
Université Paris-Dauphine

Mémoire d’Habilitation à Diriger des Recherches

Spécialité : INFORMATIQUE

par

Pavlos MORAÏTIS

Decision Theoretic and Logic Based Agents for
Multi-Agent Systems

Date de la soutenance: 6 Décembre 2002

Jury: Yves DEMAZEAU, CNRS-Grenoble (président)

Serge HADDAD, Université Paris IX-Dauphine (coordinateur)

 Antonis KAKAS, University of Cyprus, (rapporteur)

 John MYLOPOULOS, University of Toronto, (examinateur)

 Suzanne PINSON, Université Paris IX-Dauphine (examinateur)

 Carles SIERRA, IIIA-Spanish Scientific Research Council, (rapporteur)

 Nicolas SPYRATOS, Université Paris XI-Orsay (examinateur)

Katia SYCARA, Carnegie Mellon University (rapporteur)

- 1 -

Table of Contents

Introduction 3

1 Multi-Agent Decision Support Systems 5

1.1 The ARISTOT System………………………………………………………...6
1.2 The COSMIMA System……………………………………………………….7

2 The Agent as an Individual Entity 11

2.1 Agent Architectures…………………………………………………………..13
2.2 Argumentation………………………………………………………………..15

2.2.1 Argumentation with Roles and Context……………………………..16
2.2.2 A Computational Model for Agent Personality Modeling………… 21
2.2.3 Capabilities and Personality……….…………………………………24
2.2.4 Future Work………………………………………………………….28

2.3 Dynamic Planning…………………………………………………………….29
2.3.1 The Multi-Criteria Planning Model………………………………….30
2.3.2 Classification of Possible Changes and Reaction……………………31
2.3.3 Future Work………………………………………………………….37

3 The Agent as a Social Entity 40
3.1 Agent Conversation…………………………………………………………..41

3.1.1 Future Work………………………………………………………….45
3.2 Distributed Planning………………………………………………………….46

3.2.1 The Plan Merging Procedure………………………………………. 46
3.2.2 An Example………………………………………………………….48
3.2.3 Conflicts Resolution and Negotiation………………………………. 50
3.2.4 Future Work………………………………………………………… 51

3.3 Automated Negotiation……………………………………………………… 52
3.3.1 Negotiation Strategies………………………………………………. 52
3.3.2 An Aggregation-Disaggregation Approach………………………… 53
3.3.3 A Utility-Based Negotiation Model……………………………….…56
3.3.4 An Argumentation-Based Negotiation Model……………………….58
3.3.5 Future Work………………………………………………………….60

4 Miscellaneous 61

4.1 Multiple Criteria Evaluation of Actions in Hierarchical Decomposition…….61
4.2 Multi-Criteria based Task Allocation……………………………………… 62
4.3 Why is Difficult to Make Decisions under Multiple Criteria……………… 62

- 2 -

5 E-Commerce 65

5.1 Buying and Selling of Products…………………………………………… 65
5.2 Buying and Selling of Services……………………………………………. 69

6 Marketing 73

6.1 Consumer-Based Methodology for Products Penetration Strategy Selection..73
6.2 Agent’s Types, Functionalities, Structure……………………………………74

7 Information Services: The IMAGE System 81

7.1 The IMAGE Agent Scenario…………………………………………………81
7.2 General Description of IMAGE Modules…………………………………….82
7.3 The Intelligent Module Architecture…………………………………………85

8 Diagnosis 88

8.1 The Agents Architecture……………………………………………………...88
8.2 Agents Coordination………………………………………………………….90

9 Agent Oriented Software Engineering (AOSE) 93

10 Conclusion 98

References 101
 Personal References……………………………………………………………..101
 References……………………………………………………………………….105

Annex 111
 Encadrement d’Activités de Recherche………………………………………… 111
 Collaborations liées à la Recherche……………………………………………...114

- 3 -

Introduction

My adventure in the field of agents and multi-agent systems started in the
beginning of 90’s. At that period I was a novice Ph.D. student, and the idea
preoccupying my thoughts was “how to represent, model and solve complex, ill-
structured (as Simon calls them), real problems”. In particular, I had in mind the
problem of “how to precisely represent a human organization (i.e. like a company) and
especially how to model the underlying distributed decision making processes”. What
was interesting to me was not the specific problem, but the paradigm. This is certainly
a complex problem, where several actors (i.e. decisions-makers) are involved, in
different levels of responsibility (and therefore of autonomy), expressing different
points of view, while these actors’ decisions are often based on uncertain and
imprecise data. Thus, the framework to work on was already there: distribution,
interaction under different forms, such as coordination of actions expressing different
points of view, cooperation among actors having common goals, centralized planning
(or distributed in some situations) of actions at a superior decision level and distributed
execution at inferior levels, communication among physically distributed actors,
conflicts arising (and thus need of negotiation), will to impose one’s own politic and
thus need of argumentation.

 What a scenario…but then, which concepts and what techniques can give us
the necessary background in order to model such a situation? Searching in the literature
is always a necessary first step and that is how I started reading about the concept of
agent. Its definition it is not yet very precise. Carl Hewitt said in some article “the
problem that Distributed Artificial Intelligence has to define what an agent is is the
same that Artificial Intelligence has had to define what intelligence is”. However,
people already have spoken about an autonomous and intelligent entity, having its own
goals, able to communicate and interact with other agents. These last properties give
the social dimension of the agent and at the same time put the accent on the concept of
multi-agent systems. Such systems correspond to agents’ communities, where
distribution and interaction are some of the fundamental generic concepts. Moreover,
people talk about pro-activeness and mental states of the agent (i.e., beliefs, desires and
intentions) and consider their link with commitments. In addition, researchers got
interested in the emotions and the personalities of agents. The epistemological and
philosophical implications of this scientific domain are evident. The motivation was
there and I, a computer scientist but – at the same time – a votary of epistemology and
philosophy, I found the right scientific space, where my intellectual and research
interests were fulfilled; that is, agents and multi-agent systems.
 The aim of this document is to give the trace of my modest itinerary of researcher
in the above field, from the time I got my Ph.D. (in December 94) till today. This
document starts with a short reference to my Ph.D. work and then is divided in two

- 4 -

main parts. The first part is dedicated to my theoretical work on agents and multi-agent
systems, which is mainly based on the use of decision theory and logic. This
constitutes my will to contribute to the development of a formal multi-agent theory. As
said before, an agent can be characterized by different properties. However, the
characteristic that I personally find as the most exciting one is this duality between the
individual and the social dimension of an agent. According to this principal
characteristic, an agent can be considered as an individual entity (endowed with some
more specific characteristics; also known as intrinsic in the literature) but
simultaneously as a social entity (also endowed with more specific characteristics;
known as extrinsic). I believe that the second dimension of the agent (i.e., the social)
can be considered as fundamental for the concept of multi-agent systems.
 My theoretical work concerns the agent both as an individual and a social entity.
The first part of this document is therefore dedicated to these aspects. More precisely,
section 2 presents the proposal of a new conception of an agent’s architecture, along
with the work concerning some capabilities of an agent as an individual entity, such as
argumentation (and its use to different types of deliberation) and dynamic planning.
Section 3 presents the work concerning the agent as a social entity, and more precisely
the work done in agent conversation, distributed planning and negotiation. Section 4
presents some other aspects that attracted my interest.
 The second part is dedicated to my application work. It concerns the application of
several issues of my theoretical work in different application domains. More precisely,
Section 5 presents the work done on e-commerce, Section 6 on marketing, Section 7 on
information services, and Section 8 on diagnosis. Finally, section 9 presents some
experimental work on agent-oriented software engineering.
 References are divided in two parts. The first part presents my publications cited in
this document. The second part presents the external citations constituting the
theoretical framework of my research. Annex summarizes my research supervising
activities (with the related list of works) and scientific collaborations.

