 3.19). Last, if
D; is not a segment, then £;(C) has exactly two simple junctions between A and B (see Figure
3.19). But since the piece of C between A and B cannot be concave (it has a nonzero positive
chord), the number of junctions of C between A and B included is at least 2 (with the convention
that a double junction in A (or in B) is counted once for each of the two D; it belongs to).

Hence, in all cases, between A and B (included), F,(C) has not more junctions than C.



64 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS

2.b. We claim that E,(C) cannot have any junction outside a piece of curve D; of the previous
kind. The reason is that on these remaining parts, F,(C) is strictly concave (i.e. nowhere locally
convex), so that any junction between these remaining parts should be a double junction, which

is impossible according to Step 1. Hence, we have

#J(Eo(C)) < #J(C)

as announced. |

3.4.3 Consistency

Theorem 3 IfC is a piecewise convex semi-closed curve of class piecewise C™, then E;(C) is a
collection of piecewise convexr semi-closed curves of class piecewise C™. If n > 2, each point M

of C can be associated to a point M, of E,(C) such that
2 1 2
My =M+w-0o7-(y7)7 N+o(od),
where v and N are respectively the curvature of C and the normal vector' to C at point M. As

1 /3\3
usual, we set w = 3 (5) " and vt = max(0,7).

Proof :

1. From Proposition 10, we know that F,(C) is made of a finite number of curves of three
kinds : pieces of C, which are C", segments, which are C°°, and new convex pieces, which can

be proved to be C™ using the arguments of Theorem 2. Hence, F,(C) is piecewise C".

2. Consider M a point of C, and call v the curvature of C in M.

S

Figure 3.20: Case v < 0

2.a. If v < 0, call T the tangent to C in M, and let oy be the nonzero area of the C-set
delimited by a segment of the kind |M — aT, M + bTJ, where both a and b are positive. Any

'If v = 0, IV is not uiquely defined but any choice is convenient since ('y+)% N=o0.
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chord-set of C containing M contains the previous chord set (see Figure 3.20), and consequently
its area must be larger than og. In other words, for any o < 09, M belongs to £,(C) and taking
M, = M closes the case.

2.b. If v > 0, call C; the largest convex component of C containing M. For ¢ small enough,
any o-chord set of C containing M is defined by two points of C;, so that the “evolution” of M

is given by Theorem 2 and the proof is complete.

2.c. If v = 0, the geometric argument used in the proof of Theorem 2 still applies. O

3.4.4 Other possible definitions of the affine erosion

The affine erosion of a convex set S is obtained in a simple way, by removing from S any part
of S with area o of the kind H NS, where H is a half plane. This may be the simplest way to
obtain a global affine invariant set-shortening process tangent to the afline scale space. Now, if
one wants to generalize this definition to non-convex sets, one must be careful, and the natural
generalization (removing from S any connected component of H NS with area o) is not that
good : this definition does not ensure a very important property, the global inclusion principle
(see Figure 3.21), which states that E,(S1) C E,(52) when S; C Sy. This principle has strong

consequences for the iterated operator, and guarantees numerical stability.

Figure 3.21: Inclusion principle is lost for the alternative definition of the affine erosion

With our definition of the affine erosion, the global inclusion principle is satisfied, but the
connectedness is not preserved (whereas it is preserved for the former definition). Notice, how-

ever, that these two definitions yield the same infinitesimal evolution (for scales small enough).
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Chapter 4

Comparison between affine erosion
and scale space

In this chapter, we compute exactly the affine erosion and the affine scale space of conics.
We show that for these curves the affine erosion remains a good approximation of its tangent
operator not only for infinitesimal areas : this suggests that we can build a fast scheme for the

affine scale space by iterating the affine erosion with rather large scale steps.

4.1 Affine scale space of curves

From now on, we note ¢t — ASS;(C) the affine scale space of a curve C, when it exists. In
other words, if we can find a function (s, t) — C(s,t) such that s — C'(s,0) is a parameterization
of C, we say that s — C'(s,t) is a parameterization of ASS(C) if we have for all s and ¢ > 0,

5= 5,1

where v(s,t) and N(s,t) represent the curvature and the unit normal vector of the curve C'(-,¢)

W=

N(s, 1), (4.1)

at point C'(s,t). As before, we take the convention that if r is a negative number, #'/3 = —|r|1/3,
At an inflexion point, N is not defined but since we have v = 0, the right hand term of Equation
4.1 is naturally equal to zero. Notice that Equation 4.1 assumes that C' is derivable with respect

to t and twice derivable with respect to s.

If the curves (ASS¢(C));~o can be represented by functions of the kind z — (z,y(2,t)) in an

orthonormal basis, then Equation 4.1 is equivalent to

8y 82y %

Indeed, let us denote by y' and y” the first and second order derivatives of y with respect to z.

For such a Cartesian parameterization we have

"

¥

,l) = ———~
7(2:1) 1497}

9

67
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and in the associated orthonormal basis, the unit tangent and normal vectors to the curve are

respectively
1
T(z,t) = —— (1,4
and
N(et) = ——— (~4/,1)
x? = 1
1_|_y/2 Yy
Thus, we have in the same basis,
1
0,1) = —— (N+4'T),
(0.1) = = (N+y')

so that Equation 4.2 is equivalent to

oC 1 1 y//1/3 y/

It has been proven (see [68],[29]) that the tangential component is of no influence on the whole
curve evolution since it corresponds to a renormalization of the space parameter s (i.e. a
movement of each point C'(s,t) along the curve C'(-,¢)). Therefore, Equation 4.3 is equivalent

to Equation 4.1.

Theorem 2 states that for regular convex curves the operator F,s/. is tangent to the the

operator ASS, , when h — 0, provided we set

2
1 (3) 3
w==-1(=] .
2 \2
In this chapter, we compute explicitly the affine scale space and the affine erosion for several
convex curves, and we check that these operators are very close for small scales. In fact, for

conics (ellipses, hyperbolae, parabolae, and “corners” as degenerated hyperbolae), both the

affine erosion and the affine scale space can be exactly computed.

4.2 Affine erosion and scale space of an ellipse

4.2.1 Affine erosion

Proposition 12 The o-affine erosion of an ellipse with area Aqg is an ellipse with same axes
and excentricity and with area
2 0(0)
A(o) = Ag cos —
where §(o) is defined by
2ro
f(o) —sinf(o) = —.
(o) —sinf(o) m

In particular, for an infinitesimal erosion, we have the following canonical expansion

3 2772

AT(12) = A — =L o). (4.4)
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Figure 4.1: Affine erosion of a circle

Proof :

1. Consider the parameterization of the ellipse

[ A
M(t) = f(cost'vl + sin ¢ vy)

satisfying [vy, ] = 1. We can find a linear map ¢ with determinant 1 which transforms the
affine basis (w1, v2) into an orthogonal basis, in which ¢(M(t)) describes a circle enclosing the
same area Ag. Then, because the affine erosion commutes with the rotations, the affine erosion
of a circle with radius Ry cannot be anything but a circle with same center and with radius

R(o) < Ry. On Figure 4.1 we can see that
R(oc) = Rycos 8o)
0 in 6
and o = R%(——Sm )

Hence, as ¢ commutes with the affine erosion and with the homothetic transformations, we

deduce that on the ellipse as well as on the circle, the affine erosion acts as a homothetic

transformation with ratio cos ﬂzﬂ, which proves the first result of Proposition 12.

2. Let us evaluate now A(c) = Ag cos? ﬂ;l when o tends towards 0. From

0 —sinf = 2;;—0
0
we see that #(c) — 0 as 0 — 0, and
63(o) 9 2ro
—— (1+0(%(0))) = =,

which gives (o) = O(U%) and
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In this way, we obtain

z 1
Alo) = Ao (1-sin? A2) = g = 20 (BED)7 4 0oy = a0 — 4 (27 +0(0h
2 4 Ag 2
The “canonical” expansion of A(o) is
AT(t2) = AL —w t+0(2),
with
2 (377)% 5 (272
W= — B e .
3\ 2 3
We remark incidentally that as o goes near its critical value o, = % corresponding to the

ellipse extinction, we have

B(o.+h) =7 — 2h+ o(h)
Ao

and consequently

Oloc+h) 7w 2h
COST_—ZL-AO—I—O(/}).

It follows that the ratio %Z) = cos 6(2—0) admits a linear expansion near its extinction value.

Figure 4.2 shows the value of the normalized area AAO and the ratio ’/A% depending on the

normalized erosion parameter -.
(=3

>
S

Qla

)
0 1 O 0
Figure 4.2: Area for the affine erosion of an ellipse

4.2.2 Affine scale space

Proposition 13 The affine scale space at scale t of an ellipse with area Ag is an ellipse with

same azes and excentricity, whose area A(t) satisfies

2
A3 (1) = Af — gﬂ : (4.5)
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Proof :

As for the affine erosion, the affine invariance of the affine scale space reduces the problem to
the computation of the affine scale space of a circle. Because of the rotation invariance, the ASS
of a circle is a a family of circles (C¢)¢>0 with same center O and radius R(t). A trigonometric

parameterization of the circles C; satisfies Equation 4.1 as soon as we have for any ¢ > 0,

4
RE(1) = R5(0) - 5t,
and Equation 4.5 simply arises from the equality A(t) = 7 R*(t). O

If we compare Equations 4.5 and 4.4, we can check that the operator A4S5S, } is tangent to

Ey 22, simply because

3 2772
o= N

53

W

T

o

This property is illustrated on Figure 4.3. The normalized area (A(-)/A0)§ is represented both
for the affine erosion F, and for the normalized affine scale space ASS; (with t = w - o5 for the

reason we explained before).

2/3
(=)

— affine erosion

- affine scale space (normalized)

213
X ﬁ 1 (Gge)

™
Figure 4.3: Comparison between the affine erosion and scale space of an ellipse
As we can see, the action of the affine erosion on ellipses is very close to the one of its tangent

operator, the ASS, even for large scales. This suggests that we can build a fast scheme for the

ASS by iterating the affine erosion with rather large scale steps.
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4.3 Affine erosion and scale space of a hyperbola

4.3.1 Affine erosion

Proposition 14 The o-affine erosion of a hyperbola with apparent area Ag is a hyperbola with

same axes and with apparent area

0
A(o) = Ao dﬁ%, (4.6)
where §(o) is defined by
2
6(c) — sh (o) = A—"O.

In particular, for an infinitesimal erosion, we have the canonical expansion

AT (17) = AT (0) + ﬁ-wr O(t?).
Proof :
M(t.)
M(t,)
Vo
0,

Figure 4.4: Affine erosion of a hyperbola

Let (O, w1, v2) be an affine basis with same axes as the hyperbola C. In this basis, a parametric
equation of C is given by

Ao

M(t) = (X(t),Y () = ale', e™), with o* = Tor, o]

Let us now consider two points M (t;) and M (tz) of C with t; =t — & and t, = t + £ (see Figure

4.4) . In order that the chord set (¢1,¢;) of C has area o, we should have
o 1 b

' 1
orog] = 2, MOMO1d A+ SM(G) = M), M(t)]
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1 2 dX dY 1

= = Y— - X—dt —(X(t)Y () =Y ()X (¢
2.y, dt dt "’2( (t)Y (t2) = Y (t1) X (t2))
a2 t2 2

= — e~tel +ele tdt + a—(e_e — 60)
2/, 2

= a*(# —sho).

Since 0,(C) = 400, Theorem 1 ensures that the affine erosion of C is the set of the middle

points of such o-chord segments, i.e.

a [ [ [ [ 0
P(t) = 5 (et_5 +efte et 4 e_t_5) = ach§ (ef e,
As 8 does not depend on ¢, this proves that the affine erosion acts on C as a homothetic trans-

formation with center O and ratio Chg7 and

o 20
§—shg=—— =",
a [1)17’02] AO

As regards the canonical expansion of A(t) near t = 0, the computation is the same as for

the ellipse, except that the constant 7 disappears, so that the coefficient ¢, % becomes \3/% O

Remark : One can be surprised that # does not depend on ¢. It can be simply explained by the
fact that the parametric representation of the hyperbola we used is, up to a multiplicative factor,
the affine abscissa representation, and since the affine curvature of a hyperbola is constant, the

area of a o-chord set (¢,¢+ z) only depends on z.

Let us now evaluate A(c) when ¢ tends to infinity. We have

() 0 20
—0(o)y — 22
2 + O(e ) 1407
which gives
4o 1
(s) — 27 -
e m + O(U).

Replacing this expression in Equation 4.6 yields

Alo) = Ao (e%f) +2+ O(e—%)))

Hence, A(o) admits an asymptotic linear expansion at infinity. Figure 4.5 represents the nor-

malized apparent area 4- depending on the normalized erosion parameter 2, for the affine
AO AO ’

erosion of a hyperbola.
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A
AO

2

> q

0

Figure 4.5: Area evolution for the affine erosion of a hyperbola

4.3.2 Affine scale space

The affine scale space of a hyperbola has been computed by Alvarez and Morales in [5]. Here

we use a different parameterization.

Proposition 15 The affine scale space at scale t of a hyperbola with apparent area Ag is a
hyperbola with same axes and whose apparent area satisfies
4

2
AT(t) = AS + 3t (4.7)

Proof :

Let Hg be a hyperbola with apparent area Ag and R = (O, w1, v2) an orthonormal basis of
the plane, we can find an affine map with determinant 1 which transforms the axes of Hy into

(O, ;) and (O, vy), so that Hy = ¢(Hyp) can be represented in R by the function
A
y(e) =5

22
Now, let us consider a family of hyperbolae H; = M (-,t) of apparent area A(t) > 0 defined by

A(t)
(0,1 = 50
On one hand,
dy _ A
o 2z’

and on the other hand,

9y \T _ AT
ox? oz
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Consequently, the family H; is the scale space of Hy as soon as Equation 4.2 is satisfied, i.e. as

soon as A(t) is solution of the differential equation

W=

Al(t) =243 (t).

Solving this equation yields A
2
AT(t) = AS + 3t (4.8)

Hence, the scale space of Hy, given by qb_l(f{t), is the one announced in Proposition 15, and

since the apparent area is invariant under ¢~!, Equation 4.8 remains true. O

Figure 4.6 represents the compared apparent areas obtained on a hyperbola with the affine
erosion F, and with the normalized affine scale space ASS; (t = wag). As for ellipses, notice

how close the affine scale space and the affine erosion behave.

2/3
(<)

14 2/3

o )

1

Figure 4.6: Canonical area evolution for the affine erosion of a hyperbola

4.4 Affine erosion and scale space of a parabola

Proposition 16 The o-affine erosion of the parabola of equation y = px? in an orthonormal

basis is the translated parabola of equation

2
N
y = pe® +piot (Z) ’ (4.9)

in the same basis. In particular, Eys/2 acts as a semi-group operator upon the family of parabolae
Py iy = pa? + X since
Egyyzre 0 E(h2)3/2(PA) = E(h1-|—h2)3/2(P/\)-

A consequence is the exact equality

ASS,w(P\) = Epaye (P,
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where as usual

Proof :

Since a parabola is a semi-closed convex curve with o, = +o00, we know from Theorem 1 that
its o-affine erosion is given by the set of the middle points of its o-chord segments. Consider a
o-chord (z — &,z + &) of the parabola y = pz?, the resulting middle point is (z,y,(z)) where
(2 -0+ (x+8)?

Yo (z) =p 5 = p(a? + §%).

Besides, a simple computation yields
z+6

o = &pllx =8+ (z+0)} - /x—é psids

= 20p(z* +48%) — g[(ac +6)° — (xz = 0)7]
iy
3

and finally,

2
Yo (z) = pa® +p (%U) = pa?+ pod (ﬁ)

2
Consequently, Eyae(P\) = Pytan where ao = p% (%) ®, which establishes the announced semi-
group property. But since ASS,.} is the tangent operator to E;s/., we have (as we shall prove
later)

ASSun(Py) = lim [Euer| (P = Bjap(Py).

We can also check this result directly by using Equation 4.2. Taking the second order derivative
with respect to z in Equation 4.9 yields

0%y
Z 7 _9
8$2 p7

so that @ — y(x,t) represents the affine scale space of P} as soon as

39_ 1
FTi (2p)*.

Consequently, ASS, ,(Fo) is the curve given by

2
y(z,t) = pa’ + (2p)7 - wh = pa® + pSh G) K
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4.5 Affine erosion of a triangle

The complete description of the affline erosion of a polygon will be given further. Here we just
deal with the simplest case, namely the triangle. This case is interesting because all triangles
are equivalents in Affine Geometry. One may refer to Chapter 6 (numerical scheme) for the

precise description on the affine erosion of a general polygon.

Proposition 17 The affine erosion of a triangle is a “hyperbolic triangle”, i.e. the concatena-

tion of three hyperbola pieces, each one given in barycentric coordinates by the equation
2 1 1
i —t T
e e, ——e" —e t<In| —=—4/——2
et bl (ﬁ : )
In particular, the extinction scale of a unit area triangle is

! 0,444
0. = - =10,
9

Figure 4.7: Affine erosions of a triangle for different scales
Notice that this is NOT the scale space spanned by the iteration of the affine erosion ! Each
curve represents the action of the affine erosion on the initial triangle, for different values of the
erosion area.

Proof :

1. First, notice that we can find an affine map which transforms a given triangle into a unit
area equilateral triangle. Thus, it is sufficient to establish the proof for such a triangle thanks to

the affine invariance of the affine erosion (see Proposition 5). By symmetry, it is clear that the
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extinction point of an equilateral triangle is its center. As a consequence, the extinction point
of any triangle must be the barycenter of its vertices (notice that this property is false for other

polygons in general). One can check easily that the chord set of minimum area which contains

the barycenter of a unit area equilateral triangle has area % (see Figure 4.8). Consequently, the

extinction scale of any triangle is % of its area.

Oe

Figure 4.8: Extinction area of a triangle

2. Consider the o-chords segments of the triangle whose endpoints lie on two fixed edges of
the triangle. The middle points of these o-chord segments span a piece of hyperbola, simply
because the affine erosion of a “corner” is, as we saw previously in Proposition 1, a piece of
hyperbola. Consequently, Proposition 8 ensures that the affine erosion of a triangle is the
concatenation of three pieces of hyperbola (there are exactly three different pairs of edges for a

triangle).

3. The previous hyperbolae can be described in barycentric coordinates by an equation of
the kind
(e e, K(o)—e' —e™?), 1 <t<ta. (4.10)

(we recall that (a,b, c) are barycentric coordinates of M in the affine basis (A, B, C) if and only
if (a+b+¢c)OM=aOA+bOB + cOC for any point O if the plane). Let us compute K (o).
Remember that if vy, vs, v3 are three vectors of R?, one has
[’l)l7 1)2] U3 —|— [’l)g7 1)3] m —|— [’l)37 ’l)l] Vo = 0.
Applying this to M A, M B and M B where ABC' is a triangle with unit area, we get
1 1 1
M= 3 [MA,MB]C+ 3 [MB,MC] A+ 3 [MC, MA]B.

In other words, a system of barycentric coordinates of M in the basis (A, B, () is given by the
areas of the triangles M BC', MC' A and M AB. Now, if we maket = 0in Equation 4.10, we obtain

the point M of Figure 4.9, which, according to the previous remark, can be represented in the

' 2
basis (A4, B,C') by (%, %,S). Moreover, one can see easily that .S = % and o = (%) .

Now, identifying the previous coordinates (up to a multiplicative factor) with (1,1, K (o) — 2),

we get
1—
K -2 =5,
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so that ) )

79

Now, a simple computation resulting from the permutation of the affine bases gives the bound

value

1 1
[t <In | —=—14/=—2].
Vo o

Then, by solving the equation

e
Q

we find again the extinction scale o =

A c B

Figure 4.9: Computing K (o)

Remark : As announced in the previous chapter, the triangle is an example of a simple convex

C-set whose extinction area is less than half of its area.

As far as we know, the affine scale space of a triangle has not been computed exactly, and it

is uncertain that there exists a simple analytic expression for it. However, we can observe that

for the reasons previously explained, the affine invariance constrains the extinction point of a

triangle to be its barycenter. Numerical simulations give for the normalized extinction area of

the affine scale space of a triangle the value o/ ~ 0,42 (it means that a unit area triangle and

an ellipse of area 20! disappear simultaneously).
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Chapter 5

Affine erosion of grey-level images

In this chapter, we first extend the affine erosion to any set of the plane and to lower semi-
continuous grey level images. Then, we study its asymptotic behaviour and prove the conver-
gence of the iterated affine erosion+4dilation towards the affine morphological scale space. We
also compare the affine erosion to classical affine inf-sup operators, and we establish the link

with Matheron’s Theorem (characterization of morphological operators).

5.1 Morphological principles

Suppose that we want to analyze an image u, given as a map u : R? — R. The first question we
should answer is : what relevant informations does contain u, physically speaking 7 A important
remark is that our interpretation of an image does not depend on its absolute contrast, but rather
on the fact that some objects are brighter than others (we can check this each time we put on
sunglasses). Hence, we should consider that a given image u (i.e. a map u : R* — R) carries the
same information as any image of the kind ¢(u), where g is an arbitrary contrast change, that
is to say an increasing and continuous scalar function. This point of view has been successfully
adopted by Mathematical Morphology (in the case of flat grey-scale kernels) to design efficient

operators for image analysis. Formally, we are led to consider equivalence classes of the relation
u~v & dg, v=g(u).

According to this equivalence, an image u reduces to the decreasing collection of its level sets!

() = o € R% u(@) > A},
Conversely, any image u can be recovered from the family of its level sets by the relation

u(z) = sup{A; z € U,},

'For our study, it is more convenient to consider the open level sets rather than the closed ones defined by

xa(u) = {z € R*; u(z) > A}

81
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and two images having the same collection of level sets are equivalent (see [41]).

From this point of view, it is natural to say that an operator T acting on images is a

morphological operator if it satisfy the morphological invariance described in Chapter 2 :

[Morphological Invariance] : For any increasing continuous function g,
T(gou)=goT(u).

Although this idea is directly inspired from Mathematical Morphology, we must mention
that the previous definition of a morphological operator is different from what Serra calls a
morphological filter?. As well, the affine erosion we defined in Chapter 3 is not an erosion on a

lattice in Serra’s sense (see [70]). The reason is that the relation
E,(ANB) = E,(A)N E,(B)

is false in general (whereas it is true for the Euclidean erosion).

5.2 From sets to images

Let us consider an operator T" acting on sets : we would like to define a corresponding operator
T on an image u by applying T to the level sets of u. In other words, we ask the following
question : is there an operator 7" which satisfies yy(T'(u)) = T'(x(u)) for any X and a certain
class of images u 7 Obviously, T must satisfy some hypotheses because the level sets of an image
u satisfy the inclusion

Azpo = xa(w) C xulu)
and

Xoate(u) 7 xa(u)  as e\ 0.

This last relation means that € — y\4.(%) is nonincreasing and that
VA, () = [ xoage(w);
£>0
it is equivalent to say that
Ve, u(z) =sup{); z€ x\(u)}. (5.1)
From now on, O denotes the set of the open sets of R?* and LSC(RR?) the set of the lower

semi-continuous functions defined on R%. We recall that u : R?> — R is lower semi-continuous

(ls.c.) if and only if each level set of u is open.

Definition 13 An operator T acting on sets is nondecreasing if

VX,Y, XCY = T(X)cCT().

%in [70], an operator % is a morphological filter if it is both nondecreasing (v < v = (u) < ¥(v)) and
idempotent (¢ oy = ¢).
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Definition 14 A nondecreasing operator T : O w— O is /-continuous if

vixgeolN  x, X = T(X,) S T(X).

For a nondecreasing operator T : O +— O, it equivalent to say that T is -continuous or

that it is lower-semi-continuous for the so-called “hit and miss” topology® (see [69]).

Proposition 18 If T : O+ O is a nondecreasing /-continuous operator, then the relation

A (T'(u)) =T (xa(u) (5.2)

defines a unique operator T : LSC'(IR?) — LSC(R?). Moreover, T is a nondecreasing, morpho-
logical and 1-Lipschitz operator.

Proof :

1. If T exists, then it is unique. The reason is that Equation 5.1 rewritten for T(u) yields

Ve, T(u)(z)=sup{X; z e x\(T(u))},

and if T satisfies Equation 5.2, it is completely defined from T by

T(u)(z) =sup{r; & € T(xa(u))}. (5.3)

2. Let us now consider the operator defined by Equation 5.3, and prove that it satisfies

Equation 5.2. On one hand,

ze(T(w) = T(u)(z) >\
= dAg> A, z€ T(X/\o (u))
= z€T(x(u)),

the last inference arising from the monotonicity of T', because
A<Ao = xa(u) Cxalu) = T(xa(w) C T(xa(u)).
On the other hand, remember that

Xe (u) /l X (u) as € \l 07

and since T is lower semi-continuous we have

Tose(w) A Ta(w)  as = N\0

#This topology on open sets of the plane is spanned by the sets

Og17G27...Gp = {O S 07 K CO and Vl’ Gi ¢ 0}7

where K is a compact set and each GG; is an open set.
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and in particular

U 700w () = T () = T([ xat<(w).

>0 e>0
Hence,
zeTnm) = 2€JT(0ue(w)
e>0
= Je>0, zcT(xrpe(u))
= >0, Tu)(z)>A+e
= T(u)(z) > A

= ze\(T(u).

As a consequence, T defined in Equation 5.3 satisfies Equation 5.2.

3. Let us check the announced properties of T

3.a. T is nondecreasing, and T inherits this property because of Equation 5.3. Indeed, if u;
and uy are two l.s.c. images such that uy < ug, then we have for any A, xa(u1) C xa(ug), and

consequently T'(u1) < T(up) because of Equation 5.3.

3.b. T is morphological because if g is a contrast change, i.e. an increasing continuous scalar

function, we have
(1) = X (g(w),

and Equation 5.3 ensures that

3.c. Let us prove that T is 1-Lipschitz. Let u and v be two l.s.c. images such that for any
x, |u(z) — v(z)| < k. The monotonicity of 7" yields

Vo, T(u—k)(@) < T(0)(@) < T(ut F)(2),
and since T'(u + k) = T(u) + k, we have for any ,
T (u)(&) — T(0) (@) < k.
Hence, we proved that 7' is 1-Lipschitz, i.e.

I () = T(0)lloe <l = v oo

A consequence is that 7' restricted to L is uniformly continuous. O

5.3 Affine erosion of grey level images

We would like to extend the affine erosion to grey-level images through the morphological level

set decomposition. For that purpose, we first need to define the affine erosion of any subset
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of the plane (or, at least, of any open set). But the geometrical definition of the affine erosion
(Definition 5) does not make sense for any subset of the plane, since in general its boundary is

not a curve in a reasonable sense.

We could use the following result due to E. Giusti [38] : if u is of bounded variation, then
its A-level sets are Caccioppoli sets for almost any A. This result could be of great interest for
our purpose since up to a negligeable set of points, the essential boundary of a Caccioppoli set

is made of a countable number of closed curves, for we have
llullpy = /length(GXA(u)) dx.

We prefer, however, to define the affine erosion of an image in a more simple way, using the

inclusion property.

Definition 15 The o-affine erosion of a set U C R? is the set

E,(U) = U E,(S).
S C—set, SCU

This definition makes sense because if U is a C-set, we know that for any C-set .S subset of U
we have I/,(S) C E,(U). Moreover, the extended operator E, is clearly nondecreasing because
if U C V, any C-set subset of U is also subset of V', that is

{SC—set; SCU} C {SC—set; SCV}
and consequently
E,(S) C UJ E,(S).
S C—set, SCU S C—set, SCV
Lemma 6 For any set U C R*, E,(U) is open.

