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7R�esum�eLa reconnaissance de formes planes partiellement masqu�ees ne peut se faire que localementen calculant des points caract�eristiques (extremas de courbure, points d'in
exions,...), et ce cal-cul requiert un proc�ed�e de lissage des formes. Si l'on veut e�ectuer cette reconnaissance modulotoutes les d�eformations a�nes du plan, alors ce proc�ed�e est unique : c'est le scale space a�ne,d�ecouvert en 1993, qui peut être d�ecrit par une �equation d'�evolution. Dans la premi�ere partiede cette th�ese, nous montrons comment r�esoudre cette �equation num�eriquement avec pr�ecision,en it�erant un op�erateur continu, g�eom�etrique, global et exactement calculable. Des propri�et�esde consistance forte et de convergence sont �etablies et valid�ees par de nombreuses exp�eriencesnum�eriques. Ce proc�ed�e o�re des performances bien sup�erieures aux sch�emas classiques aux dif-f�erences �nies, qui ne peuvent v�eri�er rigoureusement l'invariance a�ne et le principe d'inclusion.Dans une deuxi�eme partie, nous �etudions l'un des probl�emes fondamentaux de la robotique,la reconstruction du relief �a partir d'une s�equence d'images. Il s'av�ere que lorsque le mouvementde l'observateur peut être d�etermin�e, il n'existe fondamentalement qu'une seule mani�ere de�ltrer la s�equence d'images tout en pr�eservant le relief sous-jacent. Ce �ltrage, obtenu grâce�a une d�emarche axiomatique, se formule par une �equation aux d�eriv�ees partielles non lin�eairedu second ordre, parabolique d�eg�en�er�ee, qui pr�esente une singularit�e tr�es forte inh�erente auprobl�eme de reconstruction. Nous �etablissons des r�esultats d'existence et d'unicit�e pour cette�equation, puis mettons en �evidence certaines propri�et�es math�ematiques qui se prêtent facilement�a une interpr�etation physique. En�n, nous d�ecrivons un sch�ema num�erique adapt�e, et r�ealisonsdes exp�eriences qui montrent que ce �ltrage, par la coh�erence qu'il induit, ram�ene le proc�ed�e dereconstruction �a un calcul �el�ementaire et �able.AbstractThe recognition of partially occluded planar shapes necessarily involves a local computationof characteristic points (curvature extrema, in
exion points,...), and this computation requiresa shape smoothing process. If the recognition is considered up to all a�ne transformations ofthe plane, then this process is unique : this is the a�ne scale space, discovered in 1993, whichcan be described by an evolution equation. In the �rst part of this study, we show how thisequation can be solved numerically with a high accuracy, by iterating a continuous, geometricand global operator which can be exactly computed. Full consistency and convergence resultsare provided, as well as conclusive numerical experiments. This method goes beyond classical�nite di�erences schemes that never manage to satisfy rigorously the a�ne invariance and theinclusion principle.In a second part, we study a fundamental problem of robotics : the depth recovery from asequence of images. We prove that when the camera motion can be controlled, there fundamen-tally exists only one way to process the image sequence and preserve the underlying depth in thesame time. This process, obtained from an axiomatic formulation, can be described by a non-linear second-order degenerate parabolic partial di�erential equation, which presents a strongsingularity inherent to the depth recovery problem. We establish existence and uniqueness re-sults for this equation, and we highlight several properties which can be easily interpreted froma physical point of view. Last, we describe a numerical scheme, and show on experiments howthe �ltering process, thanks to the coherence it induces, brings back the depth recovery to anelementary and robust computation.
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Chapter 1IntroductionLe traitement d'images a fait son apparition dans les ann�ees 1970, lorsque le d�eveloppe-ment des ordinateurs a rendu possibles les premiers calculs num�eriques sur des images digitales.Pendant longtemps, il fut un domaine presque exclusivement r�eserv�e �a des �equipes d'ing�enieursmotiv�es par des applications imm�ediates ; ce n'est que depuis quelques ann�ees qu'il a fait l'objetd'une �etude math�ematique plus rigoureuse, qui a permis de classi�er bon nombre de techniquesant�erieures, et d'en expliquer le succ�es ou l'�echec.1.1 Probl�emes et Enjeux du traitement d'imagesAujourd'hui encore, le traitement d'images (et de �lms) pose essentiellement trois grands pro-bl�emes : celui de l'analyse (comment obtenir des informations concernant les \objets" pr�esentssur une image donn�ee ?), celui de la restauration (comment am�eliorer la qualit�e d'une image,la rendre plus nette ?) et celui de la compression (comment coder une image sous la formela plus compacte possible ?). Nous ne parlerons pas ici de la synth�ese d'images, qui ne rel�evepas �a proprement parler du traitement d'images, même si elle lui est souvent compl�ementaire.L'analyse d'images est un maillon essentiel de la robotique, puisqu'elle doit d�e�nir les m�ecanismesde perception visuelle des robots. Elle a aussi beaucoup d'autres applications : reconnaissancede formes, cartographie a�erienne, contrôle de qualit�e sur une châ�ne de production, etc... Larestauration d'images, quant �a elle, est un outil tr�es appr�eciable pour corriger des d�efauts quiapparaissent lors de la production d'une image : 
ou de focalisation ou 
ou de boug�e, pr�esencede \bruit", etc... En�n, la compression d'images est un domaine relativement nouveau, devenuindispensable avec le d�eveloppement massif des moyens de communication ; le d�ebit de trans-mission d'un canal (hertzien ou �laire) �etant toujours limit�e par des contraintes physiques, lacompression apparâ�t comme un moyen simple d'augmenter le d�ebit d'information. Malgr�e lesapparences, ces trois probl�emes ne sont pas ind�ependants : par exemple, le d�ebruitage (suppres-sion d'artefacts cr�e�es lors de l'acquisition) est une forme de restauration quasiment indispensablepour l'analyse. De même, le processus de simpli�cation induit par l'analyse d'une image est une13



14 CHAPTER 1. INTRODUCTION�etape pr�eliminaire �a certains algorithmes de compression. En�n, certains algorithmes de com-pression avec perte d'information (cas de la norme JPEG par exemple) justi�ent une �etape derestauration visant �a corriger les d�efauts induits par la boucle compression-d�ecompression. Danstoute cette �etude, notre point de vue sera celui de l'analyse des images, même si nous auronsl'occasion d'illustrer quelques applications de ces proc�ed�es �a la restauration.1.2 Analyse des images : la notion de scale spaceQuelles informations peut-on extraire d'une image donn�ee ? Cette question tr�es g�en�eraleest le point de d�epart de l'analyse d'images, qui pr�ec�ede souvent une phase d'interpr�etation.Par exemple, le fait que deux objets se d�eplacent �a des vitesses di��erentes dans une s�equenced'images est une information objective ; mais si l'on sait que ces deux objets sont en r�ealit�e�xes et que leur mouvement apparent est dû au d�eplacement de la cam�era, on peut alors end�eduire que l'objet qui se d�eplace le plus vite est plus proche de la cam�era que l'autre, et mêmequanti�er la distance de chaque objet au plan focal de la cam�era.Historique. Dans les ann�ees 1970, Bela Julesz mit en �evidence l'existence de m�ecanismesr�e
exes dans la vision humaine. Il montra notamment que cette vision \bas niveau", op�er�ee dansles premi�eres millisecondes du processus de vision, permet �a l'homme de percevoir le relief etde discriminer des textures. Ses conclusions amen�erent les scienti�ques �a conjecturer l'existenced'un mod�ele math�ematique simple de la vision pr�eattentive. C'est ainsi que David Marr [53]formula quelques ann�ees plus tard le concept de \raw primal sketch", ou pyramide visuelle. Selonlui, l'analyse visuelle r�esulte d'une repr�esentation de l'image �a des �echelles di��erentes, allantd'une description tr�es �ne �a l'�echelle 0 vers une description de plus en plus globale et simpli��ee �amesure que l'�echelle augmente. Ainsi, une image brute est en r�ealit�e \vue" comme une collectiond'images index�ees par un param�etre d'�echelle correspondant au degr�e de simpli�cation op�er�e parrapport �a l'image brute (�echelle 0). Ce param�etre d'�echelle peut d'ailleurs être identi��e au tempsd'analyse dans le syst�eme visuel humain. Cette repr�esentation multi�echelle d'une image, qui faitdonc intervenir une variable d'espace et une variable d'�echelle, est appel�ee scale space [80] : sonad�equation �a mod�eliser la vision humaine pr�eattentive a �et�e bien v�eri��ee depuis, tant d'un pointde vue psychophysique que biologique.Le premier exemple de scale space, bas�e sur un �ltrage lin�eaire, a rapidement montr�e seslimites. En e�et, alors que la structure des appareils d'acquisition d'images rend, par la pr�esencede �ltres passe-bas, les th�eories lin�eaires bien adapt�ees �a la compression (cf. la compression parondelettes : [56], [28]), voire �a la restauration (pour le d�e
ouage par exemple), en revanchela nature \occlusive" des images �a des �echelles sup�erieures rend ces th�eories peu adapt�ees �al'analyse. En fait, le processus de formation d'une image naturelle1 (un paysage, une sc�ene1c'est-�a-dire issue d'un processus de vision, par opposition a une image scienti�que utilis�ee pour repr�esenterdes donn�ees abstraites.



1.2. ANALYSE DES IMAGES : LA NOTION DE SCALE SPACE 15urbaine, ...) r�esulte d'un principe d'occlusion : lorsqu'un objet (non transparent) en cache unautre, seul le premier est visible, et l'on n'observe pas une esp�ece de superposition des imagesdes deux objets. Cette constatation condamne imm�ediatement la g�en�eralisation hâtive destechniques lin�eaires employ�ees en traitement du signal, pour l'analyse de la parole notamment,o�u il est clair que la nature même des ondes sonores implique un principe de superposition.Le principe morphologique. Une alternative aux scale spaces lin�eaires apparut lors dud�eveloppement de la Morphologie Math�ematique ([70], [54]). Pouss�e �a l'extrême, le principemorphologique s'�enonce de la mani�ere suivante : \Dans une image, seul compte le fait qu'unpoint est plus clair ou plus fonc�e qu'un autre ; la valeur absolue de l'intensit�e n'est pas uneinformation en soi." Cette hypoth�ese est d'ailleurs l�egitim�ee par l'exemple de la vision humaine :on ne voit pas di��eremment �a travers une vitre teint�ee ! Concr�etement, si l'on repr�esente uneimage par une fonction u : FR2 ! FR qui mesure en chaque point du plan l'intensit�e lumineusere�cue (le niveau de gris), ce principe dit que l'analyse de l'image u et d'une image de type g(u)(avec g : FR ! FR monotone) doit être la même. De tels changements de contraste g, qui op�erentune redistribution des niveaux de gris, sont de toute fa�con pr�esents dans la châ�ne d'acquisition.En pratique, le principe morphologique implique que le scale space op�ere ind�ependamment surles lignes de niveau u = cte : l'analyse d'images se ram�ene donc �a une analyse purementg�eom�etrique.Une classi�cation axiomatique. Peu �a peu, de nouveaux mod�eles morphologiques sontapparus, et c'est en 1993 qu'une d�emarche axiomatique rigoureuse (cf. [4]) a permis de classi�ercompl�etement les th�eories existantes. Dans cette approche, chaque scale space est caract�eris�een fonction de ses propri�et�es :� Comment le scale space op�ere-t-il sur les niveaux de gris d'une image : est-il lin�eaire,morphologique, ... ?� Avec quel groupe de transformations du plan le scale space commute-t-il : translations,rotations, sym�etries, a�nit�es ?D'autres propri�et�es, notamment le principe de comparaison (ou principe du maximum) quiassure qu'un scale space est un processus de simpli�cation, avaient d�ej�a �et�e identi��ees commedes propri�et�es fondamentales. De cette classi�cation axiomatique, qui permit de regrouperau sein d'un même formalisme de nombreuses th�eories existantes, a alors �emerg�e un nouveaumod�ele, baptis�e A�ne Morphological Scale Space. Ce scale space morphologique poss�ede legroupe d'invariance le plus gros (en l'occurence le groupe a�ne) que l'on puisse obtenir poursimpli�er des images. La d�emarche axiomatique a aussi �et�e appliqu�ee en dimension sup�erieure,par exemple pour obtenir le premier scale space de �lms ([40]).



16 CHAPTER 1. INTRODUCTION1.3 Plan de l'expos�e.Cette th�ese est divis�ee en deux parties ind�ependantes. La premi�ere est consacr�ee �a la re-connaissance de formes : nous �elaborons et �etudions un algorithme g�eom�etrique permettant decalculer avec pr�ecision le scale space a�ne d'une courbe plane. Dans la deuxi�eme partie, nousrappelons comment, �a partir d'un �lm, il est possible | en th�eorie | de retrouver le relief desobjets apparaissant sur chaque image. Nous montrons ensuite comment le �lm doit être analys�epour qu'une telle op�eration soit e�ectivement r�ealisable.La reconnaissance de formes. Le probl�eme de la reconnaissance de formes peut êtrepos�e comme suit : \Etant donn�e une base de formes de r�ef�erence, comment reconnâ�tre unenouvelle forme (ou la rejeter si elle n'est pas r�ef�erenc�ee dans la base), sachant qu'elle peut avoir�et�e d�eform�ee et alt�er�ee ?" Dans ce qui suit, nous entendrons par forme une r�egion du pland�elimit�ee par un nombre �ni de courbes de Jordan. D'un point de vue pratique, l'approche mor-phologique permet d'extraire naturellement des formes d'une image en consid�erant simplementses ensembles de niveau ��(u) = fx 2 FR2; u(x) > �g:Grâce �a cette d�ecomposition, il devient alors �equivalent de traiter une forme (c'est-�a-dire unensemble de courbes) et une image. Nous devons bien sûr pr�eciser sous quelles conditions nousconsid�erons deux formes comme semblables : par exemple, il semble naturel que la reconnais-sance d'une forme ne d�epende pas de sa position dans l'image. Math�ematiquement, cela setraduit par l'identi�cation d'un groupe de transformations du plan (contenant les translationsd'apr�es ce que nous venons de voir) qui induira une classe d'�equivalence sur les formes.Lorsque la reconnaissance est globale, un processus de normalisation peut être e�ectu�e : onchoisit un repr�esentant canonique dans la classe d'�equivalence de chaque forme connue, et la re-connaissance se ram�ene alors �a une comparaison entre deux repr�esentants. Mais si l'on supposeque des masquages partiels peuvent intervenir, c'est �a dire que les formes �a reconnâ�tre ne sontpas n�ecessairement \enti�eres", une telle normalisation devient impossible, �a cause de la perted'information induite par le masquage. Il faut alors tenter une reconnaissance locale, g�en�erale-ment bas�ee sur un calcul de points caract�eristiques (extremas de courbure, points d'in
exion, cf.[26]). Ces points caract�eristiques, d�e�nis localement, impliquent souvent l'estimation de d�eriv�eesle long de la courbe, ce qui n'a en g�en�eral pas de sens sur une courbe brute, dont le contour peutavoit �et�e rendu tr�es irr�egulier par la pr�esence de bruit dans l'image originale. Ainsi, un lissagepr�ealable est n�ecessaire, et s'exprime naturellement sous la forme d'un scale space g�eom�etrique.Pour qu'un scale space g�eom�etrique soit e�ectivement un proc�ed�e de simpli�cation, il faut qu'ilsatisfasse ce que l'on appelle le principe d'inclusion locale (cf. �gure 1.1) : \Si une forme estlocalement contenue dans une autre, alors cette inclusion doit persister localement pour une�echelle d'analyse su�samment petite." Ce principe est fondamental : il garantit notamment la



1.3. PLAN DE L'EXPOS�E. 17stabilit�e des algorithmes qui le v�eri�ent. Formul�e en termes d'images, il est alors �equivalent auprincipe du maximum.
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échelle 0Figure 1.1: Illustration du principe d'inclusion locale.Une analyse multi�echelle v�eri�e le principe d'inclusion locale lorsque la condition suivante estv�eri��ee : \si une forme A est localement contenue dans une forme B (i.e A\D � B \D pourun certain voisinage D), alors cette propri�et�e reste vraie pour les formes analys�ees �a une �echellesu�samment petite". Ce principe garantit qu'une telle analyse multi�echelle est un processus desimpli�cation, et assure la stabilit�e des algorithmes qui le v�eri�ent.Moyennant une hypoth�ese suppl�ementaire de r�egularit�e relevant plus d'un arti�ce math�e-matique que d'une hypoth�ese physique, on obtient alors un unique mod�ele de scale space \max-imal", c'est �a dire commutant avec le plus gros groupe possible de transformations du plan, enl'occurence le groupe a�ne, engendr�e par les translations et les applications lin�eaires inversibles.Ce scale space a�ne, que nous avons �evoqu�e pr�ecedemment, fut d�ecouvert simultan�ement deux�equipes de chercheurs : L.Alvarez, F.Guichard, P.-L.Lions et J.-M.Morel [4] en termes d'analysed'images, et par G.Sapiro et A.Tannenbaum dans sa version g�eom�etrique. Pour l'analyse decourbes, c'est cette derni�ere formulation qui est la plus adapt�ee : une courbe initiale s 7! C(s; 0)�evolue selon l'�equation @C@t (s; t) = 
(s; t) 13 N(s; t); (1.1)o�u 
(s; t) et N(s; t) repr�esentent respectivement la courbure et la normale au point C(s; t) �ala courbe s 7! C(s; t). La variable t repr�esente le param�etre d'�echelle que nous avons �evoqu�epr�ec�edemment. Ainsi, la reconnaissance locale et a�ne-invariante de formes peut être e�ectu�eede la mani�ere suivante : on calcule le scale space a�ne �a di��erentes �echelles de la forme �areconnâ�tre, puis on calcule des points caract�eristiques sur la courbe obtenue �a partir d'invariantsa�nes locaux (la courbure a�ne par exemple) ou semi-locaux (cf. [26]). En�n, on compare cespoints caract�eristiques avec ceux des formes de r�ef�erence, ceci d'une mani�ere a�ne invariante.D'un point de vue num�erique, la di�cult�e majeure qui intervient dans ce proc�ed�e est le calculdu scale space a�ne de la forme initiale. En e�et, il n'existait jusqu'�a pr�esent qu'une mani�ereraisonnable de calculer le scale space a�ne d'une forme, la m�ethode �etant due �a S.Osher et



18 CHAPTER 1. INTRODUCTIONJ.A.Sethian. L'id�ee �etait de consid�erer l'image \fonction-distance" associ�ee �a la forme S � FR2 :u(x; 0) = ( �dist(x; @S) si x 2 S;+dist(x; @S) si x 62 S;et de lui appliquer un sch�ema aux di��erences �nies pour calculer son scale space morphologiquea�ne (u(�; t))t>0. Grâce au principe morphologique, l'analyse de la forme S �a l'�echelle t �etaitalors donn�ee par fx 2 FR2; u(x; t) 6 0g.Pourquoi le seul sch�ema \raisonnable" de scale space a�ne semblait-il n�ecessiter une for-mulation en termes d'images ? Simplement parce qu'un sch�ema g�eom�etrique aux di��erences�nies bas�e sur une �evolution de points est condamn�e �a �echouer : un tel sch�ema ne peut pasv�eri�er le principle d'inclusion, pourtant crucial pour assurer la stabilit�e de l'algorithme et saconsistance avec le scale space a�ne. En termes d'�evolution d'images, le principe correspondantau principe d'inclusion (principe de comparaison, ou principe du maximum) est beaucoup plusfacile �a garantir num�eriquement, ce qui explique l'int�erêt de la m�ethode d'Osher-Sethian. Enrevanche, l'invariance a�ne devient quelque peu illusoire, ne serait-ce qu'�a cause de la grille �xesur laquelle se placent les pixels de l'image. De plus, outre une certaine lourdeur, ce proc�ed�e estlimit�e dans la pr�ecision de ses r�esultats �a cause du pas de la grille sous-jacente.Dans la premi�ere partie de cette th�ese, nous proposons une alternative g�eom�etrique �a lam�ethode d'Osher-Sethian pour calculer num�eriquement le scale space a�ne d'une courbe. Lesch�ema que nous d�ecrivons est bas�e sur l'it�eration d'un op�erateur g�eom�etrique et non-local(cf. �gure 1.2), qui v�eri�e le principe d'inclusion et l'invariance a�ne, et qui peut être calcul�efacilement pour des courbes polygonales. L'algorithme obtenu est rapide, stable et tr�es pr�ecis,comme l'illustrent les nombreuses exp�eriences que nous e�ectuons.
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Figure 1.2: \Erosion a�ne" d'une courbe convexe.Repr�esent�ee en pointill�es, l'�erosion a�ne de param�etre � de la courbe convexe C est obtenue en�eliminant de l'int�erieur de C toutes les r�egions d'aire � d�elimit�ees par un arc de courbe et unecorde de C. Cela revient en g�en�eral �a consid�erer l'enveloppe (ou encore les milieux) de tellescordes. En it�erant un tel op�erateur, on obtient alors une approximation �ne et num�eriquementstable du scale space a�ne de C.



1.3. PLAN DE L'EXPOS�E. 19La d�etermination du relief. Comme nous l'avons �evoqu�e auparavant, l'un des enjeuxmajeurs de la robotique est de r�esoudre le probl�eme de la perception. Lorsqu'un robot sed�eplace dans un environnement connu ou inconnu, il lui est n�ecessaire de pouvoir se rep�erer,voire d'�etablir une carte tridimensionnelle du monde qui l'entoure. Ce genre d'op�eration este�ectu�e en permanence par le syst�eme visuel humain, qui utilise conjointement di�erents typesd'informations. Par exemple, la quantit�e de lumi�ere r�e
�echie en chaque point d'une surfacedonne en g�en�eral une information sur la direction de la normale �a cette surface : c'est le shapefrom shading. L'utilisation de la st�er�eovision, bas�ee sur l'analyse des petites di��erences entre lesimages re�cues par chaque oeil, permet aussi de d�eterminer le relief. Mais même lorsque l'on fermeun oeil, notre syst�eme visuel reconstruit sans probl�eme le relief observ�e pour peu que l'on sed�eplace un peu : le mouvement apparent des objets nous renseigne sur leur distance e�ective, lesobjets les plus pr�es �etant anim�es d'un mouvement apparent plus rapide, alors que les objets tr�es�eloign�es restent quasiment �xes. D'autres informations, relevant de connaissances a priori, sontaussi couramment utilis�ees par le syst�eme visuel humain : connaissant la taille approximatived'une voiture, nous pouvons facilement d�eduire de sa taille apparente la distance �a laquelle ellese trouve. Ce type de perception du relief est cependant beaucoup plus complexe, et ne r�esultepas d'un processus de vision pr�eattentive, contrairement �a la st�er�eovision par exemple.Les premiers essais de reconstruction automatique du relief furent bas�es en toute logique surle proc�ed�e de st�er�eovision. A partir de deux images obtenues grâce �a deux cam�eras l�eg�erementd�ecal�ees, il semblait possible de reconstruire enti�erement le relief de la sc�ene observ�ee. Bienque correcte d'un point de vue th�eorique, cette m�ethode se heurta assez rapidement �a deuxprobl�emes majeurs. Le premier, structurel, fut mis en �evidence par un calcul simple montrantl'impossibilit�e d'obtenir �a la fois un algorithme robuste (la comparaison des deux images estd'autant plus facile que les deux cam�eras sont proches) et une bonne estimation du relief (cetestimation est d'autant plus pr�ecise que les deux cam�eras sont �eloign�ees). Le deuxi�eme probl�ememajeur survint �a cause des techniques d�evelopp�ees pour comparer les deux images : g�en�eralementbas�ee sur l'extraction de contours rectilignes fortement contrast�es, la comparaison n'est vraimente�cace que pour des sc�enes arti�cielles (bâtiments, routes, machines, ...), et ses performanceschutent compl�etement dans le cas de sc�enes naturelles o�u des textures apparaissent plutôt quedes arêtes vives (champs, herbe, feuillage, ...).Ainsi, il �etait naturel de se tourner vers un proc�ed�e plus robuste, le shape from motion.L'id�ee est de consid�erer non plus deux images mais une s�equence de plusieurs dizaines d'images,et d'analyser le d�eplacement apparent des objets entre chaque couple d'images successives, sousl'hypoth�ese que les objets sont en r�ealit�e �xes et que leur mouvement apparent n'est dû qu'aud�eplacement de la cam�era. Une telle approche est en quelque sorte une g�en�eralisation du principede st�er�eovision, et l'on devine que la redondance de l'information disponible (th�eoriquement,chaque couple d'images de la s�equence produit une interpr�etation du relief d'apr�es le principede st�er�eovision) doit permettre de vaincre les probl�emes de robustesse et de pr�ecision inh�erents



20 CHAPTER 1. INTRODUCTIONau proc�ed�e de st�er�eovision. Si une telle approche semble en e�et beaucoup plus �able, denouveaux probl�emes apparaissent n�eanmoins. Dans l'approche continue g�en�eralement adopt�eepour repr�esenter la s�equence d'images obtenue, la reconstruction du relief implique le calcul d'unrapport de d�eriv�ees, qui s'av�ere être tr�es instable �a cause de l'irr�egularit�e spatiale des images etde leur trop rapide �evolution temporelle tout au long de la s�equence. D'autre part, la redondancede l'information contenue dans la s�equence ne peut être pleinement exploit�ee que par une analyseglobale de la s�equence, et non par le calcul de d�eriv�ees �a un instant donn�e.Dans la deuxi�eme partie de cette th�ese, nous montrons comment, sous l'hypoth�ese que lemouvement de la cam�era est donn�e, le probl�eme de l'analyse du relief peut être r�esolu �a l'aided'un �ltrage ad�equat de la s�equence d'images, qui permet d'induire une coh�erence temporelleglobale entre toutes les images de la s�equence, ramenant ainsi l'analyse globale du relief �a uncalcul local. Ce processus de �ltrage | un scale space faisant intervenir le temps, l'espace etl'�echelle | est même unique, caract�eris�e par un ensemble de propri�et�es impos�ees par la g�eom�etriedu probl�eme de la d�etermination du relief. Si le mouvement est donn�e par la variable spatialex, l'analyse d'un �lm u(x; y; �; 0) (� repr�esentant le temps et la derni�ere coordonn�ee l'�echelle t)est d�ecrit par l'�equation d'�evolution2ut = u�� � 2u�uxu�x + �u�ux�2 uxx: (1.2)Cette �equation aux d�eriv�ees partielles non lin�eaire du second ordre, parabolique d�eg�en�er�ee,pr�esente une singularit�e tr�es forte lorsque la d�eriv�ee ux s'annule, ce qui l'empêche de relever dela th�eorie classique des solutions de viscosit�e (cf. [27]), seule th�eorie de solutions faibles a prioriadapt�ee �a ce type d'�equation. N�eanmoins, nous �etablissons des r�esultats d'existence et d'unicit�epour (1.2), et mettons en �evidence certaines de ses propri�et�es qui se prêtent facilement �a uneinterpr�etation physique. En particulier, il apparâ�t que ce scale space est vraiment compatibleavec la reconstruction du relief, puisqu'il pr�eserve tout �lm id�eal, c'est-�a-dire poss�edant d�ej�aune interpr�etation coh�erente en termes de relief observ�e et de mouvement de la cam�era. Nousd�ecrivons ensuite un sch�ema num�erique pour r�esoudre (1.2), bas�e sur l'it�eration d'op�erateursmorphologiques de type inf-sup. En�n, par quelques exp�eriences, nous con�rmons num�erique-ment les e�ets de cet �equation : l'�etablissement d'une coh�erence globale entre toutes les imagesdu �lm qui ram�ene le calcul du relief �a un processus simple et �able.
2Selon la convention habituelle, les indices d�esignent des d�eriv�ees partielles.



Part IA strongly consistent geometricalscheme for the A�ne Scale Space

21





Chapter 2The A�ne Scale Space2.1 Image analysis and scale spacesWhen devising an algorithm to analyze images, a major question must be raised : what kindof information are we looking for, and how can we extract it from the image ? In particular, itis clear that what we can see on an image depends on the focalization of the look we take atit : we cannot at the same time examine small details and recognize large structures. Hence,there is a natural scale parameter that cannot be eluded in the analysis process. This suggeststhat an image should be represented in a multiscale way, the smallest details being described atsmall scales and the largest ones at large scales. Such a multiscale representation of an imageis called a scale-space : to a raw image u0 we associate a continuous collection of images(u(t))t>0 that are obtained from u0 by a simpli�cation process which \eliminates" details as thescale increases. The collection of operators (Tt) that de�ne u(t) from u0 is called a multiscaleanalysis of images.From a mathematical point of view, an image shall be regarded in the following as a mapu0 : FR2 ! FR, the value u(x) corresponding to the grey-level1 (the luminance) at point x = (x; y)of the plane2. Then, a scale space is represented by a map u : FR2 � [0;+1[! FR, the thirdcoordinate being the scale t. A simple example of a linear scale space can be de�ned by the heatequation 8>><>>: @u@t = �uu(�; 0) = u0(�); (2.1)where � = @2@x2 + @2@y2 is the two-dimensional Laplacian operator. The simpli�cation processinduced by Equation 2.1 is an isotropic di�usion that can also be described by the convolutionof u0 with a two-dimensional Gaussian kernel. Although Equation 2.1 satis�es the requiredproperties to de�ne an interesting scale space, as we shall see later, it is not well adapted to1We do not consider the case of color images.2In practice, a grey-level image is represented by computers as a �nite two-dimensional array of integer values.23



24 CHAPTER 2. THE AFFINE SCALE SPACEimage analysis due to its linear nature. The main reason is that the image formation processresults from a superimposition of objects rather than from a linear combination of them.2.2 De�nitionThe a�ne scale space has been discovered a few years ago in its image and geometrical formu-lation (see [4] and [68]).2.2.1 Image formulationLet us �rst express it in terms of image processing. The a�ne morphological scale space (shortlywritten AMSS) is de�ned by the degenerated parabolic evolution equation8>><>>: @u@t = jDujcurv(u) 13u(�; 0) = u0(�): (2.2)The term Du = (ux; uy) represents the spatial gradient of u, ux and uy being short notationsfor the partial derivatives @u@x and @u@y . The second order operatorcurv(u) = div � DujDuj� = (ux)2uyy � 2uxuyuxy + (uy)2uxxjDuj3can be viewed as the curvature at point x of the level line3 of u going through x. In the following,we take the convention that r 13 means �jrj 13 when r is negative. When Du = 0, curv(u) is notde�ned, but jDujcurv(u) 13 = h(ux)2uyy � 2uxuyuxy + (uy)2uxxi13is naturally equal to zero, so that Equation 2.2 remains de�ned. Hence, from now on we assumethat jDujcurv(u) 13 is de�ned and equal to 0 when Du = 0.In fact, Equation 2.2 is a parabolic PDE of the kind@u@t = F (D2u;Du);where F : S(FR2) � FR2 ! FR is a continuous function, nondecreasing with respect to its �rstargument (for the usual order de�ned on S(FR2), the set of symmetric 2� 2 real matrices). Forthis kind of evolution equations, weak solutions |only continuous| have been de�ned, andare called for historical reasons viscosity solutions. We shall be more precise in Chapter 5, butone may refer to [10] or [27] for further details. The reason why Equation 2.2 is called A�neMorphological Scale Space comes from important properties of the associated multiscale analysis(Tt)t>0, de�ned by (Tt u0) (x) = u(x; t):3Of course, this makes sense only at points where the equation u = cte de�nes locally a smooth curve.



2.2. DEFINITION 25First, the nature of Equation 2.2 concedes a semi-group structure to this family of operators,inasmuch as Tt+s = Tt � Ts:Secondly, these operators are morphological, that is, they satisfy the property[Morphological Invariance] : For any nondecreasing (or nonincreasing) continuous functiong : FR! FR, 8u; 8t; Tt(g � u) = g � Tt(u):The fact that Tt commutes with any contrast change g implies that it operates on the level linesof u ; we shall give a geometric interpretation of this later. The word \a�ne" comes from aninteresting geometrical invariance :[A�ne invariance] : For any bijective a�ne map �,8t; 9t0; 8u; Tt(u � �) = Tt0(u) � �:By a�ne map, we mean any linear operator on FR2. If � belongs to the special linear group |i.e. det� = 1 |, we have Tt(u � �) = Tt(u) � �: Another relevant property of the semi-group(Tt) is the maximum principle, which gives sense to viscosity solutions for (2.2). This principlecan be expressed by[Comparison Principle] : 8u; v; u 6 v ) 8t > 0; Ttu 6 Ttv:A local version of this principle (called Local Comparison Principle) is also satis�ed (see Chap-ter 5). These principles are very important, and they guarantee that Equation 2.2 \simpli�es"the initial image u0 as the scale t increases. They also ensure numerical stability to associatedalgorithms.We shall come back to these fundamental properties, but it is interesting to mention thatthe AMSS is the only regular multiscale analysis which satis�es them. This was proved byL.Alvarez, F.Guichard, P.-L.Lions and J.-M.Morel in [4]. As regards the linear scale spacewe de�ned in introduction by Equation 2.1, it also satis�es the semi-group property and thecomparison principle, but it is neither a�ne invariant nor morphological. Figure 2.1 comparesthis scale space with the AMSS for an image of a cheetah.



26 CHAPTER 2. THE AFFINE SCALE SPACE

Figure 2.1: Two scale spaces of a cheetah image.The two images of �rst column are the same original image of a cheetah head. This image isanalyzed with two di�erent scale spaces : the a�ne morphological scale space (row 1) and thelinear scale space (row 2). Column 2 corresponds to a medium scale of analysis and column 3 toa larger scale. Notice how the a�ne morphological scale space preserves geometrical structures,whereas the linear scale space performs mainly a global blur.2.2.2 Geometric formulationWe now come to the geometric formulation of the a�ne scale space. Because of the morphologicalinvariance, the evolution of u0 according to Equation 2.2 is formally equivalent to the evolutionof its level curves. This curve evolution was discovered by G.Sapiro and A.Tannenbaum : itis the a�ne analog of the Euclidean shortening 
ow studied by M.Gage and R.S.Hamilton in[36] and M.A.Grayson in [39]. An initial curve p 7! C0(p) = C(p; 0) evolves according to theequation @C@t (p; t) = 
(p; t) 13N(p; t); (2.3)where 
(p; t) andN(p; t) are respectively the curvature and the normal vector of the curve C(�; t)in C(p; t). Replacing p with an a�ne arclength parameter s satisfying the constant determinantrelation "@C@s ; @2C@s2 # = 1;



2.2. DEFINITION 27

Figure 2.2: A�ne Scale Space of a \hand" curve.The scale of analysis is, from left to right, and then top to bottom : 0 (original curve), 1, 8, 200.It is clear that the original curve (top-left) cannot be directly analyzed by a shape recognitiondevice due to its very noisy aspect. This is the reason why we need to simplify it in the mostnatural possible way, which has been theoretically proven to be the a�ne scale space. To ensuregood performances of the shape recognition process, a high accuracy is needed in the computationof the scale space, even for large scales.



28 CHAPTER 2. THE AFFINE SCALE SPACEEquation 2.3 reduces to a nonlinear intrinsic heat equation@C@t = @2C@s2 :As for the image formulation, the collection of curves (C(�; t))t>0 is called A�ne Scale Space.We must mention the fact that the existence and uniqueness of a solution of (2.3) for aninitial non-convex curve has not been proved so far (whereas it has been proved in [36], [39] inthe Euclidean case). Hence, although the image and the geometrical formulations of the a�nescale space are formally equivalent, we shall rather use the �rst one to establish precise results.Figure 2.2 shows the geometrical a�ne scale space of a \real-world" curve that was obtainedfrom the photograph of a hand.2.2.3 ApplicationsBy now, the main application of the a�ne scale space is probably shape analysis. It was usedby T.Cohignac in [26] to perform an a�ne invariant shape recognition algorithm for partiallyoccluded shapes. In this case, classical methods based on a global a�ne normalization cannotbe used anymore, and one needs to characterize a shape locally by a�ne invariant descriptors.This was done by T.Cohignac by means of a technique which is directly related to the a�ne scalespace (see Figure 2.3). To perform an e�cient shape recognition, an accurate implementationof the a�ne scale space is required, both for small and for large scales.
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ca(N) > 0Figure 2.3: Characteristic area as de�ned by T.Cohignac.The original curve C0 is smoothed by the a�ne scale space at scale t into a new curve C(t).Then, to each point M of C(t) we associate the (algebraic) area ca(M) of the domain boundedby C0 and the tangent to C(t) in M . The characteristic points are de�ned on C(t) as the pointsM where the characteristic area ca(M) attains an extremum. A local a�ne invariant shaperecognition device is obtained by identifying these characteristic points in all intrinsic a�nebases (see [26] for more details).



2.2. DEFINITION 29The AMSS model can also be viewed, when applied at small scales, as an a�ne invariantdenoising process, very e�cient |like the median �lter| in the case of non-additive noises(impulse noise4 for example). This property is illustrated on Figure 2.4.

Figure 2.4: Denoising e�ects of scale spaces.Top-Left : original Lena image,Top-Right : Lena image corrupted with 30% impulse noise ,Bottom-Left : Top-Right image smoothed by the linear scale space,Bottom-Right : Top-Right image smoothed by the AMSSDue to its morphological nature, the A�ne Morphological Scale Space (AMSS) performs a muchbetter noise removal than any linear process, especially in the case of a non-additive noise.4Corrupting an image with a 10% impulse noise means that random, independent and uniformly distributedvalues are attributed to a uncorrelated random 10% amount of the image pixels.



30 CHAPTER 2. THE AFFINE SCALE SPACE2.3 Numerical schemes for the A�ne Scale Space2.3.1 De�nitionsConsider a numerical scheme for the AMSS, described by the iteration of an operator T depend-ing on a scale step �t and a space step �x. As in [40], we shall say that T is consistent withthe AMSS if Tu� u�t ! jDujcurv(u) 13when the steps �x and �t tend to 0 in a suitable way. The scheme is convergent if the iterated�lter Tn = T � T � : : :T converges5 towards the AMSS at scale t when �t and �x tend to 0 ina suitable way, and n�t! t.2.3.2 The Osher-Sethian's methodSince the image formulation of the a�ne scale space (Equation 2.2) and the geometrical formu-lation (Equation 2.3) are equivalent, a numerical scheme for a formulation can be transposedinto a numerical scheme for the other one. S.Osher and J.A.Sethian successfully used an imageformulation to compute the a�ne scale space of a planar set (see [65], [71]). They also appliedto several other evolution equations the general idea of viewing a hypersurface as the level setof a scalar function. The great advantage of this method is that the topological changes onthe evolving set (e.g. loss of connectedness) are automatically handled by the function ; thisapproach permits complicated curve evolutions, but it inherits the drawbacks of the numericalscheme used for the associated scalar function. Moreover, it is likely | though not proven bynow | that no topological change can occur in the special case of the planar a�ne scale space(that is, a Jordan curve remains a Jordan curve), so that such an image formulation is notabsolutely required to compute the a�ne scale space of a curve.2.3.3 State of the artThe Bence-Merriman-Osher Algorithm for Mean Curvature MotionIn [12], J.Bence, B.Merriman and S.Osher proposed a very simple algorithm for computing themean curvature 
ow. The mean curvature scale space is de�ned by8>><>>: @u@t = jDujcurv(u)u(�; 0) = u0(�): (2.4)It is quite similar to the AMSS, except that it is not a�ne invariant. The Bence-Merriman-Osher scheme seems di�cult to extend to the a�ne case, but we would still like to mention it.The idea is to compute the evolution of a set by applying the heat equation to its characteristic5We shall be more precise later about the kind of convergence we mean (simple, uniform, . . . ).



2.3. NUMERICAL SCHEMES FOR THE AFFINE SCALE SPACE 31function, the result being thresholded after each iteration. In other words, the evolution of a setS0 is obtained by iterating the kernel H(t) = Q �Gt � �;where Q(u) = fx 2 FRn; u(x; t) > 12g; �(S)(x) = ( 1 if x 2 S;0 otherwise;and Gt is the Gaussian convolution kernel solving the heat equation@u@t = �u:As n ! 1, H(t=m)mS0 tends towards the mean curvature 
ow of S0 at scale t, at least in theviscosity sense for the associated characteristic function. This convergence property has beenproved by G.Barles and C.Georgelin in [9], and by L.C.Evans in [30]. H.Ishii also proposeda generalization in [45]. However, such a scheme does not remain consistent in its discreteimplementation, as F.Guichard remarked in [40].A quasilinear schemeAn e�cient quasilinear �nite di�erence scheme was proposed in 1993 by L.Alvarez and F.Guichard(see [40] for example). The idea is to iterate the discrete evolutionun+1(x) = un(x) + �t �A(un)(x);where A(u)(x) is a discrete approximation at point x of jDujcurv(u) 13 using the 9 values of u ona 3x3 neighborhood of x. They proved that one can choose A(u) in order that the approximationA(u) ' jDujcurv(u) 13 is exact for any polynomial u of degree 3. The resulting scheme is neithermorphological nor monotone, but is experimentally stable. Of course, such a local scheme cannotbe really a�ne invariant, because the neighborhood size is �xed in advance.Inf-Sup operatorsIn [41], F.Guichard and J.-M.Morel showed that appropriate iterated inf-sup operators convergetowards the a�ne morphological scale space. We shall describe these operators more preciselyin Chapter 5. The Euclidean case had been treated before by F. Catt�e and F. Dibos in [22].However, because of the spatial quantization and the morphological invariance (no new grey-level is created on the image), the discrete alternate iterated inf-sup operator gets \stuck" afterseveral iterations (that is, no evolution occurs any longer). Indeed, on a spatial grid, a levelcurve is constrained to move at entire speeds : at each step, either it does not move, or it jumpsover one pixel at least (see [26]).