- 5 -

1 Multi-Agent Decision Support Systems

 As said before, my research in the multi-agent field has started with the use of this
technology in order to model human organizations (more particularly, an enterprise),
but also processes that are associated to it (such as distributed decision making).
 The analysis of the distributed decision making process (i.e. strategic decision-
making is a specific case) and of the problems that it deals with, has revealed the
characteristics of the domain. It has allowed us to identify the nature of the problems
(i.e. complex, ill-structured, irregular), the nature of the knowledge used (i.e.
imprecise, qualitative, uncertain), the categories of involved actors who possessed it
and the way that they interact in order to solve a mutual problem. More precisely, we
have observed that such a process implies a decomposition of the problem to be solved
in a multitude of sub-problems, an assignment of these sub-problems to different actors
having a heterogeneous expertise to solve them, and finally a coordination process in
order to achieve a coherent plan of actions along with a communication process.
Actors consider these problems at different levels of abstraction, having a partial view
of the overall problem and decisional functionalities of a variable complexity; thus,
they need an organizational structure. The overall setting is associated to a distribution
of roles and the existing data, which generate conflicts among actors. These conflicts
are the results of decisions taken locally, which - in order to achieve local goals
(eventually contradictory) - generate contradictory actions leading to the global goal
failure. It is obvious that the “classic” decision support systems proposed in the
literature (for a detailed analysis, the reader can see Moraitis 94) were not susceptible
enough to take into account the distributed dimension of the situation, as well as the
associated problems (i.e. organization, coordination, communication, etc.). The study
of the multi-agent literature [Moraïtis, 95] has led me to consider that the problematic
of this domain perfectly coincides with the characteristics of the context I had found.
 Due to all the above, this new field started to fascinate me. My goal became
therefore dual: a) how to use the agent concept and the proposed techniques in this
field in order to conceive a new family of decision support systems, able to model
distributed decision making process, and b) how to integrate concepts and techniques
proposed in different fields of human sciences, such as decision theory, organization
theory, cognitive sciences or control theory, in order to enrich the existing techniques
in multi-agent field.

- 6 -

1.1 The ARISTOT System (A coopeRative Information
STrategic Operation Tool)

 The aim of this system was the modeling of the participating actors, the simulation
of their interactions, the representation of the solution at different level of abstraction,
the conception of a mechanism of conflicts detection and resolution and, finally, the
proposal of several coherent alternative solutions, among whose a satisfactory but non
necessarily optimal solution can be found. Different aspects of this work have been
presented in [Moraitis, 93; 94; Pinson & Moraitis, 93; 95; 96; Moraitis & Pinson, 94a;
94b; Pinson, Moraitis & Louca, 96].
 The approach on which this system is built on is called “Coherent Plan of
Coordinated Actions” (CPCA). It aimed at modeling the hierarchical organizations
type, which is very usual (i.e. car industries, governments, universities, army, etc.) in
human organizations.
 The CPCA approach proposes two types of agents: artificial agents and human
agents. Three types of artificial agents are defined: strategic agents, decision center
agents and specialist agents. These types model the actors at three levels of abstraction
proposed in organization theory literature (i.e. strategic level, management level,
operational level), while their roles depend of the specific type of organization.
 The CPCA approach also proposes a conflicts detection mechanism and
guaranties a feasible and coherent solution. In order to detect and solve the conflicts
among the sub-goals of the same scenario of a complex goal resolution, the approach
builds on the compatibility concept. This concept adopts the idea presented in [March
& Simon, 77; Cyert & March; 63; Simon, 75], according to which, in order to ensure a
coherent solution among several partial solutions, the organization must search for
satisfactory solutions rather than optimal ones. This selection is based on the
assignment of a relative priority order (similar to that proposed in [Saaty, 80]) on the
different sub-goals related to the global goal achievement and on the actions proposed
for the different sub-goals achievement. The priority order is represented by a
coefficient taking values on the interval [0, 1].
 The CPCA approach uses two types of communication among agents: direct
communication (through messages passing) and indirect communication (through shared
memory, such as a blackboard).
 Four types of blackboards are considered:
-The Problem-Blackboard: it allows the control and the decision making distribution
among the different types of the agents. It mainly allows human agents to follow the
evolution of the global goal achievement.
-The Domain-Blackboard: it contains the plan of actions corresponding to an optimal
solution for a specific sub-goal.
-The Compatibility-Blackboard: it contains the feasible plans of actions in the specific
context for the set of sub-goals.

- 7 -

-The Strategy-Blackboard: it contains either a feasible and coherent solution or the sub-
goals, which are incompatible in the current scenario.
 Finally, the CPCA approach proposes two types of coordination between artificial
and human agents: top-down coordination and bottom-up coordination. The top-down
coordination concerns the way artificial agents will be organized in order to resolve a
problem (who does what, how and when, who collaborates with whom). The bottom-
up coordination involves artificial and human agents and performs the evaluation of
the results proposed by the problem solving procedure coordinated by the top-down
coordination process. This last process has two different effects: 1) the creation of a
coherent global plan of actions, and 2) the dynamic re-organization of the agents’
community in cases where either contradictions are generated or the solution is not
satisfactory for the user.
 Another (less automated) version of the ARISTOT system, where interactions
between artificial and human agents at each level of abstraction take place, is presented
in [Pinson, Louca & Moraitis, 97].

1.2 The COSMIMA Agent

 COSMIMA [Moraitis, 94] is a generic agent model, cooperating with an artificial
and/or human environment. This agent model has an individual control module, which
is an extension of the blackboard model procedural control (see [Nii, 86]), a social
control module allowing cooperative work, a conflict solving mechanism, and finally a
suitable reasoning and decision making module, allowing it to play a double role
according to the context (manager and/or contractor). The proposed agent model is
able to cooperate into distributed decision making problems in other than hierarchical
organizations (cyclic, linear, etc…) and therefore to be the base of enterprise modeling.
Finally, the model is easily adaptable for solving any kind of complex problems (e.g.
breakdown diagnosis or medical diagnosis problems).

- 8 -

PART 1

THEORETICAL WORK

- 9 -

L’ Agent comme une Entité Individuelle

Résumé

 Dans cette section je présente mon travail considérant l’agent comme une entité
individuelle. De ce point de vue l’attention est focalisée sur les propriétés de l’agent,
telles que autonomie, proactivité, intelligence ou réactivité ainsi que sur ses différentes
formes de raisonnement. Ce travail concerne la proposition de modèles formels pour
différentes formes de raisonnement (p.ex., délibération pour résoudre un problème,
choix d’un objectif en accord avec une politique décisionnelle ou pour la satisfaction
de besoins et des motivations, choix d’un partenaire, d’une action communicative
pendant un dialogue, ou délibération pour former un plan d’actions, etc.). Ces modèles
sont liés aux différentes capacités possibles (p.ex ., résolution de problèmes,
coopération, communication, etc.) qu’un agent déliberatif peut avoir et ils sont fondés
sur la théorie de la décision, la logique ou les deux à la fois.
 Plus précisément je présente mon travail sur les architectures des agents où je
développe mon point de vue concernant une approche modulaire. Selon cette approche
le comportement d’un agent est le résultat de l’interaction entre les différents modules
qui composent son architecture, chaque module étant responsable d’un aspect
particulier de son comportement global (c.a.d. résolution de problèmes, coopération,
communication, etc.). Mon point de vue sur la modularité est completé par la
considération que l’implementation de ses capacités implique un ou plusieurs
processus décisionnels dans chaque module. La nature de ces processus n’est pas
exactement la même. Néanmoins, nous pouvons considérer que certains d’entre eux
ont comme caractéristique commune la prise de décisions, afin de choisir parmi
différentes options (p.ex. choix d’un objectif à satisfaire pour un module de résolution
de problèmes, d’un partenaire pour un module de coopération, etc.). Alors l’idée est
d’avoir un modèle de déliberation qui pourrait nous donner la possibilité de représenter
ces processus de manière uniforme. Pour cette raison nous avons proposé un modèle
fondé sur l’argumentation.
 A l’architecture modulaire d’un agent nous ajoutons une nouvelle dimension qui
est celle de la personnalité. Ainsi son architecture est enrichie d’un module dédié à sa
personnalité. A ce module nous associons aussi un processus décisionnel, l’idée étant
que sa personnalité peut avoir une influence sur ses différentes capacités.
 Dans cette section sont aussi présentés mes travaux liés à l’agent comme entité
individuelle. Plus précisément je présente mon travail en argumentation. Ce travail
concerne la proposition d’un modèle délibératif, son utilisation pour coder des
personnalités d’agents par le biais de la modélisation de besoins et de motivations, son