Proof :

By Corollary 1 we know that for any C-set S, F,(S) is open, and consequently

E,(U) = UJ E,(S)
S C—set, SCU

is open as a reunion of open sets. O

Lemma 7 For any set U C R?, we have

E,(U) = UJ E,(S).
S bounded C—set, SCU
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Proof :
Since

EU)= | s
S C—set, SCU

we only need to prove Lemma 7 when U is a C-set.

1. We claim that there exists a nondecreasing sequence S,, of bounded C-sets such that
U=U,8S, and S,, C U for all n. Let us define

N A FE T B N
= — X |
2% [2n7 Qn] [2n7 omn

I (i,)) € Z?

and consider K, an increasing sequence of compact sets such that R? = U, K,. The increasing
sequence .5, defined as the topological opening of the union of the A?; for which A7, C UNK,,

satisfies the previous constraints.

2. Let M € E,(U), and suppose that M & U,E,(5,) (we are going to prove that this is
not possible). If we define D, as the line going through M and oriented by a € S, then for
any n we can find o, € S and a 0,-chord segment of S, included in D,, (and with the same
orientation), such that o, < 0. Now, up to a subsequence extraction, we can suppose that the
sequence (w,,0,) converges towards (&, ) € S x [0, 0].

Since F,(U) is open and M € E,(U) we can find a closed disk D(M,¢) with center M and
radius € > 0 such that D(M, <) C F,(U). Consider N the intersection between §D(M, <) and
Dsy 72 (see Figure 5.1). The line going through N and oriented by & defines on U a bounded
chord set K containing N, and for n large enough we have D,, N K = (), so that o, > area (K),
and letting n tend to infinity yields area (K) < & < o, which is in contradiction with N € E,(U).
|

Figure 5.1: For n large enough, D, N K = 0.

Proposition 19 The restriction F, : O — O is /-continuous.
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Proof :

Since F, is nondecreasing, we have to prove that for any nondecreasing sequence (X,) of

open sets,

U E-(X0) 2 E-( Xn).
nelN nelN

Let X = U, X, consider a bounded C-set S such that S C UX,, and suppose that for any n
we can find z,, € S\ X. Since S is compact, we can extract from (z,) a subsequence which
converges towards € S. But for any n, S\ X, is closed, and as z, € S\ X, for any k > n,
we have € S\ X,, for all n. This means z € S\ X, which is impossible, this set being empty
since S C X.

Consequently, there exists ng € N such that S C X,,,, which proves that

E,(S) C Ep(Xy,) C | Eo(Xn).
nEIN

The last inclusion being true for any bounded C-set S such that S C X, we deduce from Lemma
7 that

E,(X) = U E,(S) C | Eo(Xn).
S bounded C—set, SCX nelN

d

Now, since F, : O — O is nondecreasing and -continuous, we can define the affine erosion of

a lower semi-continuous image according to Proposition 18.
Definition 16 The o-affine erosion of a ls.c. image u : R* — R is the image

Eo(u) :z—sup{A € R; z € E,(x\(u))},

where xx(u) = {z; u(z) > A} is the A-level set of u.
Once again, we use the same notation for the affine erosion of an image, without risk of confusion.

Lemma 8 F, : LSC(R?) — LSC(RR?) is a nondecreasing, morphological, 1-Lipschitz and affine

mvariant operator.

Proof :

The first three properties are a consequence of Proposition 18. As regards the affine invari-

ance, we have to prove that for any affine map ¢,

Ecr~|det¢|(u) °0¢= ECT(U © ¢)

This is a consequence of Proposition 5, since y(u o ¢) = ¢(ya(u)). O
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Lemma 9 For any image u, E,(u) is nonincreasing with respect to o, i.e.

o1<0or = L, (u) > Ey,(u).

Proof :

This is a consequence of Lemma 2. O
Lemma 10 [f u is k-Lipschitz, so is F,(u).

Proof :
The map u being k-Lipschitz, we have

w(@) — Kyl < w(z+y) < u(z) + kllyll.

Considering this last inequality as the comparison between three functions of z (i.e. with y

fixed), the monotonicity and the translation invariance of E, yield
Eo(u)(@) = kllyll < Es(u)(2+y) < Eo(u)(@) + klyll,

which proves that E,(u) is k-Lipschitz. O

We just saw that the affine erosion satisfies three main axioms of the affine morphological

scale space, namely
[Global Comparison Principle] : u <v = F,(u) < E;(v).
[Morphology] : For every increasing continuous function ¢, F,(gou) = g o F,(u).
[Affine invariance] : For every affine map ¢, Fy.|gecg|(u) 0 ¢ = E,(uo ).

We shall prove later that the [Local Comparison Principle] is also satisfied by the affine

erosion. Thus, the major differences between the affine erosion and the AMSS are :

e The axiom [Contrast reversal] : T;(—u) = —T(u), which is satisfied by the AMSS but
not by the affine erosion. This leads us to define the dual operator to the affine erosion,

called affine dilation and satisfying

for any continuous image u. The relation
E;,oD,(—u)=—-D, 0 F,

ensures that the [Contrast reversal] axiom is asymptotically satisfied when the operator

D, o E, (or, equivalently, F, o D,) is iterated.
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e The semi-group property
Tipp =Ty o Ty,

which is not satisfied by the affine erosion, even for any scale normalization of the kind
Ty = Ey(p). This is the reason why we need to iterate the affine erosion (or, to be precise,

an associated alternate operator) in order to build a good approximation of the AMSS.

5.4 Comparison with the inf-sup operators

In this section, we compare the action of F, with the one of the inf-sup operator associated to
the basis B. made of all closed convex sets with area 1 and symmetrical with respect to 0. We

define

SI,(u)(z) = sup inf u(z++/o.y), and
BeB. YeB

IS, (u)(z) = inf sup u(z+ o.y).
BeBe yep

We know from [41] that if we iterate n times on a continuous periodic image ug the alternated
operator SI, o IS,, then as n — +o00, 0 — 0 with nos — t, we obtain the flow of images u(., )

which is a viscosity solution of the equation

d
SA | Du curv(u)51

ot

with initial condition u(-,0) = ug, ¢ being a positive constant. Notice that these morphological
operators on images can be simply extended to sets via Equation 5.2. For any subset U of the

plane, we define

SI,(U)y={zc R* SI,(1y(z)) =1},

which is equivalent to
SI,(Uy={zeU, dBeB, z++/o-BCU}.
Proposition 20 For any open set U and any scale o,
Sl (U) C E,(U) CU.

FEquivalently, for any lower semi-continuous image u,

Slyy(u) < Ey(u) < u.
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Figure 5.2: SI,(S) C E,(S5).

This result simply means that F, “erodes” a shape less than S1s, does.

Proof :

1. We first establish the proof for a C-set S. If M belongs to SI,(5), then there exists a
convex closed set B of area 20, symmetrical with respect to M, and contained in S. Now, if D
is a positive chord segment of S such that the associated chord set K contains M, let H be the
half plane containing K and delimited by the line supporting D (cf. Figure 5.2). Then, BN H
is connected (as the intersection of two convex sets) and contains M, so that it is contained in

K. Consequently, the symmetry of B yields
1
area (K) > jarea (B)=0

(the inequality is strict because B is closed and S is open), which means that M belongs to
FE,(S). Hence, for any C-set S we have S1y,(S) C E,(S).

2. If U is an open subset of the plane we have

U Shke(S) c U E.(S)=E.(U)cCU. (5.4)
S C—set, SCU S C—set, SCU

Now, if z € SI5,(U), we can find B € B, such that z+v20B C U. Let S. = &+(v/20+¢) é,
where é is the topological opening of B. Since B is compact and U is closed, the distance

between these disjoint sets is nonzero and consequently .S. C U for a certain £ > 0 small enough.

Thus, S is a C-set included in U and such that @ € SI5,(5.), and we get

zc UJ S, (S).
S C—set, SCU
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We just proved the inclusion

Sly,(U) C UJ S, (S). (5.5)
S C—set, SCU

Finally, Equations (5.4) and (5.5) imply as required
Sh,(U)C E,(U)ycU (5.6)

for any open set U.

3. If uy and uy are two images such that

VA7 X/\(ul) C X/\(u2)7

then Ve, wuj(z) < uz(e). Now, if u is a lower semi-continuous image, we can apply Equation 5.6
to x(u) to obtain
YA, Slas(xa(u)) C Es(xa(u)) C xa(u),

and since Equation 5.2 defines F, (u) and SI;,(u), we have

VA, xa(STas(u)) C xa(Es(u)) C xalu),

which proves that
Ve, Sy, (u)(z) < E,(u)(z) < u(z).

Remark : The preceeding result is not true for a closed set in general : for a closed disk D,
S1y,(D) is the closure of the open disk F,(D). One may also wonder if the reverse inclusion
E,(U) C SIy,(U) happens. For a triangle T with unit area, we have ST, (T) =0 < o > %

see Figure 5.3), whereas the corresponding extinction scale for F, is . More precisely, one
g ) P g P ¥

5
can prove that E,(T) # SIp,(T) for any scale 0 < o < 5. However, for regular convex sets and

small scales, this reverse inclusion happens.

Proposition 21 If S is a closed convex set whose boundary is C', then there is a limit scale

o1(S) > 0 such that Sy, (S) = E,(S) for all ¢ < 0y(9).

Proof :

1. Let S be a closed convex set whose boundary C is defined by a regular parameterization
C: 1 — C of class C''. We first prove that for o > 0 small enough and for any o-chord set Cf,
the set symmetrical to C; with respect to the middle point of [C'(s)C(¢)] is included in S.

l.a. Define o1 = area(S)/2. For any s € I and 0 < ¢ < oy, consider the unique o-
chord segment [C'(s)C'(t)] (where t depends on s and o) and I(s) the intersection between C
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Figure 5.3: The largest symmetric convex set contained in a unit area triangle has area 2/3.

I(s) :

Figure 5.4: Definition of a(s, o)

and the midperpendicular of (C'(s),C(t)) (see Figure 5.4). If ¢ = 0, C'(s) = C(t) and this
midperpendicular is the line which goes through C'(s) and which is orthogonal to the tangent to
Cin C(s) . We call a(s,o) the measure in ]0, 7] of the angle between C'(s)C(t) and C(s)1(s).
Since (s,0) — «(s,0) is continuous on the compact set I x [0, o1], necessarily
= inf ,
o (s,cr)EHIlX[O,crl] 04(5 U)

is nonzero and for any ¢ < 01 and s € I, we have a(s, o) > ag.

1.b. For any s € I, consider o(s) the area of the largest C-set C; such that
1
£C(5).C1) = 2o
(such a C-set exists because the map ¢t — Z(C’(s),C’(t)) increases continuously from 0 towards
27). Notice that if we had o(s) = 0 for some s, then C([s,?]) would be a segment, which is
impossible since Z(C’(s), C'(t)) # 0. Hence, o(s) = 0 is nonzero for all s € I, and since s — o(s)
is continuous on the compact set I, we have

o9 = irelga(s) > 0.
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l.c. Now we claim that for any ¢ < min(oy,02) and for any o-chord set Cf;, the set C’SJ
symmetric to Cs; with respect to the middle point of [C'(s)C'(t)] is included in S. Define € the
intersection between the tangents to C in C(s) and C(t), and © the point symmetric to Q with
respect to the middle point of [C'(s)C'(t)]. Since o < o9, we have

B = £(C"(s), C'(1)) €]0, al,
and as 0 < 01 we know that the triangle C'(s)C'(¢)J is included in S, .J being defined by
£(C(s)C(1),C(s) ) = £(C ()], C()C(s)) = ao

(see Figure 5.5). Now, as C; is included in the triangle C'(s)C'()Q, it is sufficient to prove that
Q belongs to the triangle C'(s)C/(¢).J. But this is a simple consequence of 8 < ag, because

0 < Z(C(5)C(1),C(5)) < 3

as well as

] Ct
L | Csi

Figure 5.5: C’SJ is included in S

2. In order to prove Proposition 21, according to Proposition 20 it is sufficient to check
that for o/ < min(oy,03), Ex/(S) C Sy, (S). Consider a point M € E,/(S) : necessarily, any
o-chord segment of S whose middle point is M is such that ¢ > ¢’ (and since S is convex,
there exists at least one such chord segment). But in this case, we proved on Step 1.c that we

can find a convex closed set B with area 20 (made from the symmetrization of a chord-set, see
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Figure 5.5), symmetrical with respect to M and contained in S. Applying on B a homothetic
transformation with center M and ratio y/o//o < 1, we obtain a convex closed set B’ with area
20', symmetrical with respect to M and contained in S. Consequently, M € SI,,/(S), and the

proof is complete. O

5.5 Asymptotic behaviour of the affine erosion

In the previous chapter, we investigated the asymptotic behaviour of the geometrical affine
erosion, and we proved that it was consistent with the affine scale space of curves. Hence, we
can expect the affine erosion of images to be consistent with the affine morphological scale space

(AMSS).

In [41], F.Guichard and J.-M.Morel proved that S, is (semi-)consistent with the AMSS. We

prove the same result for the affine erosion, i.e. that

Nt

FE,(u)=u+w- U§.|Du| [Curv_(u)]sl +O(09).

Here, r~— means min(r,0) and we keep the convention that if r < 0, rs = —|r . Using the
dual operator to affine erosion, the affine dilation (defined by D,(u) = —FE,(—u) as we saw
previously), we shall obtain the exact consistency with AMSS (i.e. curv(u) instead of curv™(u))

by considering the alternate operator D, o F, (or E, o D,).

The classical way (see [41]) to estimate the asymptotic behaviour of such operators is to

reduce the problem to quadratic forms by using a local comparison principle.

5.5.1 A local comparison principle

First, we need to define the concept of C-images (which are to images what C-sets are to sets)

and establish an approximation lemma.
Definition 17 An image v is a C-tmage if all of its non trivial level sets are C-sets.
By trivial set, we mean either the empty set or the whole plane.

Lemma 11 Consider a Lipschitz image u. Then, for any compact subset K of the plane and

any £ > 0, there exists a C-image u. such that |u — u.| < on K.

Proof :
u being k-Lipschitz on the compact set K, we first define the family of squares

ne

k-

Ai,j = [ai7 ai-l—l] X [ajv aj+1]7 (27]) € sz where apn =

9
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Now, we can let
us(w) = 1nf{u(y)1f((y)7 3(7/7])7 (1127 y) € AZ]}7

where 1g is the characteristic function of K (i.e. which equals 1 on K and 0 outside). This
definition ensures that all non trivial level sets of u. are C-sets (their boundaries are made of

polygons), and moreover we have
Ve, 0<u(z)lrx(z) — u(z) < k.diam (4;;) =«.

Hence, u. satisfies |u — u.| < e on K. O

Proposition 22 (Local Comparison Principle) Let u and v be two k-Lipschitz images such

that uw > v on the disk with center zy and radius r. Then we have, for any o > 0,

o (1) (20) > Eo(0)(20) — °2

Proof :

Given ¢ > 0, by Lemma 11 we can find a C-image w such that |w — u| < ¢ on the open disk
D(zg,r). Besides, we define w™ (respectively w™) as the C-image equal to w on D(zo,7) and
equal to +oo outside (resp. equal to w on D(zg,7) and to —oc outside). Notice that infinite
values are convenient here, but we could use finite (and large enough) values as well. We are

going to prove that
Eo(w™)(@0) > Ep(w?)(20) = —+O(e) (5.7)

as € — 0. For that purpose, we consider «,  such that
Ey(w™)(mo) < a < 3 < Ey(wh) ()

(if Ey(w™) (=) = E,(wt)(zo), this is not possible, but we are done since Equation 5.7 is clearly
satisfied).

The definition of £, states the existence of a chord (A, B) of the level set xz(w™) such that
xy € [AB] and the associated chord set K has an area not larger than o (see Figure 5.6). The
construction of w™ ensures that K is bounded. Besides, no piece of [AB] can define a chord
set of x(w™) contained in K because since this chord set would have an area not larger than
o, it would be a contradiction to the fact that o > FE,(w™)(#). As a consequence, the set
C=0xo(w™)NKND(xy,r) “attains” the boundary of the circle D(zg, r). If we define as well
C' = dxp(wt) N KN D(zy,r) and

d=inf{|z— |; (z,2) € C xC'},
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on the one side we have

B — o < 2+ kd, (5.8)

because u is k-Lipschitz and |w — u| < ¢ on D(zg,r). On the other side, one can easily inscribe

in K a triangle with basis r and height d, which proves that area (K) > rd, and consequently
o> rd. (5.9)

Finally, Equations 5.8 and 5.9 give

ﬁ_a<k£+2€7
r

and considering the limits o — F,(w™)(ao) and 8 — F,(w™)(z), we obtain the desired Equa-
tion 5.7.

Last, as we have both u > w™ —¢ and v < wT +¢ on R?, we can apply twice the monotonicity

of F, to deduce from Equation 5.7 that

By (u)(0) 2> Eq(v)(20) — ==+ O(e),

and letting € — 0 achieves the proof. O

. Dbn
Figure 5.6: A local comparison principle

Corollary 7 (Uniform Local Comparison Principle) Let u and v be two k-Lipschitz im-

ages such that u > v on D(zg,r). Then,

Yz € D(ao, g), Eq(u)(2) > Eq(v)(z) - 2’“7"

Proof :

r

For any ¢ € D(=o, 5) we can apply Proposition 22 since u > v on D(z, 5) and we obtain the

desired inequality. O
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5.5.2 Consistency

Lemma 12 (Locality) Let u and v be two k-Lipschitz images such that
u(z) — v(z) = O(lz — =o|*) as = — .

Then,

Proof :

We borrow the proof from [41]. Since u(z) — v(z) = O(|& — x|?), we can find two positive

numbers B and C such that
Vr < R, V& € D(zo,7), v(z)—Cr® < u(z) <v(z) +Cr’.

These three functions are k-Lipschitz, so we can apply the local comparison principle (Proposi-

tion 22) to obtain, for any o,

o (0) 20) ~ Cr° = 2% < 5, () (0) < B () (m0) + €0 4 27

4

Choosing 0 = r*, we get as announced

Remark : Lemma 12 remains true if we write “uniformly with respect to @5” for the hypothesis

and the conclusion.

Lemma 13 If u is a polynomial whose degree is at most 2, then for any =y € R?,

E, (u)(20) = u(0) +w - 05 - | Dul(zo) [y~ (u) (20)]5 + O(c7). (5.10)

Proof :

If the degree of w is strictly less than 2, then F,(u) = u, and Equation 5.10 is clearly
satisfied. Otherwise, according to the morphological invariance of F,, we can assume that
u(xy) = 0. Moreover, we can chose a (positively oriented) system of coordinates such that
zo = (2o, yO)T and either

u((z,y)") = az® + by?



98 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGES

or
u((z,y)") = az’® + by,
where (a,b) € R x {—1,1}. If u((z,y)T) does not depend on z, the level lines of u are straight
lines and Equation 5.10 is clearly satisfied. Hence, we suppose a # 0 in the following.
L. Case u((z,y)T) = aa® + by.

We deal with the case b = 1, the case b = —1 being similar. The level lines of u are parabolae,

so that we can use Proposition 16 to compute
Ey(u)(zo) =X = @€ E,({y=—az®+)})
= @ e{y=—ar’+w((-20)") 07 +bA}),
so that

2
g3,

W=

Eq(u)(20) = u(@o) +w((2a)7)
On the other hand,

1
3

Alw)(eo) = | ({0021, = 2,00, + (1)) | (a0) = (207)2,
so that u satisfies Equation 5.10 (with no remainder).

2. Case u((z,y)T) = az? + by?, ab > 0.

The case b = 1 is obvious since F,(u) = w and A(u) = 0. Thus we suppose that b = —1
and @ < 0. The level line {u(z) = A} is empty if A > 0, and it is an ellipse with area
7|A||a|~1/? otherwise. Hence, we can apply Proposition 12 and a simple computation based on

the asymptotic expansion (4.4) yields

ol

B, (u) (o) = u(zmo) +w(Sau(ao)) Tot + O(0?),

and
1
A(u)(z0) = (Sa(axf — y5))®
as expected.
3. Case u((z,y)T) = ax? + by?, ab < 0.
The level lines of u are hyperbolae, and the reasoning is similar to Step 2 using Proposition

14. O

Proposition 23 (Consistency) Let u be a k-Lipschitz image of class C* near zy, then as

o — 0,
Ep(u)(mo) = u(@o)+w- o7 -[Dul(zo) [y~ (u)(2)]F + O(o%),
Dy (u)(20) = u(ao) +w -0 - [Dul(zo) [yF(u)(20)]7 + O(07),
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Proof :

u being a C® near xy, we can consider i, its Taylor expansion at order 2 near z. Thus,
u(z) = i(z) + O(|z - 2o|”)
as ¢ — xp. From Lemma 12, we deduce that as ¢ — 0,
Eq(u)(z0) — £y (i) (m) = O(c'Y),
and using Lemma 13 we get as expected
Eq(u)(20) = u(@o) +w - 05 - | Dul(mo) [y (u) (@0)]* +O(o%).

The consistency for D, follows immediatly since D, (u) = —F,(—u). O

Remark : In fact, the consistency is uniform in a neighborhood of .

Next, we extend this consistency property to the alternate operators D, o E, and F, o D,.

We first prove that they satisfy a Local Comparison Principle.

Lemma 14 Let u and v be two k-Lipschitz images such that w > v on D(zg,r). Then,

Va ¢ D($07£)7 DCTOECT(U)(w) ZDUOEU(U)(:I;)_ 616_0-7
r

and the same inequality holds for E, o D,.

Proof :

The proof is a direct consequence of Lemma 7. We know that for € D(#o, 5), we have

By (u) (@) > , (v) (2) ~ 220
which we rewrite .
() (@) >~ (u) (o) - 22

Now, from Lemma 10, —F, (u) is also k-Lipschitz, as well as — F,(v) — @ Hence, we can apply

the Uniform Local Comparison Principle once again to obtain
Ve € D(zo,~), Es[—E,(v)(2)] > E, |~ By (u)(@) - —| - =2,

4 r r

which yields

as announced. |
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Theorem 4 (Consistency) Let u be a k-Lipschitz image of class C* near zg, then as o — 0,
Ty () (m0) = ul@o) +w - 05 - | Dul (o) [y () (m))* +O(0 ),

for both T, = D,oFE, and T, = E, 0 D,.

Proof :

We check that the proof of Proposition 23 can be applied here. First, the consistency of the
alternate operators for second order polynomials is straightforward since for such polynomials
FE,;0D,(u) and D, o E,(u) are both equal to either F,(u) or D,(u). Last, the locality property

of Lemma 12 for D, o F, and E, o D, is a direct consequence of Lemma 14. d

Remark : As for F,, one easily proves that the consistency property of Theorem 23 is uniform

near xg.

5.6 Using Matheron’s Theorem

There is another way to establish the consistency of the operator F, : it is based on Matheron’s

characterization of monotone morphological operators and on a consistency Theorem due to
F.Guichard and J.-M.Morel (see [41]).

Theorem 5 (Matheron) Let T be a translation invariant monotone® morphological’ operator

on a set of functions F containing the characteristic functions of all the level sets of the elements

of F. Then, one can find a family B of subsets of IR? such that

Yu € F, T(u)(x) =sup inf ulz+y).
(1)() = sup inf u(a+y)

Indeed, the operator F, being translation invariant, nondecreasing and morphological, the

Matheron’s characterization applies and we can write, for any l.s.c. image u,

By (u)(z) = sup it u(+ Vo - y).

We should take
B.={X CR* 0¢ E,(X)},

but from Lemma 7 we know that it is sufficient to take
B. = {X bounded C —set; 0 € F;(X)}.

Thus, F, belongs to the class of affine invariant inf-sup operators which have been studied in

[41]. In particular, we can expect to use the following consistency theorem :

*i.e. nondecreasing
®i.e. satisfying [Morphological Invariance].
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Theorem 6 (F.Guichard, J.-M.Morel) Let B be a localizable set of plane closed nonempty
bounded sets which is invariant by the special linear group SL(R*). Then, there exists two

constants ¢t and ¢~ depending on B such that, for any image u C* in a neighbourhood of x,

Binfg sup u(z+ /s - y) = u(ao) + 5°/° | Dulao)| g (curv(u) (o)) + o(s*?),
€be yeB

where ¢(r) = ctrrifr>0

= (—r)% if r <0.

To apply Theorem 6 to the affine erosion, the only requirement we have to check is that the

basis Be is localizable in the following sense (see [41]).

Proposition 24 (Localizability) The basis B, associated with the affine erosion operator is

localizable, i.e. there exists a constant ¢ > 0 such that

¥r > /e, VB € Be, 3B € B., B' C D(0,r) and (B, B) < -.
T

Here, the notation D(0,r) represents the open disk of radius r centered at the origin, and

d(B’, B) means the Hausdorff semi-distance between B’ and B, given by

§(B',B) = sup d(z',B) = sup inf |z—2/|.
T'cB’ wleB/$€B

Proof :
The proof is similar to the proof of the Local Comparison Principle (Proposition 22), which

is not surprising.

1. Given r > 1 and a set B element of B., we have 0 € IV(B) and by Definition of I (B)
we can find a C-set A included in B such that 0 € E4(A) (i.e. A € B.). We consider the
L1-Euclidean dilation of A restrained to the disk D(0,r), i.e.

B ={z € D(0,r); d(z, A) <

= | =

1.
B’ is a C-set containing AN D(0,r), contained in D(0,r), and

§(B',B) <4(B',A)+6(A,B) < % +0.
Now we are going to prove that B’ € B, that is to say that 0 € Fy(B').

Suppose that 0 belongs to D, a chord segment of B’ associated to a chord set K of area o

(see Figure 5.7). Two cases can be distinguished.
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lLa. If ANK C D(0,r), then a subset of K defines a chord set of A containing 0 and of area

no more than o. But since A € B, we necessarily have ¢ > 1.

1.b. If AN K is not a subset of D(0,r), which means that K N 9D(0,r) is not empty, then
we can easily inscribe in K a triangle of base larger than r and height % (see Figure 5.7), so that

we get 0 = area (K) > 1.

In both cases, 0 belongs to no 1-chord set of B’, so that B’ € B.. Consequently, we proved
that
Vr > /e, VB € B., 3B € B. (C —set), B' C D(0,r) and (B, B) <

9

1
,
which ensures that B, is localizable with a constant ¢ = 1. |

Cbon

Figure 5.7: Area of K is greater than 1

Hence, Theorem 6 applies to B, and we have, for any image C® near g,

Fo () (o) = sup inf u(eo + /7 - y) = (o) + [ Du(ao)lg (curv(u) (20)) o7 +o(71), (5.11)

where g(r) = ctrrifr>0

= ¢ (—r)% if r <0.
2/3
At this stage, one easily checks that ¢t =0 and ¢ =w = % (%) .

In [41], the consistency of the alternate operators is proved only when B is made of all
unit area convex sets symmetrical with respect to 0, and the proof is based on a more precise

estimation of the inf-sup and sup-inf operators in this case.

However, it seems that the method we used in the previous section still works for any

localizable basis of structuring elements invariant by SL(R?) (and in particular for B.). Since
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the consistency mainly requires a local comparison principle, we only need to check that the
alternate operators I.S;0 51 and SI; 015, satisfy the following local comparison principle. The

proof is more or less the same as for Lemma 14.

Lemma 15 If B is localizable and invariant by SL(R?), and if u and v are two k-Lipschitz

unctions in D(zg, r) satisfying w < v in D(zg, 1), then for any s < ¢~ 'r?
f 05 ying ~ 05 » Yy ~ »

1S, 0 SI,(u) (o) < 1S 0 ST,(v) (o) + kc;, (5.12)
where ¢ depends only on B. The same property holds for 1550 SI;.