32 CHAPTER 2. THE AFFINE SCALE SPACEA multiscale spline representationIn [17], G.Sapiro, A.Cohen and A.M.Bruckstein described a multiscale representation of planarshapes using B-splines. This representation is a�ne invariant, but it cannot be described by anevolution equation, and in particular it does not satisfy the inclusion principle (analog for setsto the comparison principle for images) :A � B ) 8t > 0; Tt(A) � Tt(B): (2.5)For that reason, it is not well adapted to image analysis and has little to do with the a�nemorphological scale space.The Osher-Sethian algorithmAs we described in Introduction, one can apply a numerical scheme for the AMSS to a set Sby considering its signed distance image u(x) = "(x)dist(x; S), where "(x) = �1 if x 2 S, 1otherwise. With this method, S.Osher and J.A.Sethian transposed the di�cult problem of ageometric curve evolution into the implementation of the AMSS. However, the major drawbackis that the full a�ne invariance is impossible to obtain with such a method, since no imagerepresentation can be a�ne invariant. In addition, the large image size required to achieve areasonable precision in the curve evolution makes the process rather slow.2.3.4 Point evolution schemesFor the a�ne scale space of curves, all geometrical schemes that have been proposed so far su�erfrom the space quantization of the curves (see [40]), which prevents the inclusion principle (2.5)from being satis�ed. The main di�culty comes from the fact that there is no a priori relationbetween the number of vertices of a polygon and the number of the vertices needed to representits a�ne shortening6 (this number increases drastically for a triangle, but decreases as muchfor a very irregular curve). Thus, any algorithm based on a point-by-point evolution cannotimplement the a�ne scale space successfully.However, it is likely that the most accurate implementation of the A�ne Scale Space is acurve evolution one, because it seems impossible to achieve precise evolutions and to guaranteea full a�ne invariance in any image evolution algorithm.2.4 A fully consistent schemeHow can we implement the a�ne scale space with a geometrical algorithm ? Since no pointevolution scheme can be e�cient, we have to consider the problem globally, that is, to �nd an6i.e. its a�ne scale space at a given scale.



2.4. A FULLY CONSISTENT SCHEME 33operator T acting on curves and consistent with the a�ne scale space : this way, we can hope tobuild a numerical scheme for the a�ne scale space by iterating T . Moreover, we would like thisoperator to be a�ne invariant, monotone (i.e. preserving global inclusion), and easy to computeon a general kind of discrete curves (on polygons for example).We shall propose such an operator and call it a�ne erosion. It is more or less a continuousgeneralization of a discrete operator brie
y described in [40]. It is also somewhat related to thenotion of characteristic area introduced by T.Cohignac (see [26]) : indeed, the following studyproves that as the scale t tends towards 0, the characteristic area of all non-in
exion pointsof the curve is equivalent to �c:t�, c and � being universal constants. This can suggest ourde�nition of the a�ne erosion.In Chapter 3, we de�ne precisely the a�ne erosion for a certain kind of curves and sets. Weinvestigate some properties of this operator, and point out an important characterization forconvex curves. We also prove that the number of in
exion points (in a generalized sense) cannotincrease when this operator is applied to a non-convex curve. Last, we establish the geometricalconsistency of the a�ne erosion with respect to the geometrical a�ne scale space.In Chapter 4, we compare the A�ne Scale Space and the a�ne erosion on a few examples,namely conics. We compute explicitly the action of these operators, and show that the a�neerosion remains a good approximation of the a�ne scale space not only for small scales. Thissuggests that the a�ne erosion can be iterated using rather large scale steps to approximate thea�ne scale space e�ciently.We extend the a�ne erosion to grey-level images in Chapter 5, by applying the geometricala�ne erosion to the level sets of an image. The resulting operator is fully consistent, inasmuch asit satis�es the most important properties of the a�ne scale space (the a�ne and morphologicalinvariances and the comparison principle), except |naturally| the semi-group property (this iswhy we need to iterate the a�ne erosion). We also make a comparison with the inf-sup operatorsstudied in [41], and in particular we prove that for C1 curves, a classical a�ne invariant inf-sup operator acts exactly like the a�ne erosion for small scales. Then, we establish preciseconsistency and convergence properties for the alternated iterated scheme associated with thea�ne erosion. We link these results with Matheron's Theorem and techniques used in [41].Chapter 6 is devoted to the numerical scheme. We prove that the a�ne erosion of a polygonis made of the concatenation of hyperbola pieces and segments. We present an algorithm tocompute exactly the a�ne erosion of a polygon, and show that the resulting curve can bequantized in an a�ne invariant way. We compare the space and scale discretizations, and showthat our algorithm has little to do with classical �nite element methods. Then we present anapproximate algorithm, which is very close to the �rst one, much faster, and which also givesaccurate results.



34 CHAPTER 2. THE AFFINE SCALE SPACELast, we present in Chapter 7 several experiments. A�ne erosions and scale spaces arecomputed for simple polygons and more complicated curves, including \real-world" curves givenby level curves of digitized photographs.We conclude in Chapter 8 on the possible application of such a global technique to otherevolution equations, and we indicate further axes of development.



Chapter 3A�ne erosion of curves and sets3.1 PreliminariesIn order to de�ne what we shall call the a�ne erosion of a curve or a set, we �rst need to makeclear what kind of curves and sets we are going to consider, since it is impossible to dissociatethe relation between a set and its boundary in the de�nition. We �rst restrain our study to setswhose boundaries can be described by piecewise convex curves, for which the de�nition and thebasic properties of the a�ne erosion are natural. In a further chapter, we shall extend the a�neerosion to any set of the plane and to grey-level images.Let us begin with some notations and de�nitions. We write dist(A;B) for the Euclideandistance between two points A and B of the plane, AB for the vector B �A, jABj = dist(A;B)for the Euclidean norm of AB and [AB] (resp. ]AB[) for the closed (resp. open) segment withendpoints A and B. The determinant of two vectors v1 and v2 will be noted [v1; v2], and if theyare both nonzero we note \(v1; v2) 2 S1 = FR=2�ZZ the angle from v1 to v2.When s and t belong to the circle S1, [s; t] means the class of the interval [s0; t0] where s0and t0 are real number such that s0 = s and t0 = t modulo 2� and s0 6 t0 < s0 + 2�. As well, theinequality a1 6 a2 6 ::: 6 an on S1 means that we can �nd some real numbers a01; a02; :::a0n equalto a1; a2; :::an modulo 2� such that a01 6 a02 6 ::: 6 a0n < a01+2� (which makes sense for n > 3).We choose to call a simple curve any subset of FR2 homeomorphic to the circle S1 (closedcurve) or FR (non closed curve). We shall often refer to a simple curve using the notationC(I), which means implicitly that C : I ! C(I) is a parameterization of the curve ; unlessadditional speci�cation is given, we shall suppose in general that I = FR or I = S1. Amongall possible parameterizations of a curve, two classes can be distinguished according to the setfC([s; t[); s; t 2 Ig. Choosing a class of parameterization de�nes an orientation of the curve. Asusual, a curve C is of class C1 if it admits a parameterization C : I ! C of class C1 such thatC0 never vanishes (such a parameterization is called regular). A curve is of class Cn (n > 1) ifit admits a regular parameterization of class Cn.35



36 CHAPTER 3. AFFINE EROSION OF CURVES AND SETSWe de�ne a semi-closed curve as an oriented simple curve C such that FR2� C has exactlytwo connected components, called the inside part and the outside part of C according to theorientation of C (with the classical convention that the inside part of C, noted I(C), is \on theleft" when one runs positively on C). A semi-closed curve can also be viewed as a simple orientedclosed curve de�ned on the Alexandro� compacti�cation of the plane FR2 [ f1g ; in particular,a closed curve is semi-closed.Let C(I) be a simple curve. Then, (s; t) 2 I2 is a chord of C if and only if the piece ofcurve C(]s; t[) and the open segment ]C(s)C(t)[ are disjoint or equal. The connected closed setenclosed by C(]s; t[) and the chord segment ]C(s)C(t)[ is a chord set of C, written Cs;t (seeFigure 3.1). If area (Cs;t) = �, then (s; t) is called a �-chord and Cs;t a �-chord set of C.
Cs,t

C(t)

C(s)

CFigure 3.1: A chord set of a simple curve.Notice that the chord segment [C(s)C(t)] can intersect C n C([s; t]).Following this idea, if C(]a; b[) is a semi-closed curve (fa; bg � FR), we say that (s; b) is anin�nite �-chord of C if there exists a half line D with start-point C(s) such that C(]s; b))\D =; and the chord set Cs;b enclosed by D and C(]s; b[) is of �nite area �. The case of the in�nitechord (a; s) is symmetric. Last, (a; b) is an in�nite �-chord of C if there exists a line D suchthat C(]a; b[)\D = ; and the chord set Ca;b enclosed by D and C(]s; b[) is of �nite area �. Forexample, if we consider the curve C(FR) de�ned by C(x) = (x; e�x2) in an orthonormal basisof the plane, then the line fy = 0g is an in�nite chord segment associated to the p�-chord setC�1;+1 (from now on, we assume that a \chord segment" can be �nite or in�nite, i.e. either atrue segment, a half line, or a line).If C is oriented and area (Cs;t) 6= 0, the orientation induced by C on the boundary of Cs;ttells whether (s; t) is a positive or a negative chord. We take the convention that a 0-chord setis both positive and negative. The collection of all positive (resp. negative) �-chord sets of Cwill be written K+� (C) (resp. K�� (C)). Since the previous de�nition of a chord set does notdepend on the parameterization of the curve, it makes sense to write K+� (C) (resp. K�� (C)) forthe collection of all positive (resp. negative) �-chord sets of an oriented curve C.Now we give a de�nition of convex curves which makes also sense in the case of non semi-closed curves.



3.1. PRELIMINARIES 37De�nition 1 An oriented simple curve C(I) is� locally convex in C(s) if for " > 0 small enough,[C(s� ")C(s); C(s)C(s+ ")] > 0:� locally concave in C(s) if for " > 0 small enough,[C(s� ")C(s); C(s)C(s+ ")] 6 0:� convex (resp. concave) if it is locally convex (resp. concave) everywhere.A (non oriented) simple curve is convex if it is convex for a certain orientation.We may use the term \strictly convex" (resp. strictly concave) for an oriented curve whichis convex and nowhere locally concave (resp. concave and nowhere locally convex). In otherwords, a curve is strictly convex if it is convex and does not contain any segment of nonzerolength.For a convex curve, it is not true in general that any chord set is convex (see Figure 3.2).However, if the curve is convex and semi-closed, then its inside part is convex and any couple(s; t) 2 I2 (with s 6 t if I � FR) de�nes a convex chord set. Conversely, any convex subset ofthe plane is the inside part of a semi-closed convex curve.
C(t)

C(s)

Cs,tFigure 3.2: A non convex chord-set of a convex curve.We recall that if C is a convex curve, one can �nd a regular parameterization C admittingeverywhere a non-vanishing left and right derivative C 0� and C 0+ (which can di�er at most on acountable number of points). Given a point A of an oriented convex curve C, we note T�A (resp.T+A) the unitary left-tangent (resp. right-tangent) of C in A. Thus, if C = C(I) and A = C(s),we have C 0+(s) = jC 0+(s)jT+A and C 0�(s) = jC 0�(s)jT�A.De�nition 2 A piecewise convex curve is a simple curve C(I) for which there exists a �nitesubdivision (s1; s2; : : :sn) of I such that each sub-curve C(]si; si+1[) is convex.In general, we shall suppose that the subdivision (si) is optimal, i.e. that n is minimal.However, even with this constraint the decomposition is not necessarily unique (consider the caseof a polygonal curve for example). We shall see later that there exists a canonical decomposition.



38 CHAPTER 3. AFFINE EROSION OF CURVES AND SETSDe�nition 3 An open subset S of the plane FR2 is a C-set if(i) it has a �nite number of connected components(ii) the boundary of any connected component is a �nite disjoint union of semi-closed piecewiseconvex curves.These oriented curves enclosing the connected components of S are called the components of@S.Remark : One should be careful not to mix up the connected components of a C-set S withthe components of @S. In particular, the components of @S are not necessarily disjoint : if S isthe inside of a \8", the boundary of S is connected but has two components. On Figure 3.3 forexample, the initial C-set S has 3 connected components and @S has 4 components.The previous de�nition of a C-set is a compromise between regularity (the boundary of aC-set admits a tangent almost everywhere) and generality (any �nite union of convex sets is aC-set, as well as the inside part of any polygon).De�nition 4 A C-set is simple if its boundary has only one component.A simple C-set S shall often be written I(C), which means that C is a semi-closed piecewiseconvex curve whose inside part is S. Notice that a C-set S can always be writtenS =Gi 0@Si nGj Ti;j1A ;where the Si and Ti;j are �nite collections of simple C-sets and the symbols t and A meanrespectively a disjoint union of sets and the topological closure of a set A.3.2 A�ne erosion of setsIn this section, we de�ne the a�ne erosion of a C-set, and we establish some basic properties ofthis operator.3.2.1 De�nitionDe�nition 5 The �-a�ne erosion of a C-set S is the set of the points of S which cannot beenclosed in any positive chord set with area less than � of a component of @S.E�(S) = S n [�0 6 �K 2 K+�0(@S) K:



3.2. AFFINE EROSION OF SETS 39Here, K+�0(@S) means all the �'-chord sets of all components of @S. Figure 3.3 represents anintricate C-set and its a�ne erosion (only the oriented boundaries of the sets have been drawnfor a better understanding).
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E   (S)Figure 3.3: A�ne erosion of an intricate C-set3.2.2 ExampleBefore we go further, let us compute explicitly the a�ne erosion of a \corner". This computationhas strong consequences on the numerical scheme we present later. Other exact computationscan be found in the next chapter.Proposition 1 The �-a�ne erosion of the \corner"W = fO + x v1 + y v2; x > 0; y > 0gis the inside (convex) part of a hyperbola, given in the a�ne basis (O; v1; v2) by the equationx:y > �2 [v1; v2] ; x > 0; y > 0: (3.1)In what follows, � will be called the apparent area of the hyperbola de�ned by Equation 3.1.Proof :First, we notice that only the positive chord sets with area � are signi�cant to de�ne thea�ne erosion of W because W is convex (a positive chord set with area less than � can alwaysbe enclosed in a positive �-chord set).Now, any positive �-chord segment of W is supported by a line with equation x=a+ y=b = 1(see Figure 3.4) submitted to the area constraint 2� = ab [v1; v2]. Consequently, the boundary



40 CHAPTER 3. AFFINE EROSION OF CURVES AND SETSof E�(W ) is obtained by the envelope of these lines, given by the system8>>>><>>>>: Da : xa + a [v1; v2] y2� = 1D0a : �xa2 + [v1; v2] y2� = 0:Then, eliminating a yields xy = �2 [v1; v2] : �
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Da
vFigure 3.4: A�ne erosion of a \corner"3.2.3 Topological structureWe now establish a useful property of the a�ne erosion : if S is a C-set, each point of theboundary of E�(S) lies on a chord segment of S.De�nition 6 Let S be a C-set and C(I) a component of @S, then a �0-chord (s; t) of C is�-limit chord if �0 6 � and C has no chord (s0; t0) of area lower than � including strictly (s; t)(i.e. such that s0 < s 6 t 6 t0 or s0 6 s 6 t < t0 in I).Lemma 1 For any C-set S, the boundary of E�(S) is included in the union of the positive�-limit chord segments of S.Proof :1. First, we prove that any M 2 @E�(S) belongs to a positive �0-chord segment of acomponent of @S, where �0 6 �.M 2 @E�(S) means that we can �nd a sequence (An; Bn) of �nite and positive chords witharea less than � and such that dist(M; [AnBn])! 0 as n! 1. Since S has a �nite number of



3.2. AFFINE EROSION OF SETS 41components, necessarily one component C of @S contains a in�nite number of chords (An; Bn).Thus, we can extract from the sequence (An; Bn) a subsequence (A'(n); B'(n)) of �n chords ofC, and we can suppose that �n ! �0 6 � either (up to another subsequence extraction).1.a. If (A'(n)) and (B'(n)) are bounded, we can extract from (A'(n); B'(n)) a convergentsubsequence in C2. The limit (A;B) satis�es d(M; [AB]) = 0, which means that M 2 [AB], anda part of [AB] | or [AB] itself | de�nes a �0-chord segment of S containing M (with �0 6 �).1.b. If (A'(n)) is bounded and (B'(n)) is not, we can extract from (A'(n)) a subsequencethat converges towards A 2 C. If A = M , then M belongs to the chord [A;A] of C and wehave �nished. If A 6= M , then a part of the half line [AM) de�nes a positive chord segmentof C (�nite or in�nite) containing M . The case (B'(n)) bounded and (A'(n)) not bounded issymmetric.1.c. If both (A'(n)) and (B'(n)) are not bounded, then up to a subsequence extraction wecan �nd a nonzero vector v such that \(v; A'(n)B'(n)) is de�ned and converges towards zero.Then, the line (M; v) de�nes a �0-chord segment of S (�nite or in�nite) containing M (with�0 6 �).2. Last, we note that only the �-limits chord sets are signi�cant to de�ne E�(S), because ifa chord (A;B) is not �-limit we can �nd a �-limit chord set which contains strictly the chordset associated to (A;B). �Corollary 1 The a�ne erosion of a C-set is an open subset of the plane.Proof :From Lemma 1 we know that if S is a C-set, the boundary of E�(S) is part ofA = [�0 6 �K 2 K+�0(@S) K:Therefore, cE�(S) = A [ cS is closed (because it contains its boundary) and E�(S) is open (cSdenotes the complementary set of S, i.e. cS = FR2 n S). �Remark : Lemma 1 highlights the necessity of considering in�nite chords for non-boundedcurves. Look at the previous example of the C-set S de�ned in an orthonormal basis of theplane by the equation y < e�x2 : if we had not allowed in�nite chords in the a�ne erosion ofS, then the �-a�ne erosion of S would have been the closed half plane fy 6 0g for any � > p�(instead of the open half plane fy < 0g), and Corollary 1 would not have been satis�ed anymore.However, in�nite chord are rather rare, because :



42 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS� a bounded C-set has no in�nite chord,� if a non-bounded C-set S admits an in�nite chord, then it contains a half line which is anasymptote to a component of @S.We could have restrained our de�nition of the a�ne erosion to less general sets (to boundedsets, for example) in order to avoid the case of in�nite chords ; however, in the next chapter weshall be interested in non-bounded conics like hyperbolae and parabolae. Moreover, it is moresatisfactory to de�ne the a�ne erosion of any convex set (bounded or not).3.2.4 A�ne dilationWe can de�ne in two equivalent ways the dual operator to a�ne erosion, that we shall call a�nedilation. The �rst one is to reverse the orientation of the curves, the second one is to considerthe open complementary of each set (for which the orientation of the boundary is reversed).De�nition 7 The �-a�ne dilation of a C-set S is de�ned byD�(S) = E�(cS):Proposition 2 The closure of the �-a�ne dilation of a C-set S is the union of S and allnegative chord-sets with area less than � of the components of @S.D�(S) = S [ [�0 6 �K 2 K��0(@S) K:Proof :This is a simple consequence of the identity K�� (S) = K+� (cS).3.2.5 Basic properties of the a�ne erosionLemma 2 E�(S) is nonincreasing with respect to �, i.e.�1 6 �2 ) E�2(S) � E�1(S):Proof :We just need to notice that if �1 6 �2 then[�0 6 �1K 2 K+�0(@S) K � [�0 6 �2K 2 K+�0(@S) K;and consequently E�2(S) � E�1(S). �



3.2. AFFINE EROSION OF SETS 43De�nition 8 We call extinction scale of a C-set S and we note �e(S) the lower bound of thescales � for which E�(S) = ;.Proposition 3 If S is a simple bounded C-set, then �e(S) 6 12 area (S).Proof :Let us prove that for any simple bounded C-set S of area 2�, E�(S) = ;. Consider M apoint of S : there exist two points A and B lying on @S such that the open segment ]AB[ isincluded in S and contains M . This segment de�nes two positive chord-sets of S of area �1 and�2 such that �1 + �2 = area (S). Necessarily, �1 6 � or �2 6 �, which means that M belongs toa positive chord set of area not larger than �, i.e. M 2= E�(S). �One could think that the extinction scale of a simple bounded C-set is exactly half of itsarea. Although this is true for convex C-sets symmetric with respect to a point, this resultis generally false for other simple C-sets, even convex. In the next chapter, we show that theextinction area of a triangle is 49 of its area.
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Figure 3.5: A C-set with small area and large extinction areaProposition 3 is not true for a non simple bounded C-set. In fact, it is possible to builda C-set of area as small as we want comparatively to its extinction area. The shaded part ofFigure 3.5 de�nes a C-set of area less than 2"(�+1), whereas its extinction scale is exactly �=2,i.e. half of the area of the enclosing disk. Indeed, we can deduce from Proposition 3 that theextinction area of any bounded C-set is less than half the external area of its largest connectedcomponent (the external area of a connected C-set is the area enclosed by its external boundary,i.e. including the area of its \holes").Proposition 4 E�(S) is nondecreasing with respect to S, i.e.S1 � S2 ) E�(S1) � E�(S2):



44 CHAPTER 3. AFFINE EROSION OF CURVES AND SETSProof :Let S1 and S2 be two C-sets such that S1 � S2, and consider M a point of S2. IfM does notbelong to E�(S2), there exists a positive �0-chord segment D (�nite or in�nite) of a componentof @S2 such that �0 6 � and M belongs to the associated chord set.1. If M 2= S1, then E�(S1) � S1 yields M 2= E�(S1).2. If M 2 S1, consider the connected component A of S1 containing M .2.a. If A\D = ;, then the external boundary of A encloses a subset of area less than �0, sothat from Proposition 3 we get M 2= E�(S1).2.b. If A\D 6= ;, then A\D is a disjoint union of chord segments of S1 (�nite or in�nite),and one of these chord segments de�nes a �00-chord set of S1 containing M (see Figure 3.6). Butsince S1 � S2, we have �00 6 �0, so that M 2= E�(S1):Thus, M 2= E�(S2) ) M 2= E�(S1), which means that E�(S1) � E�(S2). �
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SFigure 3.6: E� is monotoneProposition 5 The a�ne erosion is covariant with respect to the a�ne transformations of theplane, i.e for any a�ne map �, � (E�(S)) = E��jdet�j (�(S)) ;det� being the determinant of the linear part of �, i.e. det� = detA where �(M) = AM + Band (A;B) 2 L(FR2)� FR2.Proof :This elementary result simply arises from the fact that for a C-set S, we have� �K+� (@S)� = ��(K); K 2 K+� (@S)	 = K+��jdet�j(@�(S)): �



3.3. AFFINE EROSION OF CONVEX CURVES 453.3 A�ne erosion of convex curvesLet us �rst consider two particular kinds of convex C-sets : half planes, and strips (i.e. setsenclosed by two parallel straight lines). These C-sets (to which we shall refer as trivial C-sets)are invariant under a�ne erosion, because they only have 0-chord sets. One easily checks thatthey are the only simple C-sets which satisfy this property. So, since they would not satisfymost of the statements which follow, we shall exclude them most of the time. Another reasonis that any nontrivial convex C-set is simple.3.3.1 Basic statementsProposition 6 The a�ne erosion of a convex C-set is a convex C-set.Proof :If S is a convex C-set, then S � K is also convex for any positive �-chord set K of @S. Itfollows that E�(S) = \�0 6 �K 2 K+� (S) (S �K)is convex as an intersection of convex sets. �A consequence of this proposition is that we can de�ne the a�ne erosion for convex curves.According to the previous remark, we call trivial any convex semi-closed curve made of a straightline. From now on, we also suppose that a convex semi-closed curve is naturally oriented in sucha way that its inside is convex. Hence, nontrivial convex semi-closed curves and nontrivial convexC-sets are equivalent since the map C 7! I(C) establishes a bijective correspondence betweenthem. Notice incidentally that any chord set of a convex set is positive and �nite (i.e. bounded).De�nition 9 The �-a�ne erosion of a convex semi-closed curve C is the convex semi-closedcurve E�(C) = @E�(I(C)):Of course, the notation E�(C) is abusive, but more simple. We shall always avoid anypossibility of confusion between the a�ne erosion of a set and the a�ne erosion of a curveanyway.Proposition 7 If S is a non-trivial convex C-set, then for any � 6 �e(S), only the �-chord setsmatter in the de�nition of the �-a�ne erosion of S, i.e.E�(S) = S � [K2K+� (@S)K:



46 CHAPTER 3. AFFINE EROSION OF CURVES AND SETSProof :Let C(I) be the boundary of S : since S is convex, any couple (s; t) 2 I2 is a chord of C,and the map t 7! area (Cs;t) is continuous and increasing from 0 towards area (S) (which maybe in�nite) unless S is trivial, which is not the case here. Consequently, if (s; t) is a �0-chord ofS with �0 < � 6 �e(S) 6 area (S), then (s; t + ") is a �-chord of S for a judicious choice of ",and Cs;t � Cs;t+", which means that (s; t) is not a �-limit chord of C. In other words, all �-limitchords of S are �-chords of S and Lemma 1 achieves the proof. �3.3.2 The middle point propertyWe now establish an interesting property of convex semi-closed curves : their �-a�ne erosion isalways included in the set of the middle points of their �-chord segments, and the equality holdsbeyond a limit scale of erosion (which is nonzero for most of the curves). The reason is roughlyexplained on Figure 3.7 : given a curve C = C(I) and �-chord segment [C(s)C(t)], another�-chord segment of C intersects [C(s)C(t)] in I(�), and as � ! 0, the area equality forces12r21(�) � � = 12r22(�) � � + o(�);so that r1(�) � r2(�) ! 0 and I(�) converges towards the middle of [C(s)C(t)]. This meansthat the envelope of the �-chord segments of C is made of the middle points of these segments.Under additional conditions, we shall prove that this envelope is exactly the �-a�ne erosion ofC.
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r  (  )2Figure 3.7: The middle point propertyWe begin with a useful geometric lemma.Lemma 3 Consider A,B,A',B' four distinct points of the plane such that[AB] \ [A0B0] = fMgand area (MAA0) = area (MBB0):



3.3. AFFINE EROSION OF CONVEX CURVES 47Then, dist(A;B)dist(A;M) = 2� [AA0; BB0][AB;BB0] :
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M

A

Figure 3.8: 4 points LemmaProof :Let us �rst de�ne � with AM = �AB, which implies MB = (1 � �)AB. Since the area ofthe triangles MAA0 and MBB0 are equal, we have�AA0; AM� = �BB0; BM� ;which gives � �AA0; AB� = (1� �) �AB;BB0� : (3.2)Moreover, as M also lies on the segment [A0B0], we can write�MA0;MB0� = 0 = �MA+ AA0;MB +BB0� = ���AB + AA0; (1� �)AB +BB0� ;so that �� �AB;BB0�+ (1� �) �AA0; AB� + �AA0; BB0� = 0: (3.3)Now, multiplying Equation 3.3 by � and replacing the second term from Equation 3.2, we obtain��2 �AB;BB0�+ (1� �)2 �AB;BB0�+ � �AA0; BB0� = 0;and the terms in �2 cancel so that� �2 �AB;BB0� � �AA0; BB0�� = �AB;BB0� :Finally, we obtain as announced1� = dist(A;B)dist(A;M) = 2� [AA0; BB0][AB;BB0 ] : �



48 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS
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Figure 3.9: The middle point property (1)Proposition 8 If C is a non-trivial convex semi-closed curve, then for any scale �, E�(C) isincluded in the set of the middle points of the �-chord segments of C.Proof :First recall that since C is convex, we can choose a regular parameterization C of C (i.e. suchthat its left and right derivative C 0� and C 0+ never vanish). Let I be a point of E�(C). Lemma1 states that we can �nd a �-chord (s; t) of C such that [AB] = [C(s)C(t)] contains I . De�ning� by I = (1� �)A+ �B, we shall prove that both � 6 12 and � > 12 , or, in other words, that Iis the middle of [AB].1. First consider " > 0 such that s + " < t. Since the map x 7! area (C(s + "; t + x)) isincreasing, there exists a unique "0, depending on s; t and ", such that (s+ "; t + "0) is another�-chord of C. Necessarily, [AB] and [A"B"] = [C(s+ ")C(t+ "0)] have a common point I", andthe areas of the curved triangles I"AA" and I"BB" are equal.2. It is clear that there exists a unique real k(") such that A, B, A" and B" = B+k(")C 0+(t)are four points satisfying the hypotheses of Lemma 3. Moreover, the convexity of C forces therelated intersection point M" = [AB] \ [A"B"] to belong to the segment [BI"] (cf. Figure 3.9).Since every point of [BI"] belongs to the chord set Cs+";t+"0 , necessarily I 2= [BM"], which meansthat � 6 �" where �" is de�ned by I" = (1� �")A+ �"B.3. From Lemma 3, we know that1�" = 2� [AA"; BB"][AB;BB" ] = 2� �AA"; C 0+(t)��AB;C 0+(t)� ;and since AA" ! 0 as "! 0, we get 1�" ! 2 as "! 0;



3.3. AFFINE EROSION OF CONVEX CURVES 49which proves that � 6 12 according to Step 2.4. A symmetrical reasoning proves that � > 12 as well, and consequently � = 12 , i.e. I is themiddle of the segment associated to the �-chord (s; t). �From this result, it is natural to wonder whether there is an exact correspondence betweenthe �-a�ne erosion of a non-trivial convex semi-closed curve and the set of the middle pointsof its �-chord segments. We are going to prove that the answer is positive for a large classof curves, including C1 curves and many polygons, provided that � is small enough. For thatpurpose, we introduce the following de�nitions of regular chord and regular scale.De�nition 10 Let C be a convex semi-closed curve, then a chord (A;B) of C is regular if\(T�A;T+B) 2 [0; �[.De�nition 11 Let C be a non-trivial convex semi-closed curve. A real � > 0 is a regular scalefor C if any �-chord of C is regular. We note �r(C) the upper bound of the regular scales of C.Theorem 1 (middle point property) Let C be a non-trivial convex semi-closed curve, and� a regular scale of C. Then E�(C) is exactly the set of the middle points of the �-chord segmentsof C, and there is a natural homeomorphism between C and E�(C).Proof :According to Proposition 8, we only have to prove that the middle point of any �-chordbelongs to E�(C). Consider C a regular parameterization of C, let (s; t) be a �-chord of C,and de�ne � the smallest positive number x such that (s� x; s) is a �-chord of C. Finally, letD+ =]� �; 0[ and D� =]0; t� s[ (if C is closed, then these intervals must be considered in S1).For any a 2 D� [ D+, we call I(a) the intersection between [C(s)C(t)] and the chord segmentassociated to the �-chord of origin s+ a, and de�ne �(a) by C(s)I(a) = �(a)C(s)C(t).Notice that if a �-chord of C intersects ]C(s)C(t)[ then its origin can be taken in D� [f0g[D+. Hence, to prove that no �-chord set of C contains I , the middle of [C(s)C(t)], it is su�cientto prove that � > 12 on D+ as well as � < 12 on D�.1. We �rst establish that for " > 0 small enough, �(�") < 12 < �(").Consider "; "0 such that s < s + " < t < t + "0 and (s + "; t + "0) is another �-chordof C (implicitly, "0 depends on s; t and "). Now de�ne k(") such that C(t); C(t + "0); C(s)and A" = C(s) + k(")C 0+(s) are four points satisfying the equi-area hypothesis of Lemma 3.Necessarily, M" = [C(t)C(s)]\ [C(t + "0)A"] belongs to [I(")C(s)], so that �(") > �0(") where�0(") is de�ned by C(s)M" = �0(")C(s)C(t). Moreover, from Lemma 3 we get11� �0(") = 2� �C(t)C(t+ "0); k(")C 0+(s)��C(t)C(s); k(")C 0+(s)�= 2 + �C 0+(s); C(t)C(t+ "0)��C0+(s); C(s)C(t)� :
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C(t)Figure 3.10: The middle point property (2)Since C is convex, �C0+(s); C(s)C(t)� > 0, and as (s; t) is a regular chord of C, we have as well,for " > 0 small enough, �C0+(s); C(t)C(t+ "0)� > 0. Consequently, �(") > �0(") > 12 for " > 0small enough, and a symmetric proof would establish �(�") < 12 for " > 0 small enough.2. Let us check that � is continuous. Given a 2 D� [ D+, there exists a unique b(a) suchthat (s+ a; t+ b(a)) is a �-chord of C. Since the map (s; t) 7! area (Cs;t) is continuous, so is themap a 7! b(a). Now, as I(a) = [C(s)C(t)]\ [C(s+ a(C(t+ b(a))], a simple computation gives�(a) = [C(s+ a)C(t+ b(a)); C(s)C(t+ b(a))][C(s+ a)C(t+ b(a)); C(s)C(t)] ;and the non-vanishing denominator ensures that � is continuous on D+ [ D�. Last, we knowfrom Proposition 8 that � can be continuously extended to 0 by taking �(0) = 12 .3. Now we prove that � has no local maximum on D+, and no local minimum on D�.If � has a local maximum in a 2 D+, then for " small enough, I(a+ ") and I(a� ") belongto the segment [I(a)C(s)] (see Figure 3.11). Then, due to the position of C(s + a + ") andC(s+a� ") relatively to C(s+a), it is clear that the intersection of the �-chords of origin s+aand s + a + " lies on [C(s + a)I(a)], whereas the intersection of the �-chords of origin s + aand s + a � " cannot lie on [C(s + a)I(a)[. But this is a contradiction with Step 1 applied tothe �-chord of origin s + a, since we would have �0(�") > �0(") for the corresponding �0. As aconclusion, � has no local maximum on D+, and a symmetric proof establishes that � has nolocal minimum on D� either.4. From Step 2 and 3 we deduce that � is monotone on D+ (resp. on D�), and the onlypossibility according to Step 1 (and to the fact that �(")! 12 as "! 0) is that � is nondecreasingon D+ (resp. on D+) and remains strictly larger than 12 on D+ (resp. strictly lower than 12 onD�). Consequently, I does belong to E�(C).
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Figure 3.11: The middle property (3)5. Now we can build a bijective and continuous correspondence between C and E�(C) asfollows : given C(s) 2 C, there exists a unique �(s; �) such that (s� �; s+ �) is a �-chord of C.According to Theorem 1, C�(s) = 12(C(s� �) + C(s+ �))belongs to E�(C), and the correspondence C(s) 7! C�(s) is one to one and clearly bicontinuous.� Notice that the natural correspondence between C and its a�ne erosion gives sense to E�(C),meaning the parameterization induced by C on the �-a�ne erosion of the curve C(I).Corollary 2 If C is a non-trivial convex semi-closed curve and � a regular scale of C, thenE�(C) is of class C1.Proof :If this is not the case, then we can �nd a M 2 E�(C) such that T+M 6= T�M . But necessarilythese semi-tangents arise from two distinct �-chord segment containing M , which is impossibleaccording to Theorem 1. �We shall estimate the regularity of E�(C) more precisely later . Now, let us compute againthe a�ne erosion of the \corner" of Proposition 1 using Theorem 1. First, it is clear that theboundary of the \corner" fO + xv1 + yv2; x > 0; y > 0gis a semi-closed curve C with �r(C) = +1 (any scale is regular) : thus, we know from Theorem1 that its �-a�ne erosion is exactly given by the middle of its �-chords.



52 CHAPTER 3. AFFINE EROSION OF CURVES AND SETSThe chord set (O; v1; v2) of C delimited by the points O + 2x v1 and O + 2y v1 has an areaequal to 2 xy: [v1; v2] (cf. �gure 3.12). Consequently, the �-a�ne erosion of C is the set of themiddle points O+xv1+yv2 constrained by the area equality 2 xy: [v1; v2] = �, which correspondsto the hyperbola de�ned in Equation 3.1.
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vFigure 3.12: A�ne erosion of a \corner" (2)3.3.3 Regular scalesIn this section, we characterize the regular scales of a non-trivial convex semi-closed curve.Proposition 9 Let C be a non-trivial convex semi-closed curve. The set of the regular scales ofC is [0; �r(C)[.Proof :Suppose that �r(C) < +1 (otherwise there is nothing to prove), and consider C : I ! FR2a regular parameterization of C. In what follows, we consider v0 an arbitrary nonzero vectorof the plane, and the angle function �+ : I ! S1 (respectively �� : I ! S1) de�ned by�+(s) = \(v0; C 0+(s)) (��(s) = \(v0; C 0�(s)) respectively).1. First we show that if � is a regular scale of C and 0 6 �0 6 �, then �0 is also a regular scale ofC. Suppose that it is not the case, i.e. that we can �nd a non-regular �0-chord (s; t) of C. We canchoose " > 0 in such a manner that (s; t+ ") is a �-chord of C. Since �+(t) 6 �+(t+ ") 6 ��(s)and �+(t)���(s) 2 [�; 2�[, we have �+(t+ ")� ��(s) 2 [�; 2�[ which means that (s; t+ ") is anon-regular �-chord of C. This contradiction proves that �0 is a regular scale of C. Hence, theset of regular scales of C is [0; �r(C)[ or [0; �r(C)].2. Now we prove that �r(C) is not a regular scale of C.2.a. If C is closed, then I = S1, and there exist two sequences (sn) and (tn) such that (sn; tn)is a non-regular �n-chord of C with �n ! �r(C) as n ! +1. Since S1 is compact, we can �nd



3.3. AFFINE EROSION OF CONVEX CURVES 53an increasing map ' : IN! IN such thatlimn!1(s'(n); t'(n)) = (a; b) 2 I � I:Now, because area (Cs;t) is continuous with respect to s and t, we havearea (Ca;b) = �r(C):If we de�ne an = min(a; s'(n)) and bn = max(b; t'(n)), we have, in S1 and for n large enough,�+(bn)� ��(an) 2 [�; 2�[: (3.4)Now remark that �� is left-continuous and �+ is right-continuous and deduce from (3.4) thatmodulo 2�, �+(b)� ��(a) 2 [�; 2�];and since �+(b)� ��(a) = 2� is impossible, (a; b) is a non-regular chord of C.2.b. If C is not closed, then we can suppose that I = FR and as C is a semi-closed curve,lim+1�+ � lim�1�� 2 [0; �];so that if (a; b) is a non-regular �-chord, necessarily �+(b)� ��(a) = � and C(]�1; a[) andC([b;+1[) must be two parallel half lines. Now de�ne a0 = supfx; ��(x) = ��(a)g andb0 = inffx; �+(x) = �+(b)g : (a0; b0) is a non-regular chord of C and clearly area (Ca0b0) = �r(C).�Corollary 3 Let C be a non-trivial convex semi-closed curve, then �r(C) > 0 if and only if nopart of C is a segment [AB] such that \(T�A;T+B) 2 [�; 2�[.Proof :1. If [AB] is a piece of C such that \(T�A;T+B) 2 [�; 2�[, then (A;B) is a non-regular 0-chordof C, and consequently �r(C) = 0.2. Conversely, let us suppose now that �r(C) = 0. From Proposition 9 we know thatwe can �nd a non-regular 0-chord of C, i.e. a part of C which is a segment [AB] such that\(T�A;T+B) 2 [�; 2�[. �This result allows us to check that the characteristic constant �r is non zero for a largeclass of convex semi-closed curves, including C1 ones and all polygons such that the sum of twosuccessive angle steps remains strictly below �.Corollary 4 If C is a convex semi-closed curve of class C1, then �r(C) > 0.