- 10 -

utilisation pour représenter les processus déliberatifs associés aux capacités de l’agent
et son implication à l’implementation de notre architecture modulaire.
 Le cadre d’argumentation que nous proposons est une extension du cadre
développé pendant la dernière décennie comme un résultat d’une série de travaux sur le
lien de l’argumentation avec le raisonnement non monotone. Ce cadre s’appelle
Programmation Logique sans Négation comme Echec. Notre modèle d’argumentation prend
en compte des rôles et leurs relations, que les agents peuvent avoir dans un contexte
précis où ces rôles sont définis (appellé contexte par défaut), ainsi que des contextes
spécifiques qui peuvent renverser les relations (l’ordre de priorité) définies dans le
contexte par défaut.
 Ainsi, afin d’accommoder les rôles et le contexte dans le raisonnement
argumentatif d’un agent, nous avons étendu le cadre de Programmation Logique sans
Négation comme Echec, de telle façon que la relation de priorité entre les règles d’une
théorie (la théorie d’un agent est répresentée sous forme de règles) ne soit plus statique
mais dynamique. Ceci donne la possibilité de capter la nature non statique des
préférences de l’agent associées aux rôles et au contexte.
 Ensuite dans cette section je présente mon travail en planification dynamique. Ce
travail concerne la proposition d’un modèle multi-critères, où les plans sont répresentés
comme un graphe orienté. Dans notre approche nous tenons compte non seulement
des changements provenant de l’environnement (ce qui est le cas des autres travaux
dans le domaine) mais aussi des changements qui peuvent provenir de l’agent lui-
même pendant le processus d’exécution, le poussant à changer ses préférences et par
conséquent ses actions ou ses méthodes à évaluer ses actions.
 Les changements sur les préférences de l’agent et à ses méthodes d’évaluation sont
pris en compte comme une révision de trois structures spécifiques, nommées plans
possibles, plans efficaces et meilleurs plans. Les préférences sont modélisées par des
critères. Ainsi le formalisme que nous proposons nous permet de représenter ce
problème de planification comme un problème de programmation dynamique multi-
objectifs.

- 11 -

2 The Agent as an Individual Entity

The concept of agent is probably amongst the most exciting and promising ones in the
recent history of computer science. An agent is endowed with a set of properties, such
as autonomy, pro-activeness, intelligence, and reactivity, which make them
indisputably unique compared to other innovative concepts (e.g. the concept of object).
A basic property of an agent, which distinguishes him from the object-oriented case, is
his capability to have his own goals and to refuse the execution of an action that
somebody else (i.e. another agent or an human user) may propose to him (i.e., in case
that he does not find a personal interest in these goals). This last property constitutes
indeed a notable difference with the concept of object, since in the object-oriented case
the decision about whether to execute an action lies inside the object that invokes the
method. This distinction is nicely expressed in the slogan: “objects do it for free;
agents do it for money”. For a deeper analysis on the agent’s properties and
characteristics, the interested reader may see [Wooldridge & Jennings, 95; Jennings,
Sycara & Wooldridge, 98; Weis, 99; Wooldridge, 01; Ferber, 99].
 Personally speaking, what I find as the most attractive characteristic of an agent is
this kind of duality between individual and social aspect. An agent, just like a human
being, can indeed be considered under the prism of an individual dimension by
focusing the interest particularly on his capabilities and his personality, but
simultaneously under the prism of a social dimension, by focusing the interest on his
role as a member of a society and, consequently, on his interactions with the other
agents. It is therefore obvious that, like for humans, the individual dimension has a
repercussion on the social dimension or, in other words, the social behavior of the
agent depends on his individual profile. Simultaneously, his social environment, like
also for humans, can have an influence on the formation of his personality (or
character).
 The abovementioned positions should give to the experienced reader the right
impression that the author has adopted the deliberative (or cognitive) agent approach. I
would like however to mention here that agent literature generally classifies agents in
two categories, namely the deliberative (or cognitive) agents, which have reasoning
capabilities, and the reactive agents, which act based on rules of the stimulus-action
type. Currently, this distinction is less evident because the idea is to conceive agents,
called hybrid, which, according to the circumstances, have the possibility to act as
deliberative or reactive.
 In [Huhns & Singh, 98] one can find an interesting analysis on the
abovementioned duality. As mentioned there, characteristics of agents are
fundamentally separated into intrinsic (which are defined for an agent by itself) and
extrinsic (which are defined for an agent in the context of other agents) properties.
These characteristics are presented in the following tables:

- 12 -

Property Range of Values
Lifespan Transient to Long-Lived

Level of cognition Reactive to Deliberative

Construction Declarative to Procedural

Mobility Stationary to itinerant

Adaptability Fixed to Teachable to Autodidactic

Modeling Of environment, themselves, or other agents

Table 1: Agent Characteristic: Intrinsic (source Huhns & Singh, 98)

Property Range of Values

Locality Local to Remote

Social Autonomy Independent to Controlled

Sociability Autistic, Aware, Responsible, Team Player

Friendliness Cooperative to Competitive to Antagonistic

Interactions Logistics: direct or via facilitators, mediators, or no-
agents
Style/Quality/Nature: with agents/world/both
Semantic Level: declarative or procedural
communications

Table 2: Agent Characteristic: Extrinsic (source Huhns & Singh, 98)

 My research work and goals are expressed through this individual/social duality
mentioned above. Thus, one part of my work is dedicated to the agent as individual
entity and it will be presented first. This work concerns the proposal of formal models
of different forms of reasoning, (e.g. deliberation to solve a problem, choose a goal
according to a decision policy or for needs and motivations satisfaction, choose a
partner, a communicative act during a dialogue, or deliberation to form a plan of
actions, etc.), linked to different possible capabilities (e.g. problems resolution,
cooperation, communication, etc.) a deliberative agent can have. These models are
based on decision theory, logic, or a combination of both. Another goal is to capture
the social dimension of the agent. For this reason, the abovementioned work is
extended and adapted in order to propose formal models of interactions in multi-agent
systems. As explained in the sequel, interactions can be of various kinds, including
communication, negotiation (through argumentation or not), cooperation, coordination
(through distributed planning or not), while agents are studied as social entities
(members of multi-agent systems). This second facet of my work, related to the agent
as a social entity, will be presented later in this document.

- 13 -

2.1 Agent Architectures

 Specification of agents’ architectures is an important aspect in multi-agent theory.
As expected, different approaches have proposed different types of such architectures.
An interesting discussion of the state of the art on the subject can be found in
[Wooldridge 99]. Since the beginning of my work in MAS [Moraitis, 94], I opted for a
modular agent architecture. I argue that the proposed types of architectures so far do
not fully correspond to my own idea for a modular architecture. More specifically,
according to my idea, all the necessary structures for the representation of a particular
feature of the behavior of an agent are included within the same module. Therefore, an
agent can be represented as a set of modules, each of them being responsible for a
particular aspect of the behavior of the agent. Moreover, his overall behavior is the
result of the interaction among these different modules [see for example Karacapilidis
& Moraïtis, 01b; 02a]. The different aspects of a behavior correspond to the different
capabilities an agent can have. For example, the role of a problem solving module can
be the deliberation in order to choose a goal among several possible ones, of a planning
module to generate a plan for a goal achievement, of a cooperation module to choose
partners in the context of a collective work, while the role of a communication module
is to ensure the communication of the agent with the external world (i.e. other agents or
human users). As shown in the following, the structure of the modules can be the same
(in Section 3.1 we present such a possible structure) or different (see for example
Section 4.1 or in Sabater & al., 02). However, in the first case such modules are
instantiated differently, according to the specific case (i.e. the type of the module, the
type of the agent and the application domain). [Sabater & al, 02] present a modular
approach, close to mine, which however has several differences concerning the
adopted mechanism for communication among the modules, the granularity of the
structures considered as modules, and the adopted reasoning mechanisms. My point of
view on modularity could be considered together with the fact that the implementation
of the agent’s capabilities involves one or several deliberative processes within each
module. The nature of these processes is not the same. However, we can consider that
some of them have as a common characteristic decision-making, in order to choose
among different possible options (e.g. choice of a goal for a problem solving module,
choice of a partner for a cooperation module, etc.). So the idea is to have a deliberation
model, something, which gives us the possibility to represent these deliberative
processes in a uniform matter [Kakas & Moraïtis, 03]. To this end, we have proposed
[Kakas & Moraïtis 02a; 02b] a model of argumentative deliberation, which will be
presented in Section 2.2.
 The above modular structure of an agent’s architecture is enriched with the
introduction of another dimension. This new dimension concerns the introduction of a
module dedicated to an agent’s personality. We also associate a deliberation process in
this module. The idea is that an agent’s personality can have an influence on his
different capabilities. For example, his personality can have an influence on the choice

- 14 -

of his goals and the possible solutions, the choice of his partners, the evolution of a
dialogue with another agent, his negotiation policy with another agent, etc. Thus, we
can consider that his professional policy could suggest him to choose goals and actions
that they would characterize him as collaborative, while his own personality to choose
goals and actions that would characterize him as selfish.