Proof :

First, we know from [41] that (5.12) is satisfied for both S/, and IS, taking ¢ = ¢g. But
since ¢~'r? does not depend on zy, (5.12) is satisfied for SI; and IS, in the whole disk D(wzo, 5)
as soon as s < 2¢~1r?/4, provided that we take ¢ = 2¢5. Hence, we can apply once again the
Local Comparison Principle to deduce that for any s < ¢71r? (5.12) is satisfied for 15,0 S/,
and SI; o0 1S,, with ¢ = 4e¢p. O

Hence, we can generalize the consistency property of [41] for the alternate operators 5505

and ST; o IS, for any localizable and affine-invariant basis of structuring elements.

5.7 Convergence

As we know that the affine erosion of images is consistent with the AMSS, it is natural to
wonder whether the iterated infinitesimal affine erosion spans exactly the affine morphological
scale space. The answer is yes, and the proof is classical (see [9], [22], [41] and [20]). The only

refinement we bring is that we allow non uniform subdivisions.

Definition 18 A subdivision of an interval [a,b] is a finite sequence s = (sg, $1, . ..S,) such that

a=8)<5 <...<8, =b. The step of s is

|s| = sup (s; — si-1).
1<i€n

In the following definition, S(R?) is the set of 2 x 2 symmetric real matrices.

Definition 19 A function I : S(R*) x R* — R? is elliptic if
Vip, X,Y)e R*x S(R*) x S(R*), X<Y = F(X,p)>F(Y,p).
Theorem 7 Let F be a continuous elliptic function, and T} an operator on Lipschitz images

(the Lipschitz constant being preserved). Suppose that T}, commutes with additions of constants,

contrast changes and translations, and that for any u C® near z,

Th(u)(20) = u(@o) + h F(D*u(zo), Du(zo)) + o(h). (5.13)
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Given a Lipschitz image ug, we define, for any subdivision s of [0,1],
ug(e,0) = ug(z) and

us(®, 541) = Toiyy—ss us(, s;).
Then, as |s| — 0, us(.,t) converges uniformly on every compact subset of the plane towards a

function & — u(=,t), the unique viscosity solution of

ou 9
E_F(D w, Du)

u(z,0) = uo(z).

The proof can be found in [41] for example.

Corollary 8 Let ug be a Lipschitz image, and us(-, s;) the filtered images obtained as in theorem
7. Then, as |s| = 0, us(.,t) converges uniformly on every compact subset of the plane to the

unique viscosity solution of the AMSS partial differential equation

94— - IDulg(enrs(u),
subject to initial condition u(z,0) = uo(z), where
g(c) = ()3 if Ty = Epp,
= (¢7)5 if T = Dype,

.
C3 lf Th = Eh3/2 (0] Dh3/2 or Th = Dh3/2 (0] Eh3/2'

N

. _ 13
with as usual w = 5 (5)

Proof :

We apply the previous theorem to the operators I s/2, Dys/2, ... and their associated contin-
uous elliptic function

F(D*u, Du) = w - | Du|g(curv(u)).

The required consistency property (Equation 5.13) is a direct consequence of Theorem 4. O

Remark : Following [22], we could also use the mean
1
My, = §(Eh3/2 + Dh3/2)

instead of the alternate operators Fs/2 o Dyasps and Dyajs o Eya/2. The consistency follows
immediatly from the consistency of £/, and D,s/,, and the convergence theorem still applies.
This “mean” operator has one advantage : it is symmetric, so that the resulting scheme is fully
invariant under a contrast reversal (whereas the alternate scheme is only asymptoticly invariant
under a contrast reversal). However, M}, does not satisfy the morphological invariance axiom,

and it creates new grey levels on images.



Chapter 6

Numerical scheme

Numerically, a curve is nothing but a finite set of numbers which are interpreted as coordinates
or parameters to produce a continuous curve. The simplest way to represent a curve numerically
is to define it as a polygon, but some higher order representations, e.g. splines, have appeared

to be more efficient for some applications.

Many reasons lead to choose the polygonal representation to implement the affine erosion
on curves. The polygonal representation is very simple, affine invariant, and the level lines of a
grey-level discrete image are naturally defined as polygons if we consider the pixels as squares.
But the major advantage of this representation in our case is, as we shall see further, that we
can compute ezactly the affine erosion of a polygon. The lack of regularity of polygons (not C*
everywhere) shall not be a problem, since most of the previous analyses apply to piecewise C'!

curves.

Obviously, neither the affine erosion nor the AMSS of a polygon is a polygon. But since
no simple dense set of parameterized curves satisfies this property (as far as we know), an
approximation is always required to iterate the affine erosion. The main advantage of being
able to compute exactly the affine erosion of a polygon is that we can fully dissociate the two
approzimate operations required to compute the AMSS : the scale quantization step (we have to
iterate the affine erosion several times) and the space quantization step, which is necessary to
work on discrete data. By processing these two steps successively and independently, we avoid
a classical trap which prevents geometrical algorithms from satisfying the [Inclusion Principle]
and [Affine Invariance] properties. In particular, our method sets no a priori relation between
the number of vertices of a polygon and the number of vertices of the polygon resulting on the
approximation of its affine scale space at any scale : this number can drastically increase (case
of a triangle) or decrease as well (case of a very “noisy” curve). In other words, our algorithm
processes a polygon as a curve and not as a set of points, and for that reason it is not a point

evolution scheme.

In this chapter, we describe exactly the affine erosion of a polygon, convex or not. Then

we give a simple numerical algorithm to compute the affine erosion of convex polygons, as well

105
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as an exact algorithm in the general case. We also present briefly a simplified algorithm which

runs faster, and produces similar results.

6.1 Affine erosion of a polygon
6.1.1 Regular convex case

Proposition 25 Let P = P P;...P, be a convex polygon, and 0 < o < o,(P). The o-affine
erosion of P is a C! curve made of the concatenation of the pieces of hyperbolae H,; . defined by

Fquations 6.2 to 6.7, the couples (i, k) satisfying Fquation 6.1 and being sorted in lexical order.

Proof :

If P = PiP;...P, is a (positively oriented) convex polygon and 0 < ¢ < 0,(P), we know
from Theorem 1 that F,(P) is made exactly of the middle points of the o-chord segments of
P. Consider two non-parallel edges [P;,_y P;] and [PyPgy1], then there exists o-chords whose
endpoints lie on [P;_y P;] and [Py Pg41] if and only if

1 1
§[ka7]B]<U+Ui7k<§[IP1€+17]B—1]7 (61)
where [ is defined as
I:=(P_1P) N (PyPry). (6.2)
and
oi k= area (I P,...Py) (6.3)

(see Figure 6.1). In this case, we know from Proposition 1 that the middles of the o-chord

segments whose endpoints lie on [P,_1 P;| and [Py Pry1] span a piece of hyperbola

Hip: M) =T+ XMeIP+e'IP), t1 <t<ty (6.4)

)

whose apparent area is
o+o=2\[IP,IP],

o+ 0k
A= T Tk .
\ 207 173 (6:5)

We need to compute the endpoints of H;y, i.e. the value of ¢; and ¢;. Two cases happen

for ¢y : if area (I P,_1Py) > 0 + 0, i, there exists a o-chord segment [P;_y.J] where J € [P, Pr41]

so that

(see Figure 6.1), otherwise there exists a o-chord [J P;] where J € [P,_1 P;]. In the first case, we
have

I+4+2)-e [P = P_4,
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Figure 6.1: Piece of hyperbola resulting from two edges.

whereas

]-|-2,\-et1]Pk =P

for the alternative case. Symmetrically, one easily checks that if area (I P;FPyy1) > 0 + 055 we

have

I—I—Q/\-€t2IPk = Pri1,

and

T+2)-¢e7 2P, = P, otherwise.
In other words,

dist(I, Pi_y)

b= -1
L= TN dist(T, P)

if area (IP_1Py) >0+ 055, t3 = —In(2X) otherwise, (6.6)
dist(I, Pysy)

Ly =1
2= NN dist(T, By)

if area (I P;Pyy1) > 0+ 05k, ty =In(2X) otherwise. (6.7)

The admissible hyperbolae H;j are encountered on I, (P) in lexical order, that is H;j <
H jr means either “0 < ¢ or “4 =1 and k — ¢ < k' —i < k — ¢+ n modulo n”. The reason
is very simple : as we know that F,(P) is convex, we must consider the o-chords segments of
P in such an order that the angles of their directions increase continuously on S!. Thus, the

previous assertion simply results from the inequality
i<j<k = aPP)<a(PF) <a(PP;) < oPP)+2r,

where a(v) measures on S! the angle between a fixed vector and the vector v. a
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6.1.2 Non regular convex case (removing ghosts parts)

When P is a convex polygon and o > o,(P), we noticed in Chapter 3 (see Figure 3.13 for
example) that “ghosts parts” can appear in the curve made of the middle points of the o-chord
segments of P. We cannot avoid this situation since o, (P) = 0 for some polygons. Moreover, we
saw in Chapter 4 that we could hope to iterate the affine erosion with rather large scale steps ;
to this aim, we must be able to compute the affine erosion of any polygon with arbitrary large

scales, and not only when ¢ < o,(P).

Figure 6.2: Non regular chords span “ghost” hyperbolae.

We can see on Figure 6.2 that non-regular chords span “ghost parts”, which do not take
part of the affine erosion of . By the way, these “ghost parts” are also hyperbolae, and their
apparent area is equal to A — o + 0; 1, A being the area of P. Thus, we can forget these ghost
hyperbolae, and E,(P) is included in the collection of hyperbolae defined in Proposition 25,
with the restriction

[Pi—1 P, PyPyy1] > 0.

Now, in order to compute exactly the affine erosion of P, we have to compute hyperbolae
intersections in order to remove the remaining “ghost parts”. In general, computing the inter-
section between two hyperbolae reduces to an algebraic equation of degree 4, but in the situation
we are facing, one can see that when two pieces of hyperbola have a common intersection, they

must have a common axis, so that the problem reduces to a second degree equation which can be
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solved exactly. Hence, it is quite simple to compute the exact affine erosion of a convex polygon
for arbitrary large scales. In the next section, we investigate the general (and more complicated)

case of non-convex polygons.

6.1.3 General case (non convex polygons)

Proposition 26 The affine erosion of a (possibly non convex) polygon is one or several gen-
eralized “hyperbolic polygon”, resulting from the concatenation of segments and convex pieces of

hyperbolae.

The proofis straightforward from Proposition 10, because the affine erosion can only “create”

segments and hyperbolae pieces. If P = Py P, ... P, is a polygon, we can write

E,(P)=Z(P)- |J Co(P...Py),

1<2,k<n

where C, (P; ... Py) is the union of the chord sets of P, with area smaller than o, and resulting
from chord segments whose endpoints lie on the edges [P;P;y1] and [Py—1 P] (with the circular
conventions Py = P,, P,y1 = Py and when k< ¢, P... P, = PPiy1...PoPr... Pio1 Py).

Let P;... Py be a polygonal curve, and consider two points (A, B) € [P;Pi41] X [Pr—1Px]. We
shall say that the segment [AB] is occluded if it is not a chord segment of P = P, ... Py, i.e. if
for some j € {i+1,...,k— 2},

[AB] ([P, Py # 0.

Now, we shall say that the polygonal curve P = P;... Py is

e partially occluded if for at least one (A, B) € [P, Piy1[X]Py_1, P), the segment [AB] is

occluded,

e totally occluded if all segments [AB], (A, B) € [P, Pit1] X [Px-1, Px] are occluded.

If P;...Py is totally occluded, it is clear that Cy(P; ... Py) = 0. It is equivalent to say that
(P;Py) is not a chord of P.

Lemma 16 Suppose that P; ... Py is partially (but not totally) occluded, and [P; P41, Py—1Py] >
0. Then one can find (A, B) € [P;P,41] X [Pr—1Px] such that P,AP;41 ... Py_1 BPy is not occluded

and

Co(P;...Py) = Cy(PAPy, ... Py BP}).



110 CHAPTER 6. NUMERICAL SCHEME

Proof :

More than a proof, we give an effective construction of A and B. The first remark is that if
Co(P;...P;) =0, we can choose A = P; and B = Pj. Hence, we suppose that C,(P;...P;) # 0
in the following.

Since [P;Pit1, Pr—1P;] > 0, we can find an affine map ¢ such such that det¢ = 1 and
&(P;) = (2;,y;) in an orthonormal basis, with z; = 2,41 = ys—1 =y = 0, 2 > 0, y; > 0,

Tp—1 < &) and y;41 < y; (see Figure 6.3).

Vi ¢

x|y

$}(II
z2(0

Figure 6.3: Solving partial occlusions.

Now, consider four positive real numbers a, b, z, y and look at Figure 6.3. The point M(a, b)

belongs to the boundary of the chord set K, of the corner ' = Ry x Ry if and only if

a b
2y,
r oy
In this case, we have
. bz —a) aly—Db) bz — a) ab?
K,,)=ab =ab ,
area (K, ) = ab+ 5 + 5 ab + 5 +2($—a)

and we can deduce that the o-chord set of C defined from the segment [(x,0), (0,2%] contains

M if and only if z belongs to the interval

+ <

b(z — a) ab?
2 2(z — a) 7

I, (a,b)= {w, ab +

An explicit computation gives

I,(a,b) = [% (1— 1—27“()) % (1“/1_27@1))]7
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with the conventions I, (a,b) = () if the square root is not defined, and I, (a,b) = R if one of a,b

is not positive.

Let us now define

JII ﬂ Icr(xjvyj)

i2<i<h—2
(with the convention J; =R if ¢ +2 > k — 2), and

20 20

Jy = 0, 25— M max(0, g
2 [maX( y Uk 1)7$k:| |:yi7max(07yi+1)

(with the convention 1/0 = 4+o00). Since we supposed Cy(P;...P;) # @, J; N J3 is not empty

and we can write J; N.Jy = [21, 22]. Then, one checks easily that the two points

A= (0.2)  and B=o(,0)

Z2

satisfy the conclusion of the Lemma. O

We investigate the possible “shapes” of C,(P; ... P). According to the previous Lemma, we
can suppose without loss of generality that no occlusions appear. In the following, area (P; ... Px)

means the algebraic area of the polygon P;Fiy1 ... Fy, defined for example by

1
area(P;...P) == > [PP), PPiy].

i<j<k

If area (P41 ...P,—1) > o, any chord segment whose endpoints lie on [P, Pi11] and [Py_1 P]
defines a chord set of area greater than o, so that C,(P;...P;) = 0. Hence, we shall suppose

that area (P41 ...P,—1) < o in the three following cases which remain.

e case 1 (regular case) : If area(P,...P;) > o and [P,Py1, Pr—1P:] > 0, the inside
boundary of C,(P;...P;) is made of a piece of hyperbola, completed with two half-chord seg-

ments at its endpoints (see Figure 6.4).

e case 2 (reverse case) : If area(F;...P;) > o and [P,P11, Pr_1F:] < 0 the inside
boundary of C,(P;...Py) is a polygonal curve of the kind AQB, where (A, B) € [PiP41] X
[Pr—1Px]. The point Q is obtained as the intersection between the two o-chord segments defined
from A and B. Remember that as in the convex case, either A = P; or (A, Py_1) is a o-chord
(and a symmetrical alternative holds for B). As we noticed previously, the ghost hyperbola
spanned by the o-chord segments is strictly contained in C,(F;...F;) and does not contribute

to its boundary (see Figure 6.5).

e case 3 (sub-area case) : If area(P,...P;) < o, the inside boundary of C,(P;...P;) is
simply the segment P;Pj4.
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Figure 6.4: Regular case.

Figure 6.5: Reverse case.
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6.2 Algorithm

Now are now in position to describe an ezact algorithm to compute the affine erosion of any

polygon. It consists of three steps.

Step A : We collect all the pieces of curves which can possibly be part of E,(P). As we noticed

previously, these pieces are of three kinds (see Figure 6.6).

1. The valid pieces of hyperbola H; j described previously, completed with their two half
chord segments at their endpoints. As we noticed before, the interval [t,t5] defining
each piece of hyperbola (Equation 6.4) may have to be shortened in case of partial

occlusions (see Lemma 16).

2. The two “limit” o-chord segments of each ghost piece of hyperbola resulting from

non-regular chords.

3. The o'-chord segments (0 < ¢’ < o) defined by two vertices in the sub-area case.

Figure 6.6: The three kinds of curves encountered in the affine erosion of a polygon

Step B : We remove the useless pieces of curves according to their position. More precisely, with
each piece of curve C obtained in step A we associate two numbers a(C), b(C) representing
the starting point of the first chord segment spanning C and the endpoint of the last chord
segment spanning C : since these points belong to the polygon P, we can represent them as
numbers ¢+, meaning the point (1 —«)P;+aP,41. The key point of this representation is
that two pieces of curves C; and Cs obtained in Step A have a common intersection if and
only if the intervals [ay, ;] and [ag, by] are not disjoint. Therefore, if a1 < ay < by < by,

the piece of curve Cy is useless and can be removed.

Step C : We compute the intersections between the remaining pieces of curves (sorted with respect

with their starting number a). At this stage, we may have to compute intersections between
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two segments, between a segment and an hyperbola, or between two hyperbolae. The two
first cases reduce to equations of degree 1 and 2 respectively. The last case (intersection
of two hyperbolae) can be more difficult. If the two hyperbolae have a common axis, then
the intersection equation is of degree 2 and can be solved easily. However, in more general
cases (which happen), we can have two solve an algebraic equation of degree 4 ; if so, we

compute the intersection by using Newton’s algorithm, which converges in a few iterations.

Now, for each intersection, we remove from each of the two curves the parts which are “on
the right” of the other one, according to the definition of the affine erosion. We have to
maintain — at least, formally— two data structures to process this step correctly : one is
the original set of curves obtained from step B, the other is a copy of these curves, updated

iteratively as we just explained.

We must mention that many intersections simply result from two successive hyperbolae as
in the convex case ; to process these intersections, no computation is required : one only

needs to remove the two corresponding half-chord segments.

Finally, we obtain the affine erosion of the polygon as the concatenation (in the natural
order) of the pieces of curves obtained from step C. This algorithm is a bit heavy (about 1600
lines of C source code), but not too slow for reasonable polygons (1 second or so for a polygon
with 100 vertices). One must be careful when computing the intersections, because of the finite
numerical precision of the computer (this can be done by considering point equalities modulo a

relative error, for instance).

Figures 6.7, 6.8 and 6.9 are an example of the results we obtain after steps A, B and C.

4 .
=
/ n"&§

W
0

Figure 6.7: curves obtained ater step A

In this algorithm, we did not mention the problem of topological changes that occurs when
the initial polygon breaks into non connected parts (remember that the affine erosion does not

always preserve the connectedness). This problem is not very difficult to handle, but requires a
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Figure 6.8: curves obtained ater step B

Figure 6.9: curve obtained ater step C
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high computation cost : each time an hyperbola or a segment is computed, one must look for
a possible intersection with an edge of the polygon, and break the resulting curve into several

parts when the case happens. Fortunately, such external occlusions are seldom.

6.3 Affine subsampling and iteration

So far, we know how to compute exactly the affine erosion of a polygon. To iterate this process,
we need to quantize the resulting curve (which is, as we shown, a concatenation of hyperbola
pieces and segments) in order to get a new polygon. Fortunately, there is a simple way to sample

a piece of hyperbola in an affine-invariant way. Consider the parameterization
H : M(t) = Me'vy + e y), th <t <ty

then (¢,¢+ ) is an e-chord set of H if and only if ¢ = A?(sha — ), where sh denotes the
hyperbolic sine (see the proof of Proposition 14). Hence, the polygon FyP;...P, defined by

ko k
Po=M ((1 LAV —tg)
n n

is a discrete affine invariant quantization of H with “area step”

Given ¢ > 0, we can quantize the affine erosion of a polygon up to the area step £ by choosing,
for each piece of hyperbola, the minimum entire value of n such that £(n) < e. This can be

done, for instance, by tabling the inverse function n(s/A?) for the small values and using, for

/\2
n >~ —

Not surprisingly, this quantization step is a kind of discrete affine erosion of scale €. Thus, as

the large ones, the expansion

W=

we want to minimize its influence on the affine erosion, we must choose £ < o, where o is the
scale of the computed affine erosion. This condition forces the second iteration of F, to be
non-local in the sense that the o-chord sets of the resulting approximate polygon contain many
edges (i.e. k — ¢ > 1 for the valid H;y, see Figure 6.10). In that sense, our algorithm is quite
different from a local point evolution scheme, for which the scale quantization step must be
small compared to the space quantization step in order to ensure a minimum of stability. Here,
the inverse phenomenon happens : the scale quantization step (o) is much larger than the space
quantization step (). An important consequence is that we can effectively iterate only a few
times (i.e. with large scale steps) the affine erosion to compute the affine scale space. Indeed, we
do not loose accuracy since € can remain small and the affine erosion remains near its tangent

operator (the Affine Scale Space) even for rather large scales, as we noticed in Section 2.4.
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Figure 6.10: Two iterations of the affine erosion on a triangle. The second iteration is non-local
with respect to the quantization, since each piece of the second iteration curve depends on many
points of the first iteration one.

6.4 A simplified algorithm

Another way to implement the affine scale space is to iterate a pseudo affine erosion, written

E! . which processes separately the convex components of a given piecewise convex closed curve.

6.4.1 Pseudo affine erosion

If we want to define a kind of affine erosion for a non semi-closed curve ¢ — that is, a curve
with two endpoints —, we must choose a boundary condition. Our approach will be to fix these
endpoints : in practice, these endpoints will correspond to inflexion points of a larger curve,
and we know that these points do not move at order 1 since the curvature of the curve vanishes
at them. How can we define the affine erosion of ¢ 7 We shall not investigate the problem in
general, but one can see easily that for small scales, no external occlusions appear and c itself

is included in the boundary of

€y = U 9,

SeKs(c)

so that it makes sense to define F,(c) by
Jde, = ¢ |_| FE,(c),

the symbol U meaning a disjoint union (see Figure 6.11).

Let us call o,,(c) the maximum scale for which we can compute the affine erosion of ¢ as

described previously. If no external occlusion appear at any scale (i.e. it the two endpoints of ¢
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Figure 6.11: Affine erosion of a non semi-closed curve

are a non-zero chord of ¢), we restrain o,,(c) to the area of ¢ (defined as the area of the chord

set associated to the extremal points of ¢).

Given a piecewise convex closed curve C, we consider the canonical decomposition ¢ =
€1¢3 . .. ¢y, the curves ¢; being defined as the convex (or concave) curves extracted from C between
two successive junctions (see Chapter 3 and Figure 6.12). For any ¢ < ¢,,(C) = min; ,,(¢;), we

can define the pseudo affine erosion of ¢ by

EL(C) = Ey(c1) Ex(ca) ... Es(cn).

As for the affine erosion, one can prove that the pseudo affine erosion of a curve cannot have

any double junction.

Figure 6.12: Pseudo affine erosion of a closed curve
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6.4.2 Algorithm

The algorithm to compute F! (C) when C is a polygon is easy to devise. First, we remark that a
polygon has no double junctions, and that its simple junctions are the middle of “inflexion” edges.
Then, the algorithm to compute the affine erosion of each convex component of C is exactly the
one we described previously for convex polygons. Hence, computing E (C) is simpler and faster
than computing D, o E,(C), since it does not require to compute intersections in general (unless

non-regular chords happen, which is very rare for small scales).

It is clear that E! is consistent with the affine scale space. However, the inclusion property
is only satisfied for small scales, because if C and C’ are two piecewise convex closed curves, we

only have
Z(C) CZ(C") = Yo < min(0,(C),0,(C")), Z(EL(C)) CZ(E.L(C)).

Another drawback of this simplified algorithm is that if the curve C is very irregular, o, (C)
may be very small and a lot of iterations are required to compute the afline scale space of C at

a large scale. This happens because only a few inflexion points disappear at each iteration.

In practice, the simplified algorithm based on the pseudo affine erosion is faster and simpler.
We checked on experiments (see next chapter) that it produces similar results compared to the
exact three-steps algorithm we described previously, provided that the scale steps are chosen

small enough.
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Chapter 7

Experiments

In this chapter, we present several experiments obtained with the algorithms described in the
previous chapter. We first compute the affine erosion of some polygonal curves for different
values of the area parameter, and check the affine invariance of the algorithm. We also show the
effects of the affine discretization of the computed curves. Then, we compute the affine scale
space of these curves by iterating the affine erosion (plus dilation) on them. We compare the
results obtained with the exact algorithm to those obtained with the simplified algorithm based

on the pseudo affine erosion.

7.1 Affine erosions

On the following experiments (Figure 7.1 to 7.6), the affine erosion £, (C) of an initial curve C is
represented for different values of the area parameter o, actually taken in arithmetic progression.
We begin with simple polygons and end with more complicated polygonal curves. It is important
to notice that this representation is NOT the affine scale space of the initial curve C, since
the affine erosion operator is not iterated but simply computed for the same initial curve and
increasing values of the area parameter. We shall compute later the corresponding affine scale

spaces.

These figures can also be viewed as the level sets of an “affine distance” function z — d(z,C).
For any point @ lying inside a closed curve C, d(z,C) can be defined as the smallest area of a

positive chord set of C enclosing z, i.e.

d(z,C) = inf area (K).
KeK+(C), xeK

In particular, we have d(z,C) = 0 if and only if € C, and
E,(C)={z€Z(C), d(=,C)=0}.

To give an example, computing the 67 iterations of Figure 7.2 takes 0.3 second (CPU time)
on a HP 735/125 station.

121
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Figure 7.1: Affine erosions (modified square)
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Figure 7.4: Affine erosions (rough circle)
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Figure 7.5: Affine erosions (exact circle)
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7.1.1 Discretization

The next experiments (Figures 7.7 to 7.9) highlight the affine invariance property of the dis-
cretization process we described in the previous chapter. The affine erosion of some of the
previous curves is computed for increasing values of the area parameter, and with a rather large
sub-sampling area step in order the discretization to be easily seen. Notice how the sampling

adapts to the resulting curve.

Figure 7.7: Discretized affine erosions (triangle)
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Figure 7.8: Discretized affine erosions (modified square)
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7.1.2 Affine Invariance

We now check the affine invariance of the exact algorithm described in the previous chapter.
We apply an affine transformation to the initial curve of Figure 7.2 and then compute the affine
erosion for the same values of the area parameter (Figure 7.10). The inverse affine transformation

being applied (Figure 7.11), we check that we obtain the same result as Figure 7.2.

We use the same method to check that the discretization is affine invariant too (Figure 7.13

to be compared to Figure 7.9).
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7.2 Affine scale spaces
7.2.1 Exact algorithm

The following experiments simulate the affine scale space on non-convex polygonal curves, as
obtained by iterating the exact algorithm . Each curve corresponds to one iteration of the affine
erosion plus dilation, computed using the exact algorithm described in the previous section. As

predicted by the theory, the curves collapse in a “elliptically shaped” point (see [67]).
Computing the 29 iterations of Figure 7.18 takes 6 minutes (CPU time) on a HP 735/125
station. The number of sampled points reaches 700 for some iterations and the number of

computed curves (hyperbolae and segments) attains 1600.
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D

Figure 7.14: Affine scale space (triangle)
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Figure 7.15: Affine scale space (clover polygon)
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Figure 7.17: Affine scale space (exact circle)
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Figure 7.18: Affine scale space (weird polygon) — computation time : 6 minutes



7.2. AFFINE SCALE SPACES 141

7.2.2 Simplified algorithm

First, we check that the simplified algorithm give similar results to the exact one for the previous
“weird” polygon : Figure 7.19 is quite similar to Figure 7.18, while the computation time is

reduced to 7 seconds (instead of 6 minutes for the exact algorithm).