54 CHAPTER 3. AFFINE EROSION OF CURVES AND SETSProof :Suppose that C is a convex semi-closed curve of class C1 for which �r(C) = 0, from Corollary3 a part of C should be a segment [AB] such that T�A 6= T+B, which is impossible since T+A = T�Band the regularity of C forces T+B = T�B and T+A = T�A . �Corollary 5 If C = A0A1:::An is a convex polygon, then �r(C) > 0 i� for all i modulo n,[AiAi+1; Ai+2Ai+3] > 0:Proof :This is a simple consequence of Corollary 3, and if [AiAi+1; Ai+2Ai+3] > 0 for all i we evenknow that �r(A1A2:::An) > mini area (AiAi+1Ai+2): �What happens for a non-regular chord ? Considering the proof of Theorem 1, we can seethat if \(T�A ;T+B) 2]�; 2�[ we have both � > 12 and � < 12 , i.e. no point of the �-chord segment[AB] belongs to E�(C). In other words, the curve described by the middle points of the �-chordsegments has \ghost parts" which must be removed to obtain the desired a�ne erosion. Forinstance, these \ghost parts" appear at any scale of erosion for a triangle, for which �r = 0 (seeFigure 3.13).
Figure 3.13: \ghost parts" always appear in the a�ne erosion of a triangleThe need to remove these ghost parts is in some way related to the Huygen's principleconstruction used for the propagation of fronts. Behind this construction hides an entropy



3.3. AFFINE EROSION OF CONVEX CURVES 55condition : if the propagating front is viewed as a burning 
ame, then once a particle is burntit stays burnt and cannot burn any more (see [65]), so that such \ghost parts" of fronts have nophysical meaning.If \(T�A;T+B) = � (i.e. T�A = �T+B), De�nition 10 makes the chord (A;B) non regulardespite the fact that the middle point of the associated chord segment does belong to E�(C).The reason why we did not allow this con�guration in our de�nition of a regular chord is thatwe want not only the reverse inclusion between the middle points and the a�ne erosion, butalso a bijective correspondence. The case of a square highlights this phenomenon : at any scale,four points of the a�ne erosion are the middle points of an in�nite number of �-chord segments,which produces singularities (discontinuity of the tangent) at these points (see Figure 3.14).
Figure 3.14: Four singularities appear in the a�ne erosion of a square3.3.4 ConsistencyTheorem 2 Let C = C(I) be a semi-closed convex curve of class Cn with n > 1. Then for any� < �r(C), E�(C) is a semi-closed convex curve of class Cn. If n > 2, the in�nitesimal evolutionas � ! 0 of a point C(s) 2 C is given byC�(s) = C(s) + !:� 23 � 
(s) 13 N(s) + o(� 23 ) with ! = 12 �32�23 ;where 
(s) and N(s) are respectively the curvature of C and the normal vector to C at pointC(s). Moreover, if n > 3, the remaining part is O(� 43 ) at any point where the curvature 
(s) isnonzero.Proof :



56 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS1. Consider s 7! C(s) an Euclidean length parameterization of C (i.e. jC 0(s)j = 1 every-where). Since C is convex, we know from Theorem 1 that E�(C) is exactly made of the middle ofthe �-chords of C as soon as 0 < � < �r(C) (which makes sense because we know from Corollary4 that �r(C) > 0). Let (s� �; s + �) be a �-chord of C and C�(s) the middle of the associatedsegment (see Figure 3.15).
C(s-  )δ

δ

NC(s)

σC  (s)

C(s+  )

σFigure 3.15: A�ne erosion of a convex semi-closed curveSince C is of class C1, we can use the Green formula to compute the area� = 12F (s; �(s; �)); whereF (s; t) = Z s+ts�t �C(h); C 0(h)� dh + [C(s+ t); C(s� t)� C(s+ t)] :A simple computation gives@F@t (s; t) = �C(s+ t)� C(s� t); C 0(s+ t) � C 0(s � t)�and @F@s (s; t) = �C(s+ t)� C(s� t); C 0(s+ t) + C 0(s� t)� :C being convex, we have, for any distinct points C(a) and C(b) of C, the inequality�C 0(a); C(b)� C(a)� > 0;and the equality holds if and only if the piece of curve C([a; b]) is a segment. Hence, the numbers[C(s+ t)� C(s� t); C 0(s+ t)] and [C(s+ t)� C(s� t);�C 0(s� t)] are positive and their sumcannot be zero unless � = 0, which is not the case, or unless C(s + t) = C(s � t), which isimpossible as soon as 0 < t 6 �. As a consequence,@F@t (s; �) > 0(which simply means that the area � of the chord-set Cs��;s+� increases with �), and the globalinversion theorem allows us to claim that the map s 7! �(s; �) is of class Cn as well as the map(s; t) 7! F (s; t).



3.3. AFFINE EROSION OF CONVEX CURVES 57We just proved that the functions 7! C�(s) = 12 (C(s� �(s; �)) + C(s+ �(s; �)))is of class Cn. Moreover, since the vectors C 0(s� �(s; �)) and C 0(s+ �(s; �)) cannot be colinearfor � < �r(C), the derivative2 @@sC�(s) = (1� @�@s )C 0(s� �) + (1 + @�@s )C0(s+ �) (3.5)never vanishes. As a consequence, the curve C� is of class Cn in the geometric sense (that is C�is a regular parameterization).Incidentally, remark that it can easily check from Equation 3.5 that @@sC� and C(s + �) �C(s� �) are colinear, i.e. that the �-chord segments of C are the tangents to E�(C) as expected.2.a. If C is of class C2, the curvature at point C(s) is de�ned by 
(s) = [C 0(s); C 00(s)]. Asimple expansion near t = 0 gives@F@t (s; t) = �2tC 0(s) + o(t); 2tC 00(s) + o(t)� = 4t2
(s) + o(t2); (3.6)which can be integrated to obtain 2� = 43�3
(s) + o(�3):Thus, whenever 
(s) 6= 0 we have�(s; �) = � 3�2
(s)� 13 + o(� 13 );and �nally C�(s) = 12 [C(s� �) + C(s+ �)]= C(s) + �22 C00(s) + o(�2)= C(s) + 12 �32�23 � 23 � 
 13 (s)N(s) + o(� 23 );where N(s) is the normal vector to C in C(s).2.b. If 
 = 0 we use a geometric argument. Given " > 0, let R = "�3. Since 
(s) = 0,the disk DR with center C(s) +RN(s) and radius R is locally contained in I(C) near C(s) (seeFigure 3.16). In particular, there exists �0 > 0 such that8 � < �0; C(s) +RN(s) 62 Cs��;s+� and DR \ Cs��;s+� � I(C)(once again, � depends on s and �). Now, calling H the orthogonal projection of C(s) on thechord segment [C(s� �); C(s+ �)] and writing d = dist(C(s); H), we claim that� > dqR2 � (R� d)2:



58 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS
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Figure 3.16: Case 
 = 0The reason for this last inequality is that � is larger than the shaded zone of Figure 3.16, whichis itself larger than dpR2 � (R� d)2 (the equality happens when the chord is orthogonal to N).Hence, � > dp2Rd� d2and d 32 6 �p2R� d 6 �pRsince d 6 R due to the fact that C(s) + RN(s) 62 Cs��;s+� . Consequently,d 6 � 23R 13 6 "� 23 ;which means that d = o(� 23 ): (3.7)Now, we constrain � to be small enough in order to ensure that \(C 0(s � �); C 0(s)) and\(C 0(s); C 0(s+�)) belong to [0; �=2]. Recalling that the pieces of curve C([s��; s]) and C([s; s+�]) have length �, we deduce that both dist(C(s��); H) and dist(H;C(s+�)) belong to [��d; �],so that dist(H;C�(s)) 6 d2 :Then, Equation 3.7 implies that dist(C(s); C�(s)) = o(� 23 )as announced.



3.3. AFFINE EROSION OF CONVEX CURVES 593. If n > 3, the expansion of Equation 3.6 can be improved into@F@t (s; t) = 4t2
(s) +O(t3);and following the same computation as in Step 2.a, on can establish thatC�(s) = C(s) + ! � � 23 � 
 13 (s)N(s) +O(� 43 ): �Remark : If the curvature vanishes, we can be more precise. Suppose that C is locally C5 nears where 
(s) = 0 and 
 00(s) 6= 0. At point s, we have, writing T = C 0(s),C00 = 
N = 0C000 = �
2T+ 
 0N = 
 0NC(4) = �3

 0T+ (
 00� 
3)N = 
 00NConsequently,@F@t (s; t) = "2tC 0(s) + O(t3); t33 C(4)(s) +O(t5)# = 2 t43 
00(s) + O(t6);and an integration yields 2� = 215�5
 00(s) + O(�7);or equivalently �(s; �) = � 15�
 00(s)� 15 + O(� 35 ):Therefore, the point C(s) is mapped ontoC�(s) = 12 [C(s� �) + C(s+ �)]= C(s) + �424C(4)(s) + O(�6)= C(s) + 15 1524 � 45 � (
 00(s)) 15 N(s) + O(� 65 ):Incidentally, we check that C�(s) = C(s) + o(� 23 );but we can see that the expansion C�(s) = C(s) +O(� 43 )is not generally true when 
(s) = 0 (and is false as soon as 
 00(s) 6= 0). �Remark : Theorem 2 proves that the a�ne erosion preserves the regularity of a convex curve.Unfortunately, it does not regularize a convex curve of class Cn into a convex curve of class Cmwith m > n. One can check this on the C1 curve C made of the half line fy = 0; x 6 0g and thehalf parabola fy = x2; x > 0g : for any � > 0, E�(C) is not C2.



60 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS3.4 A�ne erosion of non convex curves3.4.1 StructureLemma 4 If S is a simple C-set and M 2 @E�(S)� @S, then @E�(S) is locally a convex curvenear M .Proof :Let M belong to @E�(S) � @S. We know from Lemma 1 that M belongs to a (possiblyin�nite) chord segment of a component of @S. As S is open andM 2 S, for " > 0 small enough,the open disk D(M; ") is included in S (see Figure 3.17). But since the complementary set to anychord set of S in D(M; ") is convex, necessarily E�(S)\D(M; ") is convex (it is the intersectionof convex subsets of D(M; ")). Consequently, @E�(S) is near M a convex curve, because it islocally the boundary of a convex set. �
M

S

D(M,   )ε

σE   (S)

Figure 3.17: local convexity in M 2 @E�(S)� SLemma 5 If S is a simple C-set and M 2 @E�(S) \ @S with � > 0, then @S is not locallyconcave near M .Proof :Suppose that M 2 @E�(S)\ @S and @S is not locally concave near M . Using a parameteri-zation C of @S near M = C(s), we have for " > 0 small enough,[C(s� ")C(s); C(s)C(s+ ")] > 0:Thus, M belongs to the topological opening of a �-chord set Cs�";s+" for " > 0 small enough,which is in contradiction with M 2 @E�(S). �



3.4. AFFINE EROSION OF NON CONVEX CURVES 61According to Lemma 4 and Lemma 5, the boundary of the a�ne erosion of a simple C-setis everywhere locally concave or locally convex. Thus, it is a collection of curves. Hence, wecan give sense to the a�ne erosion of a piecewise convex semi-closed curve as a collection ofsemi-closed curves (and we shall prove later that these curves are also piecewise convex).De�nition 12 The �-a�ne erosion of a piecewise convex semi-closed curve C is the collectionof semi-closed curves E�(C) = @E�(I(C)):Proposition 10 The a�ne erosion of a piecewise convex semi-closed curve C is, up to a �nitenumber of points, the disjoint union of a �nite union of concave curves (Ci) and convex curves(Dj), with� 8i; Ci � C, and no concave sub-curve of C contains more than one Ci.� 8j; Dj \ C = ;.Proof :Let us de�ne the curves Ci as the connected components of E�(C)\C (minus their extremalpoints if any). According to Lemma 5, these curves are concave, and if Ci and Ci0 belong to thesame concave component of C, necessarily i = i0 (a nonnegative chord segment of C cannot haveboth its endpoints on the same concave component of C). Hence, there is a �nite number ofcurves Ci. Now, call Dj the connected components ofE�(C) n[i Ci:We have to prove that there is a �nite number of such curves.First, there can be only a �nite number of non semi-closed Dj , because these Dj are connectedto some Ci according to Lemma 5. Second, let us choose an arbitrary direction v of the plane,and consider the multivalued map ' which associate, to any line D directed by v, all area valuesof all chord sets of C de�ned from a piece of D. Because C has a �nite number of components,' can be described by a �nite set of continuously increasing single-valued maps ('k) (only a�nite number of accidents happen to ' when D sweeps the plane). Then, to each map 'k isassociated at most one closed Dj , so that the number of closed Dj 's is �nite. Last, as for thesemi-closed but nonclosed Dj 's, there is at most two of them. �Corollary 6 The a�ne erosion of a piecewise convex semi-closed curve is a collection of piece-wise convex semi-closed curves. Equivalently, the a�ne erosion of a C-set is a C-set.Proof :The �rst part is a direct consequence of Proposition 10. As for a C-set S, it is su�cient tonotice that the boundary of E�(S) is included in the a�ne erosion of the components of @S. �



62 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS3.4.2 In
exion pointsWe would like to prove that the number of in
exion points (in a generalized sense) cannotincrease when we compute the a�ne erosion of a piecewise convex closed curve. This is anotherstability property of the a�ne erosion, complementary to the inclusion principle.Let C = C(I) be a piecewise convex curve. We de�ne a canonical decomposition of C intoconvex curves. We say that a point M of C is� convex if C is locally convex near M ,� concave if C is locally concave near M ,We consider the sub-curves C+i of C de�ned as the open connected components of the set of allconvex points of C, and the concave sub-curves C�j symmetrically de�ned. If a convex curveC+i and a concave curve C�j overlap, either they are equal to the same segment, or, if not, theyhave each a segment in common at one of their endpoints. In that case, we remove from C+iand C�j half of this segment. This way, we obtain a canonical (and minimal) decomposition ofC into convex and concave parts. A junction between some C+i and some C�j is called a simplejunction, while a junction between two C+i 's or two C�j 's is called a double junction (seeFigure 3.18).
D

S
S

S

S S

S

CFigure 3.18: Simple (S) and double (D) junctions of a closed curve C.We de�ne #J (C), the number of junctions of C as the number of simple junctions ofC plus twice the number of double junctions of C. If C is a C2 closed curve whose curvaturevanishes at a �nite number of points, the junctions of C are all simple and correspond to thein
exion points of C. A polygon has no double junction either.Proposition 11 If C is a piecewise convex closed curve and � > 0, then E�(C) has no doublejunction and #J (E�(C)) 6 #J (C):
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Figure 3.19: Simple junctions of E�(C).Proof :1. Suppose that a component D(J) of E�(C) has a double junction M = D(s). Since D(I) isnot locally convex near M , necessarily M belongs to C = C(I) and C is locally concave near M .Hence, near M , C \D(J) = fMg. This means that D(]s� "; s[) and D(]t; t+ "[) are segmentsfor " > 0 small enough. Thus,M cannot be a double junction of D(J), which is a contradiction.We deduce that E�(C) has no double junction as soon as � > 0.2. We prove that #J (E�(C)) 6 #J (C):2.a. Let us consider Dj a maximum convex piece of E�(C), i.e. such that E�(C) is not locallyconvex at the extremal points A and B of Dj . From Lemma 4 we know that A and B mustbelong to C.If Dj � C, it is a segment and neither C nor E�(C) can have any junction on Dj . If Dj 6� Cbut Dj is a segment, then E�(C) has no junction between A and B (see Figure 3.19). Last, ifDj is not a segment, then E�(C) has exactly two simple junctions between A and B (see Figure3.19). But since the piece of C between A and B cannot be concave (it has a nonzero positivechord), the number of junctions of C between A and B included is at least 2 (with the conventionthat a double junction in A (or in B) is counted once for each of the two Dj it belongs to).Hence, in all cases, between A and B (included), E�(C) has not more junctions than C.



64 CHAPTER 3. AFFINE EROSION OF CURVES AND SETS2.b. We claim thatE�(C) cannot have any junction outside a piece of curve Dj of the previouskind. The reason is that on these remaining parts, E�(C) is strictly concave (i.e. nowhere locallyconvex), so that any junction between these remaining parts should be a double junction, whichis impossible according to Step 1. Hence, we have#J (E�(C)) 6 #J (C)as announced. �3.4.3 ConsistencyTheorem 3 If C is a piecewise convex semi-closed curve of class piecewise Cn, then E�(C) is acollection of piecewise convex semi-closed curves of class piecewise Cn. If n > 2, each point Mof C can be associated to a point M� of E�(C) such thatM� =M + ! � � 23 � (
+) 13 N+ o(� 23 );where 
 and N are respectively the curvature of C and the normal vector1 to C at point M . Asusual, we set ! = 12 �32�23 and 
+ = max(0; 
).Proof :1. From Proposition 10, we know that E�(C) is made of a �nite number of curves of threekinds : pieces of C, which are Cn, segments, which are C1, and new convex pieces, which canbe proved to be Cn using the arguments of Theorem 2. Hence, E�(C) is piecewise Cn.2. Consider M a point of C, and call 
 the curvature of C in M .
σ0

S

MFigure 3.20: Case 
 < 02.a. If 
 < 0, call T the tangent to C in M , and let �0 be the nonzero area of the C-setdelimited by a segment of the kind ]M � aT;M + bT[, where both a and b are positive. Any1If 
 = 0, N is not uiquely de�ned but any choice is convenient since (
+) 13 N = 0.



3.4. AFFINE EROSION OF NON CONVEX CURVES 65chord-set of C containing M contains the previous chord set (see Figure 3.20), and consequentlyits area must be larger than �0. In other words, for any � < �0,M belongs to E�(C) and takingM� =M closes the case.2.b. If 
 > 0, call Ci the largest convex component of C containing M . For � small enough,any �-chord set of C containing M is de�ned by two points of Ci, so that the \evolution" of Mis given by Theorem 2 and the proof is complete.2.c. If 
 = 0, the geometric argument used in the proof of Theorem 2 still applies. �3.4.4 Other possible de�nitions of the a�ne erosionThe a�ne erosion of a convex set S is obtained in a simple way, by removing from S any partof S with area � of the kind H \ S, where H is a half plane. This may be the simplest way toobtain a global a�ne invariant set-shortening process tangent to the a�ne scale space. Now, ifone wants to generalize this de�nition to non-convex sets, one must be careful, and the naturalgeneralization (removing from S any connected component of H \ S with area �) is not thatgood : this de�nition does not ensure a very important property, the global inclusion principle(see Figure 3.21), which states that E�(S1) � E�(S2) when S1 � S2. This principle has strongconsequences for the iterated operator, and guarantees numerical stability.
σE’

Figure 3.21: Inclusion principle is lost for the alternative de�nition of the a�ne erosionWith our de�nition of the a�ne erosion, the global inclusion principle is satis�ed, but theconnectedness is not preserved (whereas it is preserved for the former de�nition). Notice, how-ever, that these two de�nitions yield the same in�nitesimal evolution (for scales small enough).
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Chapter 4Comparison between a�ne erosionand scale spaceIn this chapter, we compute exactly the a�ne erosion and the a�ne scale space of conics.We show that for these curves the a�ne erosion remains a good approximation of its tangentoperator not only for in�nitesimal areas : this suggests that we can build a fast scheme for thea�ne scale space by iterating the a�ne erosion with rather large scale steps.4.1 A�ne scale space of curvesFrom now on, we note t 7! ASSt(C) the a�ne scale space of a curve C, when it exists. Inother words, if we can �nd a function (s; t) 7! C(s; t) such that s 7! C(s; 0) is a parameterizationof C, we say that s 7! C(s; t) is a parameterization of ASSt(C) if we have for all s and t > 0,@C@t (s; t) = 
(s; t) 13 N(s; t); (4.1)where 
(s; t) and N(s; t) represent the curvature and the unit normal vector of the curve C(�; t)at point C(s; t). As before, we take the convention that if r is a negative number, r1=3 = �jrj1=3.At an in
exion point, N is not de�ned but since we have 
 = 0, the right hand term of Equation4.1 is naturally equal to zero. Notice that Equation 4.1 assumes that C is derivable with respectto t and twice derivable with respect to s.If the curves (ASSt(C))t>0 can be represented by functions of the kind x 7! (x; y(x; t)) in anorthonormal basis, then Equation 4.1 is equivalent to@y@t =  @2y@x2! 13 : (4.2)Indeed, let us denote by y0 and y00 the �rst and second order derivatives of y with respect to x.For such a Cartesian parameterization we have
(x; t) = y00(1 + y02) 32 ;67



68 CHAPTER 4. COMPARISON BETWEEN AFFINE EROSION AND SCALE SPACEand in the associated orthonormal basis, the unit tangent and normal vectors to the curve arerespectively T(x; t) = 1p1 + y02 (1; y0)and N(x; t) = 1p1 + y02 (�y0; 1):Thus, we have in the same basis, (0; 1) = 1p1 + y02 (N+ y0T);so that Equation 4.2 is equivalent to@C@t = (y00) 13 � (0; 1) = 
 13 N + y001=3 y0p1 + y02 T: (4.3)It has been proven (see [68],[29]) that the tangential component is of no in
uence on the wholecurve evolution since it corresponds to a renormalization of the space parameter s (i.e. amovement of each point C(s; t) along the curve C(�; t)). Therefore, Equation 4.3 is equivalentto Equation 4.1.Theorem 2 states that for regular convex curves the operator Eh3=2 is tangent to the theoperator ASS!:h when h! 0, provided we set! = 12 �32� 23 :In this chapter, we compute explicitly the a�ne scale space and the a�ne erosion for severalconvex curves, and we check that these operators are very close for small scales. In fact, forconics (ellipses, hyperbolae, parabolae, and \corners" as degenerated hyperbolae), both thea�ne erosion and the a�ne scale space can be exactly computed.4.2 A�ne erosion and scale space of an ellipse4.2.1 A�ne erosionProposition 12 The �-a�ne erosion of an ellipse with area A0 is an ellipse with same axesand excentricity and with area A(�) = A0 cos2 �(�)2 ;where �(�) is de�ned by �(�)� sin �(�) = 2��A0 :In particular, for an in�nitesimal erosion, we have the following canonical expansionA 23 (t 32 ) = A 230 � 3s2�23 � t +O(t2): (4.4)
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Figure 4.1: A�ne erosion of a circleProof :1. Consider the parameterization of the ellipseM(t) = sA0� (cos t v1 + sin t v2)satisfying [v1; v2] = 1. We can �nd a linear map � with determinant 1 which transforms thea�ne basis (v1; v2) into an orthogonal basis, in which �(M(t)) describes a circle enclosing thesame area A0. Then, because the a�ne erosion commutes with the rotations, the a�ne erosionof a circle with radius R0 cannot be anything but a circle with same center and with radiusR(�) < R0. On Figure 4.1 we can see thatR(�) = R0 cos �(�)2and � = R20 ��2 � sin �2 � :Hence, as � commutes with the a�ne erosion and with the homothetic transformations, wededuce that on the ellipse as well as on the circle, the a�ne erosion acts as a homothetictransformation with ratio cos �(�)2 , which proves the �rst result of Proposition 12.2. Let us evaluate now A(�) = A0 cos2 �(�)2 when � tends towards 0. From� � sin � = 2��A0we see that �(�)! 0 as � ! 0, and�3(�)6 �1 +O(�2(�))� = 2��A0 ;which gives �(�) = O(� 13 ) and �(�) = �12��A0 �13 +O(�):



70 CHAPTER 4. COMPARISON BETWEEN AFFINE EROSION AND SCALE SPACEIn this way, we obtainA(�) = A0 �1� sin2 �(�)2 � = A0 � A04 �12��A0 � 23 + O(� 43 ) = A0 � A 130 �3��2 � 23 +O(� 43 ):The \canonical" expansion of A(�) isA 23 (t 32 ) = A 230 � ! � t +O(t2);with ! = 23 �3�2 � 23 = 3s2�23 :We remark incidentally that as � goes near its critical value �e = A02 corresponding to theellipse extinction, we have �(�e + h) = � � 2�A0h+ o(h)and consequently cos �(�e + h)2 = ��4 � 2hA0 + o(h):It follows that the ratio qA(�)A0 = cos �(�)2 admits a linear expansion near its extinction value.Figure 4.2 shows the value of the normalized area AA0 and the ratio q AA0 depending on thenormalized erosion parameter ��e .
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Figure 4.2: Area for the a�ne erosion of an ellipse4.2.2 A�ne scale spaceProposition 13 The a�ne scale space at scale t of an ellipse with area A0 is an ellipse withsame axes and excentricity, whose area A(t) satis�esA 23 (t) = A 230 � 43� 23 t: (4.5)



4.2. AFFINE EROSION AND SCALE SPACE OF AN ELLIPSE 71Proof :As for the a�ne erosion, the a�ne invariance of the a�ne scale space reduces the problem tothe computation of the a�ne scale space of a circle. Because of the rotation invariance, the ASSof a circle is a a family of circles (Ct)t>0 with same center O and radius R(t). A trigonometricparameterization of the circles Ct satis�es Equation 4.1 as soon as we have for any t > 0,R0(t) = �� 1R� 13 :The solution of this ordinary di�erential equation is given byR 43 (t) = R 43 (0)� 43 t;and Equation 4.5 simply arises from the equality A(t) = �R2(t). �If we compare Equations 4.5 and 4.4, we can check that the operator ASS!:h is tangent toEh3=2 , simply because 43� 23 � ! = 3s2�23 :This property is illustrated on Figure 4.3. The normalized area (A(�)=A0) 23 is represented bothfor the a�ne erosion E� and for the normalized a�ne scale space ASSt (with t = ! � � 23 for thereason we explained before).
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Figure 4.3: Comparison between the a�ne erosion and scale space of an ellipseAs we can see, the action of the a�ne erosion on ellipses is very close to the one of its tangentoperator, the ASS, even for large scales. This suggests that we can build a fast scheme for theASS by iterating the a�ne erosion with rather large scale steps.



72 CHAPTER 4. COMPARISON BETWEEN AFFINE EROSION AND SCALE SPACE4.3 A�ne erosion and scale space of a hyperbola4.3.1 A�ne erosionProposition 14 The �-a�ne erosion of a hyperbola with apparent area A0 is a hyperbola withsame axes and with apparent area A(�) = A0 ch2�(�)2 ; (4.6)where �(�) is de�ned by �(�)� sh �(�) = 2�A0 :In particular, for an in�nitesimal erosion, we have the canonical expansionA 23 (t 32 ) = A 23 (0) + 3r23 � t+ O(t2):Proof :
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vFigure 4.4: A�ne erosion of a hyperbolaLet (O; v1; v2) be an a�ne basis with same axes as the hyperbola C. In this basis, a parametricequation of C is given byM(t) = (X(t); Y (t)) = a(et; e�t); with a2 = A02 [v1; v2] :Let us now consider two points M(t1) and M(t2) of C with t1 = t� �2 and t2 = t+ �2 (see Figure4.4) . In order that the chord set (t1; t2) of C has area �, we should have�[v1; v2] = 12 Z t2t1 �M 0(t);M(t)� dt + 12 [M(t1)�M(t2);M(t2)]



4.3. AFFINE EROSION AND SCALE SPACE OF A HYPERBOLA 73= 12 Z t2t1 Y dXdt �XdYdt dt + 12 (X(t1)Y (t2)� Y (t1)X(t2))= a22 Z t2t1 e�tet + ete�t dt + a22 (e�� � e�)= a2(� � sh �):Since �r(C) = +1, Theorem 1 ensures that the a�ne erosion of C is the set of the middlepoints of such �-chord segments, i.e.P (t) = a2 � �et� �2 + et+ �2 ; e�t+ �2 + e�t� �2� = a ch�2 � (et; e�t):As � does not depend on t, this proves that the a�ne erosion acts on C as a homothetic trans-formation with center O and ratio ch �2 , and� � sh � = �a2 [v1; v2] = 2�A0 :As regards the canonical expansion of A(t) near t = 0, the computation is the same as forthe ellipse, except that the constant � disappears, so that the coe�cient 3q2�23 becomes 3q23 . �Remark : One can be surprised that � does not depend on t. It can be simply explained by thefact that the parametric representation of the hyperbola we used is, up to a multiplicative factor,the a�ne abscissa representation, and since the a�ne curvature of a hyperbola is constant, thearea of a �-chord set (t; t+ x) only depends on x.Let us now evaluate A(�) when � tends to in�nity. We havee�(�)2 + O(e��(�)) = 2�A0 ;which gives e�(�) = 4�A0 + O( 1� ):Replacing this expression in Equation 4.6 yieldsA(�) = A04 �e�(�) + 2+ O(e��(�))�= � + A02 + O( 1� ):Hence, A(�) admits an asymptotic linear expansion at in�nity. Figure 4.5 represents the nor-malized apparent area AA0 depending on the normalized erosion parameter �A0 , for the a�neerosion of a hyperbola.



74 CHAPTER 4. COMPARISON BETWEEN AFFINE EROSION AND SCALE SPACE
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0Figure 4.5: Area evolution for the a�ne erosion of a hyperbola4.3.2 A�ne scale spaceThe a�ne scale space of a hyperbola has been computed by Alvarez and Morales in [5]. Herewe use a di�erent parameterization.Proposition 15 The a�ne scale space at scale t of a hyperbola with apparent area A0 is ahyperbola with same axes and whose apparent area satis�esA 23 (t) = A 230 + 43 t: (4.7)Proof :Let H0 be a hyperbola with apparent area A0 and R = (O; v1; v2) an orthonormal basis ofthe plane, we can �nd an a�ne map with determinant 1 which transforms the axes of H0 into(O; v1) and (O; v2), so that ~H0 = �(H0) can be represented in R by the functiony(x) = A02x :Now, let us consider a family of hyperbolae ~Ht =M(�; t) of apparent area A(t) > 0 de�ned byy(x; t) = A(t)2x :On one hand, @y@t = A0(t)2x ;and on the other hand,  @2y@x2! 13 = A 13 (t)x :



4.4. AFFINE EROSION AND SCALE SPACE OF A PARABOLA 75Consequently, the family ~Ht is the scale space of ~H0 as soon as Equation 4.2 is satis�ed, i.e. assoon as A(t) is solution of the di�erential equationA0(t) = 2A 13 (t):Solving this equation yields A 23 (t) = A 230 + 43 t: (4.8)Hence, the scale space of H0, given by ��1( ~Ht), is the one announced in Proposition 15, andsince the apparent area is invariant under ��1, Equation 4.8 remains true. �Figure 4.6 represents the compared apparent areas obtained on a hyperbola with the a�neerosion E� and with the normalized a�ne scale space ASSt (t = !� 23 ). As for ellipses, noticehow close the a�ne scale space and the a�ne erosion behave.
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1Figure 4.6: Canonical area evolution for the a�ne erosion of a hyperbola4.4 A�ne erosion and scale space of a parabolaProposition 16 The �-a�ne erosion of the parabola of equation y = px2 in an orthonormalbasis is the translated parabola of equationy = px2 + p 13� 23 �34� 23 (4.9)in the same basis. In particular, Eh3=2 acts as a semi-group operator upon the family of parabolaeP� : y = px2 + � since E(h1)3=2 �E(h2)3=2(P�) = E(h1+h2)3=2(P�):A consequence is the exact equalityASS!�h(P�) = Eh3=2(P�);



76 CHAPTER 4. COMPARISON BETWEEN AFFINE EROSION AND SCALE SPACEwhere as usual ! = 12 �32� 23 :Proof :Since a parabola is a semi-closed convex curve with �r = +1, we know from Theorem 1 thatits �-a�ne erosion is given by the set of the middle points of its �-chord segments. Consider a�-chord (x� �; x+ �) of the parabola y = px2, the resulting middle point is (x; y�(x)) wherey�(x) = p(x� �)2 + (x+ �)22 = p(x2 + �2):Besides, a simple computation yields� = �p[(x� �)2 + (x+ �)2]� Z x+�x�� ps2ds= 2�p(x2 + �2)� p3[(x+ �)3 � (x� �)3]= 43�3;and �nally, y�(x) = px2 + p�3�4 � 23 = px2 + p 13� 23 �34�23 :Consequently, Eh3=2(P�) = P�+�h where � = p 13 �34�23 , which establishes the announced semi-group property. But since ASS!�h is the tangent operator to Eh3=2 , we have (as we shall provelater) ASS!�h(P�) = limn!1 hE(h=n)3=2in (P�) = Eh3=2(P�):We can also check this result directly by using Equation 4:2. Taking the second order derivativewith respect to x in Equation 4.9 yields @2y@x2 = 2p;so that x 7! y(x; t) represents the a�ne scale space of P0 as soon as@y@t = (2p) 13 :Consequently, ASS!:h(P0) is the curve given byy(x; t) = px2 + (2p) 13 � !h = px2 + p 13h�34�23 : �



4.5. AFFINE EROSION OF A TRIANGLE 774.5 A�ne erosion of a triangleThe complete description of the a�ne erosion of a polygon will be given further. Here we justdeal with the simplest case, namely the triangle. This case is interesting because all trianglesare equivalents in A�ne Geometry. One may refer to Chapter 6 (numerical scheme) for theprecise description on the a�ne erosion of a general polygon.Proposition 17 The a�ne erosion of a triangle is a \hyperbolic triangle", i.e. the concatena-tion of three hyperbola pieces, each one given in barycentric coordinates by the equation(et; e�t; 2p� � et � e�t); jtj 6 ln 1p� �r 1� � 2!In particular, the extinction scale of a unit area triangle is�e = 49 = 0; 444:::

Figure 4.7: A�ne erosions of a triangle for di�erent scalesNotice that this is NOT the scale space spanned by the iteration of the a�ne erosion ! Eachcurve represents the action of the a�ne erosion on the initial triangle, for di�erent values of theerosion area.Proof :1. First, notice that we can �nd an a�ne map which transforms a given triangle into a unitarea equilateral triangle. Thus, it is su�cient to establish the proof for such a triangle thanks tothe a�ne invariance of the a�ne erosion (see Proposition 5). By symmetry, it is clear that the



78 CHAPTER 4. COMPARISON BETWEEN AFFINE EROSION AND SCALE SPACEextinction point of an equilateral triangle is its center. As a consequence, the extinction pointof any triangle must be the barycenter of its vertices (notice that this property is false for otherpolygons in general). One can check easily that the chord set of minimum area which containsthe barycenter of a unit area equilateral triangle has area 49 (see Figure 4.8). Consequently, theextinction scale of any triangle is 49 of its area.
eσFigure 4.8: Extinction area of a triangle2. Consider the �-chords segments of the triangle whose endpoints lie on two �xed edges ofthe triangle. The middle points of these �-chord segments span a piece of hyperbola, simplybecause the a�ne erosion of a \corner" is, as we saw previously in Proposition 1, a piece ofhyperbola. Consequently, Proposition 8 ensures that the a�ne erosion of a triangle is theconcatenation of three pieces of hyperbola (there are exactly three di�erent pairs of edges for atriangle).3. The previous hyperbolae can be described in barycentric coordinates by an equation ofthe kind (et; e�t; K(�)� et � e�t); t1 6 t 6 t2: (4.10)(we recall that (a; b; c) are barycentric coordinates ofM in the a�ne basis (A;B;C) if and onlyif (a + b+ c)OM = aOA + bOB + cOC for any point O if the plane). Let us compute K(�).Remember that if v1; v2; v3 are three vectors of FR2, one has[v1; v2]v3 + [v2; v3]v1 + [v3; v1]v2 = 0:Applying this to MA;MB and MB where ABC is a triangle with unit area, we getM = 12 [MA;MB]C + 12 [MB;MC]A+ 12 [MC;MA]B:In other words, a system of barycentric coordinates of M in the basis (A;B;C) is given by theareas of the trianglesMBC,MCA andMAB. Now, if we make t = 0 in Equation 4.10, we obtainthe point M of Figure 4.9, which, according to the previous remark, can be represented in thebasis (A;B;C) by (1�S2 ; 1�S2 ; S). Moreover, one can see easily that S = C0MCM and � = �CMCC0 �2.Now, identifying the previous coordinates (up to a multiplicative factor) with (1; 1; K(�)� 2),we get 1� S2 (K(�)� 2) = S;



4.5. AFFINE EROSION OF A TRIANGLE 79so that K(�) = 21� S = 2p� :Now, a simple computation resulting from the permutation of the a�ne bases gives the boundvalue jtj 6 ln 1p� �r 1� � 2! :Then, by solving the equation 1p� �r 1� � 2 = 1;we �nd again the extinction scale � = 49 . �
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BA Figure 4.9: Computing K(�)Remark : As announced in the previous chapter, the triangle is an example of a simple convexC-set whose extinction area is less than half of its area.As far as we know, the a�ne scale space of a triangle has not been computed exactly, and itis uncertain that there exists a simple analytic expression for it. However, we can observe thatfor the reasons previously explained, the a�ne invariance constrains the extinction point of atriangle to be its barycenter. Numerical simulations give for the normalized extinction area ofthe a�ne scale space of a triangle the value �0e ' 0; 42 (it means that a unit area triangle andan ellipse of area 2�0e disappear simultaneously).
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Chapter 5A�ne erosion of grey-level imagesIn this chapter, we �rst extend the a�ne erosion to any set of the plane and to lower semi-continuous grey level images. Then, we study its asymptotic behaviour and prove the conver-gence of the iterated a�ne erosion+dilation towards the a�ne morphological scale space. Wealso compare the a�ne erosion to classical a�ne inf-sup operators, and we establish the linkwith Matheron's Theorem (characterization of morphological operators).5.1 Morphological principlesSuppose that we want to analyze an image u, given as a map u : FR2 ! FR. The �rst question weshould answer is : what relevant informations does contain u, physically speaking ? A importantremark is that our interpretation of an image does not depend on its absolute contrast, but ratheron the fact that some objects are brighter than others (we can check this each time we put onsunglasses). Hence, we should consider that a given image u (i.e. a map u : FR2 ! FR) carries thesame information as any image of the kind g(u), where g is an arbitrary contrast change, thatis to say an increasing and continuous scalar function. This point of view has been successfullyadopted by Mathematical Morphology (in the case of 
at grey-scale kernels) to design e�cientoperators for image analysis. Formally, we are led to consider equivalence classes of the relationu � v , 9 g; v = g(u):According to this equivalence, an image u reduces to the decreasing collection of its level sets1��(u) = fx 2 FR2; u(x) > �g:Conversely, any image u can be recovered from the family of its level sets by the relationu(x) = supf�; x 2 U�g;1For our study, it is more convenient to consider the open level sets rather than the closed ones de�ned by��(u) = fx 2 FR2; u(x) > �g:81



82 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESand two images having the same collection of level sets are equivalent (see [41]).From this point of view, it is natural to say that an operator T acting on images is amorphological operator if it satisfy the morphological invariance described in Chapter 2 :[Morphological Invariance] : For any increasing continuous function g,T (g � u) = g � T (u):Although this idea is directly inspired from Mathematical Morphology, we must mentionthat the previous de�nition of a morphological operator is di�erent from what Serra calls amorphological �lter2. As well, the a�ne erosion we de�ned in Chapter 3 is not an erosion on alattice in Serra's sense (see [70]). The reason is that the relationE�(A \B) = E�(A) \E�(B)is false in general (whereas it is true for the Euclidean erosion).5.2 From sets to imagesLet us consider an operator T acting on sets : we would like to de�ne a corresponding operator~T on an image u by applying T to the level sets of u. In other words, we ask the followingquestion : is there an operator ~T which satis�es ��( ~T(u)) = T (��(u)) for any � and a certainclass of images u ? Obviously, T must satisfy some hypotheses because the level sets of an imageu satisfy the inclusion � > � ) ��(u) � ��(u)and ��+"(u)% ��(u) as "& 0:This last relation means that " 7! ��+"(u) is nonincreasing and that8�; ��(u) = [">0��+"(u);it is equivalent to say that 8x; u(x) = supf�; x 2 ��(u)g: (5.1)From now on, O denotes the set of the open sets of FR2, and LSC(FR2) the set of the lowersemi-continuous functions de�ned on FR2. We recall that u : FR2 ! FR is lower semi-continuous(l.s.c.) if and only if each level set of u is open.De�nition 13 An operator T acting on sets is nondecreasing if8X; Y; X � Y ) T (X) � T (Y ):2in [70], an operator  is a morphological �lter if it is both nondecreasing (u 6 v )  (u) 6  (v)) andidempotent ( �  =  ).



5.2. FROM SETS TO IMAGES 83De�nition 14 A nondecreasing operator T : O 7! O is %-continuous if8(Xn) 2 OIN; Xn %n X ) T (Xn)%n T (X):For a nondecreasing operator T : O 7! O, it equivalent to say that T is %-continuous orthat it is lower-semi-continuous for the so-called \hit and miss" topology3 (see [69]).Proposition 18 If T : O 7! O is a nondecreasing %-continuous operator, then the relation��( ~T(u)) = T (��(u)) (5.2)de�nes a unique operator ~T : LSC(FR2)! LSC(FR2). Moreover, ~T is a nondecreasing, morpho-logical and 1-Lipschitz operator.Proof :1. If ~T exists, then it is unique. The reason is that Equation 5.1 rewritten for ~T (u) yields8x; ~T (u)(x) = supf�; x 2 ��( ~T(u))g;and if ~T satis�es Equation 5.2, it is completely de�ned from T by~T (u)(x) = supf�; x 2 T (��(u))g: (5.3)2. Let us now consider the operator de�ned by Equation 5.3, and prove that it satis�esEquation 5.2. On one hand,x 2 ��( ~T (u)) ) ~T (u)(x) > �) 9�0 > �; x 2 T (��0(u))) x 2 T (��(u));the last inference arising from the monotonicity of T , because� < �0 ) ��0(u) � ��(u) ) T (��0(u)) � T (��(u)):On the other hand, remember that��+"(u)% ��(u) as "& 0;and since T is lower semi-continuous we haveT (��+"(u))% T (��(u)) as "& 03This topology on open sets of the plane is spanned by the setsOKG1;G2 ;:::Gp = fO 2 O; K � O and 8i; Gi 6� Og;where K is a compact set and each Gi is an open set.