Figure 1: Modular architecture of agent

 Similarly, his policy, upon which he chooses as collaborator being based on purely
professional criteria, can suggest him to choose a particular collaborator, while his
personality to choose the one which fits better with his personal preferences. Thus, the
overall behavior of an agent is not only the result of the interaction among his modules,
but also of the interaction of these modules and the module that implements his
personality.
 In the following, I present the argumentative deliberation model, its use to encode
personalities through agent’s needs and motivations modeling, its use to represent
deliberation processes associated to the agents capabilities and its involvement in the
implementation of our modular architecture. Then, I present my work that is associated
to another aspect of an agent’s behavior, namely the planning in a dynamic
environment.

(e.g. Problem Solving) (e.g. Cooperation) (e.g. Communication)

- 15 -

2.2 Argumentation

 Autonomous agents need to make decisions under complex preferences policies
that take into account different factors. These policies have a dynamic nature and are
influenced by the particular state of the environment in which the agent finds himself.
The argumentation framework we have proposed [Kakas & Moraïtis 02a; 02b; 03]
intends to support the different agent’s deliberation processes, as they have been
presented above. It is an extension of an argumentation framework developed over the
last decade as a result of a series of studies [e.g. Dung, 95; Kakas, Mancarella, & Dung
94] on the links of argumentation to non-monotonic reasoning. This framework, called
Logic Programming without Negation as Failure (LPwNF), was proposed originally in
[Kakas, Mancarella, & Dung 94] and can be seen as a realization of the more abstract
frameworks of [Bodarenko & al, 97; Dung, 95]. The abstract attacking relation, i.e. the
notion of argument and counter-argument, is realized through monotonic proofs of
contrary conclusions and a priority relation on the sentences of the theory that make up
these proofs. We have extended the framework, following the more recent approach of
other works [Brewka, 01; Prakken & Sartor, 96] to allow this priority relation and thus
attacking relation to be dynamic, making the framework more suitable for the
application of the agent self deliberation. In LPwNF a non-monotonic argumentation
theory is viewed as a pool of sentences (or rules) from which we must select a suitable
subset, i.e. an argument, to reason with, e.g. to support a conclusion. Sentences in a
LPwNF theory are written in the usual extended logic programming language with an
explicit negation, but without the Negation as Failure (NAF) operator. We will often
refer to the sentences of a theory as argument rules. In addition, these rules may be
assigned locally a "relative strength" through a partial ordering relation. For example,
we may have:

fly(X) ← bird (X) ¬fly(X) ← penguin (X)
 bird(X) ← penguin (X) bird(tweety)

with an ordering relation between the rules that assigns the second rule higher than the
first. This theory captures the usual example of "flying birds" with its exceptions,
without the use of explicit qualifications of the default rules with abnormality
conditions. We can conclude that tweety flies since we can derive this from the first
rule and there is no way to derive ¬fly(tweety). We have an argument (i.e. a proof) for
fly(tweety) but no argument for ¬fly(tweety). If we add to the theory penguin(tweety)
then we can derive both fly(tweety) and ¬fly(tweety) - we have an argument for either
conclusion. But in the non-monotonic argumentation semantics of the theory we can
only conclude ¬fly(tweety). This overrides fly(tweety) since the argument that derives
¬fly(tweety) contains the second rule which is designated higher than the first rule
which belongs to the argument that derives fly(tweety). We say that the argument for
¬fly(tweety) attacks the argument for fly(tweety) but not vise-versa.

- 16 -

The reader can find in [Dimopoulos & Kakas, 99; Kakas, Mancarella, & Dung 94] a
full presentation of the argumentation framework of LPwNF. In this document, we will
only present how this framework has been extended to allow dynamic priorities and
formulate the general framework of argumentative agent deliberation.

2.2.1 Argumentation with Roles and Context

 Agents, as it has been mentioned above, are always associated with a (social)
environment of interaction. We call this the context of interaction. This determines the
relationship between the possible roles the different agents can have within this
environment. We consider, in line with much of the agent literature, (e.g [Panzarasa,
Jennings & Norman, 02; Wooldridge, Jennings & Kinny, 00]), a role as a set of
behavior obligations, rights and privileges determining its interaction with other roles.
 Generally the substance of roles is associated to a default context that defines
shared social relations of different forms (e.g. authority, friendship, relationship, etc.)
and specifies the behavior of role between each other. Consequently it installs a partial
order between roles that expresses preferences of behavior. For instance in the army
context an officer gives orders that are obeyed by a soldier, or in a everyday context we
respond in favor more easily to a friend than to a stranger. However, a default context
that determines the basic roles filled by the agents is not the only environment where
they could interact. For example, two friends can also be colleagues or an officer and a
soldier can be family friends in civil life. Therefore we consider a second level of
context, called specific context, which can overturn the pre-imposed, by the default
context, ordering between roles and establish a different social relation between them.
For instance, the authority relationship between an officer and a soldier would change
under the specific context of a social meeting at home or the specific context of treason
by the officer.
 In order to accommodate in an agent's argumentative reasoning the roles and
context as described above we have extended the framework of LPwNF so that the
priority relation of a theory is not simply a static relation but a dynamic relation that
captures the non-static preferences associated to roles and context. There is a natural
way to do this. Following the same philosophy of approach as in [Prakken & Sartor,
96], the priority relation can be defined as part of the agent's theory T and then be
given the same argumentation semantics along with the rest of the theory.
 We distinguish the part of the theory that defines the priority relation by P. Rules
in P have the same form as any other rule, namely ground rules of the form
L←L1,…,Ln where the head L refers to the (irreflexive) higher-priority relation, i.e. L
has the general form L = h-p(rule1, rule2). Also for any ground atom h-p(rule1,rule2)
its negation is denoted by h-p(rule2,rule1) and vice-versa. For simplicity of
presentation we will assume that the conditions of any rule in the theory do not refer to

- 17 -

the predicate h-p thus avoiding self-reference problems. We now need to extend the
semantic definitions of attack and admissibility.

Definition 1. Let (T, P) be a theory, T, T' ⊆T and P, P' ⊆P. Then (T', P') attacks (T, P) iff
there exists a literal L, T1 ⊆ T’, T2 ⊆ T, P1 ⊆ P’ and P2 ⊆ P s.t.:

(i) T1 ∪ P1⊢min L and T2 ∪ P2⊢min ¬L
(ii) (∃r' ∈ T1 ∪ P1, r ∈ T2 ∪ P2 s.t. T ∪ P ⊢ h-p(r, r')) ⇒ (∃r' ∈ T1 ∪ P1, r ∈ T2 ∪ P2 s.t. T' ∪ P'

⊢ h-p(r', r))

 Here, when L does not refer to h-p, T ∪ P ⊢min L means that T ⊢min L. This extended
definition means that a composite argument (T', P') is a counter-argument to another
such argument when they derive a contrary conclusion, L, and (T' ∪ P') makes the rules
of its counter proof at least "as strong" as the rules for the proof by the argument that is
under attack. Note that now the attack can occur on a contrary conclusion L that refers
to the priority between rules.

Definition 2. Let (T, P) be a theory, T⊆T and P⊆P. Then (T, P) is admissible iff (T ∪ P) is
consistent and for any (T', P') if (T', P') attacks (T, P) then (T, P) attacks (T', P').

Hence when we have dynamic priorities, for an object-level argument (from T) to be
admissible it needs to take along with it priority arguments (from P) to make itself at
least "as strong" as the opposing counter-arguments. This need for priority rules can
repeat itself when the initially chosen ones can themselves be attacked by opposing
priority rules and again we would need to make now the priority rules themselves at
least as strong as their opposing ones.
 We can now define an agent's argumentation theory for describing his policy in an
environment with roles and context as follows.

Definition 3. An agent’s argumentative policy theory or theory, T, is a triple T=(T, PR, PC)
where the rules in T do not refer to h-p, all the rules in PR are priority rules with head h-p(r1, r2)
s.t. r1, r2 ∈ T and all rules in PR are priority rules with head h-p(R1, R2) s.t R1, R2 ∈ PR ∪PC.

We therefore have three levels in an agent's theory. In the first level we have the rules
T that refer directly to the subject domain of the agent. We call these the Object-level
Decision Rules of the agent. In the other two levels we have rules that relate to the
policy under which the agent uses his object-level decision rules according to roles and
context. We call the rules in PR and PC, Role (or Default Context) Priorities and
(Specific) Context Priorities respectively.