Then, we compute the affine scale space of large curves (about 4000 vertices and 1800 convex
components for the initial curve represented on Figure 7.27). Notice the fine precision of Figure
7.28, which is impossible to attain with Sethian’s algorithm for a reasonable amount of time and
memory. For the “whale” polygon (Figures 7.23 to 7.26), the almost auto-intersections of the
initial curve would probably cause any finite difference algorithm to fail, because the topological

structure of the initial curve is very instable under a pixel discretization.
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Figure 7.19: Affine scale space using the simplified algorithm (weird polygon) — computation
time : 7 seconds
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Figure 7.20: Affine scale space using the simplified algorithm (teeth polygon)
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Figure 7.21: Affine scale space (rough circle)
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Figure 7.22: Affine scale space using the simplified algorithm (regular curve). The computation
time is only 0.9 second, and the algorithm is stable despite the coarse quantization of curves we

used here.
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Figure 7.27: hand : initial curve (t=0)
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Figure 7.28: hand : filtered curve (t=1)
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Figure 7.29: hand : filtered curve (t=8)
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Figure 7.30: hand : filtered curve (t=20)
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Figure 7.31: hand : filtered curve (t=200)
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Figure 7.33: dog : initial curve (t=0)

Figure 7.34: dog : filtered curve (t=1)



7.2. AFFINE SCALE SPACES 155

Figure 7.35: dog : filtered curve (t=10)

Figure 7.36: dog : filtered curve (t=100)
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7.3 Affine scale space of non-closed curves

Since the simplified algorithm allows to compute affine erosions of non-closed curves, it is possible
to compute the affine scale space of a non-closed curve by iterating this operator. The need to
consider the affine scale space for non-closed curves is explained in [21] : the affine scale space
of non-closed curve can be defined thanks to a symmetrization-periodization process (Neumann
condition) which makes the extremities fixed. If the two extremities are distinct, the asymptotic

state is a segment. When they are not, a singularity may appear (see Figure 7.40).
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Figure 7.40: Affine scale space of a circle with a fixed point
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Chapter 8

Conclusion

In this study, we presented a geometrical algorithm that can compute the affine scale space of
a curve. Compared to Sethian’s approach based on an image formulation, it is a faster! and
more accurate method that allows complicated curve evolutions. Unlike classical geometrical
schemes that rely on the computation of finite differences to perform point evolutions (see [65]),
our scheme satisfies a natural property (the inclusion principle) that guarantees its numerical
stability. It is also fully affine invariant, even in its numerical implementation (up to the com-
puter precision). Thanks to these properties, the algorithm we proposed should be an interesting
alternative to Sethian’s approach, especially for shape recognition tasks (see [26]). We based
our method on the iteration of a non-local operator which can be exactly computed on poly-
gons. This property allows to separate the two approximation steps required in curve-evolution
algorithms : the scale step, directly related to the number of iterations required, and the space
step, i.e. the precision used in the discrete representation of curves. In our algorithm, the
curve evolution between two iterations can be much larger than the quantization step used to
represent the curves, while such a possibility is excluded for classical schemes in order to ensure
their stability. The consequence is that our algorithm can accurately compute the evolution of

a curve at a large scale in only a few iterations.

8.1 Applications

As we just explained, the main practical application of this study should concern Thierry Co-
hignac’s method for local affine shape recognition (see [26]). Indeed, we can hope that his algo-
rithm would gain computation time, robustness and accuracy by using our geometrical scheme

to compute the affine scale space.

From a theoretical point of view, it would also be interesting to know what happens to the

characteristic points of a curve when the evolution step t tends to zero. Our study states that

!'Since the geometrical algorithm is much more precise than the scalar one, it is difficult to compare precisely
their computation costs, but a proportion of 1 for 1000 gives a rough idea of it.
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the characteristic area is asymptotically equal to ¢-t%, ¢ and a being universal constants, but it
is likely that the second term of this expansion depends on the affine curvature?, which would
prove that the characteristic points of a curve tend to the extrema of a function of the affine
curvature when ¢ tends towards 0. Be that as it may, we now have an efficient way to compute
the affine curvature on a curve, by considering the affine curvature of the pieces of hyperbolae
which compose its affine erosion (for a small value of the area parameter of course). Hence, the
shape recognition process can be realized by identifying new “characteristic” points defined as

points where the affine curvature reaches an extremum.

Due to the duality of the image and curve formulation for the affine scale space, the iterated
geometrical afline erosion also allows to compute the afline scale space of an image accurately.
The computational cost is rather heavy since the geometrical scheme must be applied to every
level curve of the initial image. However, we think that this way of representing an image without
an inherent grid could be useful for some image processing tasks (zooming for example). Notice
incidentally that this defines the first purely morphological numerical implementation of the
AMSS which does not get “stuck” (see Chapter 2).

Last, the properties of the affine erosion we investigated in Chapter 3 might be useful in
order to prove the existence of solutions for the geometrical affine scale space (which has not

been done yet, as we explained in Chapter 2).

8.2 Further work

In Chapter 6, we defined two algorithms that compute the affine scale space of a curve : an exact
algorithm, based on the iteration of the affine erosion, and a simplified algorithm, where the
convex components of the evolving curve are processed separately at each iteration. We noticed
that this simplified algorithm performs similar evolutions for a much lower computational cost.
In fact, the computation cost of the simplified algorithm is proportional to the size of the
input curve (that is, its complexity is linear), whereas in general this cost is approximately
multiplied by the number of the convex components for the exact algorithm. For non-convex
polygonal curves with more than 100 vertices (which correspond to a rather low precision for a
complicated curve), the difference can become important. As it computes almost no intersection,
the simplified algorithm is also more robust and easier to implement (“only” 900 lines of C source
code). Hence, we think that it would be interesting to study more precisely the corresponding
operator (the pseudo affine erosion) that we briefly introduced in Chapter 6. In particular, it
should be possible to adjust the area step for each iteration automatically in order to obtain the

best compromise between precision and computation time.

2we are sure that this is true for one term of the expansion at least, because the affine erosion would be the
affine scale space otherwise.
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We also think that it would be worthwhile investigating the case of non semi-closed curves
further in relation with the work of V.Caselles, B.Coll and J.-M.Morel (see [21]). According
to this paper, T-junctions should be kept fixed in order to perform an image evolution that
preserves occlusions : from a geometrical point of view, this involves the evolution of non semi-

closed curves.

Extending the affine erosion to higher dimensions seems difficult to achieve, above all in
its numerical implementation. However, we think that the general idea we developed could be
applied to several other planar curve evolutions. In particular, it is likely that several other
geometrical curvature-driven evolution equations of the kind

%—f = F(y)N,
could be numerically simulated using the same method. The main point is to find a non-local

operator satisfying three fundamental properties :

1. it is tangent to the evolution semigroup (i.e. consistent with the evolution equation),
2. it satisfies the inclusion principle,

3. it can be explicitly computed on a dense set of curves (polygons for example).

Condition 1 is obviously required. Condition 2 guarantees the numerical stability of the algo-
rithm —which is fundamental for a curve evolution scheme— and allows large scale steps (and
consequently a fast algorithm). Condition 3, which may be weakened, enables to process each

iteration without depending on the quantization of the curve.

To give an example, let us investigate the case of Mean Curvature Motion (case F(y) = ),
which is the Euclidean analog of the affine scale space. The affine erosion is based on an area
criterion, since it removes from a set any of its chord set having area less than o. Coming to
Euclidean geometry, we can define a chord length-based erosion operator which removes from a
set any of its chord set whose chord segment has length lower than a given ¢ (see Figure 8.1).
Such an operator is consistent with the Mean Curvature Motion, and we think that it can be

used to compute efliciently the Euclidean shortening of a curve.
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Figure 8.1: FEuclidean analog of the affine erosion of a convex curve

The dashed curve is obtained by removing from the inside part of C any chord set whose chord
has length §. We conjecture that iterating such an operator leads to a good approximation of the
Fuclidean shortening flow associated to the Mean Curvature Motion.
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Chapter 9

Introduction

9.1 The depth recovery problem

How can one establish a tridimensional map of a land area 7 How can the tridimensional
structure of a given object be measured 7 How can one make a mobile robot perceive the
geometry of an unknown environment 7 All these problems are in fact the same : recovering
the 3D-structure of a scene (land, object, environment) that can be observed. This problem
of structure recovery has motivated many researches for the last twenty years, and multi-image
analysis has been quickly identified as the most promising technique. Special devices like laser
telemeters have sometimes been used, but for the time being their efficiency seems limited to
very particular applications. As regards multi-image analysis, it is based on a simple geometric
observation that everybody made once when looking through the side window of a car or a
train : when one observes the landscape, the nearest objects “move” quicker than the farthest
ones as the vehicle goes forward. Human stereo-vision is based on the same principle : between
two observations from slightly different points of view (the two eyes), the relative positions of

objects change according to their distance to the observer.

Inspired by human vision, researchers have studied in detail the technique of stereo vision
analysis in the last two decades, in particular in association with edge-matching techniques. The
principle is simple : the computer gets two pictures of the same scene from two cameras, then
it detects on both images some features, for example, edges given by brisk contrast changes
along straight lines. Last, it tries to match these edges (that is to say, it tries to associate each
edge of the first image to its corresponding edge in the second image), and finally it recovers
their depth by analyzing their relative position between the two images. This technique, after a

certain success in the beginnings, finally appeared as insufficient for several reasons.

First, a simple analysis proves that the precision obtained in the determination of the depth
is better when the cameras are far from each other, whereas the matching process is easier when
they are close to each other. This incompatibility forced people to find a compromise between

precision and robustness.
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Another problem with edge-matching techniques is that they are more or less limited to
artificial environments, because they require scenes with strongly-determined edges. In the case
of natural textured scenes (e.g. a grass field), they are inefficient, and it can be a real problem

to find alternative features to match.

Although edge-matching techniques were still receiving a lot of attention, some researchers
tried to overcome the incompatibility between robustness and accuracy by considering whole
sequences of images instead of only two images : the question of “depth from motion” was born.
Even if the key to depth recovery is the same as to stereovision (analysis of the relative position
of scene objects), using a large number of images appeared to bring great improvements. Of
course, such a point of view was possible thanks to the increasing power of computers, both in
storage capacity and in computation speed. Indeed, it is important to notice that a reasonable
sequence of images (say 100 images of size 512x512 in 256 colors) represents 25 Mo of memory,
which can be analyzed in a few minutes by a good workstation (for a simple algorithm). With
50 frames per second, this means that real-time movie analysis cannot be performed by now

unless massive parallel machines are used.

The “depth from motion” problem (also called “structure from motion”) was investigated
mainly in two different ways. The first and probably most natural way is a generalization of
stereovision techniques : the idea is to track robust features (edges, corners, ...) in the successive
images and to deduce their depth from their velocity. This kind of method (see [35] for example)
is only efficient for a certain kind of scene (typically, a high-contrasted artificial scene), due to

the necessary use of edge-detection (or more generally, feature-detection) techniques.

The second approach for “structure from motion” was inspired by the classical Lagrangian
formulation of the problem. It is based on the following Lambertian assumption : the color of
a physical point does not depend on the point of view it is observed from. This assumption
implies the famous “Motion Constraint Equation”, which determines on the image sequence
what is called the optical flow : this is simply the apparent velocity flow induced in the sequence
of images by the apparent movement of the scene (induced itself by the camera movement).
Numerous techniques have been developed in order to determine optical flow, but their efficiency
is still debatable because of the stringent hypotheses they rely on (see [11] or [62] for detailed
studies). In fact, the main difficulty of the general “structure from motion” problem in its
Lambertian approach is that the system produced by the Motion Constraint Equation is under-
determined : there are more unknowns than scalar equations. Even worse, the optical flow
is not sufficient to recover the depth of objects for a general camera movement. Researchers
tried to overcome the difficulty by writing regularity constraints, but this only brought partial
solutions (or partial failures, depending on the point of view). In this context, the concept of
active vision emerged (see [1]) : “Most classical ill-posed problems of image sequence processing

become well-posed and robust when the processing system controls the motion of the camera”. Of
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course, such an assumption is not always relevant, for most image sequence analyzers are not
real-time processes. However, the weakened and less restrictive assumption of a known camera
movement (pre-determined or not) seems to be a good compromise : this will be our point of

view.

During this study, we shall consider image sequences produced by a moving camera looking
at a fived scene (i.e. with no moving objects!). In addition, we shall make the assumption
that the camera horizontal plane is fixed. This means that the optical axis of the camera and
the horizontal axis of the image plane? remain in a fixed plane. In order to check that this
condition is not too restrictive, we give some examples of camera movements which satisfy this

assumption.

1. Pure translation motion with transversal observation.
The camera path is a straight line parallel to the horizontal axis of the camera, and
the optical axis remains orthogonal to this line (see Figure 9.1). This situation happens
with a camera looking through the side window of a moving vehicle, to go back to our
first example. This motion also occurs when an observation plane flies over a region at
constant altitude with the camera optical axis pointing downwards®. Solving the depth
recovery problem in this case enables to establish a 3D-map of the region which has been

flown over. This camera movement will be our reference framework in the following.

% ﬁﬁ S

3D scene

optical axis

horizontal axis

cameral

camera motion

Figure 9.1: Pure translation motion.

2. Circular motion.

'Notice that it is equivalent to suppose that the camera is fixed and the whole scene has a rigid motion.

2The image plane, also called retinal plane or focal plane, is the plane where the physical image is produced
by the optical lens system of the camera.

*However, we shall see later that our study can be adapted when the altitude of the plane varies with time or
when the camera is not exactly pointing downwards.
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This kind of motion is more adapted to the determination of the 3D-structure of a given
object. The camera path is a circle, and the camera optical axis is constrained to point
towards the center of this circle (see Figure 9.2). This motion also naturally occurs for

non-geostationary satellites.

3D object

came%

Figure 9.2: Circular motion.
3. “Radar” motion

The camera has a pure rotational motion, and the optical axis remains orthogonal to the

rotation axis (see Figure 9.3).

‘ %N % 3D scene

~

Figure 9.3: “Radar” motion.

The important aspect of the assumption we make on the camera movement is that it con-

strains the apparent movement of objects to be horizontal in the image plane. The three exam-
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ples we gave prove that it is not too restrictive when the camera motion can be controlled. It

has often been used in previous works (see [13] and [57] for example).

9.2 Geometric framework

We now come to more precise definitions and notations.

Consider a surface ¥ of R? represented by the graph of the depth function Z(X,Y). Suppose
that 3 is observed under a perspective projection* by a camera centered in (C,0,0), with
focal length @ and an optical axis directed by the Z axis (see Figure 9.4). Each point M =
(X,Y,Z(X,Y)) of ¥ is projected on the image plane Il : Z = a into P = (z,y) = #(M) defined
by

 X-C
XY
(9.1)

Y
Y=OZIXY)

7 >

\%
>: observed surface
t M: image plane
X P

C: optical center

a: focal length

n

Figure 9.4: Scene geometry

Conversely, given a point P of the image plane, we can define p(P) € ¥ as the closest point
to P on the half line [C'P), when it exists. Thus, p is a right inverse of 7 since 7 oy is the
identity map of = (X).

Now, if ¥ is a Lambertian surface characterized by its luminance U (M), the camera produces
the intensity image u : P +— U(u(P)), up to an increasing rescaling depending on the intensity
calibration of the camera. Notice that when the half line [C'P) intersects ¥ more than once,
an occlusion arises, and only the nearest point (i.e. u(P)) is observed, the other ones being

masked by it.

*This model of projection holds for classical “pinhole” cameras.
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We extend this to the case when the camera is moving along the X axis, the optical center
following the path (C(6),0,0), where 6 is the time variable. This way, we define the maps
7o : X — Il and pg : Il — X, and the image u : P+ u(P) becomes a movie u(P,0) = U(uy(P)),
that is to say a continuous sequence of images regarded as a scalar map defined on a subset of
R3.

The aim of our study is to compute the geometry of > — its observed part actually — from
the redundant information contained in the movie (z,y,8) — u(z,y, ), knowing that it should

satisfy the fundamental equation

X -C(9) Y
u(a Z(X,Y)7aZ(X,Y)70):U(X7Y)' (9.2)

9.3 Velocity field

To simplify the problem, we shall now suppose that no occlusion appears (we shall discuss the

general case later). Then, the relation M ~ P is bijective, that is to say we have y = 7=1 on

7(X). This induces a bijective relation between the scalar image maps f : [l x R — R and
their corresponding scene maps F': ¥ x R — R defined by

F(Mv 0) = f(ﬂ'é’(M)ve) = f(P(O),O).

Consider now a point M of Y. Projected on the movie, this point describes the movement

P(#) = mg(M), whose velocity can be determined from Equation 9.1 :
dP  dx dy . dx aC'(9) dy
= =—— o5 and — =

P (o4 th —= = — =
=) M T T a a9 ="

C" meaning the derivative of C'. Following this idea, we can define the derivative of an image
map f along the real movement by

oF d

P or_de g o
(P00 == DI G5 =56 = 45 "oz " 0

o6 = a6’
In particular, if Equation 9.2 is satisfied, the derivative of u along the movement must be

zero, because the corresponding scene function U(M) does not depend on 6. This implies a

specific formulation of the Motion Constraint Equation,

dx Ju OJu

@'%-F%—O. (9.3)

From this equation, it is natural to define the apparent velocity field of the movie by
vi= -2 (9.4)

when g—g # 0, remembering that if a scene interpretation exists (i.e. if Equation 9.2 is satisfied),

we have

aC'(9)

ZX.Y) (9.5)

v(z,y,0)=—
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everywhere v is defined (i.e everywhere 2% & 0).

Following this idea, we define the total derivative of a scalar image map f: [ xR — R as

bf_of  9f
D~ "or " 98

This is exactly the Lie derivative of f along the apparent movement vector & = (v,0,1). When
a scene interpretation is known, it can be identified as the time derivative of the scene map

associated to f. The importance of this total derivative operator will appear later.

9.4 Depth recovery

Theoretically, it is possible to estimate the apparent velocity field v using Equation 9.4, and
then to recover the depth Z by identifying v with the real velocity in Equation 9.5. This way,
choosing a fixed value of 8, we can hope to associate to any point P = (z,y,0) of the image

plane where the apparent velocity is defined and nonzero, the point M = pg(P) of ¥ defined by

w=(co- o) O _c’<e>) |

va va v

If C'(8), C'(#) and a are not known, the structure of ¥ is recovered up to a linear transformation
of the kind
(XY, 7)  (aX + 5, aY,72).

In practice, several difficulties appear when one tries to recover the geometry of X directly.
The first one occurs in the computation of v from Equation 9.4. Indeed, it is impossible to
obtain good estimations of the time derivative g—g using finite difference methods. The reason
is that most digital movies have a too large time sampling step, inasmuch as the number of
images per second produced in the sampling process is too small compared to the quick change
of scene details. In other words, the Nyquist limit is generally exceeded during the sampling
process, simply because most acquisition systems (cameras, camescopes, . ..) sample each image
independently without first processing a time frequency cutoff®. Hence, Shannon’s Theorem does
not apply any more and common approximations cannot be used to estimate time derivatives.
As concerns the spatial derivative g—g, its estimation hardly makes sense for textured areas,
because of the quick changes in the intensity. For areas where the intensity takes a constant
(or quasi-constant) value, the estimation of v becomes very sensitive to noise and quantization,

since the almost-zero quantity g—g appears in the denominator of v.

The “classical” method to overcome this kinds of problem is to apply a linear spatio-temporal
smoothing filter to the movie (see [13] for example), which can be seen as a (post-sampling) low-

pass filter. Such a kind of isotropic diffusion has disastrous effects on non-smooth details like

5In fact, this is not really a bad thing since the non-continuous structure of images due to the presence of
occlusions makes the classical sampling theory inadapted.
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edges or textured areas. Like all linear filters, it is not adapted to the structure of images which
result more from the superimposition of occluding objects than from the addition of weighted

harmonics (see [21]).

Another problem appearing in the naive reconstruction process we just described is that two
determinations of ¥ made from derivative estimations at different times #; and 6, may produce
slightly different results in practice, because real movies are not exactly time-coherent. This is
a very important problem since, as we saw in the introduction, the large number of images is

supposed to guarantee robustness and accuracy in the depth recovery.

All these remarks lead to think that the depth recovery must be achieved on a sort of
ideal movie, for which the computation of v can be made accurately and for which the depth
interpretation of the scene remains the same at any time. One can reasonably hope to obtain
such an ideal movie from a raw one thanks to the redundancy of the information spread among
all images. In the following study, we shall see that such a transformation is possible, and that it
can be obtained systematically by using an axiomatic formulation of the problem (Chapter 10).
This transformation can be formalized by a non-linear diffusion equation along the movement
field, which appears to have interesting properties (Chapter 11, 12). In Chapter 13, we provide a
numerical algorithm, easily implementable —even on parallel machines—, as well as conclusive
experiments on two classical natural movies. To conclude in Chapter 14, we generalize our study

to more general camera motions and highlight further axes of extension.



Chapter 10

Axiomatic formulation

In this chapter, we devise a multiscale analysis of movies devoted to the depth recovery by using
an axiomatic formulation. Such a methodology is not new : it has been successfully applied in
[4] and in [26] to find the Affine Scale Space as the optimal way (in a certain sense) to simplify
images and shapes. After making clear requirements, we establish a uniqueness result for our

model : there is only one analysis of movies compatible with the depth recovery.

Let us first define some notations. Given an open or closed subset Q of R", C"(Q2) means
the space of continuous maps u : @ — R of class C™ on €. As usual, ) means the topological

closure of ©Q in R™. We shall also write S(IR®) to denote the set of real symmetric 3x3 matrices.

As we saw previously, a movie is a real-valued map u defined on a subset of R>, the value
u(z,y,0) representing the light intensity at a point (z,y) of the plane at time §. The natural
domain for a digital movie is [y, 23] X [y1, y2] X [01, 02], but we shall see that it is simpler and
more logical to suppose that a movie is defined on R? x T, with either I =]6;, 8] or I = S' (case

of a time-periodic movie).

We recall that a multiscale analysis is a family of operators (7; : M — M50, ¢ representing
the scale of analysis. Here, M is a movie space, that is to say a space of continuous real-valued
maps defined on R? x T. The choice of M will become natural later, but is not necessary for the
time being since we only want to find constraints on (7). However, because of the singularity
which appears in the computation of the velocity field when the partial derivative u, vanishes

(ug is a short notation for g—g), we shall suppose in the following that for any n > 1, the space

MY ={ue MNC"(R* x T,R); Yz € R? u,(2) # 0}
is nonempty, and that given (A, p, 4) € R x R? x S(R?), it is possible to find u € M? such that
u(0) =X, Du(0)=p and D*u(0) = A.
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10.1 Architectural axioms

In the spirit of [4], we first constrain our multiscale analysis to satisfy some architectural axioms :
¢ [Recursivity] : Tp = Id and Vi, t' >0, Tyyp=TyoT,.

¢ [Local Comparison Principle] : if u < @ on B(z,r), then Tyu(z) < Tyu(z) for ¢ > 0 small

enough.

¢ [Regularity] : if u is a quadratic form (that is, u(z) = [A](z, 2)+ < p,z > + X\ where A is

a symmetric 3x3 matrix ([A] being the associated bilinear map), p a 3-dimensional vector and
A a given constant), then

. Thu—u

tim 70 2 = p(4,p. )

and F' depends continuously on A when p; # 0 (p; being the component of p along the z

coordinate).

The [Recursivity] axiom constrains the multiscale analysis to have a semi-group structure.
If the scale ¢ is discretized, this means that the analysis is obtained at scale n by iterating n

times a fixed filter. This axiom can be weakened in
[Pyramidal Architecture] : V¢, h, 3Ty pe, Tipn = Tyipne 0Ty,
However, we checked that under this hypothesis the final classification remains the same up

to a rescaling (as it has been proved in [4] for the affine scale space). This is the reason why we

directly assume that (7}) is a semi-group.

The [Local Comparison Principle] axiom is very important : it prevents the multiscale
analysis from creating new details in the analyzed movie as the scale increases. It also guarantees

the stability of associated numerical algorithms.

The [Regularity] axiom also contains the classical [Translation Invariance] axiom, which
states that the multiscale analysis does not depend on the origin of space and time coordinates.
When [ =]y, 6], the classical formulation of [Translation Invariance] is not possible any longer

because the domain is not translation-invariant.

These axioms can be found in the axiomatic characterization of the affine morphological
scale space for example ; only the [Regularity] axiom has been adapted to the depth recovery

problem. Please refer to [40] for complete discussion.

The classification starts with the following theorem.

Theorem 8 A multiscale analysis Ty : uo(-) — u(-,t) satisfying [Recursivity], [Local Com-
parison Principle] and [Regularity] can be described by a partial differential equation of the
kind

88—? = ['(D*u, Du, u) (10.1)
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submitted to initial condition u(-,0) = ug. Moreover, F is elliptic (that is to say nondecreasing
with respect to its first argument for the usual order on 3x3 symmetric matrices), and continuous

with respect with its first argument at any point where u, # 0.

The proof of an equivalent theorem can be found in [40] for example. The existence of F'is
a direct consequence of the [Regularity] axiom. The fact that the evolution is given by a PDE
of order two (and not more) results from the [Local Comparison Principle] axiom, as well as

the ellipticity of F.

Notice that Equation 10.1 makes sense (in terms of existence and unicity of solutions) ac-
cording to the theory of viscosity solutions (see [27]), provided that the singularity u, = 0 is
not involved. This point will become clearer in the next chapter. By now, the only important

point is that Equation 10.1 is satisfied in the classical sense by u at any point where u is C'* and

uy # 0.

10.2 Specific axioms

We now come to specific axioms with respect to the depth recovery problem. First, remember

that when u € M™ (n > 1), the apparent velocity field operator is well defined by

v[u] = 1
ul’

Since we are interested in the apparent velocity field, it seems natural that our analysis focuses
mainly on this datum. In that sense, it is rather natural to constrain the analysis to commute

with operators that preserve the apparent velocity field. This justifies the following axiom.

e [v-Compatibility]: For any & : R* — R, if
Yu e MY, Rpu € MY and v[Rpu] = v[u], with Rpu(z,y,0) = h (u(z,y,8),2,y,0),

then
Vt, Ty 0 Ry, = Rp o1y,

This axiom implies two weaker axioms, obtained for specific choices of h.

o [Strong Morphological Invariance]: For any monotone scalar map g,
Vu € M, Vt, Tig(u) = g(Tyu).
¢ [Transversal Invariance]: For any nonvanishing map g,

Vu € M, Vt, Ti(g(y) - w) = g(y) - (Tiu).

The first one is obtained by choosing h(u,z,y,0) = g(u). It is a strong formulation of the

morphological invariance, because g can be decreasing as well as increasing. In fact, this axiom is
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equivalent to the classical [Morphological Invariance] axiom plus the [Contrast reversal] axiom.
The second one, obtained with h(u,z,y,6) = g(y) - u, is a kind of morphological invariance in
the direction transversal to the movement. Notice that we supposed implicitely that M is stable
under the operations u — g ow and u — ¢(y) - u. Following [40], we also constrain the analysis

to commute with the superimposition of any uniform movement of the camera.

¢ [Galilean Invariance]:
Va € R, Yu € M, Vt, Ty(uo B,) = (Tyu) o By, with B,(z,y,0) = (z — ab,y,0).