84 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESand in particular [">0T (��+"(u)) = T (��(u)) = T ([">0��+"(u)):Hence, x 2 T (��(u)) ) x 2 [">0T (��+"(u))) 9" > 0; x 2 T (��+"(u))) 9" > 0; ~T(u)(x) > �+ ") ~T (u)(x) > �) x 2 ��( ~T (u)):As a consequence, ~T de�ned in Equation 5.3 satis�es Equation 5.2.3. Let us check the announced properties of ~T .3.a. T is nondecreasing, and ~T inherits this property because of Equation 5.3. Indeed, if u1and u2 are two l.s.c. images such that u1 6 u2, then we have for any �, ��(u1) � ��(u2), andconsequently ~T (u1) 6 ~T (u2) because of Equation 5.3.3.b. ~T is morphological because if g is a contrast change, i.e. an increasing continuous scalarfunction, we have ��(u) = �g(�)(g(u));and Equation 5.3 ensures that ~T (g(u)) = g( ~T(u)):3.c. Let us prove that ~T is 1-Lipschitz. Let u and v be two l.s.c. images such that for anyx, ju(x)� v(x)j 6 k. The monotonicity of ~T yields8x; ~T (u� k)(x) 6 ~T(v)(x) 6 ~T (u+ k)(x);and since ~T (u+ k) = ~T (u) + k, we have for any x,j ~T (u)(x)� ~T (v)(x)j 6 k:Hence, we proved that ~T is 1-Lipschitz, i.e.k ~T(u)� ~T (v)k1 6 ku� vk1:A consequence is that ~T restricted to L1 is uniformly continuous. �5.3 A�ne erosion of grey level imagesWe would like to extend the a�ne erosion to grey-level images through the morphological levelset decomposition. For that purpose, we �rst need to de�ne the a�ne erosion of any subset



5.3. AFFINE EROSION OF GREY LEVEL IMAGES 85of the plane (or, at least, of any open set). But the geometrical de�nition of the a�ne erosion(De�nition 5) does not make sense for any subset of the plane, since in general its boundary isnot a curve in a reasonable sense.We could use the following result due to E. Giusti [38] : if u is of bounded variation, thenits �-level sets are Caccioppoli sets for almost any �. This result could be of great interest forour purpose since up to a negligeable set of points, the essential boundary of a Caccioppoli setis made of a countable number of closed curves, for we havejjujjBV = Z length(@��(u)) d�:We prefer, however, to de�ne the a�ne erosion of an image in a more simple way, using theinclusion property.De�nition 15 The �-a�ne erosion of a set U � FR2 is the setE�(U) = [S C�set; S�U E�(S):This de�nition makes sense because if U is a C-set, we know that for any C-set S subset of Uwe have E�(S) � E�(U). Moreover, the extended operator E� is clearly nondecreasing becauseif U � V , any C-set subset of U is also subset of V , that isfS C� set; S � Ug � fS C� set; S � V gand consequently [S C�set; S�U E�(S) � [S C�set; S�V E�(S):Lemma 6 For any set U � FR2, E�(U) is open.Proof :By Corollary 1 we know that for any C-set S, E�(S) is open, and consequentlyE�(U) = [S C�set; S�U E�(S)is open as a reunion of open sets. �Lemma 7 For any set U � FR2, we haveE�(U) = [S bounded C�set; S�U E�(S):



86 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESProof :Since E�(U) = [S C�set; S�U S;we only need to prove Lemma 7 when U is a C-set.1. We claim that there exists a nondecreasing sequence Sn of bounded C-sets such thatU = [nSn and Sn � U for all n. Let us de�neAni;j = [ i2n ; i+ 12n ]� [ j2n ; j + 12n ]; (i; j) 2 ZZ2;and consider Kn an increasing sequence of compact sets such that FR2 = [nKn. The increasingsequence Sn, de�ned as the topological opening of the union of the Ani;j for which Ani;j � U \Kn,satis�es the previous constraints.2. Let M 2 E�(U), and suppose that M 62 [nE�(Sn) (we are going to prove that this isnot possible). If we de�ne D� as the line going through M and oriented by � 2 S1, then forany n we can �nd �n 2 S1 and a �n-chord segment of Sn included in D�n (and with the sameorientation), such that �n 6 �. Now, up to a subsequence extraction, we can suppose that thesequence (�n; �n) converges towards (~�; ~�) 2 S1 � [0; �].Since E�(U) is open and M 2 E�(U) we can �nd a closed disk D(M; ") with center M andradius " > 0 such that D(M; ") � E�(U). Consider N the intersection between @D(M; ") andD~�+�=2 (see Figure 5.1). The line going through N and oriented by ~� de�nes on U a boundedchord set K containing N , and for n large enough we have D�n \K = ;, so that �n > area (K),and letting n tend to in�nity yields area (K) 6 ~� 6 �, which is in contradiction with N 2 E�(U).�
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εFigure 5.1: For n large enough, D�n \K = ;.Proposition 19 The restriction E� : O ! O is %-continuous.



5.3. AFFINE EROSION OF GREY LEVEL IMAGES 87Proof :Since E� is nondecreasing, we have to prove that for any nondecreasing sequence (Xn) ofopen sets, [n2INE�(Xn) � E�( [n2INXn):Let X = [nXn, consider a bounded C-set S such that S � [Xn, and suppose that for any nwe can �nd xn 2 S n X . Since S is compact, we can extract from (xn) a subsequence whichconverges towards x 2 S. But for any n, S nXn is closed, and as xk 2 S nXn for any k > n,we have x 2 S nXn for all n. This means x 2 S nX , which is impossible, this set being emptysince S � X .Consequently, there exists n0 2 IN such that S � Xn0 , which proves thatE�(S) � E�(Xn0) � [n2INE�(Xn):The last inclusion being true for any bounded C-set S such that S � X , we deduce from Lemma7 that E�(X) = [S bounded C�set; S�X E�(S) � [n2INE�(Xn): �Now, since E� : O ! O is nondecreasing and %-continuous, we can de�ne the a�ne erosion ofa lower semi-continuous image according to Proposition 18.De�nition 16 The �-a�ne erosion of a l.s.c. image u : FR2 ! FR is the imageE�(u) : x 7! supf� 2 FR; x 2 E�(��(u))g;where ��(u) = fx; u(x) > �g is the �-level set of u.Once again, we use the same notation for the a�ne erosion of an image, without risk of confusion.Lemma 8 E� : LSC(FR2)! LSC(FR2) is a nondecreasing, morphological, 1-Lipschitz and a�neinvariant operator.Proof :The �rst three properties are a consequence of Proposition 18. As regards the a�ne invari-ance, we have to prove that for any a�ne map �,E��jdet�j(u) � � = E�(u � �):This is a consequence of Proposition 5, since ��(u � �) = �(��(u)): �



88 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESLemma 9 For any image u, E�(u) is nonincreasing with respect to �, i.e.�1 6 �2 ) E�1(u) > E�2(u):Proof :This is a consequence of Lemma 2. �Lemma 10 If u is k-Lipschitz, so is E�(u).Proof :The map u being k-Lipschitz, we haveu(x)� kkyk 6 u(x+ y) 6 u(x) + kkyk:Considering this last inequality as the comparison between three functions of x (i.e. with y�xed), the monotonicity and the translation invariance of E� yieldE�(u)(x)� kkyk 6 E�(u)(x+ y) 6 E�(u)(x) + kkyk;which proves that E�(u) is k-Lipschitz. �We just saw that the a�ne erosion satis�es three main axioms of the a�ne morphologicalscale space, namely[Global Comparison Principle] : u 6 v ) E�(u) 6 E�(v).[Morphology] : For every increasing continuous function g, E�(g � u) = g �E�(u).[A�ne invariance] : For every a�ne map �, E��jdet�j(u) � � = E�(u � �):We shall prove later that the [Local Comparison Principle] is also satis�ed by the a�neerosion. Thus, the major di�erences between the a�ne erosion and the AMSS are :� The axiom [Contrast reversal] : Tt(�u) = �Tt(u), which is satis�ed by the AMSS butnot by the a�ne erosion. This leads us to de�ne the dual operator to the a�ne erosion,called a�ne dilation and satisfyingD�(u) = �E�(�u)for any continuous image u. The relationE� �D�(�u) = �D� �E�ensures that the [Contrast reversal] axiom is asymptotically satis�ed when the operatorD� �E� (or, equivalently, E� �D�) is iterated.



5.4. COMPARISON WITH THE INF-SUP OPERATORS 89� The semi-group property Tt+t0 = Tt � Tt0;which is not satis�ed by the a�ne erosion, even for any scale normalization of the kindTt = Ef(t). This is the reason why we need to iterate the a�ne erosion (or, to be precise,an associated alternate operator) in order to build a good approximation of the AMSS.5.4 Comparison with the inf-sup operatorsIn this section, we compare the action of E� with the one of the inf-sup operator associated tothe basis Bc made of all closed convex sets with area 1 and symmetrical with respect to 0. Wede�ne SI�(u)(x) = supB2Bc infy2B u(x+p�:y); andIS�(u)(x) = infB2Bc supy2B u(x+p�:y):We know from [41] that if we iterate n times on a continuous periodic image u0 the alternatedoperator SI� � IS�, then as n! +1, � ! 0 with n� 23 ! t, we obtain the 
ow of images u(:; t)which is a viscosity solution of the equation@u@t = c jDuj curv(u)13with initial condition u(�; 0) = u0, c being a positive constant. Notice that these morphologicaloperators on images can be simply extended to sets via Equation 5.2. For any subset U of theplane, we de�ne SI�(U) = fx 2 FR2; SI�(1U(x)) = 1g;which is equivalent to SI�(U) = fx 2 U; 9B 2 B; x+p� �B � Ug:Proposition 20 For any open set U and any scale �,SI2�(U) � E�(U) � U:Equivalently, for any lower semi-continuous image u,SI2�(u) 6 E�(u) 6 u:
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HFigure 5.2: SI2�(S) � E�(S).This result simply means that E� \erodes" a shape less than SI2� does.Proof :1. We �rst establish the proof for a C-set S. If M belongs to SI2�(S), then there exists aconvex closed set B of area 2�, symmetrical with respect to M , and contained in S. Now, if Dis a positive chord segment of S such that the associated chord set K contains M , let H be thehalf plane containing K and delimited by the line supporting D (cf. Figure 5.2). Then, B \His connected (as the intersection of two convex sets) and contains M , so that it is contained inK. Consequently, the symmetry of B yieldsarea (K) > 12area (B) = �(the inequality is strict because B is closed and S is open), which means that M belongs toE�(S). Hence, for any C-set S we have SI2�(S) � E�(S):2. If U is an open subset of the plane we have[S C�set; S�U SI2�(S) � [S C�set; S�U E�(S) = E�(U) � U: (5.4)Now, if x 2 SI2�(U), we can �nd B 2 Bc such that x+p2�B � U . Let S" = x+(p2�+") �B,where �B is the topological opening of B. Since B is compact and cU is closed, the distancebetween these disjoint sets is nonzero and consequently S" � U for a certain " > 0 small enough.Thus, S" is a C-set included in U and such that x 2 SI2�(S"), and we getx 2 [S C�set; S�U SI2�(S):



5.4. COMPARISON WITH THE INF-SUP OPERATORS 91We just proved the inclusion SI2�(U) � [S C�set; S�U SI2�(S): (5.5)Finally, Equations (5.4) and (5.5) imply as requiredSI2�(U) � E�(U) � U (5.6)for any open set U .3. If u1 and u2 are two images such that8�; ��(u1) � ��(u2);then 8x; u1(x) 6 u2(x). Now, if u is a lower semi-continuous image, we can apply Equation 5.6to ��(u) to obtain 8�; SI2�(��(u)) � E�(��(u)) � ��(u);and since Equation 5.2 de�nes E�(u) and SI2�(u), we have8�; ��(SI2�(u)) � ��(E�(u)) � ��(u);which proves that 8x; SI2�(u)(x) 6 E�(u)(x) 6 u(x): �Remark : The preceeding result is not true for a closed set in general : for a closed disk D,SI2�(D) is the closure of the open disk E�(D). One may also wonder if the reverse inclusionE�(U) � SI2�(U) happens. For a triangle T with unit area, we have SI2�(T ) = ; , � > 13(see Figure 5.3), whereas the corresponding extinction scale for E� is 49 . More precisely, onecan prove that E�(T ) 6= SI2�(T ) for any scale 0 < � < 49 . However, for regular convex sets andsmall scales, this reverse inclusion happens.Proposition 21 If S is a closed convex set whose boundary is C1, then there is a limit scale�l(S) > 0 such that SI2�(S) = E�(S) for all � < �l(S).Proof :1. Let S be a closed convex set whose boundary C is de�ned by a regular parameterizationC : I ! C of class C1. We �rst prove that for � > 0 small enough and for any �-chord set Cs;t,the set symmetrical to Cs;t with respect to the middle point of [C(s)C(t)] is included in S.1.a. De�ne �1 = area (S)=2. For any s 2 I and 0 6 � 6 �1, consider the unique �-chord segment [C(s)C(t)] (where t depends on s and �) and I(s) the intersection between C
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Figure 5.3: The largest symmetric convex set contained in a unit area triangle has area 2=3.
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C(t)Figure 5.4: De�nition of �(s; �)and the midperpendicular of (C(s); C(t)) (see Figure 5.4). If � = 0, C(s) = C(t) and thismidperpendicular is the line which goes through C(s) and which is orthogonal to the tangent toC in C(s) . We call �(s; �) the measure in ]0; �2 [ of the angle between C(s)C(t) and C(s)I(s).Since (s; �) 7! �(s; �) is continuous on the compact set I � [0; �1], necessarily�0 = inf(s;�)2I�[0;�1]�(s; �)is nonzero and for any � 6 �1 and s 2 I , we have �(s; �) > �0.1.b. For any s 2 I , consider �(s) the area of the largest C-set Cs;t such that\(C 0(s); C 0(t)) = 12�0(such a C-set exists because the map t 7! \(C 0(s); C 0(t)) increases continuously from 0 towards2�). Notice that if we had �(s) = 0 for some s, then C([s; t]) would be a segment, which isimpossible since \(C 0(s); C 0(t)) 6= 0. Hence, �(s) = 0 is nonzero for all s 2 I , and since s 7! �(s)is continuous on the compact set I , we have�2 = infs2I �(s) > 0:



5.4. COMPARISON WITH THE INF-SUP OPERATORS 931.c. Now we claim that for any � 6 min(�1; �2) and for any �-chord set Cs;t, the set ~Cs;tsymmetric to Cs;t with respect to the middle point of [C(s)C(t)] is included in S. De�ne 
 theintersection between the tangents to C in C(s) and C(t), and ~
 the point symmetric to 
 withrespect to the middle point of [C(s)C(t)]. Since � 6 �2, we have� = \(C 0(s); C 0(t)) 2]0; �0];and as � 6 �1 we know that the triangle C(s)C(t)J is included in S, J being de�ned by\(C(s)C(t); C(s)J) = \(C(t)J; C(t)C(s)) = �0(see Figure 5.5). Now, as ~Cs;t is included in the triangle C(s)C(t)~
, it is su�cient to prove that~
 belongs to the triangle C(s)C(t)J . But this is a simple consequence of � 6 �0, because0 6 \(C(s)C(t); C(s)~
) 6 �as well as 0 6 \(C(t)~
; C(t)C(s)) 6 �:
s,t
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Figure 5.5: ~Cs;t is included in S2. In order to prove Proposition 21, according to Proposition 20 it is su�cient to checkthat for �0 6 min(�1; �2), E�0(S) � SI2�0(S). Consider a point M 2 E�0(S) : necessarily, any�-chord segment of S whose middle point is M is such that � > �0 (and since S is convex,there exists at least one such chord segment). But in this case, we proved on Step 1.c that wecan �nd a convex closed set B with area 2� (made from the symmetrization of a chord-set, see



94 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESFigure 5.5), symmetrical with respect to M and contained in S. Applying on B a homothetictransformation with center M and ratio p�0=� < 1, we obtain a convex closed set B0 with area2�0, symmetrical with respect to M and contained in S. Consequently, M 2 SI2�0(S), and theproof is complete. �5.5 Asymptotic behaviour of the a�ne erosionIn the previous chapter, we investigated the asymptotic behaviour of the geometrical a�neerosion, and we proved that it was consistent with the a�ne scale space of curves. Hence, wecan expect the a�ne erosion of images to be consistent with the a�ne morphological scale space(AMSS).In [41], F.Guichard and J.-M.Morel proved that SI� is (semi-)consistent with the AMSS. Weprove the same result for the a�ne erosion, i.e. thatE�(u) = u+ ! � � 23 :jDuj [curv�(u)] 13 +O(� 34 ):Here, r� means min(r; 0) and we keep the convention that if r < 0, r 13 = �jrj 13 . Using thedual operator to a�ne erosion, the a�ne dilation (de�ned by D�(u) = �E�(�u) as we sawpreviously), we shall obtain the exact consistency with AMSS (i.e. curv(u) instead of curv�(u))by considering the alternate operator D� �E� (or E� �D�).The classical way (see [41]) to estimate the asymptotic behaviour of such operators is toreduce the problem to quadratic forms by using a local comparison principle.5.5.1 A local comparison principleFirst, we need to de�ne the concept of C-images (which are to images what C-sets are to sets)and establish an approximation lemma.De�nition 17 An image u is a C-image if all of its non trivial level sets are C-sets.By trivial set, we mean either the empty set or the whole plane.Lemma 11 Consider a Lipschitz image u. Then, for any compact subset K of the plane andany " > 0, there exists a C-image u" such that ju� u"j 6 " on K.Proof :u being k-Lipschitz on the compact set K, we �rst de�ne the family of squaresAi;j = [ai; ai+1]� [aj ; aj+1]; (i; j) 2 ZZ2; where an = n"k � p2 :



5.5. ASYMPTOTIC BEHAVIOUR OF THE AFFINE EROSION 95Now, we can let u"(x) = inffu(y)1K(y); 9(i; j); (x; y) 2 A2i;jg;where 1K is the characteristic function of K (i.e. which equals 1 on K and 0 outside). Thisde�nition ensures that all non trivial level sets of u" are C-sets (their boundaries are made ofpolygons), and moreover we have8x; 0 6 u(x) 1K(x)� u"(x) 6 k:diam(Ai;j) = ":Hence, u" satis�es ju� u"j 6 " on K. �Proposition 22 (Local Comparison Principle) Let u and v be two k-Lipschitz images suchthat u > v on the disk with center x0 and radius r. Then we have, for any � > 0,E�(u)(x0) > E�(v)(x0)� k�r :Proof :Given " > 0, by Lemma 11 we can �nd a C-image w such that jw� uj 6 " on the open diskD(x0; r). Besides, we de�ne w+ (respectively w�) as the C-image equal to w on D(x0; r) andequal to +1 outside (resp. equal to w on D(x0; r) and to �1 outside). Notice that in�nitevalues are convenient here, but we could use �nite (and large enough) values as well. We aregoing to prove that E�(w�)(x0) > E�(w+)(x0)� k�r +O(") (5.7)as "! 0. For that purpose, we consider �; � such thatE�(w�)(x0) < � < � < E�(w+)(x0)(if E�(w�)(x0) = E�(w+)(x0), this is not possible, but we are done since Equation 5.7 is clearlysatis�ed).The de�nition of E� states the existence of a chord (A;B) of the level set ��(w+) such thatx0 2 [AB] and the associated chord set K has an area not larger than � (see Figure 5.6). Theconstruction of w+ ensures that K is bounded. Besides, no piece of [AB] can de�ne a chordset of ��(w�) contained in K because since this chord set would have an area not larger than�, it would be a contradiction to the fact that � > E�(w�)(x0). As a consequence, the setC = @��(w�)\K \D(x0; r) \attains" the boundary of the circle @D(x0; r). If we de�ne as wellC 0 = @��(w+) \K \D(x0; r) andd = inffjx� x0j; (x; x0) 2 C � C 0g;



96 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESon the one side we have � � � 6 2"+ kd; (5.8)because u is k-Lipschitz and jw � uj 6 " on D(x0; r). On the other side, one can easily inscribein K a triangle with basis r and height d, which proves that area (K) > rd, and consequently� > rd: (5.9)Finally, Equations 5.8 and 5.9 give � � � 6 k�r + 2";and considering the limits �! E�(w�)(x0) and � ! E�(w+)(x0), we obtain the desired Equa-tion 5.7.Last, as we have both u > w��" and v 6 w++" on FR2, we can apply twice the monotonicityof E� to deduce from Equation 5.7 thatE�(u)(x0) > E�(v)(x0)� k�r + O(");and letting "! 0 achieves the proof. �
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D(    ,r)Figure 5.6: A local comparison principleCorollary 7 (Uniform Local Comparison Principle) Let u and v be two k-Lipschitz im-ages such that u > v on D(x0; r). Then,8x 2 D(x0; r2); E�(u)(x) > E�(v)(x)� 2k�r :Proof :For any x 2 D(x0; r2) we can apply Proposition 22 since u > v on D(x; r2) and we obtain thedesired inequality. �



5.5. ASYMPTOTIC BEHAVIOUR OF THE AFFINE EROSION 975.5.2 ConsistencyLemma 12 (Locality) Let u and v be two k-Lipschitz images such thatu(x)� v(x) = O(jx� x0j3) as x! x0:Then, E�(u)(x0)�E�(v)(x0) = O(� 34 ) as � ! 0:Proof :We borrow the proof from [41]. Since u(x)� v(x) = O(jx � x0j3), we can �nd two positivenumbers R and C such that8r < R; 8x 2 D(x0; r); v(x)� Cr3 6 u(x) 6 v(x) + Cr3:These three functions are k-Lipschitz, so we can apply the local comparison principle (Proposi-tion 22) to obtain, for any �,E�(v)(x0)� Cr3 � 2k�r 6 E�(u)(x0) 6 E�(v)(x0) + Cr3 + 2k�r :Choosing � = r4, we get as announcedE�(u)(x0)�E�(v)(x0) = O(� 34 ) as � ! 0: �Remark : Lemma 12 remains true if we write \uniformly with respect to x0" for the hypothesisand the conclusion.Lemma 13 If u is a polynomial whose degree is at most 2, then for any x0 2 FR2,E�(u)(x0) = u(x0) + ! � � 23 � jDuj(x0) [
�(u)(x0)] 13 +O(� 34 ): (5.10)Proof :If the degree of u is strictly less than 2, then E�(u) = u, and Equation 5.10 is clearlysatis�ed. Otherwise, according to the morphological invariance of E�, we can assume thatu(x0) = 0. Moreover, we can chose a (positively oriented) system of coordinates such thatx0 = (x0; y0)T and either u((x; y)T) = ax2 + by2



98 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESor u((x; y)T) = ax2 + by;where (a; b) 2 FR � f�1; 1g. If u((x; y)T) does not depend on x, the level lines of u are straightlines and Equation 5.10 is clearly satis�ed. Hence, we suppose a 6= 0 in the following.1. Case u((x; y)T) = ax2 + by.We deal with the case b = 1, the case b = �1 being similar. The level lines of u are parabolae,so that we can use Proposition 16 to computeE�(u)(x0) = � ) x0 2 E�(fy = �ax2 + �g)) x0 2 fy = �ax2 + !((�2a)+) 13� 23 + b�g);so that E�(u)(x0) = u(x0) + !((2a)�) 13� 23 :On the other hand,A(u)(x0) = ��(ux)2uyy � 2uxuyuxy + (uy)2uxx��� 13 (x0) = (2a�) 13 ;so that u satis�es Equation 5.10 (with no remainder).2. Case u((x; y)T) = ax2 + by2, ab > 0.The case b = 1 is obvious since E�(u) = u and A(u) = 0. Thus we suppose that b = �1and a < 0. The level line fu(x) = �g is empty if � > 0, and it is an ellipse with area�j�jjaj�1=2 otherwise. Hence, we can apply Proposition 12 and a simple computation based onthe asymptotic expansion (4.4) yieldsE�(u)(x0) = u(x0) + !(8au(x0)) 13� 23 + O(� 43 );and A(u)(x0) = (8a(ax20 � y20)) 13as expected.3. Case u((x; y)T) = ax2 + by2, ab < 0.The level lines of u are hyperbolae, and the reasoning is similar to Step 2 using Proposition14. �Proposition 23 (Consistency) Let u be a k-Lipschitz image of class C3 near x0, then as� ! 0, E�(u)(x0) = u(x0) + ! � � 23 � jDuj(x0) [
�(u)(x0)] 13 + O(� 34 );D�(u)(x0) = u(x0) + ! � � 23 � jDuj(x0) [
+(u)(x0)] 13 + O(� 34 );



5.5. ASYMPTOTIC BEHAVIOUR OF THE AFFINE EROSION 99Proof :u being a C3 near x0, we can consider ~u, its Taylor expansion at order 2 near x0. Thus,u(x) = ~u(x) +O(jx� x0j3)as x! x0. From Lemma 12, we deduce that as � ! 0,E�(u)(x0)� E�(~u)(x0) = O(� 34 );and using Lemma 13 we get as expectedE�(u)(x0) = u(x0) + ! � � 23 � jDuj(x0) [
�(u)(x0)] 13 +O(� 34 ):The consistency for D� follows immediatly since D�(u) = �E�(�u). �Remark : In fact, the consistency is uniform in a neighborhood of x0.Next, we extend this consistency property to the alternate operators D� �E� and E� �D�.We �rst prove that they satisfy a Local Comparison Principle.Lemma 14 Let u and v be two k-Lipschitz images such that u > v on D(x0; r). Then,8x 2 D(x0; r4); D� �E�(u)(x) > D� �E�(v)(x)� 6k�r ;and the same inequality holds for E� �D�.Proof :The proof is a direct consequence of Lemma 7. We know that for x 2 D(x0; r2), we haveE�(u)(x) > E�(v)(x)� 2k�r ;which we rewrite �E�(v)(x) > �E�(u)(x)� 2k�r :Now, from Lemma 10, �E�(u) is also k-Lipschitz, as well as �E�(v)� 2k�r . Hence, we can applythe Uniform Local Comparison Principle once again to obtain8x 2 D(x0; r4); E� [�E�(v)(x)] > E� ��E�(u)(x)� 2k�r �� 4k�r ;which yields D� �E�(u)(x) > D� �E�(v)(x)� 6k�ras announced. �



100 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESTheorem 4 (Consistency) Let u be a k-Lipschitz image of class C3 near x0, then as � ! 0,T�(u)(x0) = u(x0) + ! � � 23 � jDuj(x0) [
(u)(x0)] 13 +O(� 34 );for both T� = D� �E� and T� = E� �D�.Proof :We check that the proof of Proposition 23 can be applied here. First, the consistency of thealternate operators for second order polynomials is straightforward since for such polynomialsE� �D�(u) and D� �E�(u) are both equal to either E�(u) or D�(u). Last, the locality propertyof Lemma 12 for D� �E� and E� �D� is a direct consequence of Lemma 14. �Remark : As for E�, one easily proves that the consistency property of Theorem 23 is uniformnear x0.5.6 Using Matheron's TheoremThere is another way to establish the consistency of the operator E� : it is based on Matheron'scharacterization of monotone morphological operators and on a consistency Theorem due toF.Guichard and J.-M.Morel (see [41]).Theorem 5 (Matheron) Let T be a translation invariant monotone4 morphological5 operatoron a set of functions F containing the characteristic functions of all the level sets of the elementsof F . Then, one can �nd a family B of subsets of FR2 such that8u 2 F ; T (u)(x) = supB2B infy2B u(x+ y):Indeed, the operator E� being translation invariant, nondecreasing and morphological, theMatheron's characterization applies and we can write, for any l.s.c. image u,E�(u)(x) = supB2Be infy2B u(x+p� � y):We should take Be = fX � FR2; 0 2 E1(X)g;but from Lemma 7 we know that it is su�cient to takeBe = fX bounded C� set; 0 2 E1(X)g:Thus, E� belongs to the class of a�ne invariant inf-sup operators which have been studied in[41]. In particular, we can expect to use the following consistency theorem :4i.e. nondecreasing5i.e. satisfying [Morphological Invariance].



5.6. USING MATHERON'S THEOREM 101Theorem 6 (F.Guichard, J.-M.Morel) Let B be a localizable set of plane closed nonemptybounded sets which is invariant by the special linear group SL(FR2). Then, there exists twoconstants c+ and c� depending on B such that, for any image u C3 in a neighbourhood of x0,infB2Be supy2B u(x+ps � y) = u(x0) + s2=3 jDu(x0)j g (curv(u)(x0)) + o(s2=3);where g(r) = c+ r 13 if r > 0= c� (�r) 13 if r < 0:To apply Theorem 6 to the a�ne erosion, the only requirement we have to check is that thebasis Be is localizable in the following sense (see [41]).Proposition 24 (Localizability) The basis Be associated with the a�ne erosion operator islocalizable, i.e. there exists a constant c > 0 such that8r > pc; 8B 2 Be; 9B0 2 Be; B0 � D(0; r) and �(B0; B) 6 cr:Here, the notation D(0; r) represents the open disk of radius r centered at the origin, and�(B0; B) means the Hausdor� semi-distance between B0 and B, given by�(B0; B) = supx02B0 d(x0; B) = supx02B0 infx2B jx� x0j:Proof :The proof is similar to the proof of the Local Comparison Principle (Proposition 22), whichis not surprising.1. Given r > 1 and a set B element of Be, we have 0 2 E1(B) and by De�nition of E1(B)we can �nd a C-set A included in B such that 0 2 E1(A) (i.e. A 2 Be). We consider the1r -Euclidean dilation of A restrained to the disk D(0; r), i.e.B0 = fx 2 D(0; r); d(x; A) 6 1r g:B0 is a C-set containing A \D(0; r), contained in D(0; r), and�(B0; B) 6 �(B0; A) + �(A;B) 6 1r + 0:Now we are going to prove that B0 2 Be, that is to say that 0 2 E1(B0).Suppose that 0 belongs to D, a chord segment of B0 associated to a chord set K of area �(see Figure 5.7). Two cases can be distinguished.



102 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGES1.a. If A\K � D(0; r), then a subset of K de�nes a chord set of A containing 0 and of areano more than �. But since A 2 Be, we necessarily have � > 1.1.b. If A \K is not a subset of D(0; r), which means that K \ @D(0; r) is not empty, thenwe can easily inscribe in K a triangle of base larger than r and height 1r (see Figure 5.7), so thatwe get � = area (K) > 1.In both cases, 0 belongs to no 1-chord set of B0, so that B0 2 Be. Consequently, we provedthat 8r > pc; 8B 2 Be; 9B0 2 Be (C� set); B0 � D(0; r) and �(B0; B) 6 1r ;which ensures that Be is localizable with a constant c = 1. �
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rFigure 5.7: Area of K is greater than 1Hence, Theorem 6 applies to Be and we have, for any image C3 near x0,E�(u)(x0) = supB2Be infy2B u(x0 +p� � y) = u(x0) + jDu(x0)jg (curv(u)(x0)) � 23 + o(� 23 ); (5.11)where g(r) = c+ r 13 if r > 0= c� (�r) 13 if r < 0:At this stage, one easily checks that c+ = 0 and c� = ! = 12 �32�2=3.In [41], the consistency of the alternate operators is proved only when B is made of allunit area convex sets symmetrical with respect to 0, and the proof is based on a more preciseestimation of the inf-sup and sup-inf operators in this case.However, it seems that the method we used in the previous section still works for anylocalizable basis of structuring elements invariant by SL(FR2) (and in particular for Be). Since



5.7. CONVERGENCE 103the consistency mainly requires a local comparison principle, we only need to check that thealternate operators ISs �SIs and SIs � ISs satisfy the following local comparison principle. Theproof is more or less the same as for Lemma 14.Lemma 15 If B is localizable and invariant by SL(FR2), and if u and v are two k-Lipschitzfunctions in D(x0; r) satisfying u 6 v in D(x0; r), then for any s 6 c�1r2,ISs � SIs(u)(x0) 6 ISs � SIs(v)(x0) + kcsr ; (5.12)where c depends only on B. The same property holds for ISs � SIs.Proof :First, we know from [41] that (5.12) is satis�ed for both SIs and ISs, taking c = cB. Butsince c�1r2 does not depend on x0, (5.12) is satis�ed for SIs and ISs in the whole disk D(x0; r2)as soon as s 6 2c�1r2=4, provided that we take c = 2cB. Hence, we can apply once again theLocal Comparison Principle to deduce that for any s 6 c�1r2, (5.12) is satis�ed for ISs � SIsand SIs � ISs, with c = 4cB. �Hence, we can generalize the consistency property of [41] for the alternate operators ISs�SIsand SIs � ISs for any localizable and a�ne-invariant basis of structuring elements.5.7 ConvergenceAs we know that the a�ne erosion of images is consistent with the AMSS, it is natural towonder whether the iterated in�nitesimal a�ne erosion spans exactly the a�ne morphologicalscale space. The answer is yes, and the proof is classical (see [9], [22], [41] and [20]). The onlyre�nement we bring is that we allow non uniform subdivisions.De�nition 18 A subdivision of an interval [a; b] is a �nite sequence s = (s0; s1; : : :sn) such thata = s0 6 s1 6 : : : 6 sn = b. The step of s isjsj = sup16i6n(si � si�1):In the following de�nition, S(FR2) is the set of 2� 2 symmetric real matrices.De�nition 19 A function F : S(FR2)� FR2 ! FR2 is elliptic if8 (p;X; Y ) 2 FR2 � S(FR2)� S(FR2); X 6 Y ) F (X; p) > F (Y; p):Theorem 7 Let F be a continuous elliptic function, and Th an operator on Lipschitz images(the Lipschitz constant being preserved). Suppose that Th commutes with additions of constants,contrast changes and translations, and that for any u C3 near x0,Th(u)(x0) = u(x0) + hF (D2u(x0); Du(x0)) + o(h): (5.13)



104 CHAPTER 5. AFFINE EROSION OF GREY-LEVEL IMAGESGiven a Lipschitz image u0, we de�ne, for any subdivision s of [0; t],us(x; 0) = u0(x) andus(x; si+1) = Tsi+1�si us(x; si):Then, as jsj ! 0, us(:; t) converges uniformly on every compact subset of the plane towards afunction x 7! u(x; t), the unique viscosity solution of8>><>>: @u@t = F (D2u;Du)u(x; 0) = u0(x):The proof can be found in [41] for example.Corollary 8 Let u0 be a Lipschitz image, and us(�; si) the �ltered images obtained as in theorem7. Then, as jsj ! 0, us(:; t) converges uniformly on every compact subset of the plane to theunique viscosity solution of the AMSS partial di�erential equation@u@t = ! � jDujg(curv(u));subject to initial condition u(x; 0) = u0(x), whereg(c) = (c+) 13 if Th = Eh3=2 ;= (c�) 13 if Th = Dh3=2 ;= c 13 if Th = Eh3=2 �Dh3=2 or Th = Dh3=2 �Eh3=2 :with as usual ! = 12 �32�23 .Proof :We apply the previous theorem to the operators Eh3=2 ; Dh3=2 ; ::: and their associated contin-uous elliptic function F (D2u;Du) = ! � jDujg(curv(u)):The required consistency property (Equation 5.13) is a direct consequence of Theorem 4. �Remark : Following [22], we could also use the meanMh = 12(Eh3=2 +Dh3=2)instead of the alternate operators Eh3=2 � Dh3=2 and Dh3=2 � Eh3=2 . The consistency followsimmediatly from the consistency of Eh3=2 and Dh3=2 , and the convergence theorem still applies.This \mean" operator has one advantage : it is symmetric, so that the resulting scheme is fullyinvariant under a contrast reversal (whereas the alternate scheme is only asymptoticly invariantunder a contrast reversal). However, Mh does not satisfy the morphological invariance axiom,and it creates new grey levels on images.