- 18 -

As an example, consider the following theory T representing (part of) the object-level
decision rules of an employee in a company1.

r1(A, Obj, A1): give(A, Obj, A1)←requests(A1, Obj, A)
r2(A, Obj, A1): ¬give(A, Obj, A1) ←needs(A, Obj)
r3(A, Obj, A2, A1): ¬give(A, Obj, A2)←give(A, Obj, A1), A2 ≠ A1

In addition, we have a theory PR representing the general default behavior of the code
of contact in the company relating to the roles of its employees: a request from a
superior is in general stronger than an employee's own need; a request from another
employee from a competitor department is in general weaker than its own need. Here
and below we will use capitals to name the priority rules but these are not to be read as
variables. Also for clarity of presentation we do not write explicitly the full name of a
priority rule omitting in the name the ground terms of the rules.

R1: h-p (r1(A, Obj, A1), r2(A, Obj, A1)) ←higher_rank(A1, A)
R2: h-p (r2(A, Obj, A1), r1(A, Obj, A1)) ←competitor(A, A1)
R3: h-p (r1(A, Obj, A1), r1(A, Obj, A2)) ← higher_rank (A1, A2)

Between the two alternatives to satisfy a request from a superior from a competing
department or not, the first is stronger when these two departments are in the specific
context of working together on a common project. On the other hand, if we are in a
case where the employee who has an object and needs it, needs this urgently then he
would prefer to keep it. Such policy is represented at the third level in PC.

C1: h-p (R1(A, Obj, A1), R2(A, Obj, A1)) ←common_project(A, Obj, A1)
C2: h-p (R2(, Obj, A1)), R1(A, Task1, A1)) ←urgent(A, Obj)

Note the modularity of this representation. For example, if the company decides to
change its policy "that employees should generally satisfy the requests of their
superiors" to apply only to the direct manager of an employee we would simply replace
R1 by the new rule R’1 without altering any other part of the theory:

R’1: h-p (r1(A, Obj, A1), r2(A, Obj, A1)) ←manager(A1, A)

Consider now a scenario where we have two agents ag1 and ag2 working in competing
departments and that ag2 requests an object from ag1. This is represented by extra
statements in the non-defeasible part, T

0
 of the theory, e.g. competitor(ag1, ag2),

requests(ag1, ag2). So the question is “should ag1 give the object to ag2 or not?”

1 Non-ground rules represent their instances in a given Herbrand universe

- 19 -

We e can easily see that if ag1 does not need the object then, there are only admissible
arguments for giving the object, e.g. ∆1 = (r1(ag1, οbj, ag2), {}) and supersets of this. This
is because this does not have any counter-argument as there are no arguments for not
giving the object since needs(ag1, obj) does not hold. Suppose now that needs(ag1,obj)
does hold. In this case we do have an argument for not giving the object, namely ∆2 =
(r2(ag1, οbj, ag2), {}). This is of the same strength as ∆1 but the argument ∆'2, formed by
replacing in ∆2 its empty set of rules of priority with {R2(r2(ag1, οbj, ag2), r1(ag1, οbj,
ag2))}, attacks ∆1 and any of its supersets but not vice-versa: R2 gives higher priority to
the rules of ∆2 and there is no set of priority rules with which we can extend ∆1 to give
its object-level rules equal priority as those of ∆2. Hence we conclude skeptically that
ag1 will not give the object. This skeptical conclusion was based on the fact that the
theory of ag1 cannot prove that ag2 is of higher rank than himself. If the agent learns
that higher_rank(ag2, ag1) does hold then ∆'2 and ∆'1, obtained by adding to the priority
rules of ∆'1 the set {R1(r1(ag1, οbj, ag2), r2(ag1, οbj, ag2))}, attack each other. Each one of
these is an admissible argument for not giving or giving the object respectively and so
we can draw both conclusions credulously.
 Suppose that we also know that the requested object is for a common project of ag1

and ag2. The argument ∆'2 is now not admissible since now it has another attack
obtained by adding to the priority rule of ∆'1 the extra priority rule C1(R1(ag1, οbj, ag2),
R2(ag1, οbj, ag2)) thus strengthening its derivation of h-p(r1, r2). The attack now is on the
contrary conclusion h-p(r1, r2). In other words, the argumentative deliberation of the
agent has moved one level up to examine what priority would the different roles have,
within the specific context of a common project. ∆'2 cannot attack back this attack and
no extension of it exists that would strengthen its rules to do so. Hence there are no
admissible arguments for not giving and ag1 draws the skeptical conclusion to give the
object.
 We have seen in the above example that in several cases the admissibility of an
argument depends on whether we have or not some background information about the
specific case in which we are reasoning. For example, ag1 may not have information on
whether their two departments are in competition or not. This means that ag1 cannot
build an admissible argument for not giving the object, as he cannot use the priority
rule R2 that he might like to do. But this information maybe just unknown and if ag1
wants to find a way to refuse the request he can reason further to find assumptions
related to the unknown information under which he can build an admissible argument.
 We can formalize this conditional form of argumentative reasoning by defining the
notion of supporting information and extending argumentation with abduction on this
missing information.

Definition 4. Let T= (T

0
, T, P) be a theory, and A a distinguished set of predicates in the

language of the theory, called abducible predicates2. Given a goal G, a set S of abducible

2 Typically, the theory T does not contain any rules for the abducible predicates.

- 20 -

literals consistent with the non-defeasible part T
0

of T, is called a strong (resp. weak)
supporting evidence for G iff G is a skeptical (resp. credulous) consequence of (T

0
 ∪ S, T, P).

The structure of an argument can also be generalized as follows.

Definition 5. Let T = (T

0
, T, P) be a theory, and A its abducible predicates. A supported

argument in T is a tuple (∆, S), where S is a set of abducible literals consistent with T
0

and ∆ is
a set of argument rules in T, which is not admissible in T, but is admissible in the theory (T

0
 ∪

S, T, P). We say that S supports the argument ∆.

 The supporting information expressed through the abducibles predicates refers to
the incomplete and evolving information of the external environment of interaction.
Typically, this information pertains to the context of the environment, the roles
between agents or any other aspect of the environment that is dynamic.
 Given the above framework the argumentative deliberation of an agent can be
formalized via the following basic reasoning functions.

Definition 6. Let Ag be an agent, T his argumentation theory, G a goal and S a set of supporting
information consistent with T

0
. Then we say that Ag deliberates on G, supported by S, to

produce sag, denoted by deliberate(Ag, G, S; sag), iff sag ≠{} is a strong supporting evidence for
G in the theory T∪S. If sag ={} then we say that Ag accepts G under T∪S and is denoted by
accept(Ag, G, S) . Furthermore, given an opposing goal Ĝ (e.g. ¬G) to G and s' produced by
deliberation on Ĝ, i.e. that deliberate(Ag, Ĝ, S; s') holds, we say that s' is supporting evidence
for agent Ag to refuse G in T∪S.

 The presented approach has introduced, in the same spirit as [Sierra & al, 97;
Amgoud & Parsons, 01], roles and context as a means to define non-static priorities
between arguments of an agent. This helps to capture the social dimension of agents, as
it incorporates in a natural way the influence of the environment of interaction (which
includes other agents) on the agents "way of thinking and acting". The use of roles and
dynamic context is a basic difference with most of other works [Sycara, 89; Parsons,
Sierra & Jennings, 98; Kraus, Sycara & Evenchik, 98; Amgoud, Maudet & Parsons,
00] on agent argumentation. Our work complements and extends the approaches
[Sierra & al, 97, Amgoud & Parsons, 01] with emphasis on enriching the self-
argumentative deliberation of an agent. It complements these works by linking directly
the preferences between different contexts, which these works propose, to a first level
of roles that agents can have in a social context, called default context, showing how
roles can be used to define in a natural way priorities between arguments of the agents
filling these roles. It extends this previous work by incorporating reasoning on these
preferences within the process of argumentative deliberation of an agent. This is done
by introducing another dimension of context, called specific context, corresponding to
a second level of deliberation for the agent. This allows a higher degree of flexibility in

- 21 -

the adaptation of the agents’ argumentative reasoning to a dynamically changing
environment. In [Amgoud & Parsons, 01] the context preferences can also be dynamic
but the account of this change is envisaged to occur outside the argumentative
deliberation of the agent. An agent decides a-priori to change the context in which he is
going to deliberate. In our case the change is integrated within the deliberation process
of the agent.
 This extra level of deliberation allows us to capture the fact that recognized roles in
a context have their impact only within the default context where they are defined,
although these roles always "follow" agents filling them, as a second identity in any
other context they find themselves. Therefore agents who have some relationship,
imposed by their respective roles, can be found in a specific context where the
predefined (according to their relationship) order of importance between them has
changed.