Last, we would like the analysis not to depend on the focal length of the camera (the a
variable in the previous chapter). This can be translated into a commutation with spatial

homothetic transformations.

¢ [Zoom Invariance]:

VA #£0, Yu € M, Vt, T{(uo Hy) = (Tyu)o Hy, with Hy(z,y,0) = (Az, Ay, ).

10.3 Fundamental equation

We now prove that the set of axioms we constrained the multiscale analysis to satisfy is sufficient
to restrain the possible analyses to one candidate only'. We shall prove later that this candidate

is actually a solution.

Theorem 9 There exists at most one multiscale analysis of movies defined on M? satisfying
the architectural axioms plus [v-Compatibility], [Galilean Invariance] and [Zoom Invariance].

It must be described by the partial differential equation

U U
Up = Ugg — 2—€u€x + (—e)zum. (10.2)

xr ul’

Remark 1 : For the time being, Equation 10.2 is defined in the classical sense for u(-,¢) € M?2.
In fact, we shall see in the next chapter how we can define weak solutions of Equation 10.2 that

are not in M? but only continuous.

Remark 2 : Equation 10.2 can be rewritten into

up = uge with &= (—%

xr

,0,1) and  uge = [D*u](&,€),

LOf course, the identity operator is irrelevant here.
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which means an anisotropic diffusion of u along the movement direction. The apparent acceler-

ation in the movie can be defined by

0 Dv 4
! = — = vp + VU,
Do~ '
which can be expanded in
1 Ug Ug U,
= <u€€ — 2—ug; + (_)2u1’x) = _ﬁ-

Hence, Equation 10.2 can also be rewritten into

Uy = —7 Uy

Lemma 17 For any multiscale analysis satisfying the architectural axioms and [v-Compatibility],

there exists a map F : R* — R such that

ur = u F(?,0). (10.3)

Proof :

Let us first make clear that the map I’ we write here is not the map F of Equation 10.1 :

we simply use the same notation to avoid introducing too many symbols.

We are going to use the fact that the [v-Compatibility] axiom implies the simpler axioms

[Strong Morphological Invariance] and [Transversal Invariance], as we noticed before.

Applying [Strong Morphological Invariance] for g(u) = u+A (A being an arbitrary constant)

proves that F' cannot depend on u in Equation 10.1, so that we have

du _ G(D*u, Du) (10.4)
ot
Now, the [Transversal Invariance] axiom states that for any nonvanishing function g of class
02

Yue MYy, G(D*(g(y) - u), D(g(y) u) = G(D*u, Du). (10.5)
Let A =[a;;] € S(R?), A € Rand p = (p;) € R® such that p; # 0 (the coordinates z,y, 8 will be
indexed by 1,2,3 in the following). By hypothesis on M2, we can build a movie u € M? such
that

1(0,0,0) = A, Du(0,0,0) = p, and D?*u(0,0,0) = A.
0
Now, consider the vector y=| 1 [, the projection matrix on the (z,8) plane
0

o O =
o o O
_ o o



180 CHAPTER 10. AXIOMATIC FORMULATION

and the projection matrix on the line Ry

Qy=y2y=1-Q, =

o o O
o = O
o o O

I being the identity matrix of S(R?). Applying Equation 10.5 to u in (0,0, 0), we obtain
G(g(0)A+ g (0)y@ p+ g"(0)AQy, g(0)p+ ¢'(0)y) = G(A, p).
If we choose g(y) = 1+ y?/2, we get
VA, p, A, G(A+2AQy,p) =G(A, p), (10.6)
and taking A = —agy yields
VA, p, G(...,az,...)=G(...,0,..),

where the two terms only differ in the ag variable. Hence, G does no depend on ass.

Now we are going to show that G does not depend on ay5 and as3 either, by using the

[Causality] axiom, using a technique from Giga et Goto [37]%. Let us define A’ = A — a2,Qy

and for € > 0,
) ) € 0 0
a51+ a 2 2
I. = €QyL + %Qy =10 G217 s i: s 0
0 0 €
The characteristic polynom of the matrix
£ —a1 0
2 2
A = QyLAIQyL —A'+ L= —ay o 1 s —a93
€
0 —as3 £

is

det(e] — A) = 2(z — ¢ (x e+ M)) .

As the eigenvalues of A, are nonnegative, A. is positive (for the usual order in S(R?)), and

symmetrically A_. is negative, which yields
AL <QuAQ <A +1.
But the [Causality] axiom implies (see [37])

VA, B,p, A>B = G(A,p)>G(B,p),

2If we suppose that G is differentiable, then this property follows immediatly. Indeed, the [Causality] axiom

implies
2
oG oG oG
Vi, 5, det[D’G] = - >0
% 7, l,e] [ ] Oai; 8a]] (aalj) =
and since % =0, we get af;fl — aii -0



10.3. FUNDAMENTAL EQUATION 181

so that
VA, p, G(Al - I, p) < G(QyJ-A/QyJ-vp) < G(Al + I, p)

Then, using Equation 10.6, we get
VA7p7 G(A+€I7p) < G(QyJ—AQyJ—7p) < G(A‘|’€va)

and taking the limit when £ — 0, the continuity of GG implies

VA, p, G(A7p) = G(QyJ-AQyJ-7p)7

which means that we can write

VA, p, G(a117012701370227023761337]?17]?27]?3) = H(a117a137a337p17pz7p3)-

Now, applying again the [Transversal Invariance] axiom to H, we obtain

VA, p,g,y H(ai1,ais, a3, p1, p2, ps) = H(ar1, ais, ass, p1, g’ (y)p2, ps) (10.7)

Choosing p, = 1 and g(y) = 1+ y*/2 as before, Equation 10.7 yields

VA, p1,p3,y H(alh a13, 433, P1, 17P3) = H(a117 @13, 433, P1, vaS)v

which proves that H does not depend on its fifth argument p,.

Now we use the [Strong Morphological Invariance] axiom. It has been proven (see [4] for
example) that this axiom, in combination with the [Causality] axiom, forces the second order
terms of the evolution to be of the kind [D?u](a, b), where a and b belong to the plane orthogonal
to Du, written (Du)~. Now, as we just saw, the [Transversal Invariance] axiom forbids any
dependency on y, so that @ and b must also belong to the (y)~ = (z,0) plane. Finally, a and
b must belong to the line (Du)™ N (y)~ = (§)~, so that the only admissible second order term
is? = —i[Dzu] (&,€), up to a multiplicative first order term. Notice that 7 is a morphological
operator.

As regards the first order terms, the [Transversal Invariance] axiom forbids any dependency
on u,. Hence, as 7 does not contain the u, term, u must satisfy an evolution equation of the
kind

w = F(7, ug, ug).
We rewrite this equation into
w = u,G(?,0,uy)

and apply the [Strong Morphological Invariance] axiom. Since 7 and v are morphological
operators, it yields

Vu, VA0, G(7,v,uy) =G(7,v, Auy). (10.8)
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For any («, 3) € R?, we consider a movie u € M? such that
u(z,y,0) = %02 +x— 36

in a vicinity of (z,y,6) = 0. We have u,(0) =1, v(0) = 3 and ? (0) = « so that Equation 10.8
can be rewritten into

Va, 3, VA#0, G(a,5,1)=G(a, 5, ),

which means that G does not depend on its third argument (notice that G does not need to be

defined when u, = 0). As a consequence, we can write
uy = uy F(7,0)

as announced. |

Remark : We proved that the [v-Compatibility] axiom, in association with the architectural
axioms, forbids any dependency of the evolution on y. In other words, the sliced images (z, 0) —
u(z,y,0) (with y fixed) are processed independently. In the following, we shall often ignore the

y coordinate and we shall write u(z, 8) instead of u(z,y, #), the y variable being supposed fixed.

Lemma 18 A multiscale analysis satisfying the architectural axioms plus [v-Compatibility] and

[Galilean Invariance] can be written

wy = ug  F(7) (10.9)

Proof :

Since the multiscale analysis commutes with the operator

B, i (z,y,8) — (z —ab,y,0),

we have 5 5
U
— B,)=—oB,.
grveBa) = e
Writing @ = u o B, yields
Uy = 8—$u(ac —ab,0) = u,y 0 B,
uy = %u(x —ab,0) = (ug — auy) o B,
v = —ﬁ =voB,+a«
Uy
~ Do .
? = = 0g+ 00y = (vg — vy + (V+ @)vy) 0 By =7 0 B,

Y
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From Lemma 17 we know that u; = u,F'(7,v). Hence,
Vu, o0, u (7,04 a) =u, F'(7,0),

so that F does not depend on its second argument. O

Lemma 19 A multiscale analysis satisfying the architectural axioms plus [v-Compatibility] and

[Zoom Invariance] can be written

”
ugF'(=) if wg #0,
us = v (10.10)

aug, if ug = 0.

Proof :
We proceed as for Lemma 18 : writing @ = wo Hy with Hy : (z,y,0) = (Az, Ay, 8), we get

- g Ug v

v I VS W

- v U AUy ?
?o= gt = (55 e Ha= o Hy

We can write Equation 10.3 as

o
w = u F(?,0) = ueG(';, v)

everywhere ug # 0, and since the evolution commutes with H), we have
7w
~.9).
v’ A

Taking the limit A — oo proves that G cannot depend on its second argument. Besides, every-

o
Vu, A, ueG(';, v) = ugG(

where uy = 0 we have

o
Yu, A, uF(?,0)= uIF('X,O)7

so that F'(?,0) = F(0,0). O

Proof of Theorem 9 :

If a multiscale analysis satisfies the axioms of Theorem 9, the corresponding evolution equa-
tion can be written in both forms given in Equation 10.9 and Equation 10.10. But the only
common case is

o
Uy = —Uy! = uez = Ugs,

which is the announced equation. O

Conversely, we have to check that it is possible to define from Equation 10.2 a multiscale

analysis of movies satisfying the previous axioms. This is the aim of the next chapter.
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Chapter 11

The Depth-Compatible Multiscale
Analysis

In this chapter, we give a rigorous definition for the DCMA Equation!

Up = Ugy — Q%Uh + (%)2um. (DCMA)
U U

xr xr

We define classical and weak solutions, and we establish uniqueness and existence theorems in
both cases. We also establish the link with the theory of viscosity solutions of second order

partial differential equations.

11.1 Classical solutions of the DCMA

For the reason we explained before, we forget the y variable in the following, and a movie is
defined on R x I, with either I =], 6] or I = S'. In the space variable, a periodization has no
meaning in terms of scene interpretation, so that we shall rather suppose that u tends towards
some constant when z grows to infinity. Notice that such a condition is classical, even in a more

restrictive formulation (e.g. u equals a constant outside a compact set, see [31] for example).

Definition 20 Forc= (c7,ct) € R* and n > 0, C" is the space of movies u € C"(R x I) such
that
suI_)|u(—x,0)—c_|—|—|u(x,0)—c+| —0 as z — +oo. (11.1)

oel

In all the following, we write Q2 = R x Ix]0,4+oc[ (2 is the domain of movie analyses).

Definition 21 For ¢ € R and n,p > 0, C™P is the space of movie analyses u € C°(Q) such
that

'The reason why we call this evolution equation DCMA (for Depth-Compatible Multiscale Analysis) will
become clear in the next chapter.

185
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1. sup |u(—z,0,t) —c |+ |u(z,0,t) —ct| =0 as = — +oo,
0l t<R

2. onQ, (x,0,t) = u(z,0,t) is of class C™ with respect to (z,0) and CP with respect to t.

When ¢~ = ¢t = 0, we shall say that u is “null at infinity”.

Let us come back to our problem. We want to define classical solutions of Equation (DCMA).
However, the space M? we introduced in the axiomatic formulation is too restrictive, because
of the condition wu, # 0. Indeed, this condition forces the partial maps = — u(z,y,8) to be
increasing or decreasing, which is not satisfactory, and prevents u from satisfying Equation 11.1
with ¢™ = ¢~ (this is the reason why we did not constrain ¢t = ¢ in the previous definitions :
since we want the axiomatic formulation to be relevant, the space M? must be nonempty). For
those reasons, we forget the condition u, # 0 and write a degenerate formulation of Equation
(DCMA) when u, vanishes.

Example : Consider g € C?(IR) such that g(z) — 0 as |z| — +00. We define the movie analysis
u: R x ST x [0, +00[— R by

u(z,0,t) = g(x — 0% — 2t),
the representant of  being taken in [—m, #[. Then, Equation (DCMA) is satisfied by u at any

point where u, # 0, and when u, = 0 we have also u; = 0. This suggests a simple degenerate

formulation of Equation (DCMA) when w, vanishes.
Incidentally, notice that u € Cg’z, but the condition

sup |u(z,0,t)] =0 as |z| — oo
6€l,t20

is not satisfied unless ¢ = 0. This is the reason why it is logical to consider the sup on {6 €

1,t < R} in Condition 1 of Definition 21.

Definition 22 Given ug € C2, we say that u is a classical solution of the DCMA associated to

the initial datum ug if
(i) wec,

(i1) on Q= R x Ix]0,+oo],

Ug

Ug 9

U = Ugg — 2—Ugy + (—) Uy when u, # 0,
ul’ X

ug = 0 when wu, = 0.

(iii) ¥(x,0,t) € 09, wu(z,0,t) = up(z, ).
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Remark : If I = S', 31 = () and the boundary condition (iii) means
V(z,0) e Rx I, u(z,0,0) = ug(z,0).

If we choose to fix a time-boundary condition (i.e. [ =)0y, 6;]) instead of a time-periodicity

condition, (iii) also constrains

V($7t) € R x [07+OO[7 u(xveivt) = UO(xvei) for i = 172

In order to state the uniqueness of solutions, we first establish a comparison principle.

Lemma 20 (comparison principle) Suppose that u and @ are two classical solutions of the

DCMA associated to initial data vy and g respectively. If ug < dp, then u < @ on Q.

Proof :

For R > 0, let us write

e(R) = sup u(z, 8,t) —a(z,0,t).
21> ROET <R

Since u and @ belong to C*! and C?’l, we have
g(R) — max(c” — &, ¢t —¢ét) as R — +oo,
with ¢ — ¢ < 0 because ug < %g. For a > 0, we consider
Az, 0,t) = u(z,0,t) — a(x,0,t) — at.

On the compact set Kr = [~ R, R] x I x [0, R], the continuous map A attains its maximum value

at a point zg = (20, bo, to).

1. Suppose that
|$0| <R, 6Oyl and E]O,R] (112)

In z; we have

Ay=As=0, A;>0 and D?A 0.

This yields

Du(zy) = Du(z), (11.3)
u(z0) — w(20) > @, (11.4)
and  D*u(z0) < D*i(z0), (11.5)

the last inequality being meant for the usual order on symmetric 2x2 matrices.
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La. If uy(20) # 0, then 4,(20) = uy(20) # 0. Now recall that

Up = Ugg — Q%Uh + (%)zum = F(Dzu7 Du),
U U

X X
where I is an elliptic operator, that is to say nondecreasing with respect to its first argument.
Hence, Equations 11.3 and 11.5 imply us(20) < @(z0), which is in contradiction with Equation
11.4.

L.b. If uy(2z9) =0, then @,(z) = 0, and since u and @ are solutions of the DCMA, we have

ut(20) = s (20) = 0, which is a contradiction with Equation 11.4.

2. As a consequence of 1.a and 1.b, Assumption 11.2 is false and necessarily we have either
|zg| = Ror by € dl ortg = 0. If |9| = R, then A(zg, 0o, t0) < e(R)+aR, while A(zq, g, t0) < R
when 6y € 91 or tg = 0. Consequently, we have

max A < max(0,e(R)) + aR,
Kpr
and making o — 0 proves that

u < &+ max(0,2(R)) on R xTx]I0,R].

Last, sending R to infinity forces max(0,(R)) to vanish and the proof is complete. O

Corollary 9 (contraction property) If u and @ are two classical solutions of the DCMA

assoctated to the initial data vy and g, then

[l = @loo < [luo = tollo-

Proof :
We simply need to notice that

up — ||uo — Uolleo < o < uo + ||uo — tol|sos

and apply the comparison principle, remarking that if w is a classical solution of the DCMA, so

is u + A for any A € R. a

Corollary 10 (uniqueness) A classical solution of the DCMA associated to a given initial

datum ug € C? is unique.

The proof follows immediatly from Corollary 9.

In order to ensure the existence of classical solutions of the DCMA, we now restrain the

space of initial data.
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Definition 23 For n > 1, we write V7 the space of movies u € C for which there exists a
movie v € C§~' such that

ug+vu, =0 on MRxI. (11.6)

v is called a velocity map of u.

The space VP is defined as elements of C? admitting a velocity map v € Cg_l’p.

Remark : Consider a movie v € V. If u,(z,0) # 0, v(z,0) is uniquely determined because
Equation 11.6 forces

v(z,8) = —Z—i(x,@).
But as we noticed previously, u,(z,#) is forced to vanish at least once for any value of 8, because

lim wu(z,0)=c.
|z|—=+co ( )

When wuy(z,0) = 0, Equation 11.6 implies ug(z,60) = 0, and if n > 2, differentiating Equation
11.6 with respect to # and z yields

ugg(z,0) + v(z, O)uge(z,0) =0 (11.7)

and

e (z,0) + v(z, O)uyy(z,8) =0. (11.8)
We deduce from Equation 11.7 and 11.8 that ugs + 2vugs + v*us = 0 as soon as u, = 0.

A consequence is that if u € V*! is a classical solution of the DCMA, then any velocity map

v of u satisfies on 2
Ug + v, =0
(11.9)
Uy = Ugs + VUgy + Uzuxx-

d

Proposition 27 (existence) Given an initial datum ug € VI (n > 2), there exists a unique

classical solution of the DCMA, and it belongs to V™.

Proof :

The existence will be a consequence of Lemma 22 (which follows), and the uniqueness follows

from Corollary 10. O

We are going to build explicit solutions of the DCMA. The idea is to notice that the trajec-
tories (i.e. the curves x(6) along which u is constant) are smoothed by the linear heat equation.
For that purpose, we need to introduce the natural domain I* for such trajectories. If I =]6y, 65[
then I* = I, and if I = S!, then I* = R (the natural injection S < [0, 27[C R being implicit).
To simplify the notations, we suppose in the following that 0 € 1.
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Definition 24 A map ¢ € C*"(R X I*) (n>0) is a 0-graph of uw € C? if
1. for any 6 € T*, the map x — (x,8) is increasing and bijective

2. for any (z,0) € R x I*,
u(p(z,0),6) = u(x,0), (11.10)

3. for anyx € R, ¢(2,0) =z, and if [ = S, then for any (z,0) € R x I*,

oz, 0+ 27) = ¢o(p(z,27),0), (11.11)

4. sup |gg(x,0)] =0 as R — 400 (in a generalized sense if n =0).
|z|>R,0€T

Remark : Notice that in Condition 4, the sup is taken for § € T and not for § € I*. If n = 0,
the term |@g(z, 8)| must be replaced by

(z,0+h) — 99(96,0)|
. .

lim sup | Ld
h—0

A simple proof by induction establishes that when I = S', Equation 11.11 implies
oz, 0+ 27n) = ¢(p(z,27n),0)
for any (2,6,n) € R x I* x .
Lemma 21 A movie u € C (n > 2) belongs to V! if and only if it admits a 6-graph of class
c".

Proof :
1. Suppose that u admits a #-graph of class C™. Then, Condition 1 implies that the relation
U(@($,0>,0):@9($70) (1112)

defines a unique continuous map v on R x I (if I = S, Equation 11.11 ensures the periodicity

of v in the @ variable). We can write
V(z,0) e Rx I, Vh e R, v(p(z,0)+ hpy(z,8)+o(h),0) = @o(x,0) + hogy(z,8) + o(h).
Since @, (2,0) > 0 a.e. due to Condition 1, we deduce that v is derivable with respect to  and
o, 0)0a(9(2,0),0) = 0, (3, B).

A similar reasoning proves that v is of class C~1. Differentiating Equation 11.10 with respect
to 0 yields
V(z,0) e Rx 1, @q(z,0)us(p(,0),0) + ug((2,0),0) = 0,
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so that v is a velocity map of u thanks to Equation 11.12.

Now let us write diam (/) the diameter of I. Given € > 0, Condition 4 ensures the existence
of a B > 0 such that

V(z,0) e Rx I, |e|>R = |pg(z,0)| <e.

Hence, if |2| > R' = R + ¢ - diam (I) we have

4
p(z,0) = p(z,0) —I—/ wolz, T)dr > —<|0] > R
0

and consequently
sup [v(z, 0) <e.
lz|> R’ 0€l
It follows that v € Cg_l and the same reasoning proves that u is constant at infinity, so that

ue V.

2. Conversely, if u € V7, consider a velocity movie v of u. Given (zg,8) € R x I, there

exists a unique solution X € C"™(I*) of the ordinary differential equation

dX
—(0) =v(X(9),9) (11.13)
do

submitted to the condition X (6y) = z¢. Since v € CZ™', v is bounded, so that X is defined on the
whole interval T*. Call p(zg, #) the solution X associated to 8y = 0, and let k = diam (1) - ||v]]co-
Then

sup[pg(x,0)| < sup  |u(x,0)| =0 as R — +oo,
lz|>R.6€1 le|» R—k,0€T

so that Condition 4 is satisfied for ¢.

In addition, the uniqueness of the solutions constrains the relation
if =0, v <z = plx,0) <o)

to extend to any value of 8, so that the map @ — ¢(z,0) is increasing. Now, suppose that
the value z¢ is not attained by the map z — ¢(x,8y) for a given value 6y. By considering the
ODE 11.13 submitted to initial condition X (#y) = ¢, we obtain the existence of a value X (0)
such that ¢(X(0), ) = z¢, which is a contradiction. Hence, the map = — ¢(z, 6p) is surjective
and Condition 1 is satisfied. If I = S!, Equation 11.11 is satisfied by ¢ simply because v is

27-periodic in the # variable.

Last, a classical theorem (dependency with initial conditions, see [7] for example) states that

@ is C™ and we can write

d

10 (u(e(x,8),0)) = po(x, O)us(p(x,0),0) + ug(p(x,0),0) = (vus + ug) (¢(x,0),0) = 0. (11.14)
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Then, integrating Equation 11.14 yields for any (x,6) € R x 1,

u(p(z,8),0) = u(p(z,0),0) = u(z,0),

so that Condition 2 is satisfied and ¢ is a #-graph of u of class C”. O

Lemma 22 Let ug € VI (n > 2), and o be a 0-graph of ug of class C". Define (z,6,t) —

p(z,0,t) as the unique solution of the monodimensional heat equation

88—"; - 8;79; (11.15)
on ¥ = R X I*x]0, 400 submitted to the boundary condition
V(z,0,t) € 0%, ¢(z,0,t) = po(z,8). (11.16)
Then, the unique map u : Q — R defined by
V(z,0,t) € Q, u(p(z,0,t),0,t) = ug(z,0) (11.17)

belongs to V" and is a classical solution of the DCMA associated to the initial datum ugp.

Proof :

1. Since the heat equation satisfies the comparison principle, the condition
z <2’ = golz,) < po(a,)
is preserved along evolution so that
v<a = VO, o(x,0,t) < 0,1).

and z — ¢(z,0,t) is increasing as expected.

2. Now we prove that z — ¢(2,0,t) is surjective. Condition 4 of Definition 24 shows that
we can find two constants A and B (with B = 0 if I* is bounded) such that

[po(z,0) — | < A+ B|6]

on Rx 1. If I = S, Equation 11.11 extends this property to R x I*. A simple result about the
heat Equation (see appendix to follow) states that

— 4¢
V(z,0,t) € Q*, |p(z,0,t)—z| <A+ Bl + By —. (11.18)

T

As a consequence, for any (8,t) € Ix]0,+oc[, = ¢(,0,1) is surjective.

3. Hence, Equation 11.17 defines a unique map u : Q — R and a proof similar to the one of
Lemma 21 shows that v € V" thanks to Equation 11.18.
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4. We check the boundary condition. For any (z,6,t) € 092, due to Equation 11.16 we have
oz, 8,t) = po(z, ),
while the definition of u (Equation 11.17) implies
u(p(x,8,t),0,t) = ug(z,0) = up(wo(z, 0), ),
and consequently
U(QOO($, 0)7 07 t) = uO(S‘QO(xv 0)7 0)
Hence, the boundary condition (iii) of Definition 22 is satisfied since the map

o0 — 0Q
($7 07 t) = (990($7 0)7 07 t)

is bijective.
5. Let us note 21 = (¢(2),0,t) for a given z € Q. If u,(2) = 0, differentiating Equation
11.17 with respect to ¢ yields
pi(2)us(z1) +w(z) = ulz) =0

as expected. If u;(21) # 0, we obtain

ur(z1) = —pi(2)us(21),

and o uo(2,0)) = 0 = @l (), 0.0) + wo(o(2).0.1),
as well as
d2
0 = W(uo(xvo))
d

= 10 (po(2)us(p(2),0,1) + us(p(2),0,1))
= wap(2)uz(p(2),0,1) + @Z(Z)ul’l’(@(z)v 0,8) + 206(2)uze(¢(2), 0, 1) + uge(p(2), 0, 1)

6
= pu(Dus(21) + ¢f () uwa(21) + 200(2)uso(21) + oo (21)
ug

Uu
= <_ut + ugyg — 2u—€uex + (u_)qux) (21)7

so that condition (ii) of Definition 22 is satisfied. Hence, u is a classical solution of the DCMA

associated to the initial datum wug. |

Lemma 22 proves that the DCMA Equation is a scalar formulation of the monodimensional
heat equation (11.15), like two other important equations of image processing : the Mean
Curvature Motion and the Affine Morphological Scale Space. The difference between them only
comes from the intrinsic parameter of the level lines : the Euclidean abscissa for the Mean
Curvature Motion, the affine abscissa for the Affine Scale space. For the DCMA, the natural
parameter is the time 6, which means that level lines are not considered as curves but as graphs.
This remark will permit to prove the existence of weak solutions for the DCMA, but in certain

cases only, namely, when the level lines of the initial datum can be described by graphs.
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11.2 Weak solutions of the DCMA

We define weak (only continuous) solutions of the DCMA as uniform limits of classical solutions.

Definition 25 Given a movie ug € C2, we say that a map u € CO° is a weak solution of the

DCMA associated to the initial datum ug if
V(z,0,t) € 09, u(z,0,t) = uo(z,0)

and if there exists a sequence (u)e~o of classical solutions of the DCMA such that v — u

uniformly on Q when ¢ — 0.

Lemma 23 (uniqueness) A weak solution of the DCMA associated to a given initial datum

1S UNtquUe.

Proof :
We simply prove that the contraction property (Corollary 9) is still satisfied. Let w and @

be two weak solutions of the DCMA associated to the initial data ug and @g. Then, we can find
two sequences u® and @° which converge uniformly towards u and @. Writing uj = u°(-, -,0) and

uy = u°(-,-,0), Corollary 9 ensures that

€

[0 = @[oo < flug — s,

and taking the (uniform) limits when ¢ — 0 yields
[l = lloo < [Juo = ol

as expected. O

Proposition 28 (existence) Call V. the topological closure of V* with respect to the || - ||s
norm. Then, given ug € V., there exists a unique weak solution u of the DCMA associated to

the initial datum ug.

Proof :

According to the hypothesis on ug, we can find a sequence ug € V2 which converges uniformly
towards ug. Then, call u® the classical solution of the DCMA associated to the initial datum ug
(Proposition 27 ensures the existence of u%). Lemma 20 forces u® to converge uniformly towards

a limit u € C2°, which is by construction a weak solution of the DCMA. O

To make more precise this existence property, we now build explicit weak solutions. The

construction is similar to the one used for classical solutions in the proof of Lemma 22.

