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2 Synonyms
explanation; diagnosis;

3 Definition
Abduction is a form of reasoning, sometimes described as ”deduction in reverse”,
whereby given a rule that ”A follows from B” and the observed result of ”A” we
generate as a fact the condition ”B” of the rule so that the observation follows deduc-
tively from the rule and the fact. We think of ”B” as a possible explanation for the
observation according to the given theory that contains our rule. This new information
and its consequences (or ramifications) according to the given theory can be considered
as the result of a (or part of a) learning process based on the given theory and driven
by the observations that are explained by abduction. Abduction can be combined with
induction in different ways to enhance this learning process.

4 Motivation and Background
Abduction is, along with induction, a synthetic form of reasoning whereby the syl-
logism generates, in its explanations, new information not hitherto contained in the
current theory with which the reasoning is performed. As such, it has a natural relation
to learning, and in particular to knowledge intensive learning, where the new informa-
tion generated aims to complete, at least partially, the current knowledge (or model) of
the problem domain as described in the given theory.

Early uses of abduction in the context of machine learning concentrated on how
abduction can be used as a theory revision operator for identifying where the current
theory could be revised in order to accommodate the new learning data. This includes
the work of Michalski in [12], Ourston and Mooney in [17] and Abe et al in [4]. An-
other early link of abduction to learning was given by the explanation based learning
method [2], where the abductive explanations of the learning data (training examples)
are generalized to all cases.

Following this it was realized that the role of abduction in learning could be strength-
ened by linking it to induction, culminating to a hybrid integrated approach to learn-
ing where abduction and induction are tightly integrated to provide powerful learning
frameworks such as the ones of Progol 5.0 [15] and HAIL [20]. On the other hand,
from the point of view of abduction as ”inference to the best explanation” [7] the link
with induction provides a way to distinguish between different explanations and to
select those explanations that give a better inductive generalization result.
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The application of abduction, on its own or in combination with induction, to prob-
lems of Systems or Computational Biology trying to model biological processes and
pathways at different levels, (see e.g. [10, 22, 25, 18, 19]) provides an important source
of challenges for these methods of knowledge intensive learning.

5 Structure of the Learning
Abduction contributes to the learning task by first explaining, and thus rationalizing,
the training data according to a given and current model of the domain to be learned.
These abductive explanations either form on their own the result of learning or they
feed into a subsequent phase to generate the final result of learning.

5.1 Abduction in Artificial Intelligence

Abduction as studied in the area of Artificial Intelligence and the perspective of learn-
ing is mainly defined in a logic-based approach1 as follows.

Given a set of sentences T (a theory presentation), and a sentence O (observation),
the abductive task is the problem of finding a set of sentences H (abductive explanation
for O) such that:

(1) T ∪H |= O, and

(2) T ∪H is consistent.

where |= denotes the deductive entailment relation of the formal logic used in the rep-
resentation of our theory and consistency refers also to the corresponding notion in this
logic. The particular choice of this underlying formal framework of logic is in general a
matter that depends on the problem or phenomena that we are trying to model. In many
cases this is based on first order predicate calculus, as for example in the approach of
Theory Completion in [16]. But other logics can be used, e.g. the non-monotonic logics
of Default Logic or Logic Programming with Negation as Failure when the modelling
of our problem requires this level of expressivity.

This basic formalisation as it stands, does not capture fully the explanatory nature
of the abductive explanation H in the sense that it necessarily conveys some reason why
the observations hold. It would for example allow an observation O to be explained
by itself or in terms of some other observations rather than in terms of some ”deeper”
reason for which the observation must hold according to the theory T . Also as the
above specification stands the observation can be abductively explained by generating
in H some new (general) theory completely unrelated to the given theory T . In this case
H does not account for the observations O according to the given theory T and in this
sense may not be considered as an explanation for O relative to T . For these reasons,
in order to specify a ”level” at which the explanations are required and to understand
these relative to the given general theory about the domain of interest, the members of

1Other approaches to abduction include the set covering approach see e.g [21] or case-based explanation
see e.g [11].
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an explanation are restricted to belong to a special pre-assigned, domain-specific class
of sentences called abducible.