Chapter 6Numerical schemeNumerically, a curve is nothing but a �nite set of numbers which are interpreted as coordinatesor parameters to produce a continuous curve. The simplest way to represent a curve numericallyis to de�ne it as a polygon, but some higher order representations, e.g. splines, have appearedto be more e�cient for some applications.Many reasons lead to choose the polygonal representation to implement the a�ne erosionon curves. The polygonal representation is very simple, a�ne invariant, and the level lines of agrey-level discrete image are naturally de�ned as polygons if we consider the pixels as squares.But the major advantage of this representation in our case is, as we shall see further, that wecan compute exactly the a�ne erosion of a polygon. The lack of regularity of polygons (not C1everywhere) shall not be a problem, since most of the previous analyses apply to piecewise C1curves.Obviously, neither the a�ne erosion nor the AMSS of a polygon is a polygon. But sinceno simple dense set of parameterized curves satis�es this property (as far as we know), anapproximation is always required to iterate the a�ne erosion. The main advantage of beingable to compute exactly the a�ne erosion of a polygon is that we can fully dissociate the twoapproximate operations required to compute the AMSS : the scale quantization step (we have toiterate the a�ne erosion several times) and the space quantization step, which is necessary towork on discrete data. By processing these two steps successively and independently, we avoida classical trap which prevents geometrical algorithms from satisfying the [Inclusion Principle]and [A�ne Invariance] properties. In particular, our method sets no a priori relation betweenthe number of vertices of a polygon and the number of vertices of the polygon resulting on theapproximation of its a�ne scale space at any scale : this number can drastically increase (caseof a triangle) or decrease as well (case of a very \noisy" curve). In other words, our algorithmprocesses a polygon as a curve and not as a set of points, and for that reason it is not a pointevolution scheme.In this chapter, we describe exactly the a�ne erosion of a polygon, convex or not. Thenwe give a simple numerical algorithm to compute the a�ne erosion of convex polygons, as well105



106 CHAPTER 6. NUMERICAL SCHEMEas an exact algorithm in the general case. We also present brie
y a simpli�ed algorithm whichruns faster, and produces similar results.6.1 A�ne erosion of a polygon6.1.1 Regular convex caseProposition 25 Let P = P1P2:::Pn be a convex polygon, and 0 < � < �r(P). The �-a�neerosion of P is a C1 curve made of the concatenation of the pieces of hyperbolae Hi;k de�ned byEquations 6.2 to 6.7, the couples (i; k) satisfying Equation 6.1 and being sorted in lexical order.Proof :If P = P1P2:::Pn is a (positively oriented) convex polygon and 0 < � < �r(P), we knowfrom Theorem 1 that E�(P) is made exactly of the middle points of the �-chord segments ofP . Consider two non-parallel edges [Pi�1Pi] and [PkPk+1], then there exists �-chords whoseendpoints lie on [Pi�1Pi] and [PkPk+1] if and only if12 [IPk ; IPi] 6 � + �i;k 6 12 [IPk+1; IPi�1] ; (6.1)where I is de�ned as I := (Pi�1Pi) \ (PkPk+1): (6.2)and �i;k := area (IPi:::Pk) (6.3)(see Figure 6.1). In this case, we know from Proposition 1 that the middles of the �-chordsegments whose endpoints lie on [Pi�1Pi] and [PkPk+1] span a piece of hyperbolaHi;k : M(t) = I + �(etIPk + e�tIPi); t1 6 t 6 t2 (6.4)whose apparent area is � + �i;k = 2�2 [IPk; IPi] ;so that � = s � + �i;k2 [IPk; IPi] : (6.5)We need to compute the endpoints of Hi;k, i.e. the value of t1 and t2. Two cases happenfor t1 : if area (IPi�1Pk) > � + �i;k, there exists a �-chord segment [Pi�1J ] where J 2 [PkPk+1](see Figure 6.1), otherwise there exists a �-chord [JPk ] where J 2 [Pi�1Pi]. In the �rst case, wehave I + 2� � e�t1IPi = Pi�1;
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I J k+1Figure 6.1: Piece of hyperbola resulting from two edges.whereas I + 2� � et1IPk = Pkfor the alternative case. Symmetrically, one easily checks that if area (IPiPk+1) > � + �i;k wehave I + 2� � et2IPk = Pk+1;and I + 2� � e�t2IPi = Pi otherwise:In other words,t1 = � ln dist(I; Pi�1)2� � dist(I; Pi) if area (IPi�1Pk) > � + �i;k; t1 = � ln(2�) otherwise; (6.6)t2 = ln dist(I; Pk+1)2� � dist(I; Pk) if area (IPiPk+1) > � + �i;k; t2 = ln(2�) otherwise: (6.7)The admissible hyperbolae Hi;k are encountered on E�(P) in lexical order, that is Hi;k <Hi0;k0 means either \i < i0" or \i = i0 and k � i < k0 � i < k � i + n modulo n". The reasonis very simple : as we know that E�(P) is convex, we must consider the �-chords segments ofP in such an order that the angles of their directions increase continuously on S1. Thus, theprevious assertion simply results from the inequalityi 6 j 6 k ) �(PiPj) 6 �(PiPk) 6 �(PjPk) < �(PiPj) + 2�;where �(v) measures on S1 the angle between a �xed vector and the vector v. �



108 CHAPTER 6. NUMERICAL SCHEME6.1.2 Non regular convex case (removing ghosts parts)When P is a convex polygon and � > �r(P), we noticed in Chapter 3 (see Figure 3.13 forexample) that \ghosts parts" can appear in the curve made of the middle points of the �-chordsegments of P . We cannot avoid this situation since �r(P) = 0 for some polygons. Moreover, wesaw in Chapter 4 that we could hope to iterate the a�ne erosion with rather large scale steps ;to this aim, we must be able to compute the a�ne erosion of any polygon with arbitrary largescales, and not only when � < �r(P).
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Figure 6.2: Non regular chords span \ghost" hyperbolae.We can see on Figure 6.2 that non-regular chords span \ghost parts", which do not takepart of the a�ne erosion of P . By the way, these \ghost parts" are also hyperbolae, and theirapparent area is equal to A� � + �i;k, A being the area of P . Thus, we can forget these ghosthyperbolae, and E�(P) is included in the collection of hyperbolae de�ned in Proposition 25,with the restriction [Pi�1Pi; PkPk+1] > 0:Now, in order to compute exactly the a�ne erosion of P , we have to compute hyperbolaeintersections in order to remove the remaining \ghost parts". In general, computing the inter-section between two hyperbolae reduces to an algebraic equation of degree 4, but in the situationwe are facing, one can see that when two pieces of hyperbola have a common intersection, theymust have a common axis, so that the problem reduces to a second degree equation which can be



6.1. AFFINE EROSION OF A POLYGON 109solved exactly. Hence, it is quite simple to compute the exact a�ne erosion of a convex polygonfor arbitrary large scales. In the next section, we investigate the general (and more complicated)case of non-convex polygons.6.1.3 General case (non convex polygons)Proposition 26 The a�ne erosion of a (possibly non convex) polygon is one or several gen-eralized \hyperbolic polygon", resulting from the concatenation of segments and convex pieces ofhyperbolae.The proof is straightforward from Proposition 10, because the a�ne erosion can only \create"segments and hyperbolae pieces. If P = P1P2 : : :Pn is a polygon, we can writeE�(P) = I(P)� [16i;k6nC�(Pi : : :Pk);where C�(Pi : : :Pk) is the union of the chord sets of P , with area smaller than �, and resultingfrom chord segments whose endpoints lie on the edges [PiPi+1] and [Pk�1Pk] (with the circularconventions P0 = Pn, Pn+1 = P1 and when k < i, Pi : : :Pk = PiPi+1 : : :PnP1 : : :Pk�1Pk).Let Pi : : :Pk be a polygonal curve, and consider two points (A;B) 2 [PiPi+1]� [Pk�1Pk ]. Weshall say that the segment [AB] is occluded if it is not a chord segment of P = Pi : : :Pk , i.e. iffor some j 2 fi+ 1; : : : ; k� 2g, [AB] \ [PjPj+1] 6= ;:Now, we shall say that the polygonal curve P = Pi : : :Pk is� partially occluded if for at least one (A;B) 2 [Pi; Pi+1[�]Pk�1; Pk], the segment [AB] isoccluded,� totally occluded if all segments [AB], (A;B) 2 [Pi; Pi+1]� [Pk�1; Pk] are occluded.If Pi : : :Pk is totally occluded, it is clear that C�(Pi : : :Pk) = ;. It is equivalent to say that(PiPk) is not a chord of P .Lemma 16 Suppose that Pi : : :Pk is partially (but not totally) occluded, and [PiPi+1; Pk�1Pk] >0. Then one can �nd (A;B) 2 [PiPi+1]�[Pk�1Pk ] such that PiAPi+1 : : :Pk�1BPk is not occludedand C�(Pi : : :Pk) = C�(PiAPi+1 : : :Pk�1BPk):



110 CHAPTER 6. NUMERICAL SCHEMEProof :More than a proof, we give an e�ective construction of A and B. The �rst remark is that ifC�(Pi : : :Pk) = ;, we can choose A = Pi and B = Pk. Hence, we suppose that C�(Pi : : :Pk) 6= ;in the following.Since [PiPi+1; Pk�1Pk] > 0, we can �nd an a�ne map � such such that det� = 1 and�(Pj) = (xj ; yj) in an orthonormal basis, with xi = xi+1 = yk�1 = yk = 0, xk > 0, yi > 0,xk�1 < xk and yi+1 < yi (see Figure 6.3).
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MbFigure 6.3: Solving partial occlusions.Now, consider four positive real numbers a; b; x; y and look at Figure 6.3. The point M(a; b)belongs to the boundary of the chord set Kx;y of the corner C = FR+ � FR+ if and only ifax + by = 1:In this case, we havearea (Kx;y) = ab+ b(x� a)2 + a(y � b)2 = ab+ b(x� a)2 + ab22(x� a) ;and we can deduce that the �-chord set of C de�ned from the segment [(x; 0); (0; 2�x ] containsM if and only if x belongs to the intervalI�(a; b) = (x; ab+ b(x� a)2 + ab22(x� a) 6 �) :An explicit computation givesI�(a; b) = 24�b 0@1�s1� 2ab� 1A ; �b 0@1 +s1� 2ab� 1A35 ;



6.1. AFFINE EROSION OF A POLYGON 111with the conventions I�(a; b) = ; if the square root is not de�ned, and I�(a; b) = FR if one of a; bis not positive.Let us now de�ne J1 = \i+26j6k�2 I�(xj ; yj)(with the convention J1 = FR if i+ 2 > k � 2), andJ2 = [max(0; xk�1); xk] \ �2�yi ; 2�max(0; yi+1)�(with the convention 1=0 = +1). Since we supposed C�(Pi : : :Pk) 6= ;, J1 \ J2 is not emptyand we can write J1 \ J2 = [z1; z2]. Then, one checks easily that the two pointsA = ��1 �(0; 2�z2 )� and B = ��1 ((z1; 0))satisfy the conclusion of the Lemma. �We investigate the possible \shapes" of C�(Pi : : :Pk). According to the previous Lemma, wecan suppose without loss of generality that no occlusions appear. In the following, area (Pi : : :Pk)means the algebraic area of the polygon PiPi+1 : : :Pk, de�ned for example byarea (Pi : : :Pk) = 12 Xi<j<k [PiPj ; PiPj+1] :If area (Pi+1 : : :Pk�1) > �, any chord segment whose endpoints lie on [PiPi+1] and [Pk�1Pk ]de�nes a chord set of area greater than �, so that C�(Pi : : :Pk) = ;. Hence, we shall supposethat area (Pi+1 : : :Pk�1) 6 � in the three following cases which remain.� case 1 (regular case) : If area (Pi : : :Pk) > � and [PiPi+1; Pk�1Pk ] > 0, the insideboundary of C�(Pi : : :Pk) is made of a piece of hyperbola, completed with two half-chord seg-ments at its endpoints (see Figure 6.4).� case 2 (reverse case) : If area (Pi : : :Pk) > � and [PiPi+1; Pk�1Pk ] 6 0 the insideboundary of C�(Pi : : :Pk) is a polygonal curve of the kind A
B, where (A;B) 2 [PiPi+1] �[Pk�1Pk ]. The point 
 is obtained as the intersection between the two �-chord segments de�nedfrom A and B. Remember that as in the convex case, either A = Pi or (A; Pk�1) is a �-chord(and a symmetrical alternative holds for B). As we noticed previously, the ghost hyperbolaspanned by the �-chord segments is strictly contained in C�(Pi : : :Pj) and does not contributeto its boundary (see Figure 6.5).� case 3 (sub-area case) : If area (Pi : : :Pj) 6 �, the inside boundary of C�(Pi : : :Pj) issimply the segment PiPj+1.
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6.2. ALGORITHM 1136.2 AlgorithmNow are now in position to describe an exact algorithm to compute the a�ne erosion of anypolygon. It consists of three steps.Step A : We collect all the pieces of curves which can possibly be part of E�(P). As we noticedpreviously, these pieces are of three kinds (see Figure 6.6).1. The valid pieces of hyperbola Hi;k described previously, completed with their two halfchord segments at their endpoints. As we noticed before, the interval [t1; t2] de�ningeach piece of hyperbola (Equation 6.4) may have to be shortened in case of partialocclusions (see Lemma 16).2. The two \limit" �-chord segments of each ghost piece of hyperbola resulting fromnon-regular chords.3. The �0-chord segments (0 6 �0 6 �) de�ned by two vertices in the sub-area case.
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Figure 6.6: The three kinds of curves encountered in the a�ne erosion of a polygonStep B : We remove the useless pieces of curves according to their position. More precisely, witheach piece of curve C obtained in step A we associate two numbers a(C); b(C) representingthe starting point of the �rst chord segment spanning C and the endpoint of the last chordsegment spanning C : since these points belong to the polygon P , we can represent them asnumbers i+�, meaning the point (1��)Pi+�Pi+1. The key point of this representation isthat two pieces of curves C1 and C2 obtained in Step A have a common intersection if andonly if the intervals [a1; b1] and [a2; b2] are not disjoint. Therefore, if a1 < a2 < b2 < b1,the piece of curve C2 is useless and can be removed.Step C : We compute the intersections between the remaining pieces of curves (sorted with respectwith their starting number a). At this stage, we may have to compute intersections between



114 CHAPTER 6. NUMERICAL SCHEMEtwo segments, between a segment and an hyperbola, or between two hyperbolae. The two�rst cases reduce to equations of degree 1 and 2 respectively. The last case (intersectionof two hyperbolae) can be more di�cult. If the two hyperbolae have a common axis, thenthe intersection equation is of degree 2 and can be solved easily. However, in more generalcases (which happen), we can have two solve an algebraic equation of degree 4 ; if so, wecompute the intersection by using Newton's algorithm, which converges in a few iterations.Now, for each intersection, we remove from each of the two curves the parts which are \onthe right" of the other one, according to the de�nition of the a�ne erosion. We have tomaintain | at least, formally| two data structures to process this step correctly : one isthe original set of curves obtained from step B, the other is a copy of these curves, updatediteratively as we just explained.We must mention that many intersections simply result from two successive hyperbolae asin the convex case ; to process these intersections, no computation is required : one onlyneeds to remove the two corresponding half-chord segments.Finally, we obtain the a�ne erosion of the polygon as the concatenation (in the naturalorder) of the pieces of curves obtained from step C. This algorithm is a bit heavy (about 1600lines of C source code), but not too slow for reasonable polygons (1 second or so for a polygonwith 100 vertices). One must be careful when computing the intersections, because of the �nitenumerical precision of the computer (this can be done by considering point equalities modulo arelative error, for instance).Figures 6.7, 6.8 and 6.9 are an example of the results we obtain after steps A, B and C.
Figure 6.7: curves obtained ater step AIn this algorithm, we did not mention the problem of topological changes that occurs whenthe initial polygon breaks into non connected parts (remember that the a�ne erosion does notalways preserve the connectedness). This problem is not very di�cult to handle, but requires a
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Figure 6.8: curves obtained ater step B

Figure 6.9: curve obtained ater step C



116 CHAPTER 6. NUMERICAL SCHEMEhigh computation cost : each time an hyperbola or a segment is computed, one must look fora possible intersection with an edge of the polygon, and break the resulting curve into severalparts when the case happens. Fortunately, such external occlusions are seldom.6.3 A�ne subsampling and iterationSo far, we know how to compute exactly the a�ne erosion of a polygon. To iterate this process,we need to quantize the resulting curve (which is, as we shown, a concatenation of hyperbolapieces and segments) in order to get a new polygon. Fortunately, there is a simple way to samplea piece of hyperbola in an a�ne-invariant way. Consider the parameterizationH : M(t) = �(etv1 + e�tv2); t1 6 t 6 t2 :then (t; t + x) is an "-chord set of H if and only if " = �2(sh x � x), where sh denotes thehyperbolic sine (see the proof of Proposition 14). Hence, the polygon P0P1:::Pn de�ned byPk =M �(1� kn)t1 + knt2�is a discrete a�ne invariant quantization of H with \area step""(n) = �2(sh 1n � 1n):Given " > 0, we can quantize the a�ne erosion of a polygon up to the area step " by choosing,for each piece of hyperbola, the minimum entire value of n such that "(n) 6 ". This can bedone, for instance, by tabling the inverse function n("=�2) for the small values and using, forthe large ones, the expansion n '  �26"! 13 :Not surprisingly, this quantization step is a kind of discrete a�ne erosion of scale ". Thus, aswe want to minimize its in
uence on the a�ne erosion, we must choose " � �, where � is thescale of the computed a�ne erosion. This condition forces the second iteration of E� to benon-local in the sense that the �-chord sets of the resulting approximate polygon contain manyedges (i.e. k � i � 1 for the valid Hi;k, see Figure 6.10). In that sense, our algorithm is quitedi�erent from a local point evolution scheme, for which the scale quantization step must besmall compared to the space quantization step in order to ensure a minimum of stability. Here,the inverse phenomenon happens : the scale quantization step (�) is much larger than the spacequantization step ("). An important consequence is that we can e�ectively iterate only a fewtimes (i.e. with large scale steps) the a�ne erosion to compute the a�ne scale space. Indeed, wedo not loose accuracy since " can remain small and the a�ne erosion remains near its tangentoperator (the A�ne Scale Space) even for rather large scales, as we noticed in Section 2.4.
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Figure 6.10: Two iterations of the a�ne erosion on a triangle. The second iteration is non-localwith respect to the quantization, since each piece of the second iteration curve depends on manypoints of the �rst iteration one.6.4 A simpli�ed algorithmAnother way to implement the a�ne scale space is to iterate a pseudo a�ne erosion, writtenE 0�, which processes separately the convex components of a given piecewise convex closed curve.6.4.1 Pseudo a�ne erosionIf we want to de�ne a kind of a�ne erosion for a non semi-closed curve c | that is, a curvewith two endpoints |, we must choose a boundary condition. Our approach will be to �x theseendpoints : in practice, these endpoints will correspond to in
exion points of a larger curve,and we know that these points do not move at order 1 since the curvature of the curve vanishesat them. How can we de�ne the a�ne erosion of c ? We shall not investigate the problem ingeneral, but one can see easily that for small scales, no external occlusions appear and c itselfis included in the boundary of c� = [S2K�(c)S;so that it makes sense to de�ne E�(c) by@c� = c G E�(c);the symbol t meaning a disjoint union (see Figure 6.11).Let us call �m(c) the maximum scale for which we can compute the a�ne erosion of c asdescribed previously. If no external occlusion appear at any scale (i.e. it the two endpoints of c
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Figure 6.11: A�ne erosion of a non semi-closed curveare a non-zero chord of c), we restrain �m(c) to the area of c (de�ned as the area of the chordset associated to the extremal points of c).Given a piecewise convex closed curve C, we consider the canonical decomposition C =c1c2 : : : cn, the curves ci being de�ned as the convex (or concave) curves extracted from C betweentwo successive junctions (see Chapter 3 and Figure 6.12). For any � < �m(C) = mini �m(ci), wecan de�ne the pseudo a�ne erosion of c byE0�(C) = E�(c1)E�(c2) : : :E�(cn):As for the a�ne erosion, one can prove that the pseudo a�ne erosion of a curve cannot haveany double junction.
Figure 6.12: Pseudo a�ne erosion of a closed curve



6.4. A SIMPLIFIED ALGORITHM 1196.4.2 AlgorithmThe algorithm to compute E 0�(C) when C is a polygon is easy to devise. First, we remark that apolygon has no double junctions, and that its simple junctions are the middle of \in
exion" edges.Then, the algorithm to compute the a�ne erosion of each convex component of C is exactly theone we described previously for convex polygons. Hence, computing E 0�(C) is simpler and fasterthan computing D� �E�(C), since it does not require to compute intersections in general (unlessnon-regular chords happen, which is very rare for small scales).It is clear that E 0� is consistent with the a�ne scale space. However, the inclusion propertyis only satis�ed for small scales, because if C and C 0 are two piecewise convex closed curves, weonly have I(C) � I(C 0) ) 8� 6 min(�m(C); �m(C 0)); I �E 0�(C)� � I �E0�(C 0)� :Another drawback of this simpli�ed algorithm is that if the curve C is very irregular, �m(C)may be very small and a lot of iterations are required to compute the a�ne scale space of C ata large scale. This happens because only a few in
exion points disappear at each iteration.In practice, the simpli�ed algorithm based on the pseudo a�ne erosion is faster and simpler.We checked on experiments (see next chapter) that it produces similar results compared to theexact three-steps algorithm we described previously, provided that the scale steps are chosensmall enough.
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Chapter 7ExperimentsIn this chapter, we present several experiments obtained with the algorithms described in theprevious chapter. We �rst compute the a�ne erosion of some polygonal curves for di�erentvalues of the area parameter, and check the a�ne invariance of the algorithm. We also show thee�ects of the a�ne discretization of the computed curves. Then, we compute the a�ne scalespace of these curves by iterating the a�ne erosion (plus dilation) on them. We compare theresults obtained with the exact algorithm to those obtained with the simpli�ed algorithm basedon the pseudo a�ne erosion.7.1 A�ne erosionsOn the following experiments (Figure 7.1 to 7.6), the a�ne erosion E�(C) of an initial curve C isrepresented for di�erent values of the area parameter �, actually taken in arithmetic progression.We begin with simple polygons and end with more complicated polygonal curves. It is importantto notice that this representation is NOT the a�ne scale space of the initial curve C, sincethe a�ne erosion operator is not iterated but simply computed for the same initial curve andincreasing values of the area parameter. We shall compute later the corresponding a�ne scalespaces.These �gures can also be viewed as the level sets of an \a�ne distance" function x 7! d(x; C).For any point x lying inside a closed curve C, d(x; C) can be de�ned as the smallest area of apositive chord set of C enclosing x, i.e.d(x; C) = infK2K+(C); x2K area (K):In particular, we have d(x; C) = 0 if and only if x 2 C, andE�(C) = fx 2 I(C); d(x; C) = �g:To give an example, computing the 67 iterations of Figure 7.2 takes 0.3 second (CPU time)on a HP 735/125 station. 121
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Figure 7.1: A�ne erosions (modi�ed square)



7.1. AFFINE EROSIONS 123

Figure 7.2: A�ne erosions (teeth polygon)
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Figure 7.3: A�ne erosions (non-symmetric star)
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Figure 7.4: A�ne erosions (rough circle)
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Figure 7.5: A�ne erosions (exact circle)
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Figure 7.6: A�ne erosions (regular curve)



128 CHAPTER 7. EXPERIMENTS7.1.1 DiscretizationThe next experiments (Figures 7.7 to 7.9) highlight the a�ne invariance property of the dis-cretization process we described in the previous chapter. The a�ne erosion of some of theprevious curves is computed for increasing values of the area parameter, and with a rather largesub-sampling area step in order the discretization to be easily seen. Notice how the samplingadapts to the resulting curve.

Figure 7.7: Discretized a�ne erosions (triangle)
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Figure 7.8: Discretized a�ne erosions (modi�ed square)
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Figure 7.9: Discretized a�ne erosions (teeth polygon)



7.1. AFFINE EROSIONS 1317.1.2 A�ne InvarianceWe now check the a�ne invariance of the exact algorithm described in the previous chapter.We apply an a�ne transformation to the initial curve of Figure 7.2 and then compute the a�neerosion for the same values of the area parameter (Figure 7.10). The inverse a�ne transformationbeing applied (Figure 7.11), we check that we obtain the same result as Figure 7.2.We use the same method to check that the discretization is a�ne invariant too (Figure 7.13to be compared to Figure 7.9).
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Figure 7.10: A�ne erosions (distorted teeth polygon)
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Figure 7.11: Inverse a�ne transformation of the previous �gureAccording to the theory, we obtain the same result as on Figure 7.2.
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Figure 7.12: Discretized a�ne erosions (distorted teeth polygon)
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Figure 7.13: Inverse a�ne transformation of the previous �gure



136 CHAPTER 7. EXPERIMENTS7.2 A�ne scale spaces7.2.1 Exact algorithmThe following experiments simulate the a�ne scale space on non-convex polygonal curves, asobtained by iterating the exact algorithm . Each curve corresponds to one iteration of the a�neerosion plus dilation, computed using the exact algorithm described in the previous section. Aspredicted by the theory, the curves collapse in a \elliptically shaped" point (see [67]).Computing the 29 iterations of Figure 7.18 takes 6 minutes (CPU time) on a HP 735/125station. The number of sampled points reaches 700 for some iterations and the number ofcomputed curves (hyperbolae and segments) attains 1600.



7.2. AFFINE SCALE SPACES 137
Figure 7.14: A�ne scale space (triangle)

Figure 7.15: A�ne scale space (clover polygon)
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Figure 7.16: A�ne scale space (non-symmetric star)
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Figure 7.17: A�ne scale space (exact circle)
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Figure 7.18: A�ne scale space (weird polygon) | computation time : 6 minutes



7.2. AFFINE SCALE SPACES 1417.2.2 Simpli�ed algorithmFirst, we check that the simpli�ed algorithm give similar results to the exact one for the previous\weird" polygon : Figure 7.19 is quite similar to Figure 7.18, while the computation time isreduced to 7 seconds (instead of 6 minutes for the exact algorithm).Then, we compute the a�ne scale space of large curves (about 4000 vertices and 1800 convexcomponents for the initial curve represented on Figure 7.27). Notice the �ne precision of Figure7.28, which is impossible to attain with Sethian's algorithm for a reasonable amount of time andmemory. For the \whale" polygon (Figures 7.23 to 7.26), the almost auto-intersections of theinitial curve would probably cause any �nite di�erence algorithm to fail, because the topologicalstructure of the initial curve is very instable under a pixel discretization.
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Figure 7.19: A�ne scale space using the simpli�ed algorithm (weird polygon) | computationtime : 7 seconds
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Figure 7.20: A�ne scale space using the simpli�ed algorithm (teeth polygon)
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Figure 7.21: A�ne scale space (rough circle)
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Figure 7.22: A�ne scale space using the simpli�ed algorithm (regular curve). The computationtime is only 0.9 second, and the algorithm is stable despite the coarse quantization of curves weused here.
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Figure 7.23: whale : initial curve (t=0)

Figure 7.24: whale : �ltered curve (t=100, 200)
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Figure 7.25: whale : �ltered curve (t=1200, 2200, 3200, 4200)

Figure 7.26: whale : �ltered curve (t=5200, 6200, . . . , 16200)
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Figure 7.27: hand : initial curve (t=0)
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Figure 7.28: hand : �ltered curve (t=1)
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Figure 7.29: hand : �ltered curve (t=8)
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Figure 7.30: hand : �ltered curve (t=20)
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Figure 7.31: hand : �ltered curve (t=200)
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Figure 7.32: hand : �ltered curve (t=300, 400, . . . , 1300)
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Figure 7.33: dog : initial curve (t=0)
Figure 7.34: dog : �ltered curve (t=1)
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Figure 7.35: dog : �ltered curve (t=10)
Figure 7.36: dog : �ltered curve (t=100)
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Figure 7.37: dog : �ltered curve (t=1000)

Figure 7.38: dog : �ltered curve (t=1000, 2000, . . . , 18000) | computation time : 2.5 seconds



7.3. AFFINE SCALE SPACE OF NON-CLOSED CURVES 1577.3 A�ne scale space of non-closed curvesSince the simpli�ed algorithm allows to compute a�ne erosions of non-closed curves, it is possibleto compute the a�ne scale space of a non-closed curve by iterating this operator. The need toconsider the a�ne scale space for non-closed curves is explained in [21] : the a�ne scale spaceof non-closed curve can be de�ned thanks to a symmetrization-periodization process (Neumanncondition) which makes the extremities �xed. If the two extremities are distinct, the asymptoticstate is a segment. When they are not, a singularity may appear (see Figure 7.40).
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Figure 7.39: A�ne scale space a a non-closed curve (modi�ed teeth polygon)
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Figure 7.40: A�ne scale space of a circle with a �xed point
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Chapter 8ConclusionIn this study, we presented a geometrical algorithm that can compute the a�ne scale space ofa curve. Compared to Sethian's approach based on an image formulation, it is a faster1 andmore accurate method that allows complicated curve evolutions. Unlike classical geometricalschemes that rely on the computation of �nite di�erences to perform point evolutions (see [65]),our scheme satis�es a natural property (the inclusion principle) that guarantees its numericalstability. It is also fully a�ne invariant, even in its numerical implementation (up to the com-puter precision). Thanks to these properties, the algorithm we proposed should be an interestingalternative to Sethian's approach, especially for shape recognition tasks (see [26]). We basedour method on the iteration of a non-local operator which can be exactly computed on poly-gons. This property allows to separate the two approximation steps required in curve-evolutionalgorithms : the scale step, directly related to the number of iterations required, and the spacestep, i.e. the precision used in the discrete representation of curves. In our algorithm, thecurve evolution between two iterations can be much larger than the quantization step used torepresent the curves, while such a possibility is excluded for classical schemes in order to ensuretheir stability. The consequence is that our algorithm can accurately compute the evolution ofa curve at a large scale in only a few iterations.8.1 ApplicationsAs we just explained, the main practical application of this study should concern Thierry Co-hignac's method for local a�ne shape recognition (see [26]). Indeed, we can hope that his algo-rithm would gain computation time, robustness and accuracy by using our geometrical schemeto compute the a�ne scale space.From a theoretical point of view, it would also be interesting to know what happens to thecharacteristic points of a curve when the evolution step t tends to zero. Our study states that1Since the geometrical algorithm is much more precise than the scalar one, it is di�cult to compare preciselytheir computation costs, but a proportion of 1 for 1000 gives a rough idea of it.161



162 CHAPTER 8. CONCLUSIONthe characteristic area is asymptotically equal to c � t�, c and � being universal constants, but itis likely that the second term of this expansion depends on the a�ne curvature2, which wouldprove that the characteristic points of a curve tend to the extrema of a function of the a�necurvature when t tends towards 0. Be that as it may, we now have an e�cient way to computethe a�ne curvature on a curve, by considering the a�ne curvature of the pieces of hyperbolaewhich compose its a�ne erosion (for a small value of the area parameter of course). Hence, theshape recognition process can be realized by identifying new \characteristic" points de�ned aspoints where the a�ne curvature reaches an extremum.Due to the duality of the image and curve formulation for the a�ne scale space, the iteratedgeometrical a�ne erosion also allows to compute the a�ne scale space of an image accurately.The computational cost is rather heavy since the geometrical scheme must be applied to everylevel curve of the initial image. However, we think that this way of representing an image withoutan inherent grid could be useful for some image processing tasks (zooming for example). Noticeincidentally that this de�nes the �rst purely morphological numerical implementation of theAMSS which does not get \stuck" (see Chapter 2).Last, the properties of the a�ne erosion we investigated in Chapter 3 might be useful inorder to prove the existence of solutions for the geometrical a�ne scale space (which has notbeen done yet, as we explained in Chapter 2).8.2 Further workIn Chapter 6, we de�ned two algorithms that compute the a�ne scale space of a curve : an exactalgorithm, based on the iteration of the a�ne erosion, and a simpli�ed algorithm, where theconvex components of the evolving curve are processed separately at each iteration. We noticedthat this simpli�ed algorithm performs similar evolutions for a much lower computational cost.In fact, the computation cost of the simpli�ed algorithm is proportional to the size of theinput curve (that is, its complexity is linear), whereas in general this cost is approximatelymultiplied by the number of the convex components for the exact algorithm. For non-convexpolygonal curves with more than 100 vertices (which correspond to a rather low precision for acomplicated curve), the di�erence can become important. As it computes almost no intersection,the simpli�ed algorithm is also more robust and easier to implement (\only" 900 lines of C sourcecode). Hence, we think that it would be interesting to study more precisely the correspondingoperator (the pseudo a�ne erosion) that we brie
y introduced in Chapter 6. In particular, itshould be possible to adjust the area step for each iteration automatically in order to obtain thebest compromise between precision and computation time.2we are sure that this is true for one term of the expansion at least, because the a�ne erosion would be thea�ne scale space otherwise.



8.2. FURTHER WORK 163We also think that it would be worthwhile investigating the case of non semi-closed curvesfurther in relation with the work of V.Caselles, B.Coll and J.-M.Morel (see [21]). Accordingto this paper, T-junctions should be kept �xed in order to perform an image evolution thatpreserves occlusions : from a geometrical point of view, this involves the evolution of non semi-closed curves.Extending the a�ne erosion to higher dimensions seems di�cult to achieve, above all inits numerical implementation. However, we think that the general idea we developed could beapplied to several other planar curve evolutions. In particular, it is likely that several othergeometrical curvature-driven evolution equations of the kind@C@t = F (
)N;could be numerically simulated using the same method. The main point is to �nd a non-localoperator satisfying three fundamental properties :1. it is tangent to the evolution semigroup (i.e. consistent with the evolution equation),2. it satis�es the inclusion principle,3. it can be explicitly computed on a dense set of curves (polygons for example).Condition 1 is obviously required. Condition 2 guarantees the numerical stability of the algo-rithm |which is fundamental for a curve evolution scheme| and allows large scale steps (andconsequently a fast algorithm). Condition 3, which may be weakened, enables to process eachiteration without depending on the quantization of the curve.To give an example, let us investigate the case of Mean Curvature Motion (case F (
) = 
),which is the Euclidean analog of the a�ne scale space. The a�ne erosion is based on an areacriterion, since it removes from a set any of its chord set having area less than �. Coming toEuclidean geometry, we can de�ne a chord length-based erosion operator which removes from aset any of its chord set whose chord segment has length lower than a given � (see Figure 8.1).Such an operator is consistent with the Mean Curvature Motion, and we think that it can beused to compute e�ciently the Euclidean shortening of a curve.
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C

δFigure 8.1: Euclidean analog of the a�ne erosion of a convex curveThe dashed curve is obtained by removing from the inside part of C any chord set whose chordhas length �. We conjecture that iterating such an operator leads to a good approximation of theEuclidean shortening 
ow associated to the Mean Curvature Motion.
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Chapter 9Introduction9.1 The depth recovery problemHow can one establish a tridimensional map of a land area ? How can the tridimensionalstructure of a given object be measured ? How can one make a mobile robot perceive thegeometry of an unknown environment ? All these problems are in fact the same : recoveringthe 3D-structure of a scene (land, object, environment) that can be observed. This problemof structure recovery has motivated many researches for the last twenty years, and multi-imageanalysis has been quickly identi�ed as the most promising technique. Special devices like lasertelemeters have sometimes been used, but for the time being their e�ciency seems limited tovery particular applications. As regards multi-image analysis, it is based on a simple geometricobservation that everybody made once when looking through the side window of a car or atrain : when one observes the landscape, the nearest objects \move" quicker than the farthestones as the vehicle goes forward. Human stereo-vision is based on the same principle : betweentwo observations from slightly di�erent points of view (the two eyes), the relative positions ofobjects change according to their distance to the observer.Inspired by human vision, researchers have studied in detail the technique of stereo visionanalysis in the last two decades, in particular in association with edge-matching techniques. Theprinciple is simple : the computer gets two pictures of the same scene from two cameras, thenit detects on both images some features, for example, edges given by brisk contrast changesalong straight lines. Last, it tries to match these edges (that is to say, it tries to associate eachedge of the �rst image to its corresponding edge in the second image), and �nally it recoverstheir depth by analyzing their relative position between the two images. This technique, after acertain success in the beginnings, �nally appeared as insu�cient for several reasons.First, a simple analysis proves that the precision obtained in the determination of the depthis better when the cameras are far from each other, whereas the matching process is easier whenthey are close to each other. This incompatibility forced people to �nd a compromise betweenprecision and robustness. 167



168 CHAPTER 9. INTRODUCTIONAnother problem with edge-matching techniques is that they are more or less limited toarti�cial environments, because they require scenes with strongly-determined edges. In the caseof natural textured scenes (e.g. a grass �eld), they are ine�cient, and it can be a real problemto �nd alternative features to match.Although edge-matching techniques were still receiving a lot of attention, some researcherstried to overcome the incompatibility between robustness and accuracy by considering wholesequences of images instead of only two images : the question of \depth from motion" was born.Even if the key to depth recovery is the same as to stereovision (analysis of the relative positionof scene objects), using a large number of images appeared to bring great improvements. Ofcourse, such a point of view was possible thanks to the increasing power of computers, both instorage capacity and in computation speed. Indeed, it is important to notice that a reasonablesequence of images (say 100 images of size 512x512 in 256 colors) represents 25 Mo of memory,which can be analyzed in a few minutes by a good workstation (for a simple algorithm). With50 frames per second, this means that real-time movie analysis cannot be performed by nowunless massive parallel machines are used.The \depth from motion" problem (also called \structure from motion") was investigatedmainly in two di�erent ways. The �rst and probably most natural way is a generalization ofstereovision techniques : the idea is to track robust features (edges, corners, . . . ) in the successiveimages and to deduce their depth from their velocity. This kind of method (see [35] for example)is only e�cient for a certain kind of scene (typically, a high-contrasted arti�cial scene), due tothe necessary use of edge-detection (or more generally, feature-detection) techniques.The second approach for \structure from motion" was inspired by the classical Lagrangianformulation of the problem. It is based on the following Lambertian assumption : the color ofa physical point does not depend on the point of view it is observed from. This assumptionimplies the famous \Motion Constraint Equation", which determines on the image sequencewhat is called the optical 
ow : this is simply the apparent velocity 
ow induced in the sequenceof images by the apparent movement of the scene (induced itself by the camera movement).Numerous techniques have been developed in order to determine optical 
ow, but their e�ciencyis still debatable because of the stringent hypotheses they rely on (see [11] or [62] for detailedstudies). In fact, the main di�culty of the general \structure from motion" problem in itsLambertian approach is that the system produced by the Motion Constraint Equation is under-determined : there are more unknowns than scalar equations. Even worse, the optical 
owis not su�cient to recover the depth of objects for a general camera movement. Researcherstried to overcome the di�culty by writing regularity constraints, but this only brought partialsolutions (or partial failures, depending on the point of view). In this context, the concept ofactive vision emerged (see [1]) : \Most classical ill-posed problems of image sequence processingbecome well-posed and robust when the processing system controls the motion of the camera". Of



9.1. THE DEPTH RECOVERY PROBLEM 169course, such an assumption is not always relevant, for most image sequence analyzers are notreal-time processes. However, the weakened and less restrictive assumption of a known cameramovement (pre-determined or not) seems to be a good compromise : this will be our point ofview.During this study, we shall consider image sequences produced by a moving camera lookingat a �xed scene (i.e. with no moving objects1). In addition, we shall make the assumptionthat the camera horizontal plane is �xed. This means that the optical axis of the camera andthe horizontal axis of the image plane2 remain in a �xed plane. In order to check that thiscondition is not too restrictive, we give some examples of camera movements which satisfy thisassumption.1. Pure translation motion with transversal observation.The camera path is a straight line parallel to the horizontal axis of the camera, andthe optical axis remains orthogonal to this line (see Figure 9.1). This situation happenswith a camera looking through the side window of a moving vehicle, to go back to our�rst example. This motion also occurs when an observation plane 
ies over a region atconstant altitude with the camera optical axis pointing downwards3. Solving the depthrecovery problem in this case enables to establish a 3D-map of the region which has been
own over. This camera movement will be our reference framework in the following.
camera

horizontal axis

optical axis

camera motion

3D scene

Figure 9.1: Pure translation motion.2. Circular motion.1Notice that it is equivalent to suppose that the camera is �xed and the whole scene has a rigid motion.2The image plane, also called retinal plane or focal plane, is the plane where the physical image is producedby the optical lens system of the camera.3However, we shall see later that our study can be adapted when the altitude of the plane varies with time orwhen the camera is not exactly pointing downwards.



170 CHAPTER 9. INTRODUCTIONThis kind of motion is more adapted to the determination of the 3D-structure of a givenobject. The camera path is a circle, and the camera optical axis is constrained to pointtowards the center of this circle (see Figure 9.2). This motion also naturally occurs fornon-geostationary satellites.
camera motion

3D object

Figure 9.2: Circular motion.3. \Radar" motionThe camera has a pure rotational motion, and the optical axis remains orthogonal to therotation axis (see Figure 9.3).
camera

3D scene

camera
motion

Figure 9.3: \Radar" motion.The important aspect of the assumption we make on the camera movement is that it con-strains the apparent movement of objects to be horizontal in the image plane. The three exam-



9.2. GEOMETRIC FRAMEWORK 171ples we gave prove that it is not too restrictive when the camera motion can be controlled. Ithas often been used in previous works (see [13] and [57] for example).9.2 Geometric frameworkWe now come to more precise de�nitions and notations.Consider a surface � of FR3 represented by the graph of the depth function Z(X; Y ). Supposethat � is observed under a perspective projection4 by a camera centered in (C; 0; 0), withfocal length a and an optical axis directed by the Z axis (see Figure 9.4). Each point M =(X; Y; Z(X;Y )) of � is projected on the image plane � : Z = a into P = (x; y) = �(M) de�nedby 8>>>><>>>>: x = a X � CZ(X; Y )y = a YZ(X; Y ) (9.1)
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observed surface
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C: optical center

a: focal lengtha Figure 9.4: Scene geometryConversely, given a point P of the image plane, we can de�ne �(P ) 2 � as the closest pointto P on the half line [CP ), when it exists. Thus, � is a right inverse of � since � � � is theidentity map of �(�).Now, if � is a Lambertian surface characterized by its luminance U(M), the camera producesthe intensity image u : P 7! U(�(P )), up to an increasing rescaling depending on the intensitycalibration of the camera. Notice that when the half line [CP ) intersects � more than once,an occlusion arises, and only the nearest point (i.e. �(P )) is observed, the other ones beingmasked by it.4This model of projection holds for classical \pinhole" cameras.



172 CHAPTER 9. INTRODUCTIONWe extend this to the case when the camera is moving along the X axis, the optical centerfollowing the path (C(�); 0; 0), where � is the time variable. This way, we de�ne the maps�� : � 7! � and �� : � 7! �, and the image u : P 7! u(P ) becomes amovie u(P; �) = U(��(P )),that is to say a continuous sequence of images regarded as a scalar map de�ned on a subset ofFR3.The aim of our study is to compute the geometry of � | its observed part actually | fromthe redundant information contained in the movie (x; y; �) 7! u(x; y; �), knowing that it shouldsatisfy the fundamental equationu�aX � C(�)Z(X; Y ) ; a YZ(X; Y ) ; �� = U(X; Y ): (9.2)9.3 Velocity �eldTo simplify the problem, we shall now suppose that no occlusion appears (we shall discuss thegeneral case later). Then, the relation M 7! P is bijective, that is to say we have � = ��1 on�(�). This induces a bijective relation between the scalar image maps f : � � FR ! FR andtheir corresponding scene maps F : �� FR! FR de�ned byF (M; �) = f(��(M); �) = f(P (�); �):Consider now a point M of �. Projected on the movie, this point describes the movementP (�) = ��(M), whose velocity can be determined from Equation 9.1 :dPd� = (dxd� ; dyd� ) with dxd� = � aC0(�)Z(X; Y ) and dyd� = 0;C0 meaning the derivative of C. Following this idea, we can de�ne the derivative of an imagemap f along the real movement by@F@� = dd� f(P (�); �) =� Df; dPd� � +@f@� = dxd� � @f@x + @f@� :In particular, if Equation 9.2 is satis�ed, the derivative of u along the movement must bezero, because the corresponding scene function U(M) does not depend on �. This implies aspeci�c formulation of the Motion Constraint Equation,dxd� � @u@x + @u@� = 0: (9.3)From this equation, it is natural to de�ne the apparent velocity �eld of the movie byv := � @u@�@u@x ; (9.4)when @u@x 6= 0, remembering that if a scene interpretation exists (i.e. if Equation 9.2 is satis�ed),we have v(x; y; �) = � aC0(�)Z(X; Y ) (9.5)



9.4. DEPTH RECOVERY 173everywhere v is de�ned (i.e everywhere @u@x 6= 0).Following this idea, we de�ne the total derivative of a scalar image map f : ��FR ! FR asDfD� = v @f@x + @f@� :This is exactly the Lie derivative of f along the apparent movement vector � = (v; 0; 1). Whena scene interpretation is known, it can be identi�ed as the time derivative of the scene mapassociated to f . The importance of this total derivative operator will appear later.9.4 Depth recoveryTheoretically, it is possible to estimate the apparent velocity �eld v using Equation 9.4, andthen to recover the depth Z by identifying v with the real velocity in Equation 9.5. This way,choosing a �xed value of �, we can hope to associate to any point P = (x; y; �) of the imageplane where the apparent velocity is de�ned and nonzero, the point M = ��(P ) of � de�ned byM = �C(�)� C 0(�)xva ;�C 0(�)yva ;�C 0(�)v � :If C(�), C 0(�) and a are not known, the structure of � is recovered up to a linear transformationof the kind (X; Y; Z) 7! (�X + �; �Y; 
Z):In practice, several di�culties appear when one tries to recover the geometry of � directly.The �rst one occurs in the computation of v from Equation 9.4. Indeed, it is impossible toobtain good estimations of the time derivative @u@� using �nite di�erence methods. The reasonis that most digital movies have a too large time sampling step, inasmuch as the number ofimages per second produced in the sampling process is too small compared to the quick changeof scene details. In other words, the Nyquist limit is generally exceeded during the samplingprocess, simply because most acquisition systems (cameras, camescopes, . . . ) sample each imageindependently without �rst processing a time frequency cuto�5. Hence, Shannon's Theorem doesnot apply any more and common approximations cannot be used to estimate time derivatives.As concerns the spatial derivative @u@x , its estimation hardly makes sense for textured areas,because of the quick changes in the intensity. For areas where the intensity takes a constant(or quasi-constant) value, the estimation of v becomes very sensitive to noise and quantization,since the almost-zero quantity @u@x appears in the denominator of v.The \classical" method to overcome this kinds of problem is to apply a linear spatio-temporalsmoothing �lter to the movie (see [13] for example), which can be seen as a (post-sampling) low-pass �lter. Such a kind of isotropic di�usion has disastrous e�ects on non-smooth details like5In fact, this is not really a bad thing since the non-continuous structure of images due to the presence ofocclusions makes the classical sampling theory inadapted.