Definition 26 We write V° the space of movies u € C° which admit a continuous §-graph.
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This generalizes Definition 23 thanks to Lemma 21.

Proposition 29 Let ug € V?, and g be a 8-graph of ug. Define (x,0,t) — p(x,0,t) as the
unique solution of the monodimensional heat equation 11.15 submitted to the boundary condition
11.16. Then, the unique map u defined from ¢ by Fquation 11.17 is a weak solution of the
DCMA.

Proof :

1. As for the definition of u and its belonging to C%°, the proof is already contained in

Lemma 22.

2. Since VY C V., we can consider @ the weak solution of the DCMA associated to the initial
datum ug, and (u®) a sequence of classical solutions which converges uniformly towards 4. Now

we want to prove that u = u, or, equivalently, that
V(z,0,t) € Q, a(p(x,0,1),0,t) = ug(x,0).
Given zg € R, e > 0, « > 0 and T > 0, define
A(6,t) = u®(p(20,0,t),0,t) — ug(z0,0) — at.
Since A is continuous on the compact set K7 = I x [0, T], there exists (6y,to) € K such that

max A = A(bp, to).

Kp

2.a. Suppose that
fp €I and ty > 0. (1119)

Then, in (6o,to) we have
A >0, Ag=0 and Ay 0.

This yields

puul +ug > o, (11.20)
wouy, + ug = 0, (11.21)
and c,ogu;x + 2¢pup, + ugy + @oous, < 0. (11.22)

If uS =0, then uf = 0, which is in contradiction with Equation 11.20. If u; # 0, since ¢; = @gg
and u® is a classical solution of the DCMA, Equation 11.21 and 11.22 imply

u? + S‘Qtu; < 07

which contradicts Equation 11.20 as well.
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2.b. Hence, Assumption 11.19 is false and we have either 6y € 9 or tg = 0, so that
©(z0, 6o, to) = oo, ). Writing u§ = u°(-,-,0), we get

u’ (99($07 007 t0)7 007 to) ug(@0($0, 00)7 00)

IN

uo(¢o(T0,00),00) + [|ug — uolloo

IN

(%o, 0) + [|ug — uolleo,
so that
V(z,0,t) € Rx K7, u(p(z,0,1),0,t) < uo(z,0) + o1 + [|ug — uol|co-

Then, sending « to zero and T to infinity yields

V(z,0,1) €2, u(p(e,0,1),0,1) < uo(e,0) + [Jug — vol|oo,

and passing to the limit when ¢ — 0 establishes

V(z,0,t) € Q, w(p(x,0,t),0,t) < up(x,0).
A symmetrical reasoning proves that u(e(z,8,t),0,t) > up(x,0) as well, so that v = @ as
announced. O
A consequence of this characterization of weak solutions is that a weak solution of the DCMA
associated to an initial datum uy € V? admits a kind of velocity movie as soon as ug is locally
Lipschitz in the z variable. To simplify the proof, we directly assume that the whole analysis
w is locally Lipschitz in the z variable, although it is not difficult to see that w inherits this

property from the initial datum wug.

Corollary 11 Let u be the weak solution of the DCMA associated to an initial datum ug € V2.
If w is locally Lipschitz in the x wvariable, then there exists a continuous map v defined on

Q = R x Ix]0,+oo] such that on £,

w(z +7v(z,0,t),0+7,t) = u(z,0,t)+ o) (11.23)

7_2

and u(x—l—rv(ac,@,t),@—l—r,t—?) = u(z,0,t)+ o(T?). (11.24)

Proof :
We associate ¢ to ug as in Proposition 29, and define v by Equation 11.12. Then,

U0($,0) = U(QO($,0—|— Tvt)ve—l_ Tvt)

= u(p(x,0,t)+1pg(x,0,t)+ o(7),0+7,1)
= u(p(a,0,t)+1v(p(x,0,t),0,t),0+7,1) + o(7),
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which establishes the first equality. For the second one, we write

72 72
up(z,0) = u (c,o(x,H—I—T,t— 7)70+T7t— 7)

2
= u (99(957970 + 7oz, 0,t) + 0(7'2),0—|—T,t— %)

2
= (sounat) 70(p(e,0,0),0,0),0+ 7,1 - %) +olr?)

and the proof is complete. O

Remark : Defining the Lie derivative of a map f along the vector £ = (v, 1) by

fe(z,0,t) = (if(ac—l—rv(x,&t),@—l— T,t)) ,

dr 7=0

Equation 11.24 is equivalent to ug = 0. As concerns Equation 11.24, it implies
piel 72
pu(x + rv(x,0,t),0+ 1,8 — 7) By =0,

where the notation d[z]f/de means the pseudo-second derivative of f, defined in = by

o et h)+ fle—h) —2f(2)

h—0 h?

Notice that this property is a generalization of Equation 11.9.

11.3 A viscosity formulation

We now establish the link between our definition of weak solutions and the theory of viscosity
solutions (see [27] for further details on viscosity solutions). For the DCMA, defining viscosity
solutions is not necessary because smooth movies remain smooth, which permits the previous
construction of weak solutions as uniform limits of smooth solutions. However, this is not
generally the case with non-linear parabolic PDE of the kind

ou

T F(D*u, Du, u)
defined from an elliptic operator I’ (consider the Mean Curvature Motion or the Affine Morpho-
logical Scale Space for example). Moreover, it is convenient to define weak solutions intrinsically,
without using limits of regular solutions. In the following, we give a reasonable definition of a

viscosity solution of the DCMA, and prove that a weak solution is a viscosity solution.

Definition 27 A bounded continuous map u : Q — R is a viscosity subsolution of the DCMA

if for any ¢ € C*(Q), at any point zg € Q where u — ¢ attains a local maximum, we have



198 CHAPTER 11. THE DEPTH-COMPATIBLE MULTISCALE ANALYSIS

(i) If 6o £ 0, then & < das — Q%% + %)2%

(ii) If ¢, = 0, then ¢g = ¢y = 0 and IX € R such that 0 < dgg + 2APgr + A2Dys.

Condition (i) is the classical formulation of viscosity subsolutions, whereas (ii) is a degenerate
condition particular to the DCMA (see [31], [9] for examples of degenerate viscosity solutions in

the case of the Mean Curvature Motion).

The definition of a supersolution is symmetrical :

Definition 28 A bounded continuous map u : Q — IR is a viscosity supersolution of the DCMA

if for any ¢ € C*(Q), at any point zo € Q where u — ¢ attains a local minimum, we have

(i) If b # 0, then ér > by — Q%% + %)2%

(ii’) If ¢ = 0, then ¢y = ¢y = 0 and I\ € R such that 0 > ¢gg + 2APgy + N2chys.
We give the following equivalent definition of a subsolution for completeness.

Proposition 30 A bounded continuous map u : Q — IR is a viscosity subsolution of the DCMA
if for any (p, A) € R® x S3 and zy € Q such that

w(z) <ulzo) +p- (20— 2)+[Al(z0 — 2,20 — 2) + 0(]20 — z|2) as  z— 2o,

we have, writing p = (p;) and A = [a;;],
. P P
(i) If p1 # 0, then ps < azz — 2])—26121 + (])—2)2%17
1 1

(ii) If py = 0, then py = p3 = 0 and I\ € R such that 0 < agzy + 2Xaz; + Nay;.
The equivalent definition for supersolutions is straightforward.

Definition 29 A bounded continuous map u : Q — IR is a viscosity solution of the DCMA if it

is both a viscosity super-solution and a viscosity sub-solution.

Proposition 31 Given an initial datum ug € V2, the unique weak solution of the DCMA is a

viscosity solution.

Proof :
Let u be the weak solution of the DCMA associated to the initial datum wg. We prove that

u is a viscosity subsolution of the DCMA. Consider ¢ € C'°°(Q2), and suppose that u — ¢ attains

a local maximum in zg = (2o, 0o, to) € . Let ¢ be the map defined from wug as in Proposition
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29, and define z; = (z1,6o,t0) by ¢(21) = 2¢. Then, for b and ¢ in a vicinity of 0 (actually such
that g + b € I and o+ ¢ > 0),

u(p(x1,600+ b, tog+ ¢), 00+ b, to+ ¢) = ug(21,0) = u(e(x1, 6o, to), bo, to) = u(2o).
We can estimate

a(b,c) = @(x1,0p+b,to+ ¢) — 20
= @(a1,00+ b, to + ¢) — o(x1, 6o, to)
= boale) + gl 4 epila) +olb? 40
as b,c — 0. Now, since u — ¢ attains a local maximum in zy and
w(zo + a(b, c), 00+ b, to+ ¢) — u(zo, o, to) = 0,
we have
0 < ¢lzo+aldb,c),bo+b,to+ ¢) — ¢(xo, bo, to)

< b, )6 (0) + bn(20) + 0u(z0) + oD (20) 4 ba(b, e)n(z0) + 2-an (20) + o8 4 )

< (5999(21) + g@é’é’(zl) + C@t(h)) ¢ (20) + bPg(20) + co¢(20) + 1)2—2993(21)¢m(20)

2
0 (21) b (20) + s (20) - 0l +-0).

Necessarily, both factors of b and ¢ must be zero and the factor of 5> must be nonnegative. This

yields
©o(21) Pz (20) + P9(20) = 0, (11.25)
oi(z1) 02 (20) + ¢e(20) = 0, (11.26)
and  g(21) 62 (20) + 5 (21) Sur (20) + 206(21) P02 (20) + Pe0(20) > 0, (11.27)

but as ¢;(21) = @ee(z1), Equation 11.26 and 11.27 imply

P¢(20) < @Z(Zl)Cbm(Zo) + 204 (21) Pox(20) + Po0(20)- (11.28)

1. If ¢,(20) # 0, Equation 11.25 gives

pola) = =2 30)

and Equation 11.28 leads to the desired condition (i).

2. If ¢, (z0) = 0, then ¢y = ¢1(z) = 0 is a consequence of Equation 11.25 and 11.26, while
Equation 11.28 implies that the polynomial

X = X?¢,.(20) + 2X dg.(20) + doa(20)
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takes at least one nonnegative value, which is the desired condition (ii).

Consequently, u is a viscosity subsolution of the DCMA. A symmetrical reasoning shows

that it is a viscosity supersolution as well. O

We conjecture that a viscosity solution associated to a given initial datum is unique. In
particular, this would imply that the viscosity and the weak solutions of the DCMA are the

same, provided that the initial datum wug lies in V2.

11.4 Appendix on the heat equation

In the previous section, we used several results about the monodimensional heat equation. For
completeness, we briefly recall them. In all the following, either J =]6;,65] or J = R, and
Q = Jx]0,4o0].

Proposition 32 Given a continuous map f:J — R such that
JA, B, V8 e J, |f(0) <A+ B, (11.29)
there exists a unique continuous map ¢ : Q — R such that

(i) on Q, (0,t) — ©(0,t) is C* with respect to 8 and C'* with respect to t,

Op _ %
ot 00?2’

(iit) for any (0,t) € 0Q, p(0,t) = f(0)

(iv) VT > 0, 3A, B, ¥(0,t) € J x [0,T], |¢(0,1)| < A+ BlA|.

(ii) on £,

Remark : If J is bounded, then Equation 11.29 simply means that f is bounded, and Condition
(iv) means that ¢ is bounded too. If J = R, f and ¢ are constrained to be “sub-linear” in the

# variable.

We give a quick justification of Proposition 32 since the heat equation is generally considered
for bounded maps in the literature. (see [16] for example). As for the uniqueness, it results from

the following comparison principle.

Proposition 33 (comparison principle) Consider ¢ a solution of the heat equation (in the

sense of Proposition 32) associated to the initial datum f < 0. Then, ¢ <0.

Proof :
Suppose first that J = R. Given T > 0, there exists A, B such that

V(0,t) € J x[0,T], ©(8,t)—A— B|f| <O. (11.30)
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For R > 0 fixed, we consider the map

A0 = ¢(6,0) ~ (5 + 1)

2 (0% + 2t).

A satisfies the heat equation, and the maximum principle (see [16] for example) tells that

max A= max
[-R,R]x[0,T] [-R,R]x{0}u{—R,R}x[0,T]

On [-R, R] x {0}, A <0 because f <0, while Equation 11.30 yields A <0 on {—R, R} x [0,T].

Hence, we have

¥(0,1) € [-R,R] % [0,T], ¢(6,) < (% + %)(02 +21).

Sending R to infinity yields

V(0,t) € J x[0,T], ¢(8,t) <0, (11.31)

so that ¢ < 0 on J x [0,4o0[. If J is bounded, Equation 11.31 is a direct consequence of the

maximum principle applied to ¢, and the conclusion still holds. O

Now we give an explicit construction of solutions. If J = R, the solution is given by the

convolution with the Gaussian kernel :

+oo 2
p(0,t) = / f(6— a)%e_a Mg,

—00 47t

If J =)0y, 0], we write f(@) = f(8) — [(#), where [ is the unique affine map which forces
f(@l) = f(@g) = 0. Then, we extend f to an odd and 2(0; — 601)-periodic map and apply the
previous convolution formula. This way, we obtain a map ¢ which satisfies conditions (i), (ii)

and (iv) as well as ¢(61,t) = @(02,t) = 0 for any t > 0. Last, the map

¢ : Jx[0,+cc[—= R
(6,1) = ¢(6,1) + 1(9)

satisfies the desired conditions (i), (ii), (iii) and (iv).
Proposition 34 Here we suppose J = IR. If f satisfies
Vo e R, |f(6) <A+ B

then the solution o of the heat equation with initial datum [ satisfies

4t
v(0,1) € Rx[0,+oof, (6, 0)] < A+ Blo] + By/ —.
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Proof :
Calling Gy the Gaussian kernel, we have

p0.01< [ 170 - lGitadda < [T (A + BlOl + Blal)Gifa)da,

oo _
and the announced result is a consequence of the equalities

+oo +oo At
/ Gi(a)dae =1 and / la|Ge(a)da = [ —.

oo T

11.5 Further existence properties

In the previous sections, we did not prove the existence of (weak or classical) solutions of the
DCMA in the general case, that is to say when the initial datum admits no é-graph. In fact, we
do not believe that the DCMA admits a solution in general, at least a solution in the sense we

defined.
When the initial datum wg admits a #-graph, the DCMA is obtained by applying the linear

monodimensional heat equation to the level lines of ug. For an ordinary continuous map ug, the
level lines have no reason to be graphs in the 8 variable, since to a given value of 8, several values
of x will correspond in general. Hence, defining general solutions of the DCMA is somewhat
equivalent to defining solutions of the heat equation for multi-valued data. It is in that spirit
that L.C.Evans studied independently Equation 10.2 in his article “A geometric Interpretation
of the Heat Equation with Multivalued Initial Data” (see [32]). He regards the DCMA Equation

as the limit when £ — 0 of the more regular equation

2 2
U g — 2ugpugtyg + Uy Ugg

(11.32)

= u? 4 22u?
Equation 11.32 admits viscosity solutions because it is more or less the Mean Curvature Motion
(actually, the case ¢ = 1 is exactly the Mean Curvature Motion). He noticed that in the general
case (that is, when the level lines of the initial datum are not graphs), the regularizing effects
of the heat equation are so strong that the limit of approximate solutions is not continuous at
scale t = 0, because the level lines are constrained to become graphs instantaneously. It seems
difficult to overcome this difficulty unless we allow solutions of the DCMA not to be continuous
at scale t = 0. In fact, it might be possible to define a kind of projection operator which makes
the level lines of a movie unfold and become graphs. We shall come back to this when studying

a numerical scheme in Chapter 13.



Chapter 12

Properties of the DCMA

In this chapter, we investigate several properties of the DCMA. We first check the ones that
are constrained by the axiomatic formulation, and then we prove that the DCMA acts as a
strong smoothing process along the movement. We also establish integral estimations and try
to associate the DCMA to a variational principle. Coming back to the original context of depth
interpretation, we finally highlight geometrical properties and find a new characterization of the

DCMA.

12.1 Checking the axioms

In order to be sure that our axiomatic formulation is consistent, we have to check that the
axioms we introduced are satisfied by the DCMA. As regards the three architectural axioms
([Recursivity], [Local Comparison Principle] and [Regularity]), they are direct consequences

of the fact that the DCMA is given by an evolution equation
uy = F(D?*u, Du),

where F' is an elliptic operator. Now we prove that the DCMA satisfies the [Strong Morpho-

logical Invariance] property.

Proposition 35 Let u be a weak solution of the DCMA and g : R — IR a continuous map.
Then, g ou is a weak solution of the DCMA.

Proof :

Notice that this proposition makes sense because if u € C2, then gou € CY with
¢=(g(c7),g(c)).

1. First, suppose that u is a classical solution of the DCMA and that ¢ is of class C'?. Writing

@ = g ou, a simple computation gives
Uy = (¢ ou) - uy, @ = (g ou)-u,

203
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and
e = gy — Wy (Beyeg
Ugg = Ugg axuﬁx‘l’ (?NLQU) Ugs
_ " 2 2 2 / Uug Ug o
= g ou-(ug—2uj+ug)+ g (u) | wge — 2—ugy + (u_) .
T T
= g'(u) - uge

whenever 4, # 0. Hence, we have @; = 0 if @, = 0, and @; = 4g¢ if 4, # 0, so that 4 is a classical
solution of the DCMA.

2. Now let us come back to the general case when g is only continuous. Given € > 0, there

exists a map g° € C*(R) such that ||g — ¢°[|oc < &. Since the set
K = [=[lulloo = &, [Julloo + €]

is compact, ¢ is uniformly continuous on K thanks to Heine’s Theorem : in other words there
exists a positive number a < ¢ such that |g(z) — ¢(y)| < € as soon as |z — y| < a. Besides, we

can find a classical solution »® of the DCMA such that ||u — «°||oc < @. Then, we have
lgou— g 0wl < llgou—g 0wl +llg o u° — g o]l < 22,
and ¢® o u® is a classical solution of the DCMA. O

As for the [Transversal Invariance] property, it is clearly satisfied by the DCMA since the

y coordinate does not even appear in its definition.

Now we can check the [v-Compatibility] property. Consider a map h : R* — R such that
Vu e MY, Rpu e MY and o[Rpu] = ofu],

with Rpu(z,y,0) = h(u(z,y,8),z,y,0). Choosing u(z,y,6) = Atanhaz (tanh meaning the
hyperbolic tangent) proves that k is C'l. In addition, for any u € M! we must have

uxh€ = uﬁhx

in order that the condition v[Rpu] = v[u] is satisfied. If we now choose u(z,y,8) = tanh z + b0,
we obtain hy = 0 with b = 0 and then h, = 0 with b = 1, so that we finally have

R(A z,y,0) = f(\y).

Then, the relation T; o R, = Rj, 0o T} is a direct consequence of Proposition 35, the y coordinate

being fixed. O

The last two axioms, [Galilean Invariance] and [Zoom Invariance], are clearly satisfied by
the DCMA thanks to Lemma 18 and Lemma 19.
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12.2 Asymptotics of the DCMA

Given an evolution equation like the DCMA, a natural question arises : is there an asymptotic
state ? In other words, we would like to know whether the movie u(-,¢) tends towards a limit

movie U, as t — +oo.

Proposition 36 If u € V! is a weak solution of the DCMA, then the limit
U = lim u(-, 1)

t——+oo

exists and satisfies
b ZfI = Sl; uoo(xvy70) = uoo($7y70);
o if I =]01,0,], there exists v € C°(IR*) such that

Uoo (2 — v(2,9)0,y,0) = use (2,y,0).

Proof :
We proved in Proposition 29 that u satisfies

u(e(z,y,0,t),y,0,t) = u(z,y,0,0).
Since ¢ is a solution of the heat equation, there exists two maps a and b such that
oz, y,0,t) = alz,y)0+b(z,y) as t— 4oo,
and if 7 = S' the condition
vo(z,y,0,0) > 0 as |z] = +oo

forces a(z,y) = 0. O

Remark : The stronger condition in the case I = S' is only a consequence of the space
of solutions we choose. The main idea that must emerge from this proposition is that the

trajectories of the initial movie eventually become straight lines as t reaches infinity.

12.3 Diffusion of the movement

In the following, v is a map of class C? defined on a subset Q' of Q = R x Ix]0, 400, and on Q'
v satisfies

ug + vu, = 0. (12.1)
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This defines on €’ the operator
D_0 0
Do 00 dx’

as well as the notation

Jee = ID*1(6,€) with &= (v, 1).

Proposition 37 Let u € C"™! be a classical solution of the DCMA, with n > 0. Then the
o ) Ug . Dv D™ ) .
movement derivatives (velocity v = ——, acceleration ? = —, ... ——, ... ) are diffused in
( Y . D8 g i

the same direction as u, that is

D¥ D¥
Vk € {0,...n}, (D—OZ) = (D—OZ) whenever u, # 0.
t 139

In particular, the apparent velocity v follows the polynomial and causal diffusion equation

vy = Vgo + 2000, + vzvm whenever u, # 0.

To establish this property, it is interesting to introduce the formalism of the Lie brackets

2] 2]

associated to the partial derivatives aa_xv =5+ 57> which commute together, and to the total

. . D _ 8 9
derivative 56 = 55 T Vsg-
We compute

Jd D gD Do a0 d d Ja., 0 13}
= — V)5 = U

52 D6 = 9:D6 Door o296 "o " 96 T Vs

One easily checks as well that

oD oD 0
20°'De' ~ o " o Do T ow
This way, we can expand the fee = [D*f](£,€) notation into
0? 0? 5, 07
(e = 55 2565 T 90

ol dz’ 00 ol dz’ Ox
bo Do

D606 " Do oz

b.o 0, Dvd

56'96 T'97) " Daos

Duv
d finall t iting 7 = —
and finally we get, writing Da’

D?
In particular, if we write 1v = — the total derivative of 7, we have

D6
vge = V¥ — T
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Lemma 24 Independently of any evolution equation, on Q' we have

[~ (e og) = (0= vee) o (12:2

Proof :
We compute the Lie bracket
D D? 0 D
—1 = = _2 2 =

_ [D2 D]_[?G D

D62’ DI Y 92’ DO
D? o Jd D
= =Y oL X
0+D08x '[8967D0]
J
— T PN
(v Ux)@w
J
= Yy

Now, by linearity, we get as announced

Ot g] = [ D = (O 5] = (01— ) o

X

[Gt

Proof of Proposition 37 :

We take Q' = {z € Q, u,(2) # 0}, so that v is uniquely defined by Equation 12.1 on §'.
Applying Equation 12.2 to u yields

(% = )ss) % + %(Ut — uge) = (U — vgg ) o (12.3)

As u satisfies B% = 0 as well as uy = uge on Q' (u is solution of the DCMA), the left term of

Equation 12.3 is zero. Hence, on €’ we have v, = vg as announced in Proposition 37.

This proves that the right term of Equation 12.2 is zero on €', so that

0 D
[% —( ee W] =0 whenever wu, # 0.

Consequently, for any ¢ : Q' — R of class C? satisfying

qr = Gee,s

(%)t = (%) N whenever u, # 0.

Thus, a simple induction proves that the diffusion equation ¢ = g¢¢ is satisfied by all successive
Dv D™v
Da’ " Do

we have

total derivatives of v of class 2, that is, O

Now we would like to generalize Proposition 37 to the whole €, i.e. even at points where u,

vanishes.
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Proposition 38 Ifu € V131, then there exists a velocity map v associated to u which satisfies,

on the whole (,
DFv DFv
k — | = | == . 12.4

Moreover, if I =]0y,05[, then

V(z,i,t) € Rx {1,2}x]0,+oo[ 7 (z,6;,1) = 0. (12.5)

Proof :

Define ¢ as in Lemma 22, and consider the velocity map v defined by
v(p(z,0,t),0,t) = pa(x,0,t). (12.6)
1. We get, writing 2o = (z,6,t) and z; = (¢(z,6,1),0,1),
vi(z1) = walz0) — pi(20)ve(21)
= o00(20) — Po6(20)va(21),

while
w9 (z0) = vg(21) + @o(z0)va(21)
and
o0 (20) = vog(21) + 200 (20) v (1) + 95 (20) vaw (21) + o0 (20) 2 (21).

Hence, we have

vae(21) + 2¢9(20)ves(21) + @Z(Zo)vm(h)
= (U€€ + 27}7}91’ + Uzvam’) (Zl)

vi(2z1)

= vee(z1)

as expected. This proves that the right term of Equation 12.2 is identically zero on the whole
Q, so that this diffusion property extends to the successive total derivatives of v as we noticed

in the proof of Proposition 37.

2. Differentiating Equation 12.6 with respect with 6, we get
7 (p(z,0,1),0,t) = ppo(x,0,1),
so that for any (2,7,t) in R x {1,2} x]0, +o0[ we have

0 0
T (p(z,0,,1),0;,t) = oz, 0;,t) = %cp(x,@',t) = %99(96,02',0) =0.
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Remark : If u € C9° is a weak solution of the DCMA, locally Lipschitz in the z variable, it is
possible to establish an equivalent result in the continuation of Corollary 11, provided that we

substitute the total derivative % by the Lie derivative

T

felo,0.0) 1= (G0 + o, 0.0.0470) .

From Corollary 11 we know that there exists a velocity map v (i.e. such that ug = 0), defined

on €2, which also constrains

2
uw(z +Tv(z,0,t),0 4+ 7,1 — %) = u(z,0,t) + o(7?).

Then, it is not difficult to show that

2
v(z 4+ Tv(x,0,t),0+ 1,8 — %) = v(2,0,t) + Tve (2, 0,1) + o(77).

More generally, the successive Lie derivatives of v along the movement are well defined (? = vg,
Y="¢, ..., ol = (ll) o) and satisfy

2
ol (e + ro(z,0,1),0 + 7,1 — %) = ol (z,0,t) + rol"t (2, 0,1) 4+ o(?).

This highlights an interesting property of the DCMA : the velocity field is smoothed indirectly
through the anisotropic diffusion of u. Notice that the diffusion Equation

vy = vgg + 2vvge + Uzvxac
presents no singularity and is of the kind
vy = F(D?*v, Dv,v),

where F is a continuous elliptic operator. This means in particular that the classical theory of
viscosity solutions (see [27]) applies. Our study goes a little further as v does not necessarily
exist at £ = 0, but we saw that it can be defined for any ¢ > 0 as soon as ug € VY. This is a

direct consequence of the strong regularization effects of the heat equation.

As regards boundary conditions for v when ug is regular enough, we have
V(z,0) e R x 1, v(x,0,0) = vy(z,0)
and if 1 =16y, 05[, then
V(z,1,t) € R x {1,2}x]0, +o0[, (vg + vvg)(z,0;,t) =0

according to Proposition 38.
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12.4 A conservation law
12.4.1 Compactly supported movies

We would like to consider integrals like

+oo
// w(z,8) dedd.
IJ—

To simplify the results, we are going to work on compactly supported movies, which is not very

restrictive physically speaking. We first recall the classical

Definition 30 A movie u : Rx I — R is compactly supported if it is zero outside a compact
set of R x 1.

Practically, it is equivalent to say that there exists R > 0 such that u(z,8) = 0 as soon as

2| > R.

Lemma 25 A compactly supported movie uw € V' (n > 1) admits a compactly supported velocity
map.
Proof :
Suppose that u(z, ) = 0 when |z| > R and let v be a velocity map of u. There exists a map
¢ € C*(R) such that ¢(z) =01if |z| > R+ 1 and ¢(z) = 1 if |2| < R. Thus, the map
v (z,0) — o(x) - v(z,0)

is a velocity map of u because ug = u, = 0 when |z| > R. Last, it is clear that 0, as well as v,
is bounded and of class C"71. O

Proposition 39 Let u be the (weak or classical) solution of the DCMA associated to a compactly
supported initial datum ug € V§. Then,

AR > 0, V(z,0,t) € R x I x [0,+o0], lz| > R+t = u(xz,6,t) =0. (12.7)

and if n > 1, u admits a velocity map which satisfies the same conclusion.