2.2.2 A Computational Model for Agent Personality Modelling

 In this section, I present how our argumentation framework can help us model and
encode an agent’s needs corresponding to motivational factors, thus allowing us to
express various personality profiles of an agent [Kakas & Moraïtis 02a; 03]. In
particular, we examine the argumentative deliberation that an agent has to carry out in
order to decide which needs to address at any current situation that he finds himself.
 We have applied the same approach as we did when modeling a preference policy
of an agent in a certain knowledge or problem domain, as it has been described in the
previous section. We now simply consider the domain of an agent's needs and
motivations where, according to the type or personality of an agent, the agent has a
default (partial) preference amongst the different types of needs. Hence now the type
of need, or the motivation that this need addresses, plays an analogous role to that of
roles in the previous section. The motivations will then determine the basic behavior of
the agent in choosing amongst his different needs and whenever we have some specific
context this may overturn the default decision of the agent for a particular need.
 We have adopted the work of Maslow [Maslow, 54] from Cognitive Psychology
(see also Morignot & Hayes-Roth, 95; 96] where needs are categorized in five broad
classes according to the motivation that they address. These are Physiological, Safety,
Affiliation or Social, Achievement or Ego and Self-actualization or Learning. As the world
changes a person is faced with a set of potential goals from which it selects to pursue
those that are "most compatible with her/his (current) motivations". We choose to eat if
we are hungry, we protect ourselves if we are in danger, we work hard to achieve a
promotion etc. The theory states that in general there is an ordering amongst these five
motivations that we follow in selecting the corresponding goals. But this ordering is
only followed in general under the assumption of "other things being equal" and when
special circumstances arise it does not apply. This is the first time that an

- 22 -

argumentative deliberation framework is used to model an agent’s needs following the
Maslow’s hierarchy of needs, in a way that, we believe, allows a natural expression of
several behaviors. Therefore our aim here was to model and encode such motivating
factors and their ordering in a natural way thus giving a computational model for agent
behavior and personality.
 Let us assume that an agent has a theory T describing the knowledge of the agent.
Through this, together with his perception inputs, he generates a set of needs that he
could possibly address at any particular situation that he finds himself. We will
consider that these needs are associated to goals, G, e.g. to fill with petrol, to rest, to
help someone, to promote himself, to help the community etc. For simplicity of
presentation and without loss of generality we will assume that the agent can only
carry out one goal at a time and thus any two goals activated by T oppose each other
and a decision is needed to choose one. Again for simplicity we will assume that any
one goal G is linked only to one of the five motivations above, mj, and we will thus
write Gj, j=1,...,5 to indicate this, with m1=Physiological, m2= Safety, m3=Affiliation, m4=
Achievement, m5=Self-actualization.
 Given this theory T that generates potential goals an agent has a second level
theory, P

M
, of priority rules on these goals according to their associated motivation.

This theory helps the agent to choose amongst the potential goals that it has and forms
part of his decision policy for this. It can be defined as follows.

Definition 1. Let Ag be an agent with knowledge theory T. For each motivation, mj, we denote
by Sj the set of conditions, evaluated in T, under which the agent considers that his needs
pertaining to motivation mj are satisfied. Let us also denote by Nj the set of conditions,
evaluated in T, under which the agent considers that his needs pertaining to motivation mj are
critical. We assume that Sj and Nj are disjoint and hence Nj corresponds to a subset of
situations where ¬Sj holds. Then the default motivation preference theory of Ag, denoted by
P

M
, is a set of rules of the following form:

� R1

ij : h-p(Gi, Gj) ← Ni
� R2

ij : h-p(Gi, Gj) ← ¬Si, ¬Nj

where Gi and Gj are any two potential goals, (i≠j), of the agent associated to motivations mi and
mj respectively.

 The first rule refers to situations where we have a critical need to satisfy a goal Gi
whereas the second rule refers to situations where the need Gj is not critical and so Gi
can be preferred.
 Hence when the conditions Si hold an agent would not pursue goals of needs
pertaining to this motivation mi. In fact, we can assume that whenever a goal Gi is
activated and is under consideration that ¬Si holds. On the other side of the spectrum
when Ni holds the agent has an urgency to satisfy his needs under mi and his behavior

- 23 -

may change in order to do so. Situations where ¬Sj and ¬Nj both hold are in between
cases where the decision of an agent to pursue a goal Gi will depend more strongly on
the other simultaneous needs that he may have. These conditions Si and Ni vary from
agent to agent and their truth is evaluated by the agent using his knowledge theory.
 For example, when a robotic agent has low_energy, that would make it non-
functional, the condition N1 is satisfied and a goal like G1 = fill_up has, through the
rules R1

1j for j≠1, higher priority than any other goal. Similarly, when the energy level
of the robotic agent is at some middle value, i.e. ¬S1 and ¬N1 hold, then the robot will
again consider, through the rules R2

1j for j≠1 the goal G1 to fill up higher than other
goals provided also that in such a situation there is no other goal whose need is critical.
Hence if in addition the robotic agent is in great danger and hence N2 holds then rule
R2

12 does not apply and the robot will choose goal G2= self_protect which gets a
higher priority through R1

21. In [Kakas & Moraïtis 02a; 03], we show that under some
suitable conditions the agent can decide deterministically in any situation. However, in
[Kakas & Moraïtis 02b] we show that there also exist situations where the agent can be
in a dilemma as his theory can provide him with an admissible argument for each need.
For example, a robotic agent may at the same time be low in energy and in danger.
Similarly, the robotic agent may be in danger but also need to carry out an urgent task
of helping someone.
 According to Maslow's theory decisions are then taken following a basic
hierarchy amongst needs. For humans this basic hierarchy puts the Physiological needs
above all other needs, Safety as the second most important with Affiliation,
Achievement and Self-Actualization following in this order. Under this hierarchy a
robotic agent would choose to fill its battery despite the danger or avoid a danger rather
than give help. One way to model in P

M
 such a hierarchy of needs that helps resolve

the dilemmas is as follows. For each pair k, l s.t. k≠l the theory P
M
 contains only one of

the rules R1
kl or R1

lk. Deciding in this way which priority rules, R1, to include in the
theory gives a basic profile to the agent.
 But this would only give us a partial solution to the problem not resolving
dilemmas that are not related to urgent needs and a similar decision needs to be taken
with respect to the second category of rules, R2, in P

M
. More importantly this approach

is too rigid in the sense that the chosen hierarchy in this way can never be overturned
under any circumstance. In other words, there may be special circumstances where the
basic hierarchy in the profile of an agent should not be followed. This extra level of
flexibility is needed to capture an adaptive dynamic behavior of an agent. For example,
an agent may decide, despite his basic preference to avoid danger rather than help
someone, to help when this is a close friend or a child.
 We can solve these problems by extending the agent theory with a third level
analogous to the specific context level presented in the previous sections.

- 24 -

Definition 2. An agent theory expressing his decision policy on needs is a theory T=(T, P
M
,

P
C
) where T and P

M
 are defined as above and P

C
 contains the following types of rules. For each

pair of rules Rk
ij , Rk

ji in P
M
 we have the following rules in P

C
:

� Hk

ij : h-p(Rk
ij, Rk

ji)← true
� Ek

ji : h-p(Rk
ji, Rk

ij)← sck
ji

� Ck
ji : h-p(Ek

ji, Hk
ij)← true

where sck

ji are (special) conditions whose truth can be evaluated in T. The rules Hk
ij are called

the basic hierarchy of the theory T and the rules Ek
ji the exception policy of the theory T. The

theory P
C
 contains exactly one of the basic hierarchy rules Hk

ij and Hk
ji for each k=1,2 and i ≠ j.

 Choosing which one of the basic hierarchy rules Hk

ij or Hk
ji to have determines the

default preference of needs Gi over Gj or Gj over Gi respectively (for k=1 in critical
situations and for k=2 in non-critical situations). The special conditions scji define the
specific contexts under which this preference is overturned. They are evaluated by the
agent in his knowledge theory T.

2.2.3 Capabilities and Personality

 In this section, I explain our idea to integrate the personality of an agent in his
architecture and I present how the personality of an agent can influence his decision
making of his different capabilities (i.e. problem solving, cooperation, communication,
etc.). As already said, we consider that the implementation of his capabilities as well as
of his decision process on which needs to address at any situation, pertaining to his
personality, involve several deliberation processes. We then show, through two
examples (one with the problem solving module and one with the cooperation module)
how we can represent this kind of deliberations processes by using our argumentative
deliberation framework. This will also help the reader to understand better how the
work presented in the previous sections can be applied.
 Let’s consider that an agent α is provided with the theories presented in the
following. Theory T1 corresponds to a part of the knowledge of one of his modules
related to his problem solving capability and expresses the “way of thinking” and the
policy under which the agent chooses the goals he must achieve in his professional
context. We suppose that the possible choice is between a goal perform(A, Task1, A1)
and perform(A, Task2, self) which semantically mean to perform the Task1 for the
agent A1 or to perform the Task2 for himself, respectively. According to Maslow’s
theory, goal perform(A, Task1, A1) belongs to the category of goals G3 associated to
the motivation m3=affiliation, thus to the need of the agent to satisfy goals for the
society. Goal perform(A, Task2, self) belongs to the category G4 associated to the
motivation m4=achievement, thus his need to satisfy personal ambitions.