174 CHAPTER 9. INTRODUCTIONedges or textured areas. Like all linear �lters, it is not adapted to the structure of images whichresult more from the superimposition of occluding objects than from the addition of weightedharmonics (see [21]).Another problem appearing in the naive reconstruction process we just described is that twodeterminations of � made from derivative estimations at di�erent times �1 and �2 may produceslightly di�erent results in practice, because real movies are not exactly time-coherent. This isa very important problem since, as we saw in the introduction, the large number of images issupposed to guarantee robustness and accuracy in the depth recovery.All these remarks lead to think that the depth recovery must be achieved on a sort ofideal movie, for which the computation of v can be made accurately and for which the depthinterpretation of the scene remains the same at any time. One can reasonably hope to obtainsuch an ideal movie from a raw one thanks to the redundancy of the information spread amongall images. In the following study, we shall see that such a transformation is possible, and that itcan be obtained systematically by using an axiomatic formulation of the problem (Chapter 10).This transformation can be formalized by a non-linear di�usion equation along the movement�eld, which appears to have interesting properties (Chapter 11, 12). In Chapter 13, we provide anumerical algorithm, easily implementable |even on parallel machines|, as well as conclusiveexperiments on two classical natural movies. To conclude in Chapter 14, we generalize our studyto more general camera motions and highlight further axes of extension.



Chapter 10Axiomatic formulationIn this chapter, we devise a multiscale analysis of movies devoted to the depth recovery by usingan axiomatic formulation. Such a methodology is not new : it has been successfully applied in[4] and in [26] to �nd the A�ne Scale Space as the optimal way (in a certain sense) to simplifyimages and shapes. After making clear requirements, we establish a uniqueness result for ourmodel : there is only one analysis of movies compatible with the depth recovery.Let us �rst de�ne some notations. Given an open or closed subset 
 of FRn, Cn(
) meansthe space of continuous maps u : 
 ! FR of class Cn on 
. As usual, 
 means the topologicalclosure of 
 in FRn. We shall also write S(FR3) to denote the set of real symmetric 3x3 matrices.As we saw previously, a movie is a real-valued map u de�ned on a subset of FR3, the valueu(x; y; �) representing the light intensity at a point (x; y) of the plane at time �. The naturaldomain for a digital movie is [x1; x2] � [y1; y2]� [�1; �2], but we shall see that it is simpler andmore logical to suppose that a movie is de�ned on FR2�I , with either I =]�1; �2[ or I = S1 (caseof a time-periodic movie).We recall that a multiscale analysis is a family of operators (Tt :M!M)t>0, t representingthe scale of analysis. Here,M is a movie space, that is to say a space of continuous real-valuedmaps de�ned on FR2�I . The choice ofM will become natural later, but is not necessary for thetime being since we only want to �nd constraints on (Tt). However, because of the singularitywhich appears in the computation of the velocity �eld when the partial derivative ux vanishes(ux is a short notation for @u@x), we shall suppose in the following that for any n > 1, the spaceMn = fu 2 M\ Cn(FR2 � I; FR); 8z 2 FR3; ux(z) 6= 0gis nonempty, and that given (�;p; A) 2 FR� FR3�S(FR3), it is possible to �nd u 2 M2 such thatu(0) = �; Du(0) = p and D2u(0) = A:175



176 CHAPTER 10. AXIOMATIC FORMULATION10.1 Architectural axiomsIn the spirit of [4], we �rst constrain our multiscale analysis to satisfy some architectural axioms :� [Recursivity] : T0 = Id and 8t; t0 > 0; Tt+t0 = Tt0 � Tt.� [Local Comparison Principle] : if u < ~u on B(z; r), then Ttu(z) 6 Tt~u(z) for t > 0 smallenough.� [Regularity] : if u is a quadratic form (that is, u(z) = [A](z; z)+ � p; z � +� where A isa symmetric 3x3 matrix ([A] being the associated bilinear map), p a 3-dimensional vector and� a given constant), then limt!0 Ttu� ut (z) = F (A;p; �)and F depends continuously on A when p1 6= 0 (p1 being the component of p along the xcoordinate).The [Recursivity] axiom constrains the multiscale analysis to have a semi-group structure.If the scale t is discretized, this means that the analysis is obtained at scale n by iterating ntimes a �xed �lter. This axiom can be weakened in[Pyramidal Architecture] : 8t; h; 9 Tt+h;t; Tt+h = Tt+h;t � Tt:However, we checked that under this hypothesis the �nal classi�cation remains the same upto a rescaling (as it has been proved in [4] for the a�ne scale space). This is the reason why wedirectly assume that (Tt) is a semi-group.The [Local Comparison Principle] axiom is very important : it prevents the multiscaleanalysis from creating new details in the analyzed movie as the scale increases. It also guaranteesthe stability of associated numerical algorithms.The [Regularity] axiom also contains the classical [Translation Invariance] axiom, whichstates that the multiscale analysis does not depend on the origin of space and time coordinates.When I =]�1; �2[, the classical formulation of [Translation Invariance] is not possible any longerbecause the domain is not translation-invariant.These axioms can be found in the axiomatic characterization of the a�ne morphologicalscale space for example ; only the [Regularity] axiom has been adapted to the depth recoveryproblem. Please refer to [40] for complete discussion.The classi�cation starts with the following theorem.Theorem 8 A multiscale analysis Tt : u0(�) 7! u(�; t) satisfying [Recursivity], [Local Com-parison Principle] and [Regularity] can be described by a partial di�erential equation of thekind @u@t = F (D2u;Du; u) (10.1)



10.2. SPECIFIC AXIOMS 177submitted to initial condition u(�; 0) = u0. Moreover, F is elliptic (that is to say nondecreasingwith respect to its �rst argument for the usual order on 3x3 symmetric matrices), and continuouswith respect with its �rst argument at any point where ux 6= 0.The proof of an equivalent theorem can be found in [40] for example. The existence of F isa direct consequence of the [Regularity] axiom. The fact that the evolution is given by a PDEof order two (and not more) results from the [Local Comparison Principle] axiom, as well asthe ellipticity of F .Notice that Equation 10.1 makes sense (in terms of existence and unicity of solutions) ac-cording to the theory of viscosity solutions (see [27]), provided that the singularity ux = 0 isnot involved. This point will become clearer in the next chapter. By now, the only importantpoint is that Equation 10.1 is satis�ed in the classical sense by u at any point where u is C2 andux 6= 0.10.2 Speci�c axiomsWe now come to speci�c axioms with respect to the depth recovery problem. First, rememberthat when u 2 Mn (n > 1), the apparent velocity �eld operator is well de�ned byv[u] = �u�ux :Since we are interested in the apparent velocity �eld, it seems natural that our analysis focusesmainly on this datum. In that sense, it is rather natural to constrain the analysis to commutewith operators that preserve the apparent velocity �eld. This justi�es the following axiom.� [v-Compatibility]: For any h : FR4 7! FR, if8u 2 M1; Rhu 2 M1 and v[Rhu] = v[u]; with Rhu(x; y; �) = h (u(x; y; �); x; y; �) ;then 8t; Tt �Rh = Rh � Tt:This axiom implies two weaker axioms, obtained for speci�c choices of h.� [Strong Morphological Invariance]: For any monotone scalar map g,8u 2 M; 8t; Ttg(u) = g(Ttu):� [Transversal Invariance]: For any nonvanishing map g,8u 2 M; 8t; Tt(g(y) � u) = g(y) � (Ttu):The �rst one is obtained by choosing h(u; x; y; �) = g(u). It is a strong formulation of themorphological invariance, because g can be decreasing as well as increasing. In fact, this axiom is



178 CHAPTER 10. AXIOMATIC FORMULATIONequivalent to the classical [Morphological Invariance] axiom plus the [Contrast reversal] axiom.The second one, obtained with h(u; x; y; �) = g(y) � u, is a kind of morphological invariance inthe direction transversal to the movement. Notice that we supposed implicitely thatM is stableunder the operations u 7! g � u and u 7! g(y) � u. Following [40], we also constrain the analysisto commute with the superimposition of any uniform movement of the camera.� [Galilean Invariance]:8� 2 FR; 8u 2 M; 8t; Tt(u �B�) = (Ttu) �B�; with B�(x; y; �) = (x� ��; y; �):Last, we would like the analysis not to depend on the focal length of the camera (the avariable in the previous chapter). This can be translated into a commutation with spatialhomothetic transformations.� [Zoom Invariance]:8� 6= 0; 8u 2 M; 8t; Tt(u �H�) = (Ttu) �H�; with H�(x; y; �) = (�x; �y; �):10.3 Fundamental equationWe now prove that the set of axioms we constrained the multiscale analysis to satisfy is su�cientto restrain the possible analyses to one candidate only1. We shall prove later that this candidateis actually a solution.Theorem 9 There exists at most one multiscale analysis of movies de�ned on M2 satisfyingthe architectural axioms plus [v-Compatibility], [Galilean Invariance] and [Zoom Invariance].It must be described by the partial di�erential equationut = u�� � 2u�uxu�x + (u�ux )2uxx: (10.2)Remark 1 : For the time being, Equation 10.2 is de�ned in the classical sense for u(�; t) 2 M2.In fact, we shall see in the next chapter how we can de�ne weak solutions of Equation 10.2 thatare not in M2 but only continuous.Remark 2 : Equation 10.2 can be rewritten intout = u�� with � = (�u�ux ; 0; 1) and u�� = [D2u](�; �);1Of course, the identity operator is irrelevant here.



10.3. FUNDAMENTAL EQUATION 179which means an anisotropic di�usion of u along the movement direction. The apparent acceler-ation in the movie can be de�ned by � = DvD� = v� + vvx;which can be expanded in� = � 1ux �u�� � 2u�uxu�x + (u�ux )2uxx� = �u��ux :Hence, Equation 10.2 can also be rewritten intout = ��ux:Lemma 17 For any multiscale analysis satisfying the architectural axioms and [v-Compatibility],there exists a map F : FR2 7! FR such thatut = uxF (�; v): (10.3)Proof :Let us �rst make clear that the map F we write here is not the map F of Equation 10.1 :we simply use the same notation to avoid introducing too many symbols.We are going to use the fact that the [v-Compatibility] axiom implies the simpler axioms[Strong Morphological Invariance] and [Transversal Invariance], as we noticed before.Applying [StrongMorphological Invariance] for g(u) = u+� (� being an arbitrary constant)proves that F cannot depend on u in Equation 10.1, so that we have@u@t = G(D2u;Du) (10.4)Now, the [Transversal Invariance] axiom states that for any nonvanishing function g of classC2, 8u 2 M2; 8y; G(D2(g(y) � u); D(g(y) � u)) = G(D2u;Du): (10.5)Let A = [aij ] 2 S(FR3), � 2 FR and p = (pi) 2 FR3 such that p1 6= 0 (the coordinates x; y; � will beindexed by 1; 2; 3 in the following). By hypothesis on M2, we can build a movie u 2 M2 suchthat u(0; 0; 0) = �; Du(0; 0; 0) = p; and D2u(0; 0; 0) = A:Now, consider the vector y = 0B@ 010 1CA, the projection matrix on the (x; �) planeQy? = 0B@ 1 0 00 0 00 0 1 1CA ;



180 CHAPTER 10. AXIOMATIC FORMULATIONand the projection matrix on the line FRyQy = y
 y = I �Qy? = 0B@ 0 0 00 1 00 0 0 1CA ;I being the identity matrix of S(FR3). Applying Equation 10.5 to u in (0; 0; 0), we obtainG(g(0)A+ g0(0)y
 p+ g00(0)�Qy; g(0)p+ g0(0)y) = G(A;p):If we choose g(y) = 1 + y2=2, we get8A; p; �; G(A+ �Qy ;p) = G(A;p); (10.6)and taking � = �a22 yields 8A;p; G(:::; a22; :::) = G(:::; 0; :::);where the two terms only di�er in the a22 variable. Hence, G does no depend on a22.Now we are going to show that G does not depend on a12 and a23 either, by using the[Causality] axiom, using a technique from Giga et Goto [37]2. Let us de�ne A0 = A � a22Qyand for " > 0, I" = "Qy? + a221 + a223" Qy = 0BB@ " 0 00 a221 + a223" 00 0 " 1CCA :The characteristic polynom of the matrixA" = Qy?A0Qy? �A0 + I" = 0BB@ " �a21 0�a21 a221 + a223" �a230 �a23 " 1CCAis det(xI � A") = x(x� ") x� ("+ a221 + a223" )! :As the eigenvalues of A" are nonnegative, A" is positive (for the usual order in S(FR3)), andsymmetrically A�" is negative, which yieldsA0 � I" 6 Qy?A0Qy? 6 A0 + I"But the [Causality] axiom implies (see [37])8A;B;p; A > B ) G(A; p) > G(B;p);2If we suppose that G is di�erentiable, then this property follows immediatly. Indeed, the [Causality] axiomimplies 8i; j; deti;j [D2G] = @G@aii @G@ajj �� @G@aij�2 > 0and since @G@a22 = 0, we get @G@a21 = @G@a23 = 0



10.3. FUNDAMENTAL EQUATION 181so that 8A;p; G(A0 � I";p) 6 G(Qy?A0Qy? ;p) 6 G(A0 + I";p):Then, using Equation 10.6, we get8A;p; G(A+ "I;p) 6 G(Qy?AQy? ;p) 6 G(A+ "I;p)and taking the limit when "! 0, the continuity of G implies8A;p; G(A;p) = G(Qy?AQy? ;p);which means that we can write8A;p; G(a11; a12; a13; a22; a23; a33; p1; p2; p3) = H(a11; a13; a33; p1; p2; p3):Now, applying again the [Transversal Invariance] axiom to H , we obtain8A;p; g; y H(a11; a13; a33; p1; p2; p3) = H(a11; a13; a33; p1; g0(y)p2; p3) (10.7)Choosing p2 = 1 and g(y) = 1 + y2=2 as before, Equation 10.7 yields8A; p1; p3; y H(a11; a13; a33; p1; 1; p3) = H(a11; a13; a33; p1; y; p3);which proves that H does not depend on its �fth argument p2.Now we use the [Strong Morphological Invariance] axiom. It has been proven (see [4] forexample) that this axiom, in combination with the [Causality] axiom, forces the second orderterms of the evolution to be of the kind [D2u](a; b), where a and b belong to the plane orthogonalto Du, written (Du)?. Now, as we just saw, the [Transversal Invariance] axiom forbids anydependency on y, so that a and b must also belong to the (y)? = (x; �) plane. Finally, a andb must belong to the line (Du)? \ (y)? = (�)?, so that the only admissible second order termis � = � 1ux [D2u](�; �), up to a multiplicative �rst order term. Notice that � is a morphologicaloperator.As regards the �rst order terms, the [Transversal Invariance] axiom forbids any dependencyon uy . Hence, as � does not contain the uy term, u must satisfy an evolution equation of thekind ut = F (�; ux; u�):We rewrite this equation into ut = uxG(�; v; ux)and apply the [Strong Morphological Invariance] axiom. Since � and v are morphologicaloperators, it yields 8u; 8� 6= 0; G(�; v; ux) = G(�; v; �ux): (10.8)



182 CHAPTER 10. AXIOMATIC FORMULATIONFor any (�; �) 2 FR2, we consider a movie u 2 M2 such thatu(x; y; �) = �2 �2 + x� ��in a vicinity of (x; y; �) = 0. We have ux(0) = 1, v(0) = � and �(0) = � so that Equation 10.8can be rewritten into 8�; �; 8� 6= 0; G(�; �; 1) = G(�; �; �);which means that G does not depend on its third argument (notice that G does not need to bede�ned when ux = 0). As a consequence, we can writeux = ux F (�; v)as announced. �Remark : We proved that the [v-Compatibility] axiom, in association with the architecturalaxioms, forbids any dependency of the evolution on y. In other words, the sliced images (x; �) 7!u(x; y; �) (with y �xed) are processed independently. In the following, we shall often ignore they coordinate and we shall write u(x; �) instead of u(x; y; �), the y variable being supposed �xed.Lemma 18 A multiscale analysis satisfying the architectural axioms plus [v-Compatibility] and[Galilean Invariance] can be written ut = uxF (�) (10.9)Proof :Since the multiscale analysis commutes with the operatorB� : (x; y; �) 7! (x� ��; y; �);we have @@t(u �B�) = @u@t �B�:Writing ~u = u �B� yields~ux = @@xu(x� ��; �) = ux �B�~u� = @@�u(x� ��; �) = (u� � �ux) �B�~v = � ~u�~ux = v �B� + �~� = D~vD� = ~v� + ~v~vx = (v� � �vx + (v + �)vx) �B� = � �B�:



10.3. FUNDAMENTAL EQUATION 183From Lemma 17 we know that ut = uxF (�; v). Hence,8u; �; uxF (�; v + �) = uxF (�; v);so that F does not depend on its second argument. �Lemma 19 A multiscale analysis satisfying the architectural axioms plus [v-Compatibility] and[Zoom Invariance] can be writtenut = 8>><>>: u�F (�v ) if u� 6= 0;aux if u� = 0: (10.10)Proof :We proceed as for Lemma 18 : writing ~u = u �H� with H� : (x; y; �) 7! (�x; �y; �), we get~v = � ~u�~ux = � u��ux �H� = v� �H�~� = ~v� + ~v~vx = (v�� + v� �vx� ) �H� = �� �H�We can write Equation 10.3 as ut = uxF (�; v) = u�G(�v ; v)everywhere u� 6= 0, and since the evolution commutes with H�, we have8u; �; u�G(�v ; v) = u�G(�v ; v�):Taking the limit �! 1 proves that G cannot depend on its second argument. Besides, every-where u� = 0 we have 8u; �; uxF (�; 0) = uxF (��; 0);so that F (�; 0) = F (0; 0). �Proof of Theorem 9 :If a multiscale analysis satis�es the axioms of Theorem 9, the corresponding evolution equa-tion can be written in both forms given in Equation 10.9 and Equation 10.10. But the onlycommon case is ut = �ux� = u� �v = u��;which is the announced equation. �Conversely, we have to check that it is possible to de�ne from Equation 10.2 a multiscaleanalysis of movies satisfying the previous axioms. This is the aim of the next chapter.
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Chapter 11The Depth-Compatible MultiscaleAnalysisIn this chapter, we give a rigorous de�nition for the DCMA Equation1ut = u�� � 2u�uxu�x + (u�ux )2uxx: (DCMA)We de�ne classical and weak solutions, and we establish uniqueness and existence theorems inboth cases. We also establish the link with the theory of viscosity solutions of second orderpartial di�erential equations.11.1 Classical solutions of the DCMAFor the reason we explained before, we forget the y variable in the following, and a movie isde�ned on FR� I , with either I =]�1; �2[ or I = S1. In the space variable, a periodization has nomeaning in terms of scene interpretation, so that we shall rather suppose that u tends towardssome constant when x grows to in�nity. Notice that such a condition is classical, even in a morerestrictive formulation (e.g. u equals a constant outside a compact set, see [31] for example).De�nition 20 For c = (c�; c+) 2 FR2 and n > 0, Cnc is the space of movies u 2 Cn(FR� I) suchthat sup�2I ju(�x; �)� c�j+ ju(x; �)� c+j ! 0 as x! +1: (11.1)In all the following, we write 
 = FR � I�]0;+1[ (
 is the domain of movie analyses).De�nition 21 For c 2 FR2 and n; p > 0, Cn;pc is the space of movie analyses u 2 C0(
) suchthat1The reason why we call this evolution equation DCMA (for Depth-Compatible Multiscale Analysis) willbecome clear in the next chapter. 185



186 CHAPTER 11. THE DEPTH-COMPATIBLE MULTISCALE ANALYSIS1. sup�2I;t6R ju(�x; �; t)� c�j+ ju(x; �; t)� c+j ! 0 as x! +1;2. on 
, (x; �; t) 7! u(x; �; t) is of class Cn with respect to (x; �) and Cp with respect to t.When c� = c+ = 0, we shall say that u is \null at in�nity".Let us come back to our problem. We want to de�ne classical solutions of Equation (DCMA).However, the space M2 we introduced in the axiomatic formulation is too restrictive, becauseof the condition ux 6= 0. Indeed, this condition forces the partial maps x 7! u(x; y; �) to beincreasing or decreasing, which is not satisfactory, and prevents u from satisfying Equation 11.1with c+ = c� (this is the reason why we did not constrain c+ = c� in the previous de�nitions :since we want the axiomatic formulation to be relevant, the space M2 must be nonempty). Forthose reasons, we forget the condition ux 6= 0 and write a degenerate formulation of Equation(DCMA) when ux vanishes.Example : Consider g 2 C2(FR) such that g(x)! 0 as jxj ! +1. We de�ne the movie analysisu : FR � S1 � [0;+1[! FR by u(x; �; t) = g(x� �2 � 2t);the representant of � being taken in [��; �[. Then, Equation (DCMA) is satis�ed by u at anypoint where ux 6= 0, and when ux = 0 we have also ut = 0. This suggests a simple degenerateformulation of Equation (DCMA) when ux vanishes.Incidentally, notice that u 2 C2;20 , but the conditionsup�2I;t>0 ju(x; �; t)j ! 0 as jxj ! +1is not satis�ed unless g � 0. This is the reason why it is logical to consider the sup on f� 2I; t 6 Rg in Condition 1 of De�nition 21.De�nition 22 Given u0 2 C0c , we say that u is a classical solution of the DCMA associated tothe initial datum u0 if(i) u 2 C2;1c ,(ii) on 
 = FR � I�]0;+1[,8>><>>: ut = u�� � 2u�uxu�x + (u�ux )2uxx when ux 6= 0;ut = 0 when ux = 0:(iii) 8(x; �; t) 2 @
; u(x; �; t) = u0(x; �):



11.1. CLASSICAL SOLUTIONS OF THE DCMA 187Remark : If I = S1, @I = ; and the boundary condition (iii) means8(x; �) 2 FR� I; u(x; �; 0) = u0(x; �):If we choose to �x a time-boundary condition (i.e. I =]�1; �2[) instead of a time-periodicitycondition, (iii) also constrains8(x; t) 2 FR � [0;+1[; u(x; �i; t) = u0(x; �i) for i = 1; 2In order to state the uniqueness of solutions, we �rst establish a comparison principle.Lemma 20 (comparison principle) Suppose that u and ~u are two classical solutions of theDCMA associated to initial data u0 and ~u0 respectively. If u0 6 ~u0, then u 6 ~u on 
.Proof :For R > 0, let us write "(R) = supjxj>R;�2I;t6Ru(x; �; t)� ~u(x; �; t):Since u and ~u belong to C2;1c and C2;1~c , we have"(R)! max(c� � ~c�; c+ � ~c+) as R! +1;with c� ~c 6 0 because u0 6 ~u0. For � > 0, we consider�(x; �; t) = u(x; �; t)� ~u(x; �; t)� �t:On the compact set KR = [�R;R]�I� [0; R], the continuous map � attains its maximum valueat a point z0 = (x0; �0; t0).1. Suppose that jx0j < R; �0 2 I and t0 2]0; R]: (11.2)In z0 we have �x = �� = 0; �t > 0 and D2� 6 0:This yields Du(z0) = D~u(z0); (11.3)ut(z0)� ~ut(z0) > �; (11.4)and D2u(z0) 6 D2~u(z0); (11.5)the last inequality being meant for the usual order on symmetric 2x2 matrices.



188 CHAPTER 11. THE DEPTH-COMPATIBLE MULTISCALE ANALYSIS1.a. If ux(z0) 6= 0, then ~ux(z0) = ux(z0) 6= 0. Now recall thatut = u�� � 2u�uxu�x + (u�ux )2uxx = F (D2u;Du);where F is an elliptic operator, that is to say nondecreasing with respect to its �rst argument.Hence, Equations 11.3 and 11.5 imply ut(z0) 6 ~ut(z0), which is in contradiction with Equation11.4.1.b. If ux(z0) = 0, then ~ux(z0) = 0, and since u and ~u are solutions of the DCMA, we haveut(z0) = ~ut(z0) = 0, which is a contradiction with Equation 11.4.2. As a consequence of 1.a and 1.b, Assumption 11.2 is false and necessarily we have eitherjx0j = R or �0 2 @I or t0 = 0. If jx0j = R, then �(x0; �0; t0) 6 "(R)+�R, while �(x0; �0; t0) 6 �Rwhen �0 2 @I or t0 = 0. Consequently, we havemaxKR � 6 max(0; "(R)) + �R;and making �! 0 proves thatu 6 ~u+ max(0; "(R)) on FR � I � [0; R]:Last, sending R to in�nity forces max(0; "(R)) to vanish and the proof is complete. �Corollary 9 (contraction property) If u and ~u are two classical solutions of the DCMAassociated to the initial data u0 and ~u0, thenku� ~uk1 6 ku0 � ~u0k1:Proof :We simply need to notice thatu0 � ku0 � ~u0k1 6 ~u0 6 u0 + ku0 � ~u0k1;and apply the comparison principle, remarking that if u is a classical solution of the DCMA, sois u+ � for any � 2 FR. �Corollary 10 (uniqueness) A classical solution of the DCMA associated to a given initialdatum u0 2 C2c is unique.The proof follows immediatly from Corollary 9.In order to ensure the existence of classical solutions of the DCMA, we now restrain thespace of initial data.



11.1. CLASSICAL SOLUTIONS OF THE DCMA 189De�nition 23 For n > 1, we write Vnc the space of movies u 2 Cnc for which there exists amovie v 2 Cn�10 such that u� + vux = 0 on FR � I: (11.6)v is called a velocity map of u.The space Vn;pc is de�ned as elements of Cn;pc admitting a velocity map v 2 Cn�1;p0 .Remark : Consider a movie u 2 Vnc . If ux(x; �) 6= 0, v(x; �) is uniquely determined becauseEquation 11.6 forces v(x; �) = �u�ux (x; �):But as we noticed previously, ux(x; �) is forced to vanish at least once for any value of �, becauselimjxj!+1 u(x; �) = c:When ux(x; �) = 0, Equation 11.6 implies u�(x; �) = 0, and if n > 2, di�erentiating Equation11.6 with respect to � and x yieldsu��(x; �) + v(x; �)ux�(x; �) = 0 (11.7)and u�x(x; �) + v(x; �)uxx(x; �) = 0: (11.8)We deduce from Equation 11.7 and 11.8 that u�� + 2vu�x + v2uxx = 0 as soon as ux = 0.A consequence is that if u 2 V2;1c is a classical solution of the DCMA, then any velocity mapv of u satis�es on 
 8><>: u� + vux = 0ut = u�� + vu�x + v2uxx: (11.9)�Proposition 27 (existence) Given an initial datum u0 2 Vnc (n > 2), there exists a uniqueclassical solution of the DCMA, and it belongs to Vn;nc .Proof :The existence will be a consequence of Lemma 22 (which follows), and the uniqueness followsfrom Corollary 10. �We are going to build explicit solutions of the DCMA. The idea is to notice that the trajec-tories (i.e. the curves x(�) along which u is constant) are smoothed by the linear heat equation.For that purpose, we need to introduce the natural domain I? for such trajectories. If I =]�1; �2[then I? = I , and if I = S1, then I? = FR (the natural injection S1 ,! [0; 2�[� FR being implicit).To simplify the notations, we suppose in the following that 0 2 I .



190 CHAPTER 11. THE DEPTH-COMPATIBLE MULTISCALE ANALYSISDe�nition 24 A map ' 2 Cn(FR� I?) (n > 0) is a �-graph of u 2 Cnc if1. for any � 2 I?, the map x 7! '(x; �) is increasing and bijective2. for any (x; �) 2 FR � I?, u('(x; �); �) = u(x; 0); (11.10)3. for any x 2 FR, '(x; 0) = x, and if I = S1, then for any (x; �) 2 FR � I?,'(x; �+ 2�) = '('(x; 2�); �); (11.11)4. supjxj>R;�2I j'�(x; �)j ! 0 as R! +1 (in a generalized sense if n = 0).Remark : Notice that in Condition 4, the sup is taken for � 2 I and not for � 2 I?. If n = 0,the term j'�(x; �)j must be replaced bylim suph!0 j'(x; �+ h)� '(x; �)h j:A simple proof by induction establishes that when I = S1, Equation 11.11 implies'(x; �+ 2�n) = '('(x; 2�n); �)for any (x; �; n) 2 FR� I? � IN.Lemma 21 A movie u 2 Cnc (n > 2) belongs to Vnc if and only if it admits a �-graph of classCn.Proof :1. Suppose that u admits a �-graph of class Cn. Then, Condition 1 implies that the relationv('(x; �); �) = '�(x; �) (11.12)de�nes a unique continuous map v on FR � I (if I = S1, Equation 11.11 ensures the periodicityof v in the � variable). We can write8(x; �) 2 FR � I; 8h 2 FR; v('(x; �) + h'x(x; �) + o(h); �) = '�(x; �) + h'�x(x; �) + o(h):Since 'x(x; �) > 0 a.e. due to Condition 1, we deduce that v is derivable with respect to x and'x(x; �)vx('(x; �); �) = '�x(x; �):A similar reasoning proves that v is of class Cn�1. Di�erentiating Equation 11.10 with respectto � yields 8(x; �) 2 FR� I; '�(x; �)ux('(x; �); �) + u�('(x; �); �) = 0;



11.1. CLASSICAL SOLUTIONS OF THE DCMA 191so that v is a velocity map of u thanks to Equation 11.12.Now let us write diam (I) the diameter of I . Given " > 0, Condition 4 ensures the existenceof a R > 0 such that 8(x; �) 2 FR � I; jxj > R ) j'�(x; �)j 6 ":Hence, if jxj > R0 = R+ " � diam (I) we have'(x; �) = '(x; 0)+ Z �0 '�(x; �)d� > x� "j�j > Rand consequently supjxj>R0;�2I jv(x; �)j 6 ":It follows that v 2 Cn�10 and the same reasoning proves that u is constant at in�nity, so thatu 2 Vnc .2. Conversely, if u 2 Vnc , consider a velocity movie v of u. Given (x0; �0) 2 FR � I , thereexists a unique solution X 2 Cn(I?) of the ordinary di�erential equationdXd� (�) = v(X(�); �) (11.13)submitted to the condition X(�0) = x0. Since v 2 Cn�10 , v is bounded, so thatX is de�ned on thewhole interval I?. Call '(x0; �) the solution X associated to �0 = 0, and let k = diam (I) � kvk1.Then supjxj>R;�2I j'�(x; �)j 6 supjxj>R�k;�2I jv(x; �)j ! 0 as R! +1;so that Condition 4 is satis�ed for '.In addition, the uniqueness of the solutions constrains the relationif � = 0; x < x0 ) '(x; �) < '(x0; �)to extend to any value of �, so that the map x 7! '(x; �) is increasing. Now, suppose thatthe value x0 is not attained by the map x 7! '(x; �0) for a given value �0. By considering theODE 11.13 submitted to initial condition X(�0) = x0, we obtain the existence of a value X(0)such that '(X(0); �0) = x0, which is a contradiction. Hence, the map x 7! '(x; �0) is surjectiveand Condition 1 is satis�ed. If I = S1, Equation 11.11 is satis�ed by ' simply because v is2�-periodic in the � variable.Last, a classical theorem (dependency with initial conditions, see [7] for example) states that' is Cn and we can writedd� (u('(x; �); �)) = '�(x; �)ux('(x; �); �)+ u�('(x; �); �) = (vux + u�) ('(x; �); �) = 0: (11.14)



192 CHAPTER 11. THE DEPTH-COMPATIBLE MULTISCALE ANALYSISThen, integrating Equation 11.14 yields for any (x; �) 2 FR� I,u('(x; �); �) = u('(x; 0); 0) = u(x; 0);so that Condition 2 is satis�ed and ' is a �-graph of u of class Cn. �Lemma 22 Let u0 2 Vnc (n > 2), and '0 be a �-graph of u0 of class Cn. De�ne (x; �; t) 7!'(x; �; t) as the unique solution of the monodimensional heat equation@'@t = @2'@�2 (11.15)on 
? = FR � I?�]0;+1[ submitted to the boundary condition8(x; �; t) 2 @
?; '(x; �; t) = '0(x; �): (11.16)Then, the unique map u : 
! FR de�ned by8(x; �; t) 2 
; u('(x; �; t); �; t) = u0(x; 0) (11.17)belongs to Vn;nc and is a classical solution of the DCMA associated to the initial datum u0.Proof :1. Since the heat equation satis�es the comparison principle, the conditionx < x0 ) '0(x; �) < '0(x0; �)is preserved along evolution so thatx < x0 ) 8�; t; '(x; �; t) < '(x0; �; t):and x 7! '(x; �; t) is increasing as expected.2. Now we prove that x 7! '(x; �; t) is surjective. Condition 4 of De�nition 24 shows thatwe can �nd two constants A and B (with B = 0 if I? is bounded) such thatj'0(x; �)� xj 6 A+Bj�jon FR� I. If I = S1, Equation 11.11 extends this property to FR� I?. A simple result about theheat Equation (see appendix to follow) states that8(x; �; t) 2 
?; j'(x; �; t)� xj 6 A +Bj�j +Br4t� : (11.18)As a consequence, for any (�; t) 2 I�]0;+1[, x 7! '(x; �; t) is surjective.3. Hence, Equation 11.17 de�nes a unique map u : 
! FR and a proof similar to the one ofLemma 21 shows that u 2 Vn;nc thanks to Equation 11.18.



11.1. CLASSICAL SOLUTIONS OF THE DCMA 1934. We check the boundary condition. For any (x; �; t) 2 @
, due to Equation 11.16 we have'(x; �; t) = '0(x; �);while the de�nition of u (Equation 11.17) impliesu('(x; �; t); �; t) = u0(x; 0) = u0('0(x; �); �);and consequently u('0(x; �); �; t) = u0('0(x; �); �):Hence, the boundary condition (iii) of De�nition 22 is satis�ed since the map@
 ! @
(x; �; t) 7! ('0(x; �); �; t)is bijective.5. Let us note z1 = ('(z); �; t) for a given z 2 
. If ux(z1) = 0, di�erentiating Equation11.17 with respect to t yields 't(z)ux(z1) + ut(z1) = ut(z1) = 0as expected. If ux(z1) 6= 0, we obtainut(z1) = �'t(z)ux(z1);and dd� (u0(x; 0)) = 0 = '�(z)ux('(z); �; t) + u�('(z); �; t);as well as0 = d2d�2 (u0(x; 0))= dd� ('�(z)ux('(z); �; t) + u�('(z); �; t))= '��(z)ux('(z); �; t) + '2�(z)uxx('(z); �; t) + 2'�(z)ux�('(z); �; t) + u��('(z); �; t)= 't(z)ux(z1) + '2�(z)uxx(z1) + 2'�(z)ux�(z1) + u��(z1)= ��ut + u�� � 2u�uxu�x + (u�ux )2uxx� (z1);so that condition (ii) of De�nition 22 is satis�ed. Hence, u is a classical solution of the DCMAassociated to the initial datum u0. �Lemma 22 proves that the DCMA Equation is a scalar formulation of the monodimensionalheat equation (11.15), like two other important equations of image processing : the MeanCurvature Motion and the A�ne Morphological Scale Space. The di�erence between them onlycomes from the intrinsic parameter of the level lines : the Euclidean abscissa for the MeanCurvature Motion, the a�ne abscissa for the A�ne Scale space. For the DCMA, the naturalparameter is the time �, which means that level lines are not considered as curves but as graphs.This remark will permit to prove the existence of weak solutions for the DCMA, but in certaincases only, namely, when the level lines of the initial datum can be described by graphs.



194 CHAPTER 11. THE DEPTH-COMPATIBLE MULTISCALE ANALYSIS11.2 Weak solutions of the DCMAWe de�ne weak (only continuous) solutions of the DCMA as uniform limits of classical solutions.De�nition 25 Given a movie u0 2 C0c , we say that a map u 2 C0;0c is a weak solution of theDCMA associated to the initial datum u0 if8(x; �; t) 2 @
; u(x; �; t) = u0(x; �)and if there exists a sequence (u")">0 of classical solutions of the DCMA such that u" ! uuniformly on 
 when "! 0.Lemma 23 (uniqueness) A weak solution of the DCMA associated to a given initial datumis unique.Proof :We simply prove that the contraction property (Corollary 9) is still satis�ed. Let u and ~ube two weak solutions of the DCMA associated to the initial data u0 and ~u0. Then, we can �ndtwo sequences u" and ~u" which converge uniformly towards u and ~u. Writing u"0 = u"(�; �; 0) and~u"0 = ~u"(�; �; 0), Corollary 9 ensures thatku" � ~u"k1 6 ku"0 � ~u"0k;and taking the (uniform) limits when "! 0 yieldsku� ~uk1 6 ku0 � ~u0kas expected. �Proposition 28 (existence) Call Vc the topological closure of V2c with respect to the k � k1norm. Then, given u0 2 Vc, there exists a unique weak solution u of the DCMA associated tothe initial datum u0.Proof :According to the hypothesis on u0, we can �nd a sequence u"0 2 V2c which converges uniformlytowards u0. Then, call u" the classical solution of the DCMA associated to the initial datum u"0(Proposition 27 ensures the existence of u"). Lemma 20 forces u" to converge uniformly towardsa limit u 2 C0;0c , which is by construction a weak solution of the DCMA. �To make more precise this existence property, we now build explicit weak solutions. Theconstruction is similar to the one used for classical solutions in the proof of Lemma 22.De�nition 26 We write V0c the space of movies u 2 C0c which admit a continuous �-graph.



11.2. WEAK SOLUTIONS OF THE DCMA 195This generalizes De�nition 23 thanks to Lemma 21.Proposition 29 Let u0 2 V0c , and '0 be a �-graph of u0. De�ne (x; �; t) 7! '(x; �; t) as theunique solution of the monodimensional heat equation 11.15 submitted to the boundary condition11.16. Then, the unique map u de�ned from ' by Equation 11.17 is a weak solution of theDCMA.Proof :1. As for the de�nition of u and its belonging to C0;0c , the proof is already contained inLemma 22.2. Since V0c � Vc, we can consider ~u the weak solution of the DCMA associated to the initialdatum u0, and (u") a sequence of classical solutions which converges uniformly towards ~u. Nowwe want to prove that u = ~u, or, equivalently, that8(x; �; t) 2 
; ~u('(x; �; t); �; t) = u0(x; 0):Given x0 2 FR, " > 0, � > 0 and T > 0, de�ne�(�; t) = u"('(x0; �; t); �; t)� u0(x0; 0)� �t:Since � is continuous on the compact set KT = I � [0; T ], there exists (�0; t0) 2 KT such thatmaxKT � = �(�0; t0):2.a. Suppose that �0 2 I and t0 > 0: (11.19)Then, in (�0; t0) we have �t > 0; �� = 0 and ��� 6 0:This yields 'tu"x + u"t > �; (11.20)'�u"x + u"� = 0; (11.21)and '2�u"xx + 2'�u"�x + u"�� + '��u"x 6 0: (11.22)If u"x = 0, then u"t = 0, which is in contradiction with Equation 11.20. If u"x 6= 0, since 't = '��and u" is a classical solution of the DCMA, Equation 11.21 and 11.22 implyu"t + 'tu"x 6 0;which contradicts Equation 11.20 as well.