Proof :

This is a simple consequence of Equation 11.18. Recall that the solution u of the DCMA
can be defined by

V(z,0,t) € Q, u(p(x,0,t),0,t) = up(x,0),
where  satisfies
3C, Y(z,0,1) € Q, |e(z,0,0)| > || - C -t

thanks to Equation 11.18. But since ug is compactly supported, there exists R > 0 such that
ug(z,0) = 0 as soon as |z| > R — C. Then, we have u(z,§,t) = 0 as soon as |z| >t + R. O
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12.4.2 Light Energy conservation

Proposition 40 Let u € Vg’l be the classical solution of the DCMA associated to a compactly
supported initial datum. Suppose that

(a) either [ = St
(b) or I # 51 andV(z,i) € Rx {1,2}, wu(x,6;,0)=0.

Then, the light energy at scale t, defined by

1
= 5//u2(x,0,t) dxd®,

is independent of t.

Proof :
We take the convention (6, 6;) = (0,2x) if I = S, and remark that if I =]6;,65[, then the

boundary condition on u implies
V(z,i,t) € R x{1,2} x [0, +o0[ wu(z,0;,t) = u(z,0;,0) =0
thanks to Condition (b), so that
V(z,i,t) € R x {1,2} x [0, +00[ wusx(z, ;)= %u(w,@i,t) =0.

In the following, v is a velocity map associated to u. Since u(-,-,¢) is compactly supported

_ l// w2dzdf
5

is taken on a compact set. Consequently, as u € Cg’l, I is derivable and we can derive under the

'y = //uutdde
= //uu55 dadf
= —//uux? dxdf
= //uux (vg + vv,) dadf

= // U, Vg — UGV, dxdf.
By integrating by parts, we get

I'(t) = - / [uuxv]zzi dz + / [uugv] ™22 df + //(uux)gv — (uug)yvdadd.

The first term is zero thanks to (a) or (b), the second one is zero because u(-,-,t) is compactly

thanks to Proposition 39, the integral

integral symbol to obtain

supported and v is bounded, and the third one is evidently zero. Hence, I(¢) does not depend
on t. a
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12.5 A variational principle
12.5.1 A minimization law

Proposition 41 Let u € Vg’l be the classical solution of the DCMA associated to a compactly
supported initial datum. Then the quantity

E(t) = %//?Q(x,o,t) dedo

decreases with scale and we have

Cil_f(t) —_ //(g—Z)dedO. (12.8)

Proof :

In all the following, v is a velocity field of u satisfying Equation 12.7. First notice that

2
T = D gy DYy
D62 Dé
as s0oo0on as D?
U= W :?€+U?x

We compute the derivative of E(t),
E() = // 77 e dudd
— //? (g + oW, — 27,) dedo
— //7% +(07) W, — 727, dedd.
Integrating by parts the first two terms yields
E(t) = / [291% do + / [0? ] df — //?exp +(07).W 4+ 727, dadd.

The first bracket is zero thanks to Equation 12.5 (or thanks to the periodicity of 2 W if I = S1),

and the second one is zero because v? ¥ is compactly supported at any scale t. Hence, we have
E(t) = —//?9\114- (7)o W + 227, dadd

— —//\Il(?g—l—v?x—l—vx?)—I—?z?xdde

= —//\IIQdach—//vx?\lldde—l—//???xdde. (12.9)
1 J
727 =[] =3 =
//. 2 dxdf 3//896(. ) dzdf =0

But as
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(because 7 is compactly supported at any scale t), the second term of Equation 12.9 can be

rewritten
B(t) = //vw?\lldde = //vx?\ll — 72?2 . dxdé
= //?(?ng—l—vvx?x — 728 — vv,? ) dadf

i
= //(2??9)% (277, vg ddf.

then, another integration by parts yields

2B(t) = / [?%w}: de +/ [7205] " i - // ?2(0,9 — vge) dedf = 0.

Finally, coming back to Equation 12.9, we obtain
E(t) = —/ W2dzd < 0

as announced.

d

Remark : Since E(t) is positive and decreases with scale, it converges to a minimum value as

t — +oo, and E’(t) — 0 as t = 4o0. Now, what are the movies u for which ¥ = 0 7 Coming
back to the construction of the solutions of the DCMA, one easily checks that the condition

W = 0 is equivalent to the condition
V(z,0) e Rx I, wgg(z,0) =0,
the map ¢ being defined as usual by
u(p(z,8),0) = u(z,0).
Equation 12.10 implies the existence of three maps A, B, C such that

V(z,0) e Rx I, o(z,0) = A(2)0? + B(2)8 + C ().

(12.10)

and since ¢(x,0) = z, necessarily C'(z) = z. Hence, the level lines of a movie u satisfying ¥ = 0

are parabolae.

12.5.2 A variational interpretation

At this point, it is natural to wonder whether Equation 12.8 results from a variational principle.

Let us consider the functional

E(v) = %//(U@ + vv,)? dzdb,
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defined on compactly supported movies of class C?. Then, we can differentiate £ to obtain
DJE(R) = // (vg + vop) (hy + (vh)e) dedf
_ //?hg + (20)hy + 20k dedd.

By integrating by parts the first two terms, we get, assuming that Equation 12.5 is satisfied by

7T # S,
(h) ://—?gh—?ﬂhdﬂgd@:—/ mhdwd@

Hence, the canonical evolution equation associated to the variational problem of minimizing &

that is to say

would be

dv D%
at — De?
Because of the last term 7wv,, we can see that the equation vy = v¢¢ induced by the DCMA is

= vge + 70y

not exactly the evolution equation associated to the minimization of £. However, Proposition
41 showed that for the DCMA evolution,

DUE(%) - %E(t) - —// (%) dedo

as if it was the case!. Hence, the DCMA is somewhat related to the problem of minimizing &.

12.6 Interpretation for the observed scene
In this section, we do not omit the y variable any longer.

12.6.1 Ideal movies

Definition 31 A movie u : B* x I — R is ideal if one can find three maps (C,Z,U) €
CO(I*) x C°(R*) x C°(R?) such that

n : RxIr - RxT
X-c@ v )
(X7 Y7 0) H (Z(X7 Y) 7Z(X7 Y)70

is bijective and

V(X,Y,0) € R xT*, uoll(X,Y,0)=U(X,Y). (12.11)

'The reason is simply that

D2
// D62f‘vmdxd9 =0

as we noticed previously.
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In other terms, a movie is ideal if it can be interpreted as the perfect observation of a scene
Z(X,Y),U(X,Y) (depth and Lambertian luminance) by a unit focal length camera submitted
to the movement X = C'(6). In this definition, occlusions are forbidden because Il is constrained

to be bijective. If I = S, the natural injection R < S! is implicit in the definition.

It is important to notice that the interpretation of a movie is never unique. Indeed, if
(C, Z,U) is an interpretation of u, then (AC, AZo Dy, Uo D)) with Dy : (X,Y) — (X/A\, Y/ is
another interpretation of u. This ambiguity is called the aperture problem : if one do not know
the focal length of a camera, the depth on the movie it produces can at most be recovered up
to a multiplicative factor . Moreover, it is clear that the depth cannot be recovered in regions
(X,Y,Z(X,Y)) where U is constant. Ambiguities in the depth recovery can also appear in case
of special relations between the depth (or luminance) and the camera movement, which are

actually not likely to occur in practice (see [44]).

12.6.2 Differential characterization of ideal movies

Proposition 42 If a movie is ideal and allows a derivable movement interpretation, then it

admits a velocity map v, and in any point where v is C? we have

v-V? —-7.Vv=0. (12.12)

In Equation 12.12 the symbol V means the spatial gradient operator

g 0
=509y
and as usual
? —@—v 4+ v
Y R o

Hence, Equation 12.12 can also be rewritten

vUgy; + Uzvxx —vguy =0
VVgy + vzvxy — vguy = 0

Proof :

Let (C, Z,U) be an interpretation of u such that C'is of class C''. We define a unique movie
v:R?xT—=Rby
-C'(8)
(X,Y,0) = ———=. 12.1
ve Y0 = 7% Y5 (12.13)

Then, differentiating Equation 12.11 with respect to 6 yields
(vugy +ug) o1l =0,

so that v is a velocity map of u as announced. Now, anywhere v is C? we have

_C//(G)

(v, +vg) o II(X,Y,0) = 727
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which can be combined with Equation 12.13 to yield
C'(0) -7 o (X,Y,0) =C"(0) -vo lI(X,Y, )

because Z does not vanish. Now, if C’(6) # 0, then v # 0 and ? /v does not depend on z, so
that
OZV?—: vV? —7Vvo
v
as announced. If C’(0) = 0 and C" () # 0, the same reasoning applies to the map v/?. Last, if
C’(0) = 0 and C"(8) = 0, Equation 12.12 is clearly satisfied because v =? = 0. O

A natural question arises : does an ideal movie remain ideal when it evolves according to
the DCMA 7 To prove that the answer is yes, we could show that the differential invariant of
Equation 12.12 remains null if it is null at initial scale. In fact, we state a better property by

interpreting the evolution of an ideal movie.

12.6.3 Evolution of ideal movies

Theorem 10 Let ug € C2 be an ideal movie associated with an interpretation (Zy(+), Uo(+), Co(*))
such that

Then the classical solution w of the DCMA defined from the initial datum wy is a multi-

scale collection of ideal movies ((u(-,t)) Moreover, these movies can be interpreted as

t30°

(Zo(+), Uo(+), C(-, 1)), where C(-,-) is defined by
Ci=Chy on Q= ]*X]O, +oof
with the boundary condition

¥(0,t) €0Q,  C(8,t) = Co(6).

Proof :

1. The movie ug being ideal, we have

X—Co0) Y
ZO(X7 Y) 7 ZO(X7Y

V(X,Y,0) e R? x I, u0< ),0) = Up(X,Y).

Let C' be the solution of the heat equation as specified in the theorem. The map
I : R*xTF — R*xTx][0,4o]

X —C(6,t) Y
(X,Y,0,t) — (ZO(X,Y) ’ZO(X,Y)’G’t)
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is bijective because the heat equation satisfies the comparison principle. Hence, we can define a

collection of ideal movies (-, t) from

ioll(X,Y,0) = Up(X,Y), (12.14)

2. First we check that @ is C?. Choose (Xo, Yo, 00,t0) € R? x I*x]0,4+oc[, and write
(X (), Y(h)) the unique element of R? such that

(X (h),Y(Rh), 8, t0) = I1(Xo, Yo, b0, to) + (1, 0,0) = (20 + h, Yo, 0o, o).

We have, for any € and h,

C'(6o, to) — Co(0)

(w0 + h, yo, bo, to) = Uo(X (), Y (h)) = uo(zo + h + Zo(X (h), Y (h))

+ Yo, 0).
Now, there exists a unique #; such that
Co(61) = C(bo, to),
so that we finally get
w(zo + h, Yo, Oo, to) = uo(zo + h, Yo, 01).

This proves that @ is, like ug, derivable with respect to . A similar reasoning establishes that
ueCH.

3. Now we prove that « = 4. If we compute the derivatives of Equation 12.14 with respect

to 8 and ¢, we obtain

C'(6,1)
C Zo(X,Y)

c"(g,t) . N
— ————— 1, oll IT=0.
ZO(X,Y)U oll + @0 0

Uyoll+agoll =0 and

If %, oIl = 0, then @; o Il = 0, and if @, o Il # 0, eliminating C' yields

- Uyoll O g . D ﬂe] -
M= 22 % (20X, V)L ol = |ap—(-2)| o T = g o L.
e ZO(X,Y)80< o(X,Y)Z e ) [" pala, )] o= teco

xr

Hence, @ is a classical solution of the DCMA submitted to the same boundary constraint as
. Since these conditions define a unique solution, we can deduce that v = @, which proves
that each movie u(-,-,-, ) is ideal and that we can choose the interpretation announced in the

theorem. |

The signification of Theorem 10 is simple : when analyzed by the DCMA, an ideal movie
remains ideal and its interpretation is preserved up to a smoothing process on the camera

movement.
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12.6.4 Characterization of the DCMA

We now give another justification for the DCMA equation obtained in Theorem 9.

Theorem 11 The DCMA is, up to a rescaling, the only* multiscale analysis satisfying the
architectural axioms, the [v-compatibility] axiom, and such that an ideal movie (Co, Z,U) is

transformed into a sequence of ideal movies (C(t), Z,U) such that C(t) depends linearly on Cj.

Proof :

1. Let us start by writing the relations between the scene referential (X,Y,0,7) and the

image referential (z,y,0,¢) :

X —C(0,1)
X =——>2
T YT
Y
Y ==
YT XY
O < 0
T & t
From this, we compute the differentials
1—aZx Ly Vv 1
dr = ———dX — dY — —do — —(C! Zr)dT
! 7 7 790~ 7 (Gt eZn)
yZx L —yZy Y
dy = —-*—7dX - ———dY — =7pdT
Y 7 7 7T

Now, given a map I defined on both referentials, we have

dF = FxdX + FydY + FgdO© + FrdTl = F,dx + Fydy + Fydf + Fidt,

so that
1—aZx —yrx
Fy = F,(——)+ F,(—— 12.1
v o= RN 4 (TN (12.15)
—xly 1—yZy
Fy = F( 7 )+ Fy(T) (12.16)
-V
C 7
Fp = Fy(-=) - ZL(@F, + yF,) + F. (12.18)
Z Z
Notice that Equation 12.17 simply gives the total derivative of F
DF
— =Fo = F, F,.
Do <) g+ v

Now, applying Equation 12.15 and 12.16 to F' = Z, we get

Zhx = Zw(l — xZX) + Zy(—yZX)
Ly = Zw(—$ZY) + Zy(l — yZy)

2Once again, the identity operator is naturally irrelevant here.
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which yields, when the denominators do not vanish,

Zy Z
= and Zy = Y .
L+ aly +yZzy, L+ aly+yZy

Zx

Using Equation 12.18 applied to Z, we finally obtain

—Z.Cy + 27, A7y
- - ZX - Ct .
L+ aly 4y, Ly

Zr

2. Consider a multiscale analysis satisfying the hypotheses of Theorem 11. Then, from
Lemma 17 we know that it can be described by an evolution equation of the kind
?
w = ugk' (=, v), (12.19)
v
provided that we suppose that v does not vanish. If u is an ideal movie, we have v = —V/Z if

we note V = Cy, and Equation 12.19 can be rewritten

ou Vo V
o~ b =7)-
Then we can compute
1 Du VVyg — V2 Vi
Ut:—u—wD—etzvé’Fﬁ-U%Fl_U?@FZv (12'20)

Fy and F5 meaning the partial derivatives of F' with respect to arguments 1 and 2. Now, as

v Vo Zi Ve VZ

v Vv 7z VvV 72

and
w_Ye Zr
v V.o Z
Equation 12.20 yields
Vi Zr Vo VZ, VVgg — V7 Vi
— = —==(=- —F - —=F
vz - v ) vz oz

Since the multiscale analysis must preserve the depth interpretation of the scene, we must have

Z1 = 0, that is to say
VA
Z—Zt =} whenever Zx #0,
from what we deduce
12
Vi VeF VVee — Vi P Ve

vovi T 7F2 = %(Ct - VF). (12.21)
The left term of Equation 12.21 only depends on Z, 8, and t. Therefore, by formal independency
of Z, we necessarily have Cy = V F and F only depends on @ and ¢, that is to say F; = 0. Then,
Equation 12.21 is equivalent to

Vez
Vi= (Voo — 7)F1 + Vy I,
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and the only possibility for V' to evolve linearly is
Vi = AVy,
which yields a trivial evolution equation on u, and V; = AVyy, that is to say
F(a,b) = Aa.

This corresponds to the announced evolution Equation u; = uge, up to the rescaling ¢t — At. O



Chapter 13

Numerical scheme and experiments

In this chapter, we propose a simple morphological scheme to implement the DCMA numerically.
We prove its consistency in the “regular case”, and investigate its behaviour when singularities
appear. We link these observations with the difficulty encountered when trying to obtain theo-
retical existence properties for general initial data. Last, we present experiments on two classical
movies of outdoor scenes, and we highlight both time regularization effects of the DCMA and

its usefulness for depth recovery.

13.1 Definition

In order to apply the DCMA evolution to real movies, we need to devise a numerical scheme.
A “naive” discretization of the partial derivatives of u cannot be used, because in practice it is
well known that the time discretization is not thin enough. Moreover, such a discretization is
not likely to satisfy the axioms that we imposed to the DCMA. This is the reason why we focus

our attention on an inf-sup scheme. To this end, given a movie u : R? x T — R, we define

ISpu(xo,y0,00) = inf sup wu(xo+ v, yo, 00 +0),
velR —ngogh
STpu(xo,yo,00) = sup inf u(xg+ v, yo, 00 +0),

veR —h<U<h

1
and Thu = §(IShu—|—SIhu).

If I = S, all the quantities above are well defined. If I =]6,86,[, we take the convention
that

) w(z,y,6y) for <6,
u(e,y,0) = { u(z,y,0) for x> 6.

221
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Figure 13.1: Inf-sup scheme used to implement the DCMA.

13.2 Consistency (regular case)

First, we establish a consistency result at points where u, does not vanish.

Theorem 12 If u is a bounded movie locally C* near zy, with u,(z) # 0, then
ISpu(z0) = u(z) + hzug'g(zo) +O(h%),
STyu(zo) = u(zo)+ hzugg(zo) +O(h%),
1
Thu(zo) = wu(zo0)+ §h2u5g(zo) + O(h%).
and the O(h?) is uniform in a neighborhood of zy.
From now on, we shall omit the y variable in the movies we consider. Since most of the quan-

tities involved in the following are continuous with respect to the y variable, the corresponding

estimations are easily proved to be locally uniform in the y coordinate.

Lemma 26 Consider a bounded movie u locally C? near zy and such that uz(20) # 0. Then,

in a neighborhood of zy we have, for h small enough,
1Sy = IShu,

with ISpu : (21,61) — inf sup u(xy 4 v8,0; +6).
lvI< = |01<h
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13.2. CONSISTENCY (REGULAR CASE)

Proof :
1. Let K be a compact neighborhood of 2y on which u is C? and u, does not vanish. We

consider the compact set K’ = K +[—1, 1] x [—1, 1], and write

A =inf |u,;| and B =sup |ug|+ |ugl.
K K

From Taylor’s Theorem, the map
lu(zy +2,00) — u(2,01) — 2u.(z,0;)]

C(z)= sup
(1’1791)61( x?
is upper-bounded on [—1, 1] by
1
5 SUup |Uzz|,
5 S |ta ]|

while on [—oo, —1]U [1, 400] we have
2||ulloc + Ble|
p < 00

C(z) < su
el x?

Therefore, writing C' = ||C']|« yields
w(zr +x,01) > u(xy, 61) + vug(zg,601) — Ca

V($1701) € I(, Va € |R7
sgn (Ux(whel))\/g

For h < 1, let us take
xo(wy,01,h) =
2(x1,01,h) 11 %
with the classical convention that
1 if x>0,
sgn(z) =< 0 if 2=0,
-1 if z<0.

We obtain
Vh
u(zy +22,01) > u(wg,6q) + g |uz (21, 61)] — 11

> .0
u(xy 1)+1+%

2
u(z1,61) + DVh with D = A 0.

> -
- 2A+40>

Moreover, as |23| < VA, we have
= Oy(x1,01,h,0) = x—; €[-1,1] and (z1 + vbsh, 0y + 1) € K.
v

Hence,
w(zy + vk, 0y + 03h) > u(xy + v3h, 61) — BlO3|h > u(xy, 61) + DVh — Bh,
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2
and taking hy = inf (1, (%) ) yields for any (z1,6,) € K,

D
h < hyy o> = sp(v)(x1,601) := sup u(ay + vbh, 0, 4+ 6h) > u(xq,61) + E\/E (13.1)

1
Vh TS

2. For (21,0,) € K, we write

_ue

ve(21,01) = (z1,01) and fy, 0, (2) = u(vez, 2).

xr

A second-order expansion of f,, g, yields

6%h?
Vh<h17 V($1701) € K, V(U70) e R x [—171]7 u($1—|—?]0h701—|—0h) <U($1701)—|— 5 F,
where
FE = sup fa’c’l,é’l (z).
($1,€1)€I(,|l’|<h1
2
Thus, for h < kg :=inf (hl, (%) 3), Equation 13.1 yields
D .
ISpu(zy,601) <ulzy,01) + “Vh < inf sp(xy,61),
2 Jol> 2=
which proves that
Vh < ho, V(21,01) € K, [Spu(zy,601) = inf1 sp(v)(21,01) = IShu(xl,Hl)
|U|<TE
as expected. O

In the following Lemma, we equip the space R[X, ©] of 2-variables real polynomials with the

norm given by the maximum of the absolute values of the coeflicients, that is

12 @i X107 = max]ay].
?

%)
Lemma 27 Let P(x,0) be a polynomial whose degree is at most two. If P;(0,0) # 0, then

inf(1, P,(0,0)2)

Vh <
=16 PP+ 1

, 15,P(0,0) = P(0,0) + h*P£(0,0).

Proof :

1. Since the degree of P is at most two, the second-order expansion of P is exact :

P(v8,8) = P(0,0) + 8(av + b) + 62(v, DT[D?P)(v,1) with (a,b) = (Ps, P3)(0,0).
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Let us consider the new coordinate system (av + b, 6) instead of (v,#) (this is valid because

a #0). Writing
-b d—b
) 1)T[D2P](—7 1)7

a a

we get

IS,P(0,0) = inf sup P(v6,0)

|vl< o= —h<h<h

= P(0,0)+ inf sup 6(av+b)+6*(v, 1)T[D2P](v7 1)
lv|< 7 —h<O<h

= P(0,0)4+ _inf sup 66 + 62°Q(0)

sLb
|T|<\/Lﬁ —hgb<h

= P(0,0)+ inf sup 8|5|h+ 0*R2Q(S).
|22 1< 7 0<0<1

Now, let us define

up(8,0) = 0h|5| + 0°h*Q(8), s,(8) = sup up(5,0) and A, = inf  s,(0).

sLb
0gog1 |T|<\/Lg

We want to show that A, = h2Q(0)* for i small enough.

so that

2 0-b
2. For h < %7, we have [=2] <

A= inf  s,(8) < 5,(0) = sup 62h*Q(0) = R*Q(0)™.

sLb
|T|<\/Lg 0g0<1

Besides, as s,(3) = supgggcy wn(6,8) > upn(,0) = 0, we know that

Ap = inf s,(6) > 0.
" Seth()

In particular, this proves that if Q(0) < 0, then Ay, = 0 = L2Q(0)T.

3. Let us study the case Q(0) > 0. One easily checks that Q(¢) is a polynomial with degree

at most two, and that

1 1
sup |Q(8)] < 2||P (——I——)
e 1001271 (7

As a consequence, for h < a? we have

d—b

v, | = Q=0 -+

7

212 202 _ @
VO € (0,1, RIS +0°HQ(8) > 03| + 126*(Q(0) — 4+ =218

W9 €[0,1], un(8,6) > 0h[3|(1 — 4| P[|[Vh6) + h*6*Q(0)

sup_u,(6,0) > (0h]5](1 — 4| P||V6) + h26°Q(0) )
6elo,1] =1

= su(0) 2 h|o](1 — 4[| PIIVR) + 1*Q(0),

U

U

U
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and taking the inf on § yields

1St <77
4. We showed in 2 and 3 that A, = h*Q(0)" as soon as h < hg, with

: 2 2
hg := % < inf (az, Z—z, 16H17PH2) .
This achieves the proof since
Vh < ho, 1S,P(0,0) = P(0,0)4 r2Q(0)*
= P(0,0)+ A’ [(%b,l)T[DQP](%b,l)r

= P(0,0)+ h*P£(0,0).

Proof of Theorem 12 :

Let K be a compact neighborhood of zy = (¢, fy) on which u is C? and u, does not vanish.
For (z1,0;) € K, we write P, 4, the second-order expansion of u near (z1,6;). The regularity

of u ensures the existence of a constant C' > 0 such that
v(xlv 01) €K, V($, 0) S [_17 1]27 |u($1 +, 61 + 0) - Px1,6’1 ($, 0)| <Cy a? + 023'

This implies, for i € [0, 1],

VIO < 1, Vo] < % lu(1 + vOh, By + ) — Py, g, (v0h, )| < C\/3H5. (13.2)

From now on, we fix (z1,6;) € K and write P for P, 4,. If we apply the nondecreasing operator

IS, to Equation 13.2, we get
Vh €[0,1], ISpP(xy,61) — CV2h < IShu(xy,81) < ISR P(x1,01) + CV203.
Notice that the regularity of u implies that the map
(x1,01) — Pr g,

is continuous, as well as the map

inf(1, P.(0,0)?)

P—
16]|P||2 + 1

Hence, Lemma 27 ensures the existence of a constant hy > 0 independent of (z1,6:) such that

Vh €[0,1], 15,P(0,0) = P(0,0) + h*PE(0,0) = u(wy, 61) + h*ufy (w1, 61).
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In addition, from Lemma 26 we know that there exists hg, independent of (z1,6;), such that
Yh < hy, ISpu(zy,61) = 1Spu(xy,0y).
Therefore, for any h < hg := inf(hy, he) we have
ISh(u) = u+ hng'g + O(h?)
uniformly on K. The symmetric estimation on ST}, arises from
SI(u) = —ISp(—u) = u — h*(—uge)t + O(h%) = u + hzugg +O(h%),
and summing up these two estimations establishes the desired consistency property
Th(u) = u+ h*uge + O(h%)

uniformly on K. O

Theorem 12 proves the consistency of the numerical scheme given by the iteration of T} with
respect to the DCMA evolution. Due to the h? coefficient in the expansion of T}, it is natural
to consider the numerical scheme which associates, to a given movie ug and a scale t > 0, the

sequence of movies (U ¢)n>1 given by

w, =1} ug, with h, =1/2t/n,

and satisfying the boundary constraint
Y(z,y,0) € I(R* x I), un(x,y,0) = ug(z,y,0).

For an operator T, the notation 7™ means T'oT o...0o 7T n times.

Thanks to Theorem 12, we know that such a scheme is consistent. As for the convergence,
we could hope to prove that u, converges towards the DCMA of wg when the partial derivative
of ug with respect to @ never vanishes (but this would no be very useful). Unfortunately, we do
not think that this numerical scheme (or any other) converges towards a solution of the DCMA
in the general case. Indeed, as we explained in Chapter 11, we believe that such a solution does
not exist in general. We try to make clearer that point by investigating what happens near
singular points, i.e. points where u, = 0. Although the non-existence of general solutions for
the DCMA is a real theoretical problem, in practice the convergence of the numerical scheme is
assured due to the discrete nature of computer data (of course, the question of the interpretation

of the limit then becomes more tricky).
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13.3 Singular points

We first establish a preliminary lemma.