- 25 -

One of the problems we must take into account here is the “labeling” of the various
goals according to the need or motivation each one is (primarily) related to. When a
goal is generated (which is a problem to be considered in the future-see future work)
the agent could give it a “label” or in other words categorize it in one of the specified,
by the Maslow’s hierarchy, categories of motivations. In our present work we consider
that the association of the agent’s possible goals with the defined motivations’
categories is part of his background knowledge and it is acquired during the agent’s
design phase. However this could be the result of a learning procedure. The idea is that
the agent could categorize a goal in one of the abovementioned motivations’ categories
ml, if he observes, that each time this goal has been achieved in the past, has had a
positive repercussion on the given motivation ml (i.e. the conditions Sl are satisfied).
This idea will be exploited in the future.

Coming now back to our example we consider that the background knowledge of the
problem solving of the agent α is: {competitor(α, α1), higher_rank(α1, α),
common_project(α, ask1, α1), category(perform(α, task1, α1))=G3, category(perform(α,
task1, self))=G4} for specific agents α, α1 and task1.

Theory T1 is presented as follows:

r1: perform(A, Task1, A1)←ask(A1, Task1, A)
r2: ¬perform(A, Task1, A1) ←perform(A, Task2, self)

R1: h-p (r1(A, Task1, A1), r2(A, Task1, A1)) ←higher_rank(A1, A)
R2: h-p (r2(A, Task1, A1), r1(A, Task1, A1)) ←competitor(A, A1)

C1: h-p (R1(A, Task1, A1), R2(A, Task1, A1)) ←common_project(A, Task1, A1)
C2: h-p (R2(A, Task1, A1), R1(A, Task1, A1)) ←urgent(A, Task1)

According to T1 and his background theory, agent α will choose the achievement of
the goal G3. Thus, his policy in his professional context (environment) would
characterize this agent as a collaborative and fully consistent with the philosophy of the
company where he works.
 Let’s also consider the theory T2 expressing “his way of thinking” (related to his
personality). This theory, as presented in the following, would rather characterize the
agent as selfish.

R2

43: h-p (G4, G3) ← ¬S4 ∧ ¬N3
R2

34: h-p (G3, G4) ← ¬S3 ∧ ¬N4

H2

43: h-p (R2
43, R2

34) ← true
E2

34: h-p (R2
34, R2

43) ← immediate_personal_profit (G3)
C2

34: h-p (E2
34, H2

43) ← true

- 26 -

We assume that the part of the background knowledge of the personality module of the
agent concerning the problem solving module is such that all of: {¬S4, ¬N4, ¬N3, ¬S3}
hold. Thus according to T2 and his background theory agent A will choose the goal G4
because he has no information that Task1 could provide him with an immediate
personal profit. According to our theory, this is a special condition that could overturn
the default preference of needs of the agent, expressing his personality. Therefore, this
agent will find himself in a dilemma because, reasoning as a professional, he will have
to choose the goals G3 while, reasoning as an individual, the goal G4.

Suppose now that the personality of the agent is given by the theory T3 instead of T2.
This theory could rather characterize the agent as altruist or collaborative.

R2

34: h-p (G3, G4) ← ¬S3 ∧ ¬N4
R2

43: h-p (G4, G3) ← ¬S4 ∧ ¬N3

H2

34: h-p (R2
34, R2

43) ← true
E2

43: h-p (R2
43, R2

34) ← against_principle_reasons(G3)
C2

43: h-p (E2
43, H2

34) ← true

 According to T3, the agent will choose goal G3 because he has no information (see
above) that choosing to achieve Task1 could be against principle reasons (i.e. special
conditions). Therefore, in this case, both T1 and T3, expressing his “way of thinking”
as a professional and as an individual character, respectively, are consistent; therefore,
the agent will not have any dilemma to choose the same goal G3.

 In order to illustrate further our approach and to show its generality in the
deliberation of an agent for his different capabilities, let us consider another
relationship between the personality and the capability of cooperation (i.e. the policy to
find partners) of an agent.
 Let us therefore suppose that the following theory is a part of the agent’s
cooperation module knowledge. This module, as we have said, is responsible for the
decision of an agent of how to cooperate with other agents when this is considered
necessary (i.e. when the agent is unable to solve a problem alone). Among other things,
the role of this module is to find the appropriate collaborator for a specific task. The
following theory T4 expresses the policy under which the agent selects his
collaborators based on purely “professional” criteria. This theory, at the object level
says that for any specific Task the agent needs only one collaborator and that any
collaborator can be chosen according to his relevant expertise for the task at hand. In
the roles level the theory says that if the task needs a manager he prefers to choose a
manager agent A1 while if task needs a technical expert he prefers to choose an expert
agent A2. When both apply (i.e. the task is both a management and technical one), the
theory at the context level expresses a priority according to the current period. Thus if

- 27 -

the current period imposes the need of a market share increase, a manager must be
chosen (i.e. α1), while if it imposes the image improvement, the quality eventually of
the products, must be improved and therefore an expert must be chosen (i.e. α2).

 We assume that the background knowledge of the cooperation module of the agent
α is: {management_task(task), manager(α1), technical_task(task), expert(α2),
need_cooperation(a, task), relevant(task, α1), relevant(task, α2),
market_share_increase_need_period(p1), current_period(p1), categoty(request_help(α,
task, α1))=G3, categoty(request_help(α, task, α2))=G5}.

r1: request_help(A, Task, A1)←need_cooperation(A, Task), relevant(Task,A1)
r2: ¬ request_help(A, Task, A1)← request_help(A, Task, A2), A1≠A2

R1: h-p(r1(A, Task, A1), r1(A, Task, A2))←management_task(Task), manager(A1)
R2: h-p(r1(A, Task, A2)), r1(A, Task, A1)) ←technical_task(Task),expert(A2)

C1: h-p(R1(A, Task, A1), R2(A, Task, A2))←market_share_increase_need_period(P)
C1: h-p(R2(A, Task, A2), R1(A, Task, A1))← image_improvement_need_period(P)

 According to T4 and his background theory, agent α will choose the achievement
of the goal G3, which corresponds to the choice of the agent α1.With this choice agent
shows his professionalism because he has made a choice, which is good for the
company (i.e. satisfaction of the motivation m3).

 In order now to show the influence of the personality on the cooperation capability,
we assume that agent α can also use the theory implementing his personality, in order
to choose a partner. Evaluating now the choices under his personal criteria, we assume
that the part of the background knowledge of the personality module, concerning the
cooperation module is such that Ν5 and Ν3 hold.

 Thus if we consider a rather ambitious agent he could be equipped with the
following theory in the personality level:

R1

53: h-p (G5, G3) ← Ν5
R1

35: h-p (G3, G5) ← N3
H1

53: h-p (R1
53, R1

35) ← true
E1

35: h-p (R1
35, R1

53) ← job_loss(self, G5)
C1

35: h-p (E1
35, H1

53) ← true

 According to the above theory and his background knowledge, agent α will prefer
the achievement of the goal G5, which corresponds to the choice of the agent α2. This
can be only overturned if the given choice G5 will lead to the bankruptcy of the

- 28 -

company and therefore to his loosing his job according to the following knowledge
which could appear in the non-defeasible part of the agent’s theory T4:

job_loss(Employe, G) ← company_bankruptcy(G), ∀Employe, ∀G

 We can therefore imagine the case where, the choice of a manager α1 is imposed by
the current circumstances (because of the competition and the financial crisis) and thus
the non-choice of the manager could lead even to the bankruptcy of the company
having as consequence the loss of his job.
 Therefore according to the background knowledge of the agent and taking into
account that no such exceptional conditions appear in it, the agent following his
personality, will choose an expert (i.e. α2) to satisfy the motivation m5 (i.e. agent α
considers that the choice of an expert serves his own ambitions). Thus given that his
professional policy had indicated to him the opposite, he will be found in a dilemma.
 By concluding, we believe that the problem of dilemma, presented in situations
where the decision policy and the personality give contradictory results, could be
resolved following different approaches. The first one is to apply a multi-criteria
method [Vincke, 92] that allows the evaluation of the two options according to several
criteria. The second one is to apply an ad hoc method, which would give to the
designer the possibility, according to the specific application, to decide whether the
(professional) decision policy or the personality is stronger.