196 CHAPTER 11. THE DEPTH-COMPATIBLE MULTISCALE ANALYSIS2.b. Hence, Assumption 11.19 is false and we have either �0 2 @I or t0 = 0, so that'(x0; �0; t0) = '0(x0; �0). Writing u"0 = u"(�; �; 0), we getu"('(x0; �0; t0); �0; t0) = u"0('0(x0; �0); �0)6 u0('0(x0; �0); �0) + ku"0 � u0k16 u0(x0; 0) + ku"0 � u0k1;so that 8(x; �; t) 2 FR�KT ; u"('(x; �; t); �; t) 6 u0(x; 0)+ �T + ku"0 � u0k1:Then, sending � to zero and T to in�nity yields8(x; �; t) 2 
; u"('(x; �; t); �; t)6 u0(x; 0)+ ku"0 � u0k1;and passing to the limit when "! 0 establishes8(x; �; t) 2 
; ~u('(x; �; t); �; t) 6 u0(x; 0):A symmetrical reasoning proves that ~u('(x; �; t); �; t) > u0(x; 0) as well, so that u = ~u asannounced. �A consequence of this characterization of weak solutions is that a weak solution of the DCMAassociated to an initial datum u0 2 Vnc admits a kind of velocity movie as soon as u0 is locallyLipschitz in the x variable. To simplify the proof, we directly assume that the whole analysisu is locally Lipschitz in the x variable, although it is not di�cult to see that u inherits thisproperty from the initial datum u0.Corollary 11 Let u be the weak solution of the DCMA associated to an initial datum u0 2 V0c .If u is locally Lipschitz in the x variable, then there exists a continuous map v de�ned on
 = FR� I�]0;+1[ such that on 
,u(x+ �v(x; �; t); �+ �; t) = u(x; �; t) + o(�) (11.23)and u(x+ �v(x; �; t); �+ �; t� �22 ) = u(x; �; t) + o(�2): (11.24)Proof :We associate ' to u0 as in Proposition 29, and de�ne v by Equation 11.12. Then,u0(x; 0) = u ('(x; �+ �; t); �+ �; t)= u ('(x; �; t) + �'�(x; �; t) + o(�); �+ �; t)= u ('(x; �; t) + �v('(x; �; t); �; t); �+ �; t) + o(�);



11.3. A VISCOSITY FORMULATION 197which establishes the �rst equality. For the second one, we writeu0(x; 0) = u '(x; �+ �; t� �22 ); � + �; t� �22 != u '(x; �; t) + �'�(x; �; t) + o(�2); � + �; t� �22 != u '(x; �; t) + �v('(x; �; t); �; t); �+ �; t� �22 !+ o(�2)and the proof is complete. �Remark : De�ning the Lie derivative of a map f along the vector � = (v; 1) byf�(x; �; t) = � dd� f(x+ �v(x; �; t); �+ �; t)��=0 ;Equation 11.24 is equivalent to u� = 0. As concerns Equation 11.24, it implies d[2]d�2u(x+ �v(x; �; t); �+ �; t� �22 )!�=0 = 0;where the notation d[2]f=d�2 means the pseudo-second derivative of f , de�ned in x byd[2]fdx2 (x) = limh!0 f(x+ h) + f(x� h)� 2f(x)h2 :Notice that this property is a generalization of Equation 11.9.11.3 A viscosity formulationWe now establish the link between our de�nition of weak solutions and the theory of viscositysolutions (see [27] for further details on viscosity solutions). For the DCMA, de�ning viscositysolutions is not necessary because smooth movies remain smooth, which permits the previousconstruction of weak solutions as uniform limits of smooth solutions. However, this is notgenerally the case with non-linear parabolic PDE of the kind@u@t = F (D2u;Du; u)de�ned from an elliptic operator F (consider the Mean Curvature Motion or the A�ne Morpho-logical Scale Space for example). Moreover, it is convenient to de�ne weak solutions intrinsically,without using limits of regular solutions. In the following, we give a reasonable de�nition of aviscosity solution of the DCMA, and prove that a weak solution is a viscosity solution.De�nition 27 A bounded continuous map u : 
 ! FR is a viscosity subsolution of the DCMAif for any � 2 C1(
), at any point z0 2 
 where u� � attains a local maximum, we have



198 CHAPTER 11. THE DEPTH-COMPATIBLE MULTISCALE ANALYSIS(i) If �x 6= 0, then �t 6 ��� � 2���x��x + (���x )2�xx;(ii) If �x = 0, then �� = �t = 0 and 9� 2 FR such that 0 6 ��� + 2���x + �2�xx:Condition (i) is the classical formulation of viscosity subsolutions, whereas (ii) is a degeneratecondition particular to the DCMA (see [31], [9] for examples of degenerate viscosity solutions inthe case of the Mean Curvature Motion).The de�nition of a supersolution is symmetrical :De�nition 28 A bounded continuous map u : 
! FR is a viscosity supersolution of the DCMAif for any � 2 C1(
), at any point z0 2 
 where u� � attains a local minimum, we have(i') If �x 6= 0, then �t > ��� � 2���x��x + (���x )2�xx;(ii') If �x = 0, then �� = �t = 0 and 9� 2 FR such that 0 > ��� + 2���x + �2�xx:We give the following equivalent de�nition of a subsolution for completeness.Proposition 30 A bounded continuous map u : 
! FR is a viscosity subsolution of the DCMAif for any (p; A) 2 FR3 � S3 and z0 2 
 such thatu(z) 6 u(z0) + p � (z0 � z) + [A](z0 � z; z0 � z) + o(jz0 � zj2) as z! z0;we have, writing p = (pi) and A = [aij ],(i) If p1 6= 0, then p3 6 a22 � 2p2p1a21 + (p2p1 )2a11;(ii) If p1 = 0, then p2 = p3 = 0 and 9� 2 FR such that 0 6 a22 + 2�a21 + �2a11:The equivalent de�nition for supersolutions is straightforward.De�nition 29 A bounded continuous map u : 
! FR is a viscosity solution of the DCMA if itis both a viscosity super-solution and a viscosity sub-solution.Proposition 31 Given an initial datum u0 2 V0c , the unique weak solution of the DCMA is aviscosity solution.Proof :Let u be the weak solution of the DCMA associated to the initial datum u0. We prove thatu is a viscosity subsolution of the DCMA. Consider � 2 C1(
), and suppose that u�� attainsa local maximum in z0 = (x0; �0; t0) 2 
. Let ' be the map de�ned from u0 as in Proposition



11.3. A VISCOSITY FORMULATION 19929, and de�ne z1 = (x1; �0; t0) by '(z1) = x0. Then, for b and c in a vicinity of 0 (actually suchthat �0 + b 2 I and t0 + c > 0),u('(x1; �0 + b; t0 + c); �0 + b; t0+ c) = u0(x1; 0) = u('(x1; �0; t0); �0; t0) = u(z0):We can estimate a(b; c) := '(x1; �0 + b; t0 + c)� x0= '(x1; �0 + b; t0 + c)� '(x1; �0; t0)= b'�(z1) + b22 '��(z1) + c't(z1) + o(b2 + c)as b; c! 0. Now, since u� � attains a local maximum in z0 andu(x0 + a(b; c); �0+ b; t0+ c)� u(x0; �0; t0) = 0;we have0 6 �(x0 + a(b; c); �0+ b; t0 + c)� �(x0; �0; t0)6 a(b; c)�x(z0) + b��(z0) + c�t(z0) + a2(b; c)2 �xx(z0) + ba(b; c)��(z0) + b22 ���(z0) + o(b2 + c)6  b'�(z1) + b22 '��(z1) + c't(z1)!�x(z0) + b��(z0) + c�t(z0) + b22 '2�(z1)�xx(z0)+b2'�(z1)��x(z0) + b22 ���(z0) + o(b2 + c):Necessarily, both factors of b and c must be zero and the factor of b2 must be nonnegative. Thisyields '�(z1)�x(z0) + ��(z0) = 0; (11.25)'t(z1)�x(z0) + �t(z0) = 0; (11.26)and '��(z1)�x(z0) + '2�(z1)�xx(z0) + 2'�(z1)��x(z0) + ���(z0) > 0; (11.27)but as 't(z1) = '��(z1), Equation 11.26 and 11.27 imply�t(z0) 6 '2�(z1)�xx(z0) + 2'�(z1)��x(z0) + ���(z0): (11.28)1. If �x(z0) 6= 0, Equation 11.25 gives '�(z1) = ����x (z0)and Equation 11.28 leads to the desired condition (i).2. If �x(z0) = 0, then �� = �t(z0) = 0 is a consequence of Equation 11.25 and 11.26, whileEquation 11.28 implies that the polynomialX 7! X2�xx(z0) + 2X��x(z0) + ���(z0)



200 CHAPTER 11. THE DEPTH-COMPATIBLE MULTISCALE ANALYSIStakes at least one nonnegative value, which is the desired condition (ii).Consequently, u is a viscosity subsolution of the DCMA. A symmetrical reasoning showsthat it is a viscosity supersolution as well. �We conjecture that a viscosity solution associated to a given initial datum is unique. Inparticular, this would imply that the viscosity and the weak solutions of the DCMA are thesame, provided that the initial datum u0 lies in V0c .11.4 Appendix on the heat equationIn the previous section, we used several results about the monodimensional heat equation. Forcompleteness, we brie
y recall them. In all the following, either J =]�1; �2[ or J = FR, and
 = J�]0;+1[.Proposition 32 Given a continuous map f : J ! FR such that9A;B; 8� 2 J; jf(�)j 6 A+ Bj�j; (11.29)there exists a unique continuous map ' : 
! FR such that(i) on 
, (�; t) 7! '(�; t) is C2 with respect to � and C1 with respect to t,(ii) on 
, @'@t = @2'@�2 ,(iii) for any (�; t) 2 @
, '(�; t) = f(�)(iv) 8T > 0; 9A;B; 8(�; t) 2 J � [0; T ]; j'(�; t)j 6 A+Bj�j.Remark : If J is bounded, then Equation 11.29 simply means that f is bounded, and Condition(iv) means that ' is bounded too. If J = FR, f and ' are constrained to be \sub-linear" in the� variable.We give a quick justi�cation of Proposition 32 since the heat equation is generally consideredfor bounded maps in the literature. (see [16] for example). As for the uniqueness, it results fromthe following comparison principle.Proposition 33 (comparison principle) Consider ' a solution of the heat equation (in thesense of Proposition 32) associated to the initial datum f 6 0. Then, ' 6 0.Proof :Suppose �rst that J = FR. Given T > 0, there exists A;B such that8(�; t) 2 J � [0; T ]; '(�; t)�A� Bj�j 6 0: (11.30)



11.4. APPENDIX ON THE HEAT EQUATION 201For R > 0 �xed, we consider the map�(�; t) = '(�; t)� ( AR2 + BR )(�2 + 2t):� satis�es the heat equation, and the maximum principle (see [16] for example) tells thatmax[�R;R]�[0;T ]� = max[�R;R]�f0g[f�R;Rg�[0;T ]�:On [�R;R]� f0g, � 6 0 because f 6 0, while Equation 11.30 yields � 6 0 on f�R;Rg� [0; T ].Hence, we have 8(�; t) 2 [�R;R]� [0; T ]; '(�; t) 6 ( AR2 + BR )(�2 + 2t):Sending R to in�nity yields 8(�; t) 2 J � [0; T ]; '(�; t) 6 0; (11.31)so that ' 6 0 on J � [0;+1[. If J is bounded, Equation 11.31 is a direct consequence of themaximum principle applied to ', and the conclusion still holds. �Now we give an explicit construction of solutions. If J = FR, the solution is given by theconvolution with the Gaussian kernel :'(�; t) = Z +1�1 f(� � �) 1p4�te��2=4td�:If J =]�1; �2[, we write ~f(�) = f(�) � l(�), where l is the unique a�ne map which forces~f(�1) = ~f(�2) = 0. Then, we extend ~f to an odd and 2(�2 � �1)-periodic map and apply theprevious convolution formula. This way, we obtain a map ~' which satis�es conditions (i), (ii)and (iv) as well as ~'(�1; t) = ~'(�2; t) = 0 for any t > 0. Last, the map' : J � [0;+1[! FR(�; t) 7! ~'(�; t) + l(�)satis�es the desired conditions (i), (ii), (iii) and (iv).Proposition 34 Here we suppose J = FR. If f satis�es8� 2 FR; jf(�)j 6 A+Bj�j;then the solution ' of the heat equation with initial datum f satis�es8(�; t) 2 FR � [0;+1[; j'(�; t)j 6 A+ Bj�j+ Br4t� :



202 CHAPTER 11. THE DEPTH-COMPATIBLE MULTISCALE ANALYSISProof :Calling Gt the Gaussian kernel, we havej'(�; t)j 6 Z +1�1 jf(� � �)jGt(�)d� 6 Z +1�1 (A+ Bj�j +Bj�j)Gt(�)d�;and the announced result is a consequence of the equalitiesZ +1�1 Gt(�)d� = 1 and Z +1�1 j�jGt(�)d� = r4t� : �11.5 Further existence propertiesIn the previous sections, we did not prove the existence of (weak or classical) solutions of theDCMA in the general case, that is to say when the initial datum admits no �-graph. In fact, wedo not believe that the DCMA admits a solution in general, at least a solution in the sense wede�ned.When the initial datum u0 admits a �-graph, the DCMA is obtained by applying the linearmonodimensional heat equation to the level lines of u0. For an ordinary continuous map u0, thelevel lines have no reason to be graphs in the � variable, since to a given value of �, several valuesof x will correspond in general. Hence, de�ning general solutions of the DCMA is somewhatequivalent to de�ning solutions of the heat equation for multi-valued data. It is in that spiritthat L.C.Evans studied independently Equation 10.2 in his article \A geometric Interpretationof the Heat Equation with Multivalued Initial Data" (see [32]). He regards the DCMA Equationas the limit when "! 0 of the more regular equationut = u2xu�� � 2uxu�ux� + u2�uxxu2x + "2u2� : (11.32)Equation 11.32 admits viscosity solutions because it is more or less the Mean Curvature Motion(actually, the case " = 1 is exactly the Mean Curvature Motion). He noticed that in the generalcase (that is, when the level lines of the initial datum are not graphs), the regularizing e�ectsof the heat equation are so strong that the limit of approximate solutions is not continuous atscale t = 0, because the level lines are constrained to become graphs instantaneously. It seemsdi�cult to overcome this di�culty unless we allow solutions of the DCMA not to be continuousat scale t = 0. In fact, it might be possible to de�ne a kind of projection operator which makesthe level lines of a movie unfold and become graphs. We shall come back to this when studyinga numerical scheme in Chapter 13.



Chapter 12Properties of the DCMAIn this chapter, we investigate several properties of the DCMA. We �rst check the ones thatare constrained by the axiomatic formulation, and then we prove that the DCMA acts as astrong smoothing process along the movement. We also establish integral estimations and tryto associate the DCMA to a variational principle. Coming back to the original context of depthinterpretation, we �nally highlight geometrical properties and �nd a new characterization of theDCMA.12.1 Checking the axiomsIn order to be sure that our axiomatic formulation is consistent, we have to check that theaxioms we introduced are satis�ed by the DCMA. As regards the three architectural axioms([Recursivity], [Local Comparison Principle] and [Regularity]), they are direct consequencesof the fact that the DCMA is given by an evolution equationut = F (D2u;Du);where F is an elliptic operator. Now we prove that the DCMA satis�es the [Strong Morpho-logical Invariance] property.Proposition 35 Let u be a weak solution of the DCMA and g : FR 7! FR a continuous map.Then, g � u is a weak solution of the DCMA.Proof :Notice that this proposition makes sense because if u 2 C0c , then g � u 2 C0~c with~c = (g(c�); g(c+)):1. First, suppose that u is a classical solution of the DCMA and that g is of class C2. Writing~u = g � u, a simple computation gives~ux = (g0 � u) � ux; ~ut = (g0 � u) � ut;203



204 CHAPTER 12. PROPERTIES OF THE DCMAand ~u�� = ~u�� � ~u�~ux ~u�x + ( ~u�~ux )2~uxx= g00 � u � (u2� � 2u2� + u2�) + g0(u)�u�� � 2u�uxu�x + (u�ux )2uxx�= g0(u) � u��whenever ~ux 6= 0. Hence, we have ~ut = 0 if ~ux = 0, and ~ut = ~u�� if ~ux 6= 0, so that ~u is a classicalsolution of the DCMA.2. Now let us come back to the general case when g is only continuous. Given " > 0, thereexists a map g" 2 C2(FR) such that kg � g"k1 6 ". Since the setK = [�kuk1 � "; kuk1 + "]is compact, g is uniformly continuous on K thanks to Heine's Theorem : in other words thereexists a positive number � 6 " such that jg(x)� g(y)j 6 " as soon as jx� yj 6 �. Besides, wecan �nd a classical solution u" of the DCMA such that ku� u"k1 6 �. Then, we havekg � u� g" � u"k1 6 kg � u� g � u"k1 + kg � u" � g" � u"k1 6 2";and g" � u" is a classical solution of the DCMA. �As for the [Transversal Invariance] property, it is clearly satis�ed by the DCMA since they coordinate does not even appear in its de�nition.Now we can check the [v-Compatibility] property. Consider a map h : FR4 7! FR such that8u 2 M1; Rhu 2 M1 and v[Rhu] = v[u];with Rhu(x; y; �) = h (u(x; y; �); x; y; �). Choosing u(x; y; �) = � tanhx (tanh meaning thehyperbolic tangent) proves that h is C1. In addition, for any u 2 M1 we must haveuxh� = u�hxin order that the condition v[Rhu] = v[u] is satis�ed. If we now choose u(x; y; �) = tanh x+ b�,we obtain h� = 0 with b = 0 and then hx = 0 with b = 1, so that we �nally haveh(�; x; y; �) = f(�; y):Then, the relation Tt �Rh = Rh � Tt is a direct consequence of Proposition 35, the y coordinatebeing �xed. �The last two axioms, [Galilean Invariance] and [Zoom Invariance], are clearly satis�ed bythe DCMA thanks to Lemma 18 and Lemma 19.



12.2. ASYMPTOTICS OF THE DCMA 20512.2 Asymptotics of the DCMAGiven an evolution equation like the DCMA, a natural question arises : is there an asymptoticstate ? In other words, we would like to know whether the movie u(�; t) tends towards a limitmovie u1 as t! +1.Proposition 36 If u 2 V0c is a weak solution of the DCMA, then the limitu1 = limt!+1 u(�; t)exists and satis�es� if I = S1, u1(x; y; �) = u1(x; y; 0),� if I =]�1; �2[, there exists v 2 C0(FR2) such thatu1(x� v(x; y)�; y; �) = u1(x; y; 0):Proof :We proved in Proposition 29 that u satis�esu('(x; y; �; t); y; �; t) = u(x; y; 0; 0):Since ' is a solution of the heat equation, there exists two maps a and b such that'(x; y; �; t)! a(x; y)�+ b(x; y) as t! +1;and if I = S1 the condition '�(x; y; �; 0)! 0 as jxj ! +1forces a(x; y) = 0. �Remark : The stronger condition in the case I = S1 is only a consequence of the spaceof solutions we choose. The main idea that must emerge from this proposition is that thetrajectories of the initial movie eventually become straight lines as t reaches in�nity.12.3 Di�usion of the movementIn the following, v is a map of class C2 de�ned on a subset 
0 of 
 = FR� I�]0;+1[, and on 
0v satis�es u� + vux = 0: (12.1)



206 CHAPTER 12. PROPERTIES OF THE DCMAThis de�nes on 
0 the operator DD� = @@� + v @@x;as well as the notation f�� = [D2f ](�; �) with � = (v; 1):Proposition 37 Let u 2 Cn+3;1c be a classical solution of the DCMA, with n > 0. Then themovement derivatives (velocity v = �u�ux , acceleration � = DvD� , . . . DnvD�n , . . . ) are di�used inthe same direction as u, that is8k 2 f0; : : :ng;  DkvD�k!t =  DkvD�k!�� whenever ux 6= 0:In particular, the apparent velocity v follows the polynomial and causal di�usion equationvt = v�� + 2vv�x + v2vxx whenever ux 6= 0:To establish this property, it is interesting to introduce the formalism of the Lie bracketsassociated to the partial derivatives @@x , @@� , @@t , which commute together, and to the totalderivative DD� = @@� + v @@x .We compute[ @@x; DD� ] = @@x DD� � DD� @@x = @@x( @@� + v @@x)� ( @@� + v @@x) @@x = vx @@x:One easily checks as well that[ @@� ; DD� ] = v� @@x and [ @@t ; DD� ] = vt @@x:This way, we can expand the f�� = [D2f ](�; �) notation into( )�� = @2@�2 + 2v @2@�@x + v2 @2@x2= ( @@� + v @@x) @@� + v( @@� + v @@x) @@x= DD� @@� + v DD� @@x= DD� ( @@� + v @@x)� DvD� @@xand �nally we get, writing � = DvD� , ( )�� = D2D�2 � � @@x:In particular, if we write  = D�D� the total derivative of �, we havev�� =  � �vx:



12.3. DIFFUSION OF THE MOVEMENT 207Lemma 24 Independently of any evolution equation, on 
0 we have[ @@t � ( )��; DD� ] = (vt � v��) @@x: (12.2)Proof :We compute the Lie bracket[( )��; DD� ] = [ D2D�2 � � @@x; DD� ]= [ D2D�2 ; DD� ]� [� @@x; DD� ]= 0 + D�D� @@x � �[ @@x; DD� ]= ( � �vx) @@x= v�� @@x:Now, by linearity, we get as announced[ @@t � ( )��; DD� ] = [ @@t ; DD� ]� [( )��; DD� ] = (vt � v��) @@x: �Proof of Proposition 37 :We take 
0 = fz 2 
; ux(z) 6= 0g, so that v is uniquely de�ned by Equation 12.1 on 
0.Applying Equation 12.2 to u yields� @@t � ( )��� DuD� + DD� (ut � u��) = (vt � v��)ux: (12.3)As u satis�es DuD� = 0 as well as ut = u�� on 
0 (u is solution of the DCMA), the left term ofEquation 12.3 is zero. Hence, on 
0 we have vt = v�� as announced in Proposition 37.This proves that the right term of Equation 12.2 is zero on 
0, so that[ @@t � ( )��; DD� ] = 0 whenever ux 6= 0:Consequently, for any q : 
0 ! FR of class C3 satisfyingqt = q��;we have �DqD��t = �DqD���� whenever ux 6= 0:Thus, a simple induction proves that the di�usion equation qt = q�� is satis�ed by all successivetotal derivatives of v of class C2, that is, DvD� , . . . , DnvD�n . �Now we would like to generalize Proposition 37 to the whole 
, i.e. even at points where uxvanishes.



208 CHAPTER 12. PROPERTIES OF THE DCMAProposition 38 If u 2 Vn+3;1c , then there exists a velocity map v associated to u which satis�es,on the whole 
, 8k 2 f0; : : :ng;  DkvD�k!t =  DkvD�k!�� : (12.4)Moreover, if I =]�1; �2[, then8(x; i; t) 2 FR � f1; 2g�]0;+1[ �(x; �i; t) = 0: (12.5)Proof :De�ne ' as in Lemma 22, and consider the velocity map v de�ned byv('(x; �; t); �; t) = '�(x; �; t): (12.6)1. We get, writing z0 = (x; �; t) and z1 = ('(x; �; t); �; t),vt(z1) = '�t(z0)� 't(z0)vx(z1)= '���(z0)� '��(z0)vx(z1);while '��(z0) = v�(z1) + '�(z0)vx(z1)and '���(z0) = v��(z1) + 2'�(z0)v�x(z1) + '2�(z0)vxx(z1) + '��(z0)vx(z1):Hence, we have vt(z1) = v��(z1) + 2'�(z0)v�x(z1) + '2�(z0)vxx(z1)= �v�� + 2vv�x + v2vxx� (z1)= v��(z1)as expected. This proves that the right term of Equation 12.2 is identically zero on the whole
, so that this di�usion property extends to the successive total derivatives of v as we noticedin the proof of Proposition 37.2. Di�erentiating Equation 12.6 with respect with �, we get�('(x; �; t); �; t) = '��(x; �; t);so that for any (x; i; t) in FR � f1; 2g�]0;+1[ we have�('(x; �i; t); �i; t) = 't(x; �i; t) = @@t'(x; �i; t) = @@t'(x; �i; 0) = 0: �



12.3. DIFFUSION OF THE MOVEMENT 209Remark : If u 2 C0;0c is a weak solution of the DCMA, locally Lipschitz in the x variable, it ispossible to establish an equivalent result in the continuation of Corollary 11, provided that wesubstitute the total derivative DD� by the Lie derivativef�(x; �; t) := � dd� f(x+ �v(x; �; t); �+ �; t)��=0 :From Corollary 11 we know that there exists a velocity map v (i.e. such that u� = 0), de�nedon 
, which also constrainsu(x+ �v(x; �; t); �+ �; t� �22 ) = u(x; �; t) + o(�2):Then, it is not di�cult to show thatv(x+ �v(x; �; t); �+ �; t� �22 ) = v(x; �; t) + �v�(x; �; t) + o(�2):More generally, the successive Lie derivatives of v along the movement are well de�ned (� = v�, = ��, . . . , v[n+1] = (v[n])�, . . . ) and satisfyv[n](x+ �v(x; �; t); �+ �; t� �22 ) = v[n](x; �; t) + �v[n+1](x; �; t) + o(�2):This highlights an interesting property of the DCMA : the velocity �eld is smoothed indirectlythrough the anisotropic di�usion of u. Notice that the di�usion Equationvt = v�� + 2vv�x + v2vxxpresents no singularity and is of the kindvt = F (D2v;Dv; v);where F is a continuous elliptic operator. This means in particular that the classical theory ofviscosity solutions (see [27]) applies. Our study goes a little further as v does not necessarilyexist at t = 0, but we saw that it can be de�ned for any t > 0 as soon as u0 2 V0c . This is adirect consequence of the strong regularization e�ects of the heat equation.As regards boundary conditions for v when u0 is regular enough, we have8(x; �) 2 FR � I; v(x; �; 0) = v0(x; �)and if I =]�1; �2[, then8(x; i; t) 2 FR � f1; 2g�]0;+1[; (v� + vvx)(x; �i; t) = 0according to Proposition 38.



210 CHAPTER 12. PROPERTIES OF THE DCMA12.4 A conservation law12.4.1 Compactly supported moviesWe would like to consider integrals likeZI Z +1�1 u(x; �) dxd�:To simplify the results, we are going to work on compactly supported movies, which is not veryrestrictive physically speaking. We �rst recall the classicalDe�nition 30 A movie u : FR� I ! FR is compactly supported if it is zero outside a compactset of FR � I.Practically, it is equivalent to say that there exists R > 0 such that u(x; �) = 0 as soon asjxj > R.Lemma 25 A compactly supported movie u 2 Vn0 (n > 1) admits a compactly supported velocitymap.Proof :Suppose that u(x; �) = 0 when jxj > R and let v be a velocity map of u. There exists a map� 2 C1(FR) such that �(x) = 0 if jxj > R+ 1 and �(x) = 1 if jxj 6 R. Thus, the map~v : (x; �) 7! �(x) � v(x; �)is a velocity map of u because u� = ux = 0 when jxj > R. Last, it is clear that ~v, as well as v,is bounded and of class Cn�1. �Proposition 39 Let u be the (weak or classical) solution of the DCMA associated to a compactlysupported initial datum u0 2 Vn0 . Then,9R > 0; 8(x; �; t) 2 FR � I � [0;+1[; jxj > R+ t ) u(x; �; t) = 0: (12.7)and if n > 1, u admits a velocity map which satis�es the same conclusion.Proof :This is a simple consequence of Equation 11.18. Recall that the solution u of the DCMAcan be de�ned by 8(x; �; t) 2 
; u('(x; �; t); �; t) = u0(x; 0);where ' satis�es 9C; 8(x; �; t) 2 
; j'(x; �; t)j > jxj � C � tthanks to Equation 11.18. But since u0 is compactly supported, there exists R > 0 such thatu0(x; �) = 0 as soon as jxj > R� C. Then, we have u(x; �; t) = 0 as soon as jxj > t+ R. �



12.4. A CONSERVATION LAW 21112.4.2 Light Energy conservationProposition 40 Let u 2 V2;10 be the classical solution of the DCMA associated to a compactlysupported initial datum. Suppose that(a) either I = S1,(b) or I 6= S1 and 8(x; i) 2 FR � f1; 2g; u(x; �i; 0) = 0:Then, the light energy at scale t, de�ned byI(t) = 12 ZZ u2(x; �; t) dxd�;is independent of t.Proof :We take the convention (�1; �2) = (0; 2�) if I = S1, and remark that if I =]�1; �2[, then theboundary condition on u implies8(x; i; t) 2 FR� f1; 2g� [0;+1[ u(x; �i; t) = u(x; �i; 0) = 0thanks to Condition (b), so that8(x; i; t) 2 FR � f1; 2g � [0;+1[ ux(x; �i; t) = @@xu(x; �i; t) = 0:In the following, v is a velocity map associated to u. Since u(�; �; t) is compactly supportedthanks to Proposition 39, the integralI(t) = 12 ZZ u2dxd�is taken on a compact set. Consequently, as u 2 C2;10 , I is derivable and we can derive under theintegral symbol to obtain I 0(t) = ZZ uut dxd�= ZZ uu�� dxd�= � ZZ uux� dxd�= � ZZ uux(v� + vvx) dxd�= � ZZ uuxv� � uu�vx dxd�:By integrating by parts, we getI 0(t) = � Z [uuxv]�2�1 dx+ Z [uu�v]+1�1 d� + ZZ (uux)�v � (uu�)xv dxd�:The �rst term is zero thanks to (a) or (b), the second one is zero because u(�; �; t) is compactlysupported and v is bounded, and the third one is evidently zero. Hence, I(t) does not dependon t. �



212 CHAPTER 12. PROPERTIES OF THE DCMA12.5 A variational principle12.5.1 A minimization lawProposition 41 Let u 2 V4;10 be the classical solution of the DCMA associated to a compactlysupported initial datum. Then the quantityE(t) = 12 ZZ �2(x; �; t) dxd�decreases with scale and we have dEdt (t) = � ZZ (D�D� )2 dxd�: (12.8)Proof :In all the following, v is a velocity �eld of u satisfying Equation 12.7. First notice that��� = D2�D�2 � ��x = D	D� � ��xas soon as 	 = D�D� = �� + v�x:We compute the derivative of E(t),E 0(t) = ZZ ���� dxd�= ZZ �(	� + v	x � ��x) dxd�= ZZ �	� + (v�)	x � �2�x dxd�:Integrating by parts the �rst two terms yieldsE0(t) = Z [� ]�2�1 dx+ Z [v� ]+1�1 d� � ZZ ��	 + (v�)x	+ �2�x dxd�:The �rst bracket is zero thanks to Equation 12.5 (or thanks to the periodicity of �	 if I = S1),and the second one is zero because v�	 is compactly supported at any scale t. Hence, we haveE 0(t) = � ZZ ��	+ (v�)x	+ �2�x dxd�= � ZZ 	(�� + v�x + vx�) + �2�x dxd�= � ZZ 	2dxd� � ZZ vx�	 dxd� + ZZ �2�x dxd�: (12.9)But as ZZ �2�x dxd� = 13 ZZ @@x(�3) dxd� = 0



12.5. A VARIATIONAL PRINCIPLE 213(because � is compactly supported at any scale t), the second term of Equation 12.9 can berewritten B(t) = ZZ vx�	 dxd� = ZZ vx�	 � �2�x dxd�= ZZ �(��vx + vvx�x � �xv� � vvx�x) dxd�= 12 ZZ (2���)vx � (2��x)v� dxd�:then, another integration by parts yields2B(t) = Z h�2vxi�2�1 dx+ Z h�2v�i+1�1 d� � ZZ �2(vx� � v�x) dxd� = 0:Finally, coming back to Equation 12.9, we obtainE0(t) = � ZZ 	2dxd� 6 0as announced. �Remark : Since E(t) is positive and decreases with scale, it converges to a minimum value ast ! +1, and E 0(t) ! 0 as t ! +1. Now, what are the movies u for which 	 = 0 ? Comingback to the construction of the solutions of the DCMA, one easily checks that the condition	 = 0 is equivalent to the condition8(x; �) 2 FR � I; '���(x; �) = 0; (12.10)the map ' being de�ned as usual byu('(x; �); �) = u(x; 0):Equation 12.10 implies the existence of three maps A;B;C such that8(x; �) 2 FR� I; '(x; �) = A(x)�2 + B(x)� + C(x):and since '(x; 0) = x, necessarily C(x) = x. Hence, the level lines of a movie u satisfying 	 = 0are parabolae.12.5.2 A variational interpretationAt this point, it is natural to wonder whether Equation 12.8 results from a variational principle.Let us consider the functional E(v) = 12 ZZ (v� + vvx)2 dxd�;



214 CHAPTER 12. PROPERTIES OF THE DCMAde�ned on compactly supported movies of class C2. Then, we can di�erentiate E to obtainDvE(h) = ZZ (v� + vvx)(h� + (vh)x) dxd�= ZZ �h� + (�v)hx + �vxh dxd�:By integrating by parts the �rst two terms, we get, assuming that Equation 12.5 is satis�ed by� if I 6= S1, DvE(h) = ZZ ���h� �xvh dxd� = � ZZ D�D� h dxd�;that is to say DvE(h) = � ZZ D2vD�2 � h dxd�:Hence, the canonical evolution equation associated to the variational problem of minimizing Ewould be @v@t = D2vD�2 = v�� + �vx:Because of the last term �vx, we can see that the equation vt = v�� induced by the DCMA isnot exactly the evolution equation associated to the minimization of E . However, Proposition41 showed that for the DCMA evolution,DvE(@v@t ) = ddtE(t) = � ZZ  D2vD� !2 dxd�as if it was the case1. Hence, the DCMA is somewhat related to the problem of minimizing E .12.6 Interpretation for the observed sceneIn this section, we do not omit the y variable any longer.12.6.1 Ideal moviesDe�nition 31 A movie u : FR2 � I ! FR is ideal if one can �nd three maps (C;Z; U) 2C0(I?)� C0(FR2)� C0(FR2) such that� : FR2 � I? ! FR2 � I(X; Y; �) 7! �X � C(�)Z(X; Y ) ; YZ(X; Y ) ; ��is bijective and 8(X; Y; �) 2 FR2 � I?; u ��(X; Y; �) = U(X; Y ): (12.11)1The reason is simply that ZZ D2vD�2 �vx dxd� = 0as we noticed previously.



12.6. INTERPRETATION FOR THE OBSERVED SCENE 215In other terms, a movie is ideal if it can be interpreted as the perfect observation of a sceneZ(X; Y ); U(X; Y ) (depth and Lambertian luminance) by a unit focal length camera submittedto the movement X = C(�). In this de�nition, occlusions are forbidden because � is constrainedto be bijective. If I = S1, the natural injection FR ,! S1 is implicit in the de�nition.It is important to notice that the interpretation of a movie is never unique. Indeed, if(C;Z; U) is an interpretation of u, then (�C; �Z�D�; U �D�) with D� : (X; Y ) 7! (X=�; Y=�) isanother interpretation of u. This ambiguity is called the aperture problem : if one do not knowthe focal length of a camera, the depth on the movie it produces can at most be recovered upto a multiplicative factor . Moreover, it is clear that the depth cannot be recovered in regions(X; Y; Z(X;Y )) where U is constant. Ambiguities in the depth recovery can also appear in caseof special relations between the depth (or luminance) and the camera movement, which areactually not likely to occur in practice (see [44]).12.6.2 Di�erential characterization of ideal moviesProposition 42 If a movie is ideal and allows a derivable movement interpretation, then itadmits a velocity map v, and in any point where v is C2 we havev � r�� � � rv = 0: (12.12)In Equation 12.12 the symbol r means the spatial gradient operatorr = ( @@x; @@y );and as usual � = DvD� = v� + vvx:Hence, Equation 12.12 can also be rewritten( vv�x + v2vxx � v�vx = 0vv�y + v2vxy � v�vy = 0Proof :Let (C;Z; U) be an interpretation of u such that C is of class C1. We de�ne a unique moviev : FR2 � I ! FR by v ��(X; Y; �) = �C 0(�)Z(X; Y ) : (12.13)Then, di�erentiating Equation 12.11 with respect to � yields(vux + u�) �� = 0;so that v is a velocity map of u as announced. Now, anywhere v is C2 we have(vvx + v�) ��(X; Y; �) = �C 00(�)Z(X; Y ) ;



216 CHAPTER 12. PROPERTIES OF THE DCMAwhich can be combined with Equation 12.13 to yieldC0(�) � � ��(X; Y; �) = C 00(�) � v ��(X; Y; �)because Z does not vanish. Now, if C 0(�) 6= 0, then v 6= 0 and �=v does not depend on x, sothat 0 = r�v = vr�� �rvv2as announced. If C 0(�) = 0 and C 00(�) 6= 0, the same reasoning applies to the map v=�. Last, ifC0(�) = 0 and C 00(�) = 0, Equation 12.12 is clearly satis�ed because v = � = 0. �A natural question arises : does an ideal movie remain ideal when it evolves according tothe DCMA ? To prove that the answer is yes, we could show that the di�erential invariant ofEquation 12.12 remains null if it is null at initial scale. In fact, we state a better property byinterpreting the evolution of an ideal movie.12.6.3 Evolution of ideal moviesTheorem 10 Let u0 2 C2c be an ideal movie associated with an interpretation (Z0(�); U0(�); C0(�))such that 9A;B; 8� 2 I?; jC0(�)j 6 A+ Bj�j:Then the classical solution u of the DCMA de�ned from the initial datum u0 is a multi-scale collection of ideal movies ((u(�; t))t>0. Moreover, these movies can be interpreted as(Z0(�); U0(�); C(�; t)), where C(�; �) is de�ned byCt = C�� on 
 = I?�]0;+1[with the boundary condition 8(�; t) 2 @
; C(�; t) = C0(�):Proof :1. The movie u0 being ideal, we have8(X; Y; �) 2 FR2 � I; u0�X � C0(�)Z0(X; Y ) ; YZ0(X; Y ) ; �� = U0(X; Y ):Let C be the solution of the heat equation as speci�ed in the theorem. The map� : FR2 � I? ! FR2 � I � [0;+1[(X; Y; �; t) 7! �X � C(�; t)Z0(X; Y ) ; YZ0(X; Y ) ; �; t�



12.6. INTERPRETATION FOR THE OBSERVED SCENE 217is bijective because the heat equation satis�es the comparison principle. Hence, we can de�ne acollection of ideal movies ~u(�; t) from~u ��(X; Y; �) = U0(X; Y ); (12.14)2. First we check that ~u is C2. Choose (X0; Y0; �0; t0) 2 FR2 � I?�]0;+1[, and write(X(h); Y (h)) the unique element of FR2 such that�(X(h); Y (h); �0; t0) = �(X0; Y0; �0; t0) + (h; 0; 0) = (x0 + h; y0; �0; t0):We have, for any � and h,~u(x0 + h; y0; �0; t0) = U0(X(h); Y (h)) = u0(x0 + h+ C(�0; t0)� C0(�)Z0(X(h); Y (h)) ; y0; �):Now, there exists a unique �1 such thatC0(�1) = C(�0; t0);so that we �nally get ~u(x0 + h; y0; �0; t0) = u0(x0 + h; y0; �1):This proves that ~u is, like u0, derivable with respect to x. A similar reasoning establishes thatu 2 C2;1c .3. Now we prove that u = ~u. If we compute the derivatives of Equation 12.14 with respectto � and t, we obtain� C 0(�; t)Z0(X; Y ) ~ux ��+ ~u� �� = 0 and � C 00(�; t)Z0(X; Y ) ~ux ��+ ~ut �� = 0:If ~ux �� = 0, then ~ut �� = 0, and if ~ux �� 6= 0, eliminating C yields~ut �� = ~ux ��Z0(X; Y ) @@� �Z0(X; Y ) ~u�~ux ��� = �~ux DD� ( ~u�~ux )� �� = ~u�� ��:Hence, ~u is a classical solution of the DCMA submitted to the same boundary constraint asu. Since these conditions de�ne a unique solution, we can deduce that u = ~u, which provesthat each movie u(�; �; �; t) is ideal and that we can choose the interpretation announced in thetheorem. �The signi�cation of Theorem 10 is simple : when analyzed by the DCMA, an ideal movieremains ideal and its interpretation is preserved up to a smoothing process on the cameramovement.



218 CHAPTER 12. PROPERTIES OF THE DCMA12.6.4 Characterization of the DCMAWe now give another justi�cation for the DCMA equation obtained in Theorem 9.Theorem 11 The DCMA is, up to a rescaling, the only2 multiscale analysis satisfying thearchitectural axioms, the [v-compatibility] axiom, and such that an ideal movie (C0; Z; U) istransformed into a sequence of ideal movies (C(t); Z; U) such that C(t) depends linearly on C0.Proof :1. Let us start by writing the relations between the scene referential (X; Y;�; T ) and theimage referential (x; y; �; t) : X $ x = X � C(�; t)Z(X; Y; T )Y $ y = YZ(X; Y; T )� $ �T $ tFrom this, we compute the di�erentialsdx = 1� xZXZ dX � xZYZ dY � VZ d�� 1Z (Ct + xZT )dTdy = �yZXZ dX � 1� yZYZ dY � yZ ZTdTNow, given a map F de�ned on both referentials, we havedF = FXdX + FY dY + F�d�+ FTdT = Fxdx+ Fydy + F�d� + Ftdt;so that FX = Fx(1� xZXZ ) + Fy(�yZXZ ) (12.15)FY = Fx(�xZYZ ) + Fy(1� yZYZ ) (12.16)F� = Fx(�VZ ) + F� (12.17)FT = Fx(�CtZ )� ZTZ (xFx + yFy) + Ft: (12.18)Notice that Equation 12.17 simply gives the total derivative of F ,DFD� = F� = F� + vFx:Now, applying Equation 12.15 and 12.16 to F = Z, we get( ZZX = Zx(1� xZX) + Zy(�yZX)ZZY = Zx(�xZY ) + Zy(1� yZY )2Once again, the identity operator is naturally irrelevant here.