Lemma 28 [f (a,b) € R x [0, +o0], then

. YLb i a>—b,
F(a,b) := sup —6*+ b0 = 2 b2
0gf<1 —— if a< —b.
2a
Proof :
The map

o(8) =0 %02 + b8
is C'! on the compact set K = [0, 1], so that it attains its maximum value on K either on K or

in a critical point. That is,

b a b?
sup () = max(p(0), p(1), p(=-)) = max(0, 5 + b, —-),
0g0g1 a 2 2a
with the convention —b/a = —b*/(2a) = —occ if a = 0. O

Proposition 43 Let P be a polynomial with degree at most two such that P, (xg,60) = 0. Then,

in (z9,00) we have, as h — 0,

h
T,P =P+ 3 | Ps| sgn(Pyy) + O(h?)

Proof :

Without loss of generality, we can suppose that (zq, ) = (0,0). Since the degree of P is at

most two, we have

292
P(vbh,6h) = P(0,0)+b-6h + 5 Q(v),
where
b= P(0,0) and Q(v) = Psp(0,0) + 20Ps,(0,0) + v? P, (0, 0).
Therefore,
h202
(ISP —P)(0,0) = infsup [b-0h+ Q(v)
v jel<t 2
) h6?
= h-inf sup [|b] -0+ —Q(v)
v ogagl 2

= hinf F(hQ(v),[b])
hF(h -inf Q, |b])

because the map a — F(a,b) is increasing.
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e if |b] =0 or inf Q = —o0, then

(IS,P — P)(0,0) = %2 [inf Q] .

e if |b] # 0 and inf ) > —oo, then A -inf @ > —|b| for h small enough, so that

h2
(1SiP = P)(0,0) = h - |b| + 5 inf @ + o(h?).

Now, one can see easily that

P2
(i) if Py»(0,0) > 0, then inf @ = (ng - P—el’) (0,0).

(il) if Ppu(0,0) = Py (0,0) = 0, then inf Q = Py (0, 0).

(iii) if Py»(0,0) < 0 or (P;;(0,0) = 0 and F4,(0,0) # 0), then inf ) = —oo.

Hence, in (0,0) we have

IShP:P+O(h2)+ h|P9| if P.: >0 or P, = Fy, =0,
0 else.
Recalling that SI,P = —(1S5,(—P)), we obtain

SIhP:P+O(h2)—I-{ ~hiBs] i Pep <0 or Bop =P =0,

0 else.
and finally
1 h| Py if Py >0,
ThP:P—|—O(h2)—|—§- —~h|Py| if P <0,
0 else
as expected. O

The following table gives the values of 1.5, SI, and T} up to order 2 in h according to
conditions on Py, P, and FPy,. All these equalities hold for h small enough, and we took the

convention that

P99 if Pxx:P€ac:07
Peg = P2
& Ppo — 02 if P, #£0.
Pl’l’
| Py |Poo | Poc || ISsP-P | SL,P—-P | T,P-P
— — _ h2 -+ h2 — 12
=0|=0]=0 thgf Tng ATQP){E
=0|>0 bpt h2o gp)@5
=0]<0 0 7l Tl
70]>0 BBl + % Pee U 3 Pol + 1 Pee
#0|<0 0 —h|Pg|—|—%2ng —%|P@2|—I—%ng
# 0 =0 =0 AlPs| + 5 Pee | —hlPs| + 5 Pee I Pee
=0]#0 0 0 0
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d

Proposition 43 shows that if u, happens to vanish when uy does not, then we can expect the
numerical scheme to blow up because of the non-zero coefficient of h. In fact, in case the limit
of u,(z,0,t) exists as n — 400, it is not likely that it will be continuous in ¢ = 0. The best we
can expect is that

ug — lim  lim  w, (¢
0 150 oo n(t)

defines a kind of projection from C? to V°. According to Proposition 43, this projection might
be obtained by the asymptotic state as ¢ = +o0o of the solution of the PDE

0 else.

{ |uglsgn(uy,) if  w, =0,
Uy =

Of course, all of this is purely intuitive. Evans also predicted a projection property (see [32]) by
considering the DCMA Equation as the limit when £ — 0 of the more regular equation

2 2
U g — 2ugpugtyg + Uy Ugg
u? + 22u? '

Uy =

(13.3)

In particular, Equation 13.3 admits viscosity solutions as a slightly modified version of the
mean curvature motion. The difference is that Evans proved that when u is the characteristic
function of an S-shaped curve, his construction leads to a different projection operator, based

on a Maxwell area construction (see Figure 13.2).

X X

Figure 13.2: An S-shaped curve is immediatly transformed into a graph, the two dashed zones
being of equal area (Maxwell equi-area construction). “The smoothing effects of the heat equa-
tion are so pronounced that a multi-valued data instantaneously unfolds into a graph” (Evans).
The consequence for the DCMA is that solutions are not likely to exist for an initial datum
whose level curves are not graphs. Indeed, such solutions could not be continuous at scale ¢t = 0.
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13.4 Algorithms

In this section, we describe the algorithms we used to experiment our analysis on numerical
movies. These algorithms (and many others) will be available in the next public version of
the MegaWave2 software, which can be freely! downloaded by anonymous ftp to the address

ceremade.dauphine.fr or on the web server http://www.ceremade.dauphine.fr.

13.4.1 Data preparation

Even if a movie is realized in the conditions we described in introduction (that is to say, a
straight translation of the camera parallel to its horizontal axis), in practice it is impossible
to ensure that the camera movement has no vertical component at all. Hence, it is generally
necessary to apply little vertical translations to the images of a real movie in order to compensate
for the small vertical moves of the camera. Such an operation had already been performed (as
explained in [13]) on the “TREES” movie we got from the SRI International Center. We needed
to perform this operation on the “GARDEN” movie ourself (both these movies are presented
later). The determination of these little vertical translations is not difficult since they affect all
points of each image equally. In practice, it can be done by using a simple correlation measure.
Such a simple algorithm is quite precise enough for our aim : in fact, we discovered later that an
error of one pixel in a vertical movement compensation is immediatly overcome by the DCMA

filtering.

13.4.2 Filtering with the DCMA

In order to experiment the effects of the DCMA, we need to discretize the numerical inf-sup
scheme we described in the beginning of this chapter. The natural discrete choice for h is
h = one image, and in order to take into account the discrete nature of velocities it is also

natural to consider discrete 3-points segments of the kind

{(x—v,y,@—1),(x,y,@),(ac—l—v—l—e,y,@—l—l)},

where all quantities are integer and £ € {—1,0,1}. Hence, the discrete inf-sup operator is

ISu(z,y,0) = min max {u(z —v,y,0 — 1), u(z,y,0),u(z+v+e,y,04+1)}.
v € {~Vmazy -, — 1,0}
ee€{-1,0,1}

The parameter v,,,, must not be smaller than the largest velocity on the processed movie,
which can easily be estimated. More important is the non-symmetric choice we made on v
by allowing only nonpositive velocities. There are several reasons for this choice : first, if the

camera always goes forwards and never stops and goes back, then all velocities on the movie

for non commercial use only, see the MegaWave2 documentation.
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must be theoritically nonpositive. In addition, since the velocity field follows a causal evolution
equation, it satisfies the maximum principle and is then forced to remain nonpositive at any
scale of analysis. This proves the consistency of our non-symmetric choice of allowed velocities.
Another reason that justifies this choice and that we shall discuss later is related to the filtering

of occlusions.

The ST and IS operator being defined, we still have an alternative : either we iterate the
mean operator %(IS—I— S1T) as we explained in the numerical scheme, or we iterate the alternated
operator? 150S1. No computational cost seems relevant to choose between the two possibilities,
because it is roughly equivalent to compute 1.5 or simultaneously 1.5 and ST on a movie, and one
easily checks that one iteration of the alternated operator is also roughly equivalent, in terms of
scale of analysis, to two iterations of the mean operator. In fact, when we tried both solutions,

the advantage came to the alternated scheme, for two reasons.

The first reason is that it is purely morphological (and hence more consistent with our ax-
iomatic formulation), with the consequence that no new grey-level is created when a movie is
processed. This overcomes a purely numerical constraint : since the grey levels of a movie are
practically discretized (typically, in {0,1,...255} when represented by a 8-bit unsigned charac-
ter), the division by two is not symmetrical and the result often has to be truncated, which has
undesirable consequences after several iterations (notice that this cannot be avoided in practice
by considering float values because of the huge amount of memory involved). Of course, the
choice of an alternated operator is not symmetrical either (you can choose IS0 S[ or SIo[S),

but there are many less consequences.

The second reason is that a pure morphological scheme was more adapted to the algorithm
we chose in order to compute the velocity field on the movie. This will become clear in the next

section.

It is important to notice the extreme simplicity of the algorithm we presented : in particular,
it can be implemented very easily on a massive parallel machine. Our optimized code in C

language for one iteration consists of only 23 instructions.

13.4.3 Computing velocities

Of course, since the DCMA is devoted to the depth recovery — or, equivalently, to the computa-
tion of the velocity field —, it would not be enough to show filtered movies without checking the
consequences of the DCMA on their inherent velocity fields. For that reason, we need to devise
an algorithm to compute such velocity fields. Now comes the great interest of the DCMA : since
the multiscale analysis theoretically produces a perfect time-coherent movie, we can use a naive

algorithm to compute the velocity field.

2Though we did not prove explicitely the consistency of the alternated operator, it seems rather clear if we
compare it to classical related schemes.
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Our algorithm is global and takes only one parameter : the number n of matching images we
require to decide that a velocity is reliable. Given a point (29, yo, fo), we look for the maximum

value of k for which there exist two real numbers vy and vy satisfying
—Vpar S U1 < V2 <0
and such that?
V8 € {0g,....,00+ k}, Vo € {F(zo—nb),...,F(zo— v0)}, w(z, Yo, 0) = u(zo, yo, bo)-

Then, we decide that the velocity field in (zg, yo, fo) is non-computable if & < n, and equal to v,
if & > n (of course, the interval [vq, v3] is supposed to have a maximal length). The choice of v;
(instead of 1(vy 4 vy) for example) is logical but not very important since in practice we almost

always have vy ~ vy For symmetry, we also look for matchings in “past” times {6y — k, ..., 6p}.

®here, the function E() means the rounded integer part, that is to say E(z) =n € N & n — % <rzr<n+ %
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13.5 Experiments
13.5.1 TREES movie (natural)

We picked up the “TREES” movie used by the SRI center (see [13]) by anonymous ftp to
the adress periscope.cs.umass.edu. We obtained 64 images of size 256x233, which represent an
amount of data of 3.8 Mo. According to [13], this movie is supposed to contain 128 images,
but we could not find the remaining images ; however, 64 images were quite enough to test our

algorithm.

Since the images were very dark, we first applied an optimal contrast change? to the movie :
this process has only visual consequences thanks to the pure morphological invariance of our

algorithms.

As we said before, this movie did not require a compensation for small vertical movements

of the camera (it had been already done according to [13]).

Each iteration of the DCMA filter took 24 seconds. This represents a processing speed of
about 0.16 Mo/s.

This movie is not the best choice to highlight the good properties of the DCMA, because
of the strong occlusion caused by the foreground tree (we remind that our theory does not
handle with occlusions). This occlusion caused smudging effects on the right side of this tree
(and not on the left side thanks to the nonpositiveness of allowed velocities). However, these
bad effects excepted, the algorithm proved to behave very well. The first striking visual effect
of the algorithm on this movie is the strong time-coherence induced on the movie : it looks
like all images become exactly equivalent except that the relative velocities of objects differ.
In particular, there were important global intensity fluctuations between images on the initial
movie : such a defect was completely removed by the DCMA. One could object that this
regularization is paid by a visual loss of details on the ground texture. This is true and very
logical since all non-time-coherent details cannot be preserved by the analysis. Although the
DCMA has theoretically no spatial regularizing effects, such a spatial regularization actually

occurs as a consequence of the time regularization.

*Applying a contrast change consists of modifying an initial movie u into the movie g o u, where ¢ is an
increasing grey-level correspondance map. It is said to be optimal if the histogram of the resulting movie is as
flat as possible (which means that the grey levels are “used” in the best possible manner).
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Figure 13.3: Original “T'REES” movie.

From left to right and then top to bottom : images number 1, 9, 17, 25, 32, 40, 48, 56 and 64
of the “TRFEFES” movie (made of 6/ image). The camera has a straight translation movement
parallel to the horizontal axis of the image plane, and moving to the right. The relative positions

of objects vary due to their different distances from the image plane (the closer they are, the
quicker they “move” on the image).
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Figure 13.4: Filtering of the “TREES” movie.

Top row : images 18 (left) and 22 (right) of the original “T'REES” movie
Bottom row :  images 18 and 22 of the “TREFES” movie processed with 31 iterations.

The original movie has small details which cannot be tracked between successive images (they are
not time-coherent), because the Nyquist limit for the time frequencies has been exceeded during
the sampling process. The strong smoothing effects of the analysis (on the ground for example)
are necessary to ensure the time coherence of the movie. The smudging effects near the branches
of the foreground tree, however, are undesired and due to the incapacity of the DUMA to handle
occlusions.
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Figure 13.5: Analysis of the epipolar images.

The epipolar images are obtained by slicing the movie u(z,y,0) along (z,0) planes for fived
values of y. The resulting images (z,0) — u(x,y,0) are represented as follows : the x axis is
taken horizontal and the time axis 0 is taken vertical pointing downwards. The epipolar images
on colum 1 are taken from the original “T'REES” movie (the values of y are 20, 60, 140, 180,
220 respectively for rows 1, 2, 3, 4, 5). Those on column 2 are obtained after processing the
original ones with 31 iterations.

Remember that the DCMA operates independently on all these epipolar images. The level lines
of these images tend to become straight lines when analyzed by the DCMA ; a consequence is
that the time-coherence of the analyzed movie increases with scale. On the original epipolar
images, occlusions appear when two lines intersect : only the one with the smallest slope (i.e.
representing the object closest to the camera) remains during the occlusion, the other one being
occluded. Notice that occluded objects are often destroyed by the DCMA (see row 2 for example),
because the DCMA cannot handle occlusions.
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Figure 13.6: Computation of the velocity field (minimum of 15 matchings).

The four itmages on the first row are taken from four different movies : each image is the 20th
image (over 64) of the movie it belongs to. These movies result from the DCMA at different
scales :

column 1:  original “TREFES” movie
column 2:  processed movie (5 iterations)
column 3:  processed movie (15 iterations)
column 4: processed movie (31 iterations)

Then, the velocity field of each movie was computed on the 20th image using the algorithm we
described previously, with a matching constraint of 15 images. These velocities are represented
on row 2 : the white color means points where no matching was found with respect to the
constraint, and the grey scale (from light grey to black) measures the velocity from 0.0 to 2.0
pizels per image. On the third row, the velocity images of row 2 were “dilated” to produce more
readable results. Notice how the velocity information, which is almost inexistant on the original
movie (for the matching constraint we imposed), progressively appears on the DCMA as the
scale increases. Since the distance of objects to the image plane is inversely proportional to their
velocity, closest points appear in black and farthest ones in light grey. On the last image of
row 3, we distinguish the foreground tree in black, the ground from black to middle grey, the
background tree in middle grey, and the far background in light grey.
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Figure 13.7: Computation of the velocity field (minimum of 5 matchings).

The representation is the same as for Figure 13.6, but this time, the velocities were computed
with a less restrictive matching constraint of 5 images (instead of 15 for Figure 13.6).

The velocity images we obtain (row 2) are more dense because new computable velocities appear.
However, these new obtained velocities are less reliable due to the less restrictive matching con-
straint. This explains the noisy appearence of the images on row 3 compared to those of Figure
13.6. Notice that this noise decreases as the scale of analysis increases : this is coherent with
the theory which predicts that the velocity field is progressively smoothed as the scale of analysis
increases (see Proposition 37).
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13.5.2 GARDEN movie (natural)

We found this movie on the web site http://www.image.cityu.edu.hk:80. It was originally com-
posed of 50 interlaced frames of size 720x486.

It needed a little movement compensation along the y coordinate. This was performed using
the correlation method we mentioned previously.

We extracted 50 sub-images of size 400x338. Each iteration of the DCMA took approximately
50 seconds.

Once again we observed the good effects of the DCMA. This time, no undesirable effects
were caused by occluding objects like for the “TREES” movie. In fact, the “GARDEN” movie
contains several occluding objects (in front of the background houses), but they did not seem
to cause much trouble to the algorithm, maybe thanks to the reasonable depth gap occuring at

the boundary of these occlusions.
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Figure 13.8: Original “GARDEN” movie.

From left to right and then top to bottom : images number 1, 7, 13, 16, 26, 31, 37, 43, 50 of
the “GARDEN” movie (made of 50 images). The camera goes to the right.
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Figure 13.9: Filtering of the “GARDEN” movie.

Top : mmage 25 of the original “GARDEN” movie
Bottom :  image 25 of the “GARDEN” movie processed with 2/ iterations.
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Figure 13.10: Evolution of the epipolar images.

Epipolar images are represented, taken from the original movie (column 1) and from the processed
movie after 24 iterations (column 2). The values of y are 30, 60, 90, ...300, 330 respectively
forrows 1, 2, 3, ..., 10, 11.
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Figure 13.11: Computation of the velocity field (minimum of 12 matchings).
The three images on the first row are taken from three different movies :

column 1: original movie
column 2:  processed movie (5 iterations)
column 3:  processed movie (2/ iterations).

Fach image is the 25th image (over 50) of the movie it belongs to. On row 2, the velocity
field of each movie is represented, as computed on the 25th image with a matching constraint
of 12 images. The white color means points where no matching was found with respect to the
constraint, and the grey scale (from light grey to black) measures the velocity from 0.0 to 6.0
pizels per image. On the third row, the velocity images of row 2 were “dilated” to produce more
readable results. On the bottom-right image, we recognize the oblique plane made by the rocks of
the foreground : the regular variation of the grey level indicates a reqular variation of the depth.
On the background, the houses appear in light grey and we can make out the two oblique poles
in front of them.
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Figure 13.12: Computation of the velocity field (minimum of 5 matchings).

The representation is the same as for Figure 13.11, but this time the velocities were computed
with a less restrictive matching constraint of 5 images (instead of 12 for Figure 13.11).
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13.5.3 Sensitivity to noise

We now want to test how robust to noise our method is : are the DCMA analysis and the
induced velocity estimation still reliable when applied to a noisy data 7 In order to check this,
we took the previous “TREES” movies and corrupted it strongly by replacing 50% of its grey
values u(z, j, k) by totally random, uniformly distributed and uncorrelated values. This kind of
noise is called impulse noise : it is very destructive and impossible to remove efficiently with
linear filters. On this corrupted movie, we applied exactly the same processing as in the original
one. The figures to follow (to be compared with the corresponding figures for the original movie)
show that both the visual aspect and the velocity field are well recovered by the DCMA although

half of the original information was lost and replaced with random values.
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Figure 13.13: Filtering of the noisy “TREES” movie.

Row 1 : images 18 and 22 of the noisy “I'RFEES” mouvie
Row 2 : images 18 and 22 of the noisy “T'REES” movie processed with 31 iterations.

The images on row 1 are very noisy : 50% of their pixvel values were chosen by a non-correlated,
uniformly distributed random generator (and this 50% amount of pizel was chosen itself by a
random generator). When playing the movie, one has the impression of looking at a T'V-image
received in very poor conditions. In particular, it is almost impossible to see any detail of the
ground texture. Filtering this movie with the DCMA gives impressive enhancement results : not
only the noise impression is removed, but in addition some details appear that were not visible
on the first movie (in particular on the ground and on the left tree). This means that the DCMA
takes more advantage of the time coherence and redundancy of information contained in a movie

than the human visual system does.
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Figure 13.14: Analysis of the epipolar images.

As on Figure 13.5, epipolar images are shown both for the original noisy movie (column 1) and
for its processed version after 31 iterations (column 2).
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R

Figure 13.15: Computation of the velocity field (minimum of 15 matchings).

Like on Figure 13.6, the four images on the first row are the 20th image of four different movies :

column 1:  original noisy “T'REES” movie
column 2:  processed movie (5 iterations)

column 3:  processed movie (15 iterations)
column 4: processed movie (31 iterations)

Row 2 and 3 represent the extracted velocity field (for a minimum of 15 matching images), in the
original (row 2) and dilated (row 3) representation. As expected, not only the movie is filtered,
but the velocity of objects is recovered despite a lot of destructed clues due to the large amount
of noise put on the movie. Of course, the velocily recovery is not as good as if the movie had
not been initially corrupted, but the depth structure of the scene still appear on the bottom-right
image.
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Chapter 14

Extensions and conclusion

14.1 Extension to more general geometric configurations

In this section, we show that the geometric configuration we adopted throughout our study
is not really required. In fact, the DCMA can easily be extended to a more general motion,
provided that it is known or that it can be recovered (but we shall not properly investigate the

problem of motion recovery here).

14.1.1 The camera motion is not horizontal

Practically, it is difficult to ensure that the camera moves exactly along the direction given by
the horizontal axis of the image plane. The consequence is that the y-sections (z,8) — u(z,y,0)
of the movie should not be processed independently, for the epipolar lines are not contained in
the (x,0) plane. However, if the direction of the camera displacement is known, given by the
angle v with the z axis, then it is theoretically possible to bring the problem back to the ideal

case (v = 0) with the simple rotation of the image plane given by
cosv sinv
P = . P
( —sinv cosv )

The angle v may be directly measured by an inertial system on the mobile robot. It can also

be easily estimated on the resulting movie since it is a very redundant information.

14.1.2 The camera motion does not lie in the image plane

We now suppose that the motion of the camera is not contained in the image plane, that is to
say its component along the direction orthogonal to the image plane is non-zero. We define the
(OX) axis as the direction given by the motion of the camera, and the (OY) axis as the only
direction orthogonal to (OX) and contained in the image plane. Then, the remaining axis (0%),

naturally defined from (OX) and (OY) in order to form an orthogonal system, makes an angle
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« with the direction orthogonal to the image plane (see Figure 14.1). The projection from the
scene to the image plane is given by
X -C—-Ztanaw
Z4+ (X —C)tana
Y
Z4+ (X -C)tana

Compared to the ideal case o = 0, the case o # 0 induces a deformation of the image plane

T =

y =

given by
, 2 cos o — sin « r —tanao
x = - =
cos o + x s1n « 1+ ztan o
/ )

y = —
cos o + x s1n «

The map (z,y) — (2,y') is defined on (R — {—cotana}) x R, the singularity z = —cotana
giving a characterization of a. Thus, all previous results should still apply, provided that we

rewrite the DCMA evolution equation according to this deformation map.

Z

optical axis

camera motion

image plane

M

Figure 14.1: Camera motion does not lie in the image plane.

14.1.3 Case of pure zooming

If the camera moves in the direction of the optical axis, which corresponds to a pure “zooming”,

the movement of a physical point projected in P on the image plane is given by
P Vv
—=—_PF
e 7
Thus, going to polar coordinates, the apparent velocity is
r
= —V = ——
'T7

Uy
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everywhere u, # 0. This case is formally equivalent to the ideal translation along the X axis as
soon as the polar coordinate r is substituted to the z coordinate everywhere. In particular, the

apparent acceleration is

Do Uge Ug
T=—=- with &= (——,0,1).

D6 Uy ¢=( u )
Rewriting the axiomatic formulation in that special case, we can expect to obtain the evolution

equation

du g g\ 2
S = U —2—ugr + | — | Urps

ot Uy U,

formally equivalent to the DCMA up to a change of coordinates.

14.2 Case of any rigid motion

The two previous cases can be combined to cover all situations of pure translation motion of
the camera. The case of pure rotation with a fixed axis (“radar motion”) is not very different
from the case of pure translation : the filtering is the same and only the depth interpretation

deduced from the velocity field changes.

In case of a general camera motion (translation 7" + rotation R), there are 6 instantaneous
motion parameters : 3 for the translation and 3 for the rotation. More precisely, the movement

of a physical point M (X,Y,7) is given in the camera referential by

dM
= = T-RAM
0 RAM,

where we wrote A for the usual vector product in R*. Then, the perspective projection (z,y) =

%(X,Y) induces in the image referential the movement

P 1 (-1 0 = vy —(14+2%) vy 1
— == T = —AT + BR. 14.1
a0 Z(O -1 y) +(1+y2 ay - )EEZATEBE (4
while the well-known Motion Constraint Equation is
dpP
— = 14.2
Vu 20 + ug = 0, ( )

Vu standing for the spatial gradient of u. Combining Equations 14.1 and 14.2 yields a scalar
equation satisfied by the partial derivatives of u, with one unknow (the depth Z) and six motion
parameters (1" and R). It permits to compute the disparity d = 1/7 by

_ug+ (BR).Vu

=N

Therefore, depth recovery is still theoretically possible as soon as the camera motion is
known. We guess that it is possible to rewrite the DCMA in case of such a general camera

motion, by introducing the motion parameters in the evolution equation.
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14.3 Occlusions

In this study, we made several allusions to the problem of occlusions, which is not solved by the
algorithm we presented. We know precise this point, and try to explain why this is the most

important improvement to be brought to our method.

Two kinds of occlusions appear on a movie : the natural occlusions, occuring when a
part of the scene masks another part (see Figure 14.2), and the boundary occlusions, which
happen on the border of the image. The natural occlusions are consequences of both the scene
geometry and the camera parameters, and they can be theoretically avoided by choosing an
optical system with a small field width (or equivalently, with a large focal length). Of course,
boundary occlusions cannot be avoided. In addition, avoiding natural occlusions forces the
relative depth variations to be small, which prevents the depth estimation from being very
accurate. Therefore, being able to deal with occlusions is a key point of the movie analysis, and

it is not surprising that the human visual system makes a strong use of occlusions phenomena.

Z (depth)

occluded zone

focal plane ---

optical center

small field width : no occlusion appears large field width : occlusions appear

Figure 14.2: Field width and natural occlusions

Figure 14.3 shows what appears in the epipolar plane when occlusions happen : the level
lines with the largest velocity (i.e. with the smallest slope on Figure 14.3) occlude the other
ones. The reason is simply that when an occlusion arises between two objects, only the nearest
one (that is, the one with the largest velocity) remains visible. As in the spatial case (see [21]),

the occluding line is characterized by the presence of T-junctions.
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Occusonne‘\;i::::::jj;;;;;;;j????i\\\dsoccusonne
|
|
|
| \
| T-junction
|

level lines

Figure 14.3: Typical occlusions in an epipolar plane

14.4 Conclusion

In this study, we presented a multiscale analysis of movies which is well adapted to the depth
recovery. We devised it thanks to an axiomatic formulation in agreement with the depth recovery
problem. This multiscale analysis can be viewed as a diffusion process along the movement, with
the consequence that it brings time-coherence to movies without performing an undesirable
spatial smoothing. In particular, it permits to gather the redundant but incoherent depth
information spread among the images of a raw movie into a perfect movie on which the depth

can be easily and robustly estimated.

From a theoretical point of view, this multiscale analysis is described by a second order partial
differential evolution equation, which presents strong singularities and is not treated by the
classical theory of viscosity solutions. We proved uniqueness and existence theorems, although
existence is not ensured (at least in a classical sense) in the completely general case. This PDE
has interesting properties that can be physically interpreted : in particular, we proved that an
ideal movie (that is to say a movie which can be interpreted in terms of a camera movement
and a depth map) remains ideal when analyzed by this scale space. We also showed that the

corresponding evolution equation is somewhat related to a simple minimization problem.

We provided a very simple numerical scheme which can easily be implemented on parallel
machines. By performing numerical experiments on two real movies, we checked the good
behaviour of this method, as a movie processing device, and as a depth-recovery preprocessing

device.

We think that this study is a good starting point to find robust solutions to the depth recovery
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problem. The next step would be to adapt the theory for general movies where occlusions are
allowed. Of course, such a generalization should require a non-continuous formulation due to
the nature of occlusions. It may also bring new elements to circumvent the strong singularity

that appears in the DCMA equation.
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