Hence abduction, is typically applied on a model, T , in which we can separate two
disjoint sets of predicates: the observable predicates and the abducible or open pred-
icates. The basic assumption then is that our model T has reached a sufficient level
of comprehension of the domain such that all the incompleteness of the model can
be isolated (under some working hypotheses) in its abducible predicates. The observ-
able predicates are assumed to be completely defined (in T ) in terms of the abducible
predicates and other background auxiliary predicates; any incompleteness in their rep-
resentation comes from the incompleteness in the abducible predicates. In practise,
the empirical observations that drive the learning task are described using the observ-
able predicates. Observations are represented by formulae that refer only to observable
predicates (and possibly some background auxiliary predicates) typically by ground
atomic facts on these observable predicates. The abducible predicates describe un-
derlying (theoretical) relations in our model that are not observable directly but can,
through the model T , bring about observable information.

The assumptions on the abducible predicates used for building up the explanations
may be subject to restrictions that are expressed through integrity constraints. These
represent additional knowledge that we have on our domain expressing general prop-
erties of the domain that remain valid no matter how the theory is to be extended in the
process of abduction and associated learning. Therefore, in general an abductive the-
ory is a triple, denoted by < T, A, IC >, where T is the background theory, A is a set
of abducible predicates and IC, is a set of integrity constraints. Then, in the definition
of an abductive explanation given above, one more requirement is added:

(3) T ∪H satisfies IC.

where the satisfaction of integrity constraints can be understood in several ways (see
[?] and references therein). Note that the integrity constraints reduce the number of
explanations for a set of observations filtering out those explanations that do not satisfy
them. Based on this notion of abductive explanation a credulous form of abductive en-
tailment is defined. Given an abductive theory, T = 〈T, A, IC〉, and an observation O
then, O is abductively entailed by T , denoted by T |=A O, iff there exists an abductive
explanation of O in T .

This notion of abductive entailment can then form the basis of a coverage relation
for learning in the face of incomplete information.

5.2 Abductive Concept Learning

Abduction allows us to reason in the face of incomplete information. As such when
we have learning problems where the background data on the training examples is
incomplete the use of abduction can enhance the learning capabilities.

Abductive Concept Learning (ACL) [9] is a learning framework that allows us to
learn from incomplete information and to later be able to classify new cases that again
could be incompletely specified. Under ACL we learn abductive theories, 〈T,A, IC〉
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with abduction playing a central role in the covering relation of the learning problem.
The abductive theories learned in ACL contain both rules, in T , for the concept(s) to
be learned as well as general clauses acting as integrity constraints in IC.

Practical problems that can be addressed with ACL: (i) concept learning from in-
complete background data where some of the background predicates are incompletely
specified and (ii) concept learning from incomplete background data together with
given integrity constraints that provide some information on the incompleteness of
the data. The treatment of incompleteness through abduction is integrated within the
learning process. This allows the possibility of learning more compact theories that can
alleviate the problem of overfitting due to the incompleteness in the data. A specific
subcase of these two problems and important third application problem of ACL is that
of (iii) multiple predicate learning, where each predicate is required to be learned from
the incomplete data for the other predicates. Here the abductive reasoning can be used
to suitably connect and integrate the learning of the different predicates. This can help
to overcome some of the non-locality difficulties of multiple predicate learning, such
as order-dependence and global consistency of the learned theory.

ACL is defined as an extension of Inductive Logic Programming where both the
background knowledge and the learned theory being abductive theories. The central
formal definition of ACL is given as follows where examples are atomic ground facts
on the target predicate(s) to be learned.

Definition 1 (Abductive Concept Learning)
Given

• a set of positive examples E+,

• a set of negative examples E−,

• an abductive theory T = 〈P, A, I〉 as background theory,

• an hypothesis space T = 〈P, I〉 consisting of a space of possible programs P
and a space of possible constraints I

Find
A set of rules P ′ ∈ P and a set of constraints I ′ ∈ I such that the new abductive

theory T ′ = 〈P ∪ P ′, A, I ∪ I ′〉 satisfies the following conditions

• T ′ |=A E+,

• ∀e− ∈ E−, T ′ 6|=A e−.

where E+ stands for the conjunction of all positive examples.

An individual example e is said to be covered by a theory T ′ iff T ′ |=A e. In effect,
this definition replaces the deductive entailment as the example coverage relation in the
ILP problem with abductive entailment to define the ACL learning problem.

The fact that the conjunction of positive examples must be covered means that, for
every positive example, there must exist an abductive explanation and the explanations
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for all the positive examples must be consistent with each other. For negative examples,
it is required that no abductive explanation exists for any of them. Abductive concept
learning can be illustrated as follows.