12.6. INTERPRETATION FOR THE OBSERVED SCENE 219which yields, when the denominators do not vanish,ZX = ZxZ + xZx + yZy and ZY = ZyZ + xZx + yZy :Using Equation 12.18 applied to Z, we �nally obtainZT = �ZxCt + ZZtZ + xZx + yZy = ZX �ZZtZx � Ct� :2. Consider a multiscale analysis satisfying the hypotheses of Theorem 11. Then, fromLemma 17 we know that it can be described by an evolution equation of the kindut = u�F (�v ; v); (12.19)provided that we suppose that v does not vanish. If u is an ideal movie, we have v = �V=Z ifwe note V = C�, and Equation 12.19 can be rewritten@u@t = u�F (V�V ;�VZ ):Then we can compute vt = � 1ux DutD� = v�F + vV V�� � V 2�V 2 F1 � vV�Z F2; (12.20)F1 and F2 meaning the partial derivatives of F with respect to arguments 1 and 2. Now, asv�v = V�V � Z�Z = V�V � V ZxZ2and vtv = VtV � ZTZ ;Equation 12.20 yields VtV � ZTZ = (V�V � V ZxZ2 )F + V V�� � V 2�V 2 F1 � V�Z F2Since the multiscale analysis must preserve the depth interpretation of the scene, we must haveZT = 0, that is to say ZZxZt = Ct whenever ZX 6= 0;from what we deduce VtV � V�V F � V V�� � V 2�V 2 F1 � V�Z F2 = ZxZ2 (Ct � V F ): (12.21)The left term of Equation 12.21 only depends on Z, �, and t. Therefore, by formal independencyof Zx we necessarily have Ct = V F and F only depends on � and t, that is to say F2 = 0. Then,Equation 12.21 is equivalent to Vt = (V�� � V 2�V )F1 + V�F;



220 CHAPTER 12. PROPERTIES OF THE DCMAand the only possibility for V to evolve linearly isVt = �V�;which yields a trivial evolution equation on u, and Vt = �V��, that is to sayF (a; b) = �a:This corresponds to the announced evolution Equation ut = u��, up to the rescaling t 7! �t. �



Chapter 13Numerical scheme and experimentsIn this chapter, we propose a simple morphological scheme to implement the DCMA numerically.We prove its consistency in the \regular case", and investigate its behaviour when singularitiesappear. We link these observations with the di�culty encountered when trying to obtain theo-retical existence properties for general initial data. Last, we present experiments on two classicalmovies of outdoor scenes, and we highlight both time regularization e�ects of the DCMA andits usefulness for depth recovery.13.1 De�nitionIn order to apply the DCMA evolution to real movies, we need to devise a numerical scheme.A \naive" discretization of the partial derivatives of u cannot be used, because in practice it iswell known that the time discretization is not thin enough. Moreover, such a discretization isnot likely to satisfy the axioms that we imposed to the DCMA. This is the reason why we focusour attention on an inf-sup scheme. To this end, given a movie u : FR2 � I ! FR, we de�neIShu(x0; y0; �0) = infv2FR sup�h6�6h u(x0 + v�; y0; �0 + �);SIhu(x0; y0; �0) = supv2FR inf�h6�6h u(x0 + v�; y0; �0 + �);and Thu = 12 (IShu+ SIhu) :If I = S1, all the quantities above are well de�ned. If I =]�1; �2[, we take the conventionthat u(x; y; �) = ( u(x; y; �1) for x < �1;u(x; y; �2) for x > �2:221



222 CHAPTER 13. NUMERICAL SCHEME AND EXPERIMENTS
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Figure 13.1: Inf-sup scheme used to implement the DCMA.13.2 Consistency (regular case)First, we establish a consistency result at points where ux does not vanish.Theorem 12 If u is a bounded movie locally C3 near z0, with ux(z0) 6= 0, thenIShu(z0) = u(z0) + h2u+��(z0) +O(h3);SIhu(z0) = u(z0) + h2u���(z0) +O(h3);Thu(z0) = u(z0) + 12h2u��(z0) +O(h3):and the O(h3) is uniform in a neighborhood of z0.From now on, we shall omit the y variable in the movies we consider. Since most of the quan-tities involved in the following are continuous with respect to the y variable, the correspondingestimations are easily proved to be locally uniform in the y coordinate.Lemma 26 Consider a bounded movie u locally C2 near z0 and such that ux(z0) 6= 0. Then,in a neighborhood of z0 we have, for h small enough,IShu = ~IShu;with ~IShu : (x1; �1) 7! infjvj6 1ph supj�j6h u(x1 + v�; �1 + �):



13.2. CONSISTENCY (REGULAR CASE) 223Proof :1. Let K be a compact neighborhood of z0 on which u is C2 and ux does not vanish. Weconsider the compact set K 0 = K + [�1; 1]� [�1; 1], and writeA = infK juxj and B = supK0 juxj+ ju�j:From Taylor's Theorem, the mapC(x) = sup(x1;�1)2K ju(x1 + x; �1)� u(x1; �1)� xux(x1; �1)jx2is upper-bounded on [�1; 1] by 12 supK0 juxxj;while on [�1;�1][ [1;+1] we haveC(x) 6 supjxj>1 2kuk1 + Bjxjx2 <1:Therefore, writing C = kCk1 yields8(x1; �1) 2 K; 8x 2 FR; u(x1 + x; �1) > u(x1; �1) + xux(x1; �1)� Cx2:For h 6 1, let us take x2(x1; �1; h) = sgn (ux(x1; �1))1 + 2CA ph;with the classical convention thatsgn(x) = 8><>: 1 if x > 0;0 if x = 0;�1 if x < 0:We obtain u(x1 + x2; �1) > u(x1; �1) + ph1 + 2CA  jux(x1; �1)j � Cph1 + 2CA !> u(x1; �1) + ph1 + 2CA (A� A2 )> u(x1; �1) +Dph with D = A22A+ 4C > 0:Moreover, as jx2j 6 ph, we havejvj > 1ph ) �2(x1; �1; h; v) := x2vh 2 [�1; 1] and (x1 + v�2h; �1 + �2h) 2 K 0:Hence, u(x1 + v�2h; �1 + �2h) > u(x1 + v�2h; �1)�Bj�2jh > u(x1; �1) +Dph�Bh;



224 CHAPTER 13. NUMERICAL SCHEME AND EXPERIMENTSand taking h1 = inf �1; � D2B�2� yields for any (x1; �1) 2 K,h 6 h1; jvj > 1ph ) sh(v)(x1; �1) := supj�j61u(x1 + v�h; �1 + �h) > u(x1; �1) + D2 ph: (13.1)2. For (x1; �1) 2 K, we writevc(x1; �1) = �u�ux (x1; �1) and fx1;�1(x) = u(vcx; x):A second-order expansion of fx1;�1 yields8h 6 h1; 8(x1; �1) 2 K; 8(v; �) 2 FR � [�1; 1]; u(x1 + v�h; �1 + �h) 6 u(x1; �1) + �2h22 E;where E = sup(x1;�1)2K;jxj6h1 f 00x1;�1(x):Thus, for h 6 h0 := inf �h1; �DE �23�, Equation 13.1 yieldsIShu(x1; �1) 6 u(x1; �1) + D2 ph 6 infjvj> 1ph sh(x1; �1);which proves that8h 6 h0; 8(x1; �1) 2 K; IShu(x1; �1) = infjvj6 1ph sh(v)(x1; �1) = ~IShu(x1; �1)as expected. �In the following Lemma, we equip the space FR[X;�] of 2-variables real polynomials with thenorm given by the maximum of the absolute values of the coe�cients, that iskXi;j aijX i�jk = maxi;j jaij j:Lemma 27 Let P (x; �) be a polynomial whose degree is at most two. If Px(0; 0) 6= 0, then8h 6 inf(1; Px(0; 0)2)16kPk2 + 1 ; ~IShP (0; 0) = P (0; 0) + h2P+��(0; 0):Proof :1. Since the degree of P is at most two, the second-order expansion of P is exact :P (v�; �) = P (0; 0) + �(av + b) + �2(v; 1)T [D2P ](v; 1) with (a; b) = (Px; P�)(0; 0):



13.2. CONSISTENCY (REGULAR CASE) 225Let us consider the new coordinate system (av + b; �) instead of (v; �) (this is valid becausea 6= 0). Writing Q(�) = (� � ba ; 1)T [D2P ](� � ba ; 1);we get ~IShP (0; 0) = infjvj6 1ph sup�h6�6h P (v�; �)= P (0; 0)+ infjvj6 1ph sup�h6�6h �(av + b) + �2(v; 1)T [D2P ](v; 1)= P (0; 0)+ infj ��ba j6 1ph sup�h6�6h �� + �2Q(�)= P (0; 0)+ infj ��ba j6 1ph sup06�61 �j�jh+ �2h2Q(�):Now, let us de�neuh(�; �) = �hj�j + �2h2Q(�); sh(�) = sup06�61uh(�; �) and Ah = infj ��ba j6 1ph sh(�):We want to show that Ah = h2Q(0)+ for h small enough.2. For h 6 a2b2 , we have j0�ba j 6 1ph , so thatAh = infj ��ba j6 1ph sh(�) 6 sh(0) = sup06�61 �2h2Q(0) = h2Q(0)+:Besides, as sh(�) = sup06�61 uh(�; �) > uh(�; 0) = 0, we know thatAh = inf�2FR sh(�) > 0:In particular, this proves that if Q(0) 6 0, then Ah = 0 = h2Q(0)+.3. Let us study the case Q(0) > 0. One easily checks that Q(�) is a polynomial with degreeat most two, and that supj ��ba j6 1ph jQ0(�)j 6 2kPk� 1ph + 1jaj� :As a consequence, for h 6 a2 we have8�; j� � ba j 6 1ph ) Q(�) > Q(0)� 4kPkph j�j) 8� 2 [0; 1]; �hj�j + �2h2Q(�) > �hj�j+ h2�2(Q(0)� 4kPkph j�j)) 8� 2 [0; 1]; uh(�; �) > �hj�j(1� 4kPkph�) + h2�2Q(0)) sup�2[0;1]uh(�; �) > ��hj�j(1� 4kPkph�) + h2�2Q(0)��=1) sh(�) > hj�j(1� 4kPkph) + h2Q(0);



226 CHAPTER 13. NUMERICAL SCHEME AND EXPERIMENTSand taking the inf on � yields8h 6 h1 := 116kPk2 ; Ah = infj ��ba j6 1ph sh(�) > h2Q(0):4. We showed in 2 and 3 that Ah = h2Q(0)+ as soon as h 6 h0, withh0 := inf(1; a2)16kPk2 + 1 6 inf  a2; a2b2 ; 116kPk2! :This achieves the proof since8h 6 h0; ~IShP (0; 0) = P (0; 0)+ h2Q(0)+= P (0; 0)+ h2 �(�ba ; 1)T [D2P ](�ba ; 1)�+= P (0; 0)+ h2P+��(0; 0): �Proof of Theorem 12 :Let K be a compact neighborhood of z0 = (x0; �0) on which u is C3 and ux does not vanish.For (x1; �1) 2 K, we write Px1;�1 the second-order expansion of u near (x1; �1). The regularityof u ensures the existence of a constant C > 0 such that8(x1; �1) 2 K; 8(x; �) 2 [�1; 1]2; ju(x1 + x; �1 + �) � Px1;�1(x; �)j 6 Cpx2 + �23:This implies, for h 2 [0; 1],8j�j 6 1; 8jvj 6 1ph; ju(x1 + v�h; �1 + �h) � Px1;�1(v�h; �h)j 6 Cp2h3: (13.2)From now on, we �x (x1; �1) 2 K and write P for Px1;�1 . If we apply the nondecreasing operator~ISh to Equation 13.2, we get8h 2 [0; 1]; ~IShP (x1; �1)� Cp2h3 6 ~IShu(x1; �1) 6 ~IShP (x1; �1) + Cp2h3:Notice that the regularity of u implies that the map(x1; �1) 7! Px1;�1is continuous, as well as the map P 7! inf(1; Px(0; 0)2)16kPk2 + 1 :Hence, Lemma 27 ensures the existence of a constant h1 > 0 independent of (x1; �1) such that8h 2 [0; 1]; ~IShP (0; 0) = P (0; 0) + h2P+��(0; 0) = u(x1; �1) + h2u+��(x1; �1):



13.2. CONSISTENCY (REGULAR CASE) 227In addition, from Lemma 26 we know that there exists h2, independent of (x1; �1), such that8h 6 h2; IShu(x1; �1) = ~IShu(x1; �1):Therefore, for any h 6 h0 := inf(h1; h2) we haveISh(u) = u+ h2u+�� +O(h3)uniformly on K. The symmetric estimation on SIh arises fromSIh(u) = �ISh(�u) = u� h2(�u��)+ + O(h3) = u+ h2u��� +O(h3);and summing up these two estimations establishes the desired consistency propertyTh(u) = u+ h2u�� +O(h3)uniformly on K. �Theorem 12 proves the consistency of the numerical scheme given by the iteration of Th withrespect to the DCMA evolution. Due to the h2 coe�cient in the expansion of Th, it is naturalto consider the numerical scheme which associates, to a given movie u0 and a scale t > 0, thesequence of movies (un;t)n>1 given byun = Tnhnu0; with hn = q2t=n;and satisfying the boundary constraint8(x; y; �) 2 @(FR2 � I); un(x; y; �) = u0(x; y; �):For an operator T , the notation Tn means T � T � : : : � T n times.Thanks to Theorem 12, we know that such a scheme is consistent. As for the convergence,we could hope to prove that un converges towards the DCMA of u0 when the partial derivativeof u0 with respect to x never vanishes (but this would no be very useful). Unfortunately, we donot think that this numerical scheme (or any other) converges towards a solution of the DCMAin the general case. Indeed, as we explained in Chapter 11, we believe that such a solution doesnot exist in general. We try to make clearer that point by investigating what happens nearsingular points, i.e. points where ux = 0. Although the non-existence of general solutions forthe DCMA is a real theoretical problem, in practice the convergence of the numerical scheme isassured due to the discrete nature of computer data (of course, the question of the interpretationof the limit then becomes more tricky).



228 CHAPTER 13. NUMERICAL SCHEME AND EXPERIMENTS13.3 Singular pointsWe �rst establish a preliminary lemma.Lemma 28 If (a; b) 2 FR � [0;+1[, thenF (a; b) := sup06�61 a2�2 + b� = 8><>: a2 + b if a > �b;� b22a if a < �b:Proof :The map '(�) = � 7! a2�2 + b�is C1 on the compact set K = [0; 1], so that it attains its maximum value on K either on @K orin a critical point. That is,sup06�61'(�) = max('(0); '(1); '(� ba)) = max(0; a2 + b;� b22a);with the convention �b=a = �b2=(2a) = �1 if a = 0. �Proposition 43 Let P be a polynomial with degree at most two such that Px(x0; �0) = 0. Then,in (x0; �0) we have, as h! 0,ThP = P + h2 jP�j sgn(Pxx) +O(h2)Proof :Without loss of generality, we can suppose that (x0; �0) = (0; 0). Since the degree of P is atmost two, we have P (v�h; �h) = P (0; 0) + b � �h + h2�22 Q(v);where b = P�(0; 0) and Q(v) = P��(0; 0)+ 2vP�x(0; 0)+ v2Pxx(0; 0):Therefore, (IShP � P )(0; 0) = infv supj�j61 b � �h+ h2�22 Q(v)!= h � infv sup06�61 jbj � � + h�22 Q(v)!= h infv F (hQ(v); jbj)= hF (h � inf Q; jbj)because the map a 7! F (a; b) is increasing.



13.3. SINGULAR POINTS 229� if jbj = 0 or inf Q = �1, then(IShP � P )(0; 0) = h22 [inf Q]+ :� if jbj 6= 0 and inf Q > �1, then h � inf Q > �jbj for h small enough, so that(IShP � P )(0; 0) = h � jbj+ h22 inf Q+ o(h2):Now, one can see easily that(i) if Pxx(0; 0) > 0, then inf Q =  P�� � P 2�xPxx! (0; 0).(ii) if Pxx(0; 0) = P�x(0; 0) = 0, then inf Q = P��(0; 0).(iii) if Pxx(0; 0) < 0 or (Pxx(0; 0) = 0 and P�x(0; 0) 6= 0), then inf Q = �1.Hence, in (0; 0) we haveIShP = P + O(h2) + ( hjP�j if Pxx > 0 or Pxx = P�x = 0;0 else:Recalling that SIhP = �(ISh(�P )), we obtainSIhP = P + O(h2) + ( �hjP�j if Pxx < 0 or Pxx = P�x = 0;0 else:and �nally ThP = P + O(h2) + 12 �8><>: hjP�j if Pxx > 0;�hjP� j if Pxx < 0;0 elseas expected. �The following table gives the values of ISh, SIh and Th up to order 2 in h according toconditions on P� , Pxx and P�x. All these equalities hold for h small enough, and we took theconvention that P�� := 8<: P�� if Pxx = P�x = 0;P�� � P 2�xPxx if Pxx 6= 0:P� Pxx P�x IShP � P SIhP � P ThP � P= 0 = 0 = 0 h22 P+�� h22 P��� h24 P��= 0 > 0 h22 P+�� 0 h24 P+��= 0 < 0 0 h22 P��� h24 P���6= 0 > 0 hjP� j+ h22 P�� 0 h2 jP�j+ h24 P��6= 0 < 0 0 �hjP� j+ h22 P�� �h2 jP�j+ h24 P��6= 0 = 0 = 0 hjP� j+ h22 P�� �hjP� j+ h22 P�� h24 P��= 0 6= 0 0 0 0



230 CHAPTER 13. NUMERICAL SCHEME AND EXPERIMENTS�Proposition 43 shows that if ux happens to vanish when u� does not, then we can expect thenumerical scheme to blow up because of the non-zero coe�cient of h. In fact, in case the limitof un(x; �; t) exists as n ! +1, it is not likely that it will be continuous in t = 0. The best wecan expect is that u0 7! limt!0 limn!+1 un(t)de�nes a kind of projection from C0c to V0c . According to Proposition 43, this projection mightbe obtained by the asymptotic state as t! +1 of the solution of the PDEut = ( ju�jsgn(uxx) if ux = 0;0 else:Of course, all of this is purely intuitive. Evans also predicted a projection property (see [32]) byconsidering the DCMA Equation as the limit when "! 0 of the more regular equationut = u2xu�� � 2uxu�ux� + u2�uxxu2x + "2u2� : (13.3)In particular, Equation 13.3 admits viscosity solutions as a slightly modi�ed version of themean curvature motion. The di�erence is that Evans proved that when u is the characteristicfunction of an S-shaped curve, his construction leads to a di�erent projection operator, basedon a Maxwell area construction (see Figure 13.2).
θ

x

θ

x

Figure 13.2: An S-shaped curve is immediatly transformed into a graph, the two dashed zonesbeing of equal area (Maxwell equi-area construction). \The smoothing e�ects of the heat equa-tion are so pronounced that a multi-valued data instantaneously unfolds into a graph" (Evans).The consequence for the DCMA is that solutions are not likely to exist for an initial datumwhose level curves are not graphs. Indeed, such solutions could not be continuous at scale t = 0.



13.4. ALGORITHMS 23113.4 AlgorithmsIn this section, we describe the algorithms we used to experiment our analysis on numericalmovies. These algorithms (and many others) will be available in the next public version ofthe MegaWave2 software, which can be freely1 downloaded by anonymous ftp to the addressceremade.dauphine.fr or on the web server http://www.ceremade.dauphine.fr.13.4.1 Data preparationEven if a movie is realized in the conditions we described in introduction (that is to say, astraight translation of the camera parallel to its horizontal axis), in practice it is impossibleto ensure that the camera movement has no vertical component at all. Hence, it is generallynecessary to apply little vertical translations to the images of a real movie in order to compensatefor the small vertical moves of the camera. Such an operation had already been performed (asexplained in [13]) on the \TREES" movie we got from the SRI International Center. We neededto perform this operation on the \GARDEN" movie ourself (both these movies are presentedlater). The determination of these little vertical translations is not di�cult since they a�ect allpoints of each image equally. In practice, it can be done by using a simple correlation measure.Such a simple algorithm is quite precise enough for our aim : in fact, we discovered later that anerror of one pixel in a vertical movement compensation is immediatly overcome by the DCMA�ltering.13.4.2 Filtering with the DCMAIn order to experiment the e�ects of the DCMA, we need to discretize the numerical inf-supscheme we described in the beginning of this chapter. The natural discrete choice for h ish = one image, and in order to take into account the discrete nature of velocities it is alsonatural to consider discrete 3-points segments of the kindf(x� v; y; �� 1); (x; y; �); (x+ v + "; y; �+ 1)g;where all quantities are integer and " 2 f�1; 0; 1g. Hence, the discrete inf-sup operator isISu(x; y; �) = minv 2 f�vmax; :::;�1; 0g" 2 f�1; 0; 1g max fu(x� v; y; �� 1); u(x; y; �); u(x+ v + "; y; �+ 1)g :The parameter vmax must not be smaller than the largest velocity on the processed movie,which can easily be estimated. More important is the non-symmetric choice we made on vby allowing only nonpositive velocities. There are several reasons for this choice : �rst, if thecamera always goes forwards and never stops and goes back, then all velocities on the movie1for non commercial use only, see the MegaWave2 documentation.



232 CHAPTER 13. NUMERICAL SCHEME AND EXPERIMENTSmust be theoritically nonpositive. In addition, since the velocity �eld follows a causal evolutionequation, it satis�es the maximum principle and is then forced to remain nonpositive at anyscale of analysis. This proves the consistency of our non-symmetric choice of allowed velocities.Another reason that justi�es this choice and that we shall discuss later is related to the �lteringof occlusions.The SI and IS operator being de�ned, we still have an alternative : either we iterate themean operator 12(IS+SI) as we explained in the numerical scheme, or we iterate the alternatedoperator2 IS �SI . No computational cost seems relevant to choose between the two possibilities,because it is roughly equivalent to compute IS or simultaneously IS and SI on a movie, and oneeasily checks that one iteration of the alternated operator is also roughly equivalent, in terms ofscale of analysis, to two iterations of the mean operator. In fact, when we tried both solutions,the advantage came to the alternated scheme, for two reasons.The �rst reason is that it is purely morphological (and hence more consistent with our ax-iomatic formulation), with the consequence that no new grey-level is created when a movie isprocessed. This overcomes a purely numerical constraint : since the grey levels of a movie arepractically discretized (typically, in f0,1,. . . 255g when represented by a 8-bit unsigned charac-ter), the division by two is not symmetrical and the result often has to be truncated, which hasundesirable consequences after several iterations (notice that this cannot be avoided in practiceby considering 
oat values because of the huge amount of memory involved). Of course, thechoice of an alternated operator is not symmetrical either (you can choose IS � SI or SI � IS),but there are many less consequences.The second reason is that a pure morphological scheme was more adapted to the algorithmwe chose in order to compute the velocity �eld on the movie. This will become clear in the nextsection.It is important to notice the extreme simplicity of the algorithm we presented : in particular,it can be implemented very easily on a massive parallel machine. Our optimized code in Clanguage for one iteration consists of only 23 instructions.13.4.3 Computing velocitiesOf course, since the DCMA is devoted to the depth recovery | or, equivalently, to the computa-tion of the velocity �eld |, it would not be enough to show �ltered movies without checking theconsequences of the DCMA on their inherent velocity �elds. For that reason, we need to devisean algorithm to compute such velocity �elds. Now comes the great interest of the DCMA : sincethe multiscale analysis theoretically produces a perfect time-coherent movie, we can use a naivealgorithm to compute the velocity �eld.2Though we did not prove explicitely the consistency of the alternated operator, it seems rather clear if wecompare it to classical related schemes.



13.4. ALGORITHMS 233Our algorithm is global and takes only one parameter : the number n of matching images werequire to decide that a velocity is reliable. Given a point (x0; y0; �0), we look for the maximumvalue of k for which there exist two real numbers v1 and v2 satisfying�vmax 6 v1 6 v2 6 0and such that38� 2 f�0; : : : ; �0 + kg; 8x 2 fE(x0� v1�); : : : ; E(x0� v2�)g; u(x; y0; �) = u(x0; y0; �0):Then, we decide that the velocity �eld in (x0; y0; �0) is non-computable if k < n, and equal to v1if k > n (of course, the interval [v1; v2] is supposed to have a maximal length). The choice of v1(instead of 12(v1+ v2) for example) is logical but not very important since in practice we almostalways have v1 ' v2 For symmetry, we also look for matchings in \past" times f�0 � k; : : : ; �0g.

3here, the function E() means the rounded integer part, that is to say E(x) = n 2 IN , n� 12 < x 6 n+ 12 .



234 CHAPTER 13. NUMERICAL SCHEME AND EXPERIMENTS13.5 Experiments13.5.1 TREES movie (natural)We picked up the \TREES" movie used by the SRI center (see [13]) by anonymous ftp tothe adress periscope.cs.umass.edu. We obtained 64 images of size 256x233, which represent anamount of data of 3.8 Mo. According to [13], this movie is supposed to contain 128 images,but we could not �nd the remaining images ; however, 64 images were quite enough to test ouralgorithm.Since the images were very dark, we �rst applied an optimal contrast change4 to the movie :this process has only visual consequences thanks to the pure morphological invariance of ouralgorithms.As we said before, this movie did not require a compensation for small vertical movementsof the camera (it had been already done according to [13]).Each iteration of the DCMA �lter took 24 seconds. This represents a processing speed ofabout 0.16 Mo/s.This movie is not the best choice to highlight the good properties of the DCMA, becauseof the strong occlusion caused by the foreground tree (we remind that our theory does nothandle with occlusions). This occlusion caused smudging e�ects on the right side of this tree(and not on the left side thanks to the nonpositiveness of allowed velocities). However, thesebad e�ects excepted, the algorithm proved to behave very well. The �rst striking visual e�ectof the algorithm on this movie is the strong time-coherence induced on the movie : it lookslike all images become exactly equivalent except that the relative velocities of objects di�er.In particular, there were important global intensity 
uctuations between images on the initialmovie : such a defect was completely removed by the DCMA. One could object that thisregularization is paid by a visual loss of details on the ground texture. This is true and verylogical since all non-time-coherent details cannot be preserved by the analysis. Although theDCMA has theoretically no spatial regularizing e�ects, such a spatial regularization actuallyoccurs as a consequence of the time regularization.
4Applying a contrast change consists of modifying an initial movie u into the movie g � u, where g is anincreasing grey-level correspondance map. It is said to be optimal if the histogram of the resulting movie is as
at as possible (which means that the grey levels are \used" in the best possible manner).
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Figure 13.3: Original \TREES" movie.From left to right and then top to bottom : images number 1, 9, 17, 25, 32, 40, 48, 56 and 64of the \TREES" movie (made of 64 image). The camera has a straight translation movementparallel to the horizontal axis of the image plane, and moving to the right. The relative positionsof objects vary due to their di�erent distances from the image plane (the closer they are, thequicker they \move" on the image).



236 CHAPTER 13. NUMERICAL SCHEME AND EXPERIMENTS

Figure 13.4: Filtering of the \TREES" movie.Top row : images 18 (left) and 22 (right) of the original \TREES" movieBottom row : images 18 and 22 of the \TREES" movie processed with 31 iterations.The original movie has small details which cannot be tracked between successive images (they arenot time-coherent), because the Nyquist limit for the time frequencies has been exceeded duringthe sampling process. The strong smoothing e�ects of the analysis (on the ground for example)are necessary to ensure the time coherence of the movie. The smudging e�ects near the branchesof the foreground tree, however, are undesired and due to the incapacity of the DCMA to handleocclusions.
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Figure 13.5: Analysis of the epipolar images.The epipolar images are obtained by slicing the movie u(x; y; �) along (x; �) planes for �xedvalues of y. The resulting images (x; �) 7! u(x; y; �) are represented as follows : the x axis istaken horizontal and the time axis � is taken vertical pointing downwards. The epipolar imageson colum 1 are taken from the original \TREES" movie (the values of y are 20, 60, 140, 180,220 respectively for rows 1, 2, 3, 4, 5). Those on column 2 are obtained after processing theoriginal ones with 31 iterations.Remember that the DCMA operates independently on all these epipolar images. The level linesof these images tend to become straight lines when analyzed by the DCMA ; a consequence isthat the time-coherence of the analyzed movie increases with scale. On the original epipolarimages, occlusions appear when two lines intersect : only the one with the smallest slope (i.e.representing the object closest to the camera) remains during the occlusion, the other one beingoccluded. Notice that occluded objects are often destroyed by the DCMA (see row 2 for example),because the DCMA cannot handle occlusions.
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Figure 13.6: Computation of the velocity �eld (minimum of 15 matchings).The four images on the �rst row are taken from four di�erent movies : each image is the 20thimage (over 64) of the movie it belongs to. These movies result from the DCMA at di�erentscales : column 1: original \TREES" moviecolumn 2: processed movie (5 iterations)column 3: processed movie (15 iterations)column 4: processed movie (31 iterations)Then, the velocity �eld of each movie was computed on the 20th image using the algorithm wedescribed previously, with a matching constraint of 15 images. These velocities are representedon row 2 : the white color means points where no matching was found with respect to theconstraint, and the grey scale (from light grey to black) measures the velocity from 0.0 to 2.0pixels per image. On the third row, the velocity images of row 2 were \dilated" to produce morereadable results. Notice how the velocity information, which is almost inexistant on the originalmovie (for the matching constraint we imposed), progressively appears on the DCMA as thescale increases. Since the distance of objects to the image plane is inversely proportional to theirvelocity, closest points appear in black and farthest ones in light grey. On the last image ofrow 3, we distinguish the foreground tree in black, the ground from black to middle grey, thebackground tree in middle grey, and the far background in light grey.
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Figure 13.7: Computation of the velocity �eld (minimum of 5 matchings).The representation is the same as for Figure 13.6, but this time, the velocities were computedwith a less restrictive matching constraint of 5 images (instead of 15 for Figure 13.6).The velocity images we obtain (row 2) are more dense because new computable velocities appear.However, these new obtained velocities are less reliable due to the less restrictive matching con-straint. This explains the noisy appearence of the images on row 3 compared to those of Figure13.6. Notice that this noise decreases as the scale of analysis increases : this is coherent withthe theory which predicts that the velocity �eld is progressively smoothed as the scale of analysisincreases (see Proposition 37).



240 CHAPTER 13. NUMERICAL SCHEME AND EXPERIMENTS13.5.2 GARDEN movie (natural)We found this movie on the web site http://www.image.cityu.edu.hk:80. It was originally com-posed of 50 interlaced frames of size 720x486.It needed a little movement compensation along the y coordinate. This was performed usingthe correlation method we mentioned previously.We extracted 50 sub-images of size 400x338. Each iteration of the DCMA took approximately50 seconds.Once again we observed the good e�ects of the DCMA. This time, no undesirable e�ectswere caused by occluding objects like for the \TREES" movie. In fact, the \GARDEN" moviecontains several occluding objects (in front of the background houses), but they did not seemto cause much trouble to the algorithm, maybe thanks to the reasonable depth gap occuring atthe boundary of these occlusions.
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Figure 13.8: Original \GARDEN" movie.From left to right and then top to bottom : images number 1, 7, 13, 16, 26, 31, 37, 43, 50 ofthe \GARDEN" movie (made of 50 images). The camera goes to the right.
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Figure 13.9: Filtering of the \GARDEN" movie.Top : image 25 of the original \GARDEN" movieBottom : image 25 of the \GARDEN" movie processed with 24 iterations.
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Figure 13.10: Evolution of the epipolar images.Epipolar images are represented, taken from the original movie (column 1) and from the processedmovie after 24 iterations (column 2). The values of y are 30, 60, 90, . . . 300, 330 respectivelyfor rows 1, 2, 3, . . . , 10, 11.
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Figure 13.11: Computation of the velocity �eld (minimum of 12 matchings).The three images on the �rst row are taken from three di�erent movies :column 1: original moviecolumn 2: processed movie (5 iterations)column 3: processed movie (24 iterations).Each image is the 25th image (over 50) of the movie it belongs to. On row 2, the velocity�eld of each movie is represented, as computed on the 25th image with a matching constraintof 12 images. The white color means points where no matching was found with respect to theconstraint, and the grey scale (from light grey to black) measures the velocity from 0.0 to 6.0pixels per image. On the third row, the velocity images of row 2 were \dilated" to produce morereadable results. On the bottom-right image, we recognize the oblique plane made by the rocks ofthe foreground : the regular variation of the grey level indicates a regular variation of the depth.On the background, the houses appear in light grey and we can make out the two oblique polesin front of them.
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Figure 13.12: Computation of the velocity �eld (minimum of 5 matchings).The representation is the same as for Figure 13.11, but this time the velocities were computedwith a less restrictive matching constraint of 5 images (instead of 12 for Figure 13.11).



246 CHAPTER 13. NUMERICAL SCHEME AND EXPERIMENTS13.5.3 Sensitivity to noiseWe now want to test how robust to noise our method is : are the DCMA analysis and theinduced velocity estimation still reliable when applied to a noisy data ? In order to check this,we took the previous \TREES" movies and corrupted it strongly by replacing 50% of its greyvalues u(i; j; k) by totally random, uniformly distributed and uncorrelated values. This kind ofnoise is called impulse noise : it is very destructive and impossible to remove e�ciently withlinear �lters. On this corrupted movie, we applied exactly the same processing as in the originalone. The �gures to follow (to be compared with the corresponding �gures for the original movie)show that both the visual aspect and the velocity �eld are well recovered by the DCMA althoughhalf of the original information was lost and replaced with random values.
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Figure 13.13: Filtering of the noisy \TREES" movie.Row 1 : images 18 and 22 of the noisy \TREES" movieRow 2 : images 18 and 22 of the noisy \TREES" movie processed with 31 iterations.The images on row 1 are very noisy : 50% of their pixel values were chosen by a non-correlated,uniformly distributed random generator (and this 50% amount of pixel was chosen itself by arandom generator). When playing the movie, one has the impression of looking at a TV-imagereceived in very poor conditions. In particular, it is almost impossible to see any detail of theground texture. Filtering this movie with the DCMA gives impressive enhancement results : notonly the noise impression is removed, but in addition some details appear that were not visibleon the �rst movie (in particular on the ground and on the left tree). This means that the DCMAtakes more advantage of the time coherence and redundancy of information contained in a moviethan the human visual system does.
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Figure 13.14: Analysis of the epipolar images.As on Figure 13.5, epipolar images are shown both for the original noisy movie (column 1) andfor its processed version after 31 iterations (column 2).
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Figure 13.15: Computation of the velocity �eld (minimum of 15 matchings).Like on Figure 13.6, the four images on the �rst row are the 20th image of four di�erent movies :column 1: original noisy \TREES" moviecolumn 2: processed movie (5 iterations)column 3: processed movie (15 iterations)column 4: processed movie (31 iterations)Row 2 and 3 represent the extracted velocity �eld (for a minimum of 15 matching images), in theoriginal (row 2) and dilated (row 3) representation. As expected, not only the movie is �ltered,but the velocity of objects is recovered despite a lot of destructed clues due to the large amountof noise put on the movie. Of course, the velocity recovery is not as good as if the movie hadnot been initially corrupted, but the depth structure of the scene still appear on the bottom-rightimage.
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Chapter 14Extensions and conclusion14.1 Extension to more general geometric con�gurationsIn this section, we show that the geometric con�guration we adopted throughout our studyis not really required. In fact, the DCMA can easily be extended to a more general motion,provided that it is known or that it can be recovered (but we shall not properly investigate theproblem of motion recovery here).14.1.1 The camera motion is not horizontalPractically, it is di�cult to ensure that the camera moves exactly along the direction given bythe horizontal axis of the image plane. The consequence is that the y-sections (x; �) 7! u(x; y; �)of the movie should not be processed independently, for the epipolar lines are not contained inthe (x; �) plane. However, if the direction of the camera displacement is known, given by theangle � with the x axis, then it is theoretically possible to bring the problem back to the idealcase (� = 0) with the simple rotation of the image plane given byP 0 =  cos � sin �� sin � cos � !P:The angle � may be directly measured by an inertial system on the mobile robot. It can alsobe easily estimated on the resulting movie since it is a very redundant information.14.1.2 The camera motion does not lie in the image planeWe now suppose that the motion of the camera is not contained in the image plane, that is tosay its component along the direction orthogonal to the image plane is non-zero. We de�ne the(OX) axis as the direction given by the motion of the camera, and the (OY ) axis as the onlydirection orthogonal to (OX) and contained in the image plane. Then, the remaining axis (OZ),naturally de�ned from (OX) and (OY ) in order to form an orthogonal system, makes an angle251



252 CHAPTER 14. EXTENSIONS AND CONCLUSION� with the direction orthogonal to the image plane (see Figure 14.1). The projection from thescene to the image plane is given byx = X � C � Z tan�Z + (X � C) tan�y = YZ + (X � C) tan�:Compared to the ideal case � = 0, the case � 6= 0 induces a deformation of the image planegiven by x0 = x cos�� sin�cos� + x sin� = x� tan�1 + x tan�y0 = ycos� + x sin�The map (x; y) 7! (x0; y0) is de�ned on (FR� f�cotan�g)� FR, the singularity x = �cotan�giving a characterization of �. Thus, all previous results should still apply, provided that werewrite the DCMA evolution equation according to this deformation map.
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image planeFigure 14.1: Camera motion does not lie in the image plane.14.1.3 Case of pure zoomingIf the camera moves in the direction of the optical axis, which corresponds to a pure \zooming",the movement of a physical point projected in P on the image plane is given bydPd� = VZ P:Thus, going to polar coordinates, the apparent velocity isv = rZ V = �u�ur



14.2. CASE OF ANY RIGID MOTION 253everywhere ur 6= 0. This case is formally equivalent to the ideal translation along the X axis assoon as the polar coordinate r is substituted to the x coordinate everywhere. In particular, theapparent acceleration is � = DvD� = �u��ur with � = (�u�ur ; 0; 1):Rewriting the axiomatic formulation in that special case, we can expect to obtain the evolutionequation @u@t = u�� � 2u�ur u�r + �u�ur�2 urr;formally equivalent to the DCMA up to a change of coordinates.14.2 Case of any rigid motionThe two previous cases can be combined to cover all situations of pure translation motion ofthe camera. The case of pure rotation with a �xed axis (\radar motion") is not very di�erentfrom the case of pure translation : the �ltering is the same and only the depth interpretationdeduced from the velocity �eld changes.In case of a general camera motion (translation T + rotation R), there are 6 instantaneousmotion parameters : 3 for the translation and 3 for the rotation. More precisely, the movementof a physical point M(X; Y; Z) is given in the camera referential bydMd� = �T �R ^M;where we wrote ^ for the usual vector product in FR3. Then, the perspective projection (x; y) =1Z (X; Y ) induces in the image referential the movementdPd� = 1Z  �1 0 x0 �1 y !T +  xy �(1 + x2) y1 + y2 �xy �x !R = 1ZAT + BR: (14.1)while the well-known Motion Constraint Equation isru:dPd� + u� = 0; (14.2)ru standing for the spatial gradient of u. Combining Equations 14.1 and 14.2 yields a scalarequation satis�ed by the partial derivatives of u, with one unknow (the depth Z) and six motionparameters (T and R). It permits to compute the disparity d = 1=Z byd = �u� + (BR):ru(AT ):ru :Therefore, depth recovery is still theoretically possible as soon as the camera motion isknown. We guess that it is possible to rewrite the DCMA in case of such a general cameramotion, by introducing the motion parameters in the evolution equation.



254 CHAPTER 14. EXTENSIONS AND CONCLUSION14.3 OcclusionsIn this study, we made several allusions to the problem of occlusions, which is not solved by thealgorithm we presented. We know precise this point, and try to explain why this is the mostimportant improvement to be brought to our method.Two kinds of occlusions appear on a movie : the natural occlusions, occuring when apart of the scene masks another part (see Figure 14.2), and the boundary occlusions, whichhappen on the border of the image. The natural occlusions are consequences of both the scenegeometry and the camera parameters, and they can be theoretically avoided by choosing anoptical system with a small �eld width (or equivalently, with a large focal length). Of course,boundary occlusions cannot be avoided. In addition, avoiding natural occlusions forces therelative depth variations to be small, which prevents the depth estimation from being veryaccurate. Therefore, being able to deal with occlusions is a key point of the movie analysis, andit is not surprising that the human visual system makes a strong use of occlusions phenomena.
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large field width : occlusions appearsmall field width : no occlusion appearsFigure 14.2: Field width and natural occlusionsFigure 14.3 shows what appears in the epipolar plane when occlusions happen : the levellines with the largest velocity (i.e. with the smallest slope on Figure 14.3) occlude the otherones. The reason is simply that when an occlusion arises between two objects, only the nearestone (that is, the one with the largest velocity) remains visible. As in the spatial case (see [21]),the occluding line is characterized by the presence of T-junctions.
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occluded objectFigure 14.3: Typical occlusions in an epipolar plane14.4 ConclusionIn this study, we presented a multiscale analysis of movies which is well adapted to the depthrecovery. We devised it thanks to an axiomatic formulation in agreement with the depth recoveryproblem. This multiscale analysis can be viewed as a di�usion process along the movement, withthe consequence that it brings time-coherence to movies without performing an undesirablespatial smoothing. In particular, it permits to gather the redundant but incoherent depthinformation spread among the images of a raw movie into a perfect movie on which the depthcan be easily and robustly estimated.From a theoretical point of view, this multiscale analysis is described by a second order partialdi�erential evolution equation, which presents strong singularities and is not treated by theclassical theory of viscosity solutions. We proved uniqueness and existence theorems, althoughexistence is not ensured (at least in a classical sense) in the completely general case. This PDEhas interesting properties that can be physically interpreted : in particular, we proved that anideal movie (that is to say a movie which can be interpreted in terms of a camera movementand a depth map) remains ideal when analyzed by this scale space. We also showed that thecorresponding evolution equation is somewhat related to a simple minimization problem.We provided a very simple numerical scheme which can easily be implemented on parallelmachines. By performing numerical experiments on two real movies, we checked the goodbehaviour of this method, as a movie processing device, and as a depth-recovery preprocessingdevice.We think that this study is a good starting point to �nd robust solutions to the depth recovery



256 CHAPTER 14. EXTENSIONS AND CONCLUSIONproblem. The next step would be to adapt the theory for general movies where occlusions areallowed. Of course, such a generalization should require a non-continuous formulation due tothe nature of occlusions. It may also bring new elements to circumvent the strong singularitythat appears in the DCMA equation.
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