Example 2 Suppose we want to learn the concept father. Let the background theory
be T = 〈P, A, ∅〉 where:

P = {parent(john,mary),male(john),
parent(david, steve),
parent(kathy, ellen), female(kathy)}
A = {male, female}.

Let the training examples be:
E+ = {father(john,mary), father(david, steve)}
E− = {father(kathy, ellen), father(john, steve)}

In this case, a possible hypotheses T ′ = 〈P ∪P ′, A, I ′〉 learned by ACL would consist
of

P ′ = {father(X,Y )← parent(X, Y ),male(X).}
I ′ = {←male(X), female(X).}

This hypothesis satisfies the definition of ACL because:

1. T ′ |=A father(john, mary), father(david, steve)
with ∆ = {male(david)},

2. T ′ 6|=A father(kathy, ellen),
as the only possible explanation for this goal, namely {male(kathy)} is made
inconsistent by the learned integrity constraint in I ′.

3. T ′ 6|=A father(john, steve),
as this has no possible abductive explanations.

Hence, despite the fact that the background theory is incomplete (in its abducible
predicates), ACL can find an appropriate solution to the learning problem by suitably
extending the background theory with abducible assumptions. Note that the learned
theory without the integrity constraint would not satisfy the definition of ACL, because
there would exist an abductive explanation for the negative example father(kathy, ellen),
namely ∆− = {male(kathy)}. This explanation is prohibited in the complete theory
by the learned constraint together with the fact female(kathy).

The algorithm and learning system for ACL is based on a decomposition of this
problem into two subproblems: (1) learning the rules in P ′ together with appropriate
explanations for the training examples and (2) learning integrity constraints driven by
the explanations generated in the first part. This decomposition allows ACL to be de-
veloped by combining the two Inductive Logic Programming settings of explanatory
(predictive) learning and confirmatory (descriptive) learning. In fact, the first subprob-
lem can be seen as a problem of learning from entailment, while the second subproblem
as a problem of learning from interpretations.
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5.3 Abduction and Induction

The utility of abduction in learning can be enhanced significantly when this is inte-
grated with induction. Several approaches for synthesizing abduction and induction in
learning have been developed, e.g. [1, 16, 24, 3]. These approaches aim to develop
techniques for knowledge intensive learning with complex background theories. One
problem to be faced by purely inductive techniques is that the training data on which
the inductive process operates often contain gaps and inconsistencies. The general idea
is that abductive reasoning can feed information into the inductive process by using
the background theory for inserting new hypotheses and removing inconsistent data.
Stated differently, abductive inference is used to complete the training data with hy-
potheses about missing or inconsistent data that explain the example or training data
using the background theory. This process gives alternative possibilities for assimilat-
ing and generalizing this data.

Induction is a form of synthetic reasoning that typically generates knowledge in the
form of new general rules that can provide, either directly, or indirectly through the
current theory T that they extend, new interrelationships between the predicates of our
theory that can include, unlike abduction, the observable predicates and even in some
cases new predicates. The inductive hypothesis thus introduces new, hitherto unknown,
links between the relations that we are studying thus allowing new predictions on the
observable predicates that would not have been possible before from the original theory
under any abductive explanation.

An inductive hypothesis, H , extends, like in abduction, the existing theory T to a
new theory T ′ = T ∪H , but now H provides new links between observables and non-
observables that was missing or incomplete in the original theory T . This is particularly
evident by the fact that induction can be performed even with an empty given theory
T , using just the set of observations. The observations specify incomplete (usually
extensional) knowledge about the observable predicates, which we try to generalise
into new knowledge. In contrast, the generalising effect of abduction, if at all present,
is much more limited. With the given current theory T , that abduction always needs
to refer to, we implicitly restrict the generalising power of abduction as we require
that the basic model of our domain remains that of T . Induction has a stronger and
genuinely new generalising effect on the observable predicates than abduction. While
the purpose of abduction is to extend the theory with an explanation and then reason
with it, thus enabling the generalising potential of the given theory T , in induction the
purpose is to extend the given theory to a new theory, which can provide new possible
observable consequences.

This complementarity of abduction and induction – abduction providing explana-
tions from the theory while induction generalises to form new parts of the theory –
suggests a basis for their integration within the context of theory formation and theory
development. A cycle of integration of abduction and induction [3] emerges that is
suitable for the task of incremental modelling (Figure 1). Abduction is used to trans-
form (and in some sense normalize) the observations to information on the abducible
predicates. Then induction takes this as input and tries to generalize this information to
general rules for the abducible predicates now treating these as observable predicates
for its own purposes. The cycle can then be repeated by adding the learned informa-
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Figure 1: The cycle of abductive and inductive knowledge development. The cycle
is governed by the ‘equation’ T ∪ H |= O, where T is the current theory, O the
observations triggering theory development, and H the new knowledge generated. On
the left-hand side we have induction, its output feeding into the theory T for later use
by abduction on the right; the abductive output in turn feeds into the observational data
O′ for later use by induction, and so on.

tion on the abducibles back in the model as new partial information on the incomplete
abducible predicates. This will affect the abductive explanations of new observations
to be used again in a subsequent phase of induction. Hence through this cycle of in-
tegration the abductive explanations of the observations are added to the theory, not in
the (simple) form in which they have been generated, but in a generalized form given
by a process of induction on these.

A simple example, adapted from [20], that illustrates this cycle of integration of
abduction and induction is as follows. Suppose that our current model, T , contains the
following rule and background facts:

sad(X) ← tired(X), poor(X).

tired(oli), tired(ale), tired(kr),

academic(oli), academic(ale), academic(kr),

student(oli), lecturer(ale), lecturer(kr).

where the only observable predicate is sad/1.
Given the observations O = {sad(ale), sad(kr), not sad(oli)} can we improve

our model? The incompleteness of our model resides in the predicate poor. This
is the only abducible predicate in our model. Using abduction we can explain the
observations O via the explanation:

E = { poor(ale), poor(kr), not poor(oli) }.

Subsequently, treating this explanation as training data for inductive generalization we
can generalize this to get the rule:

poor(X) ← lecturer(X)

thus (partially) defining the abducible predicate poor when we extend our theory with
this rule.
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This combination of abduction and induction has recently been studied and de-
ployed in several ways within the context of Inductive Logic programming (ILP). In
particular, Inverse Entailement [16] can be seen as a particular case of integration of
abductive inference for constructing a “bottom” clause and inductive inference to gen-
eralize it. This is realized in Progol 5.0 and applied to several problems including
the discovery of the function of genes in a network of metabolic pathways [10], and
more recently to the study of inhibition in metabolic networks [22, 23]. In [14] an ILP
system called ALECTO, integrates a phase of extraction-case abduction to transform
each case of a training example to an abductive hypothesis with a phase of induction
that generalizes these abductive hypotheses. It has been used to learn robot naviga-
tion control programs by completing the specific domain knowledge required, within a
general theory of planning that the robot uses for its navigation [13].

The development of these initial frameworks that realize the cycle of integration of
abduction and induction prompted the study of the problem of completeness for finding
any hypotheses H that satisfies the basic formal of finding a consistent hypothesis H
such that T ∪ H |= O for a given theory T , and observations O. Progol was found
to be incomplete [24] and several new frameworks of integration of abduction and in-
duction have been proposed. such as SOLDR [6], CF-Induction [5] and HAIL [20]. In
particular, HAIL has demonstrated that one of the main reasons for the incompleteness
of Progol is that in its cycle of integration of abduction and induction it uses a very
restricted form of abduction. Lifting some of these restrictions, through the employ-
ment of methods from Abductive Logic Programming [8], has allowed HAIL to solve
a wider class of problems. HAIL has also recently been used to learn Event Calculus
theories for action description.

5.4 Abduction in Bioinformatics

Abduction has found a rich field of application in the domain of bioinformatics and the
declarative modelling of computational biology. In a project called, Robot Scientist
[10], Progol5.0 was used to generate abductive hypotheses about the function of genes.
Similarly, learning the function of genes using abduction has been studied in GenePath
[25] where experimental genetic data is explained in order to facilitate the analysis
of genetic networks. Also in [18] abduction is used to learn gene interactions and
genetic pathways from microarray experimental data. Abduction and its integration
with induction has been used in the study of inhibitory effect of toxins in metabolic
networks [22, 23] taking into account also the temporal variation that the inhibitory
effect can have. Another bioinformatics application of abduction [19] concerns the
modelling of Human Immunodeficiency Virus (HIV) drug resistance and using this in
order to assist medical practitioners in the selection of anti-retroviral drugs for patients
infected with HIV.
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