2.2.4. Future Work

 Our future work on argumentation can be classified upon several dimensions. One
of them concerns the use of our argumentation framework in order to model different
types of dialogues presented in the literature [Walton & Krabbe, 95], such as
negotiation, deliberation, persuasion, etc. (this is also related to our work on agent
conversation, presented in Section 3.1). Relative to this issue is the evolution of the
argumentation-based negotiation model we have proposed (our work on negotiation is
presented in Section 3.3).
 Another dimension is related to the different personalities of agents by modeling
different agents personalities with respect to the way that they address their needs. In
this direction, we need to extend the framework to allow an agent to decide amongst
goals that concern more than one need simultaneously. A study of the formal
properties of the labeling of goals according to motivations is needed together with a
further study to specify a learning (or other) procedure for the labeling. It is also
important to study, in relation with the social aspect of the agents that is inherent in our
work, how these different personalities play a role in the interaction among agents in
order to form heterogeneous societies.

- 29 -

2.3 Dynamic Planning

 As mentioned before, in order to achieve a goal, planning is one of the capabilities
an agent can have. The proposal of a formal model of dynamic planning is another
feature of my research related to the effort of proposing a formal model of an agent. As
explained, the adoption of the modularity for an agent’s architecture allows us to apply
formal models (based to decision theory, logic or combination of both) in order to
implement the different capabilities of an agent without any problem of consistency. In
this section, we discuss the formal model of dynamic planning presented in [Moraïtis
& Tsoukiàs, 00; Moraïtis & Tsoukiàs, 99; Moraïtis & Tsoukiàs, 02a].

 Dynamic planning concerns the planning and execution of actions in a dynamic,
real world environment. Its goal is to take into account changes generated by
unpredicted events occurred during the execution of actions. According to our
approach, changes can come both from a dynamic environment and from the agent
himself. Several works are proposed in the so-called "reactive planning" field in order
to address planning in a dynamic environment under different approaches (e.g. [Firby,
94; Gat, 92]). Such works propose different techniques in order to react to
environmental changes, which may occur during the execution process.

 We adopt a more general approach since we consider that, in addition, any change
may occur in agent’s behavior (for any reason, i.e. according to a possible user
suggestion) during the execution process, pushing him to change his preferences and
consequently his actions or his method to evaluate these preferences. Changes on
agent's preferences and on his evaluation methods, are taken into account as revision of
three specific structures called possible plans, efficient plans and best plans. To model
these structures, we have used graphs inspired by the ones we described in [Moraïtis &
Tsoukiàs, 96]. Preferences are modeled as criteria in the multi-criteria planning problem
we consider. This formalism allows us to present this planning problem as a multi-
objective dynamic programming problem. Using dynamic programming in planning
problems dates back to Bellman [Bellman, 57], but its use in agency theory has been
limited in search algorithms, (see [Stenz, 95]) or in the frame of "universal planning"
algorithms (see [Schoppers, 87]). Under such a perspective the model we propose
allows an agent based on the set of possible actions to achieve a fixed goal, to express
his preferences about the benefit he desires to take out (for example, profit, time,
pleasure, etc.) by achieving this goal and consequently to define the efficient actions
for this end.
 Further on by introducing some additional information concerning his preferences,
it is possible to define the best plan as the preferred compromise. During the execution
of a single action the agent may modify his evaluations (a revision is necessary) or the
world may be modified after an unanticipated event (an update is necessary). Such
changes (how these are perceived is not considered yet in our work) may invalidate the

- 30 -

plan under execution in the sense that it could be impossible to follow it or it could be
no more convenient. So, the aim of our dynamic planning model is to take into account
such changes and to decide what the agent should do.

2.3.1 The Multi-Criteria Planning Model

 Let’s consider that each agent Ag has to accomplish a set T of tasks in order to
accomplish a fixed goal. Each task ti can be decomposed in subtasks necessary to
achieve ti. We can consider that an agent has to go through a set of "states of the world''
and more precisely from a state where no task is accomplished (the "nil" state of the
world) to a state where all tasks are achieved and therefore his goal is achieved (the
"final" state of world). We represent such a situation as an oriented graph. The agent
has to execute some actions in order to accomplish his tasks. Each time an action is
executed the agent perceives some consequences (for instance a resource is consumed,
a distance is computed, a profit is reached etc.). Therefore each time a subtask is
achieved the agent is able to register the level of associated consequences on a set of
attributes on which he might be able to express his preferences.
 The available information in this planning model consists in:

� a set T of tasks ti necessary for a fixed goal achievement;
� a set S of possible states of accomplishment sli for each task ti ;
� a set A of possible actions aj
� a set H of partial orders ≽q on the set A (x ≽q y : the action x is at least as good as

the action y on the partial order ≽q); if some of such partial orders on the set A are
at least weak orders, then there exist real values functions gq, one for each such
weak order. We represent with gq(aj) the consequences of adopting action aj under
the preference gq

� a set P of the possible sequences of actions (plans: denoted by φ, χ, ψ, etc);

Finally, we consider that it is possible to define a set G of binary relations ⊒r on the set
P (χ ⊒r ψ: the plan χ is at least as good as the plan ψ on the relation ⊒r). For the
moment, the hypothesis made is that each such binary relation is reflexive (∀χ∈P,
χ⊒χ). This model considers that is possible to establish the relations G on the set P
from the partial orders H on the set A.
 A concept of “world state” is also introduced: a state w is a collection of
propositions, predicates and/or functions 〈Ψ, λ, πr〉 where: Ψ: is a set of descriptions
(under form of propositions) specifying what is true in that state of the world; λ ⊆ TxS:
is a binary relation associating a task ti to an accomplishment state sli; πr: P→R: are
functions mapping the set P of possible sequences of actions to the reals, representing
the binary relations ⊒r. Of course, such functions exist iff the corresponding relations

- 31 -

are at least weak orders (complete and transitive). Often, πj are computed using the
evaluations gj (a typical case is πj(p)=∑ai∈p gj(ai)).

Definition 1- Possible paths graph: contains a start node corresponding to a nil state (none
sub-goal is accomplished), an end-node corresponding to a given goal to achieve and a set of
intermediate nodes corresponding to intermediate states of the world. Arcs correspond to the set
of possible actions an agent can perform to achieve his goal through several sub-goals
achievement. We denote the possible paths graph as ΓP = 〈WP, AP〉. It should be noticed that ΓP,
operationally, is just a data-base describing the possible states of the world and the arcs among
them. It consists in a WP×WP matrix with 0/1 entries, denoting the existence of an action
between any two possible states of the world.

Definition 2-Efficient paths graph: represents the set of efficient paths among the possible
paths, computed according to the agent's private goals. It represents all "efficient" (not
dominated) ways to achieve the agent's work goals. Generally it is impossible to find a path that
will be the best for all the agent's private goals, (this is an elementary notion in multi-criteria
decision aid, see [Vincke, 92]). It is clear however, that there exist paths that are definitely
dominated by other ones, in the sense that they are worse under all points of view (all
preferences). Let's introduce a dominance relation ≫. Given any two possible paths p, p': p
≫ p' ⇔ ∀ k p ⊒k p' and ∃k*: p ⊐k* p'. The set of efficient paths D will therefore be the set of
paths which are not dominated: D={p: ¬∃p' ∈ P: p' ≫ p}. We denote the efficient paths graph
as ΓE = 〈WE, AE〉. Clearly ΓE ⊆ ΓP.

Definition 3-Best paths graph: represents the best compromise solution among the efficient
paths according to some further additional information (as for instance, an importance relation
among his preferences). We make the hypothesis that the agent has such kind of information
and therefore he is able to identify a plan p* such that ∀p ∈ D, ∆(p*, p), ∆ representing a weak
order on the set D. Under the hypotheses done in this paper, there exist a lot of procedures to
identify the "best" compromise solution among the efficient ones [see Climaco & Martins, 82;
Hansen, 80; Henig, 94]. We denote the best paths graph as ΓB = 〈WB, AB〉. Clearly ΓB ⊆ ΓE.

2.3.2 Classification of Possible Changes and Reaction

 During a plan’s execution different events may occur such that the agent may
modify his evaluations (a revision is necessary) or such that the world is modified (an
update is necessary). It is possible that such revisions or updates (hereafter called
changes) may invalid the plan under execution. So, what should the agent do? When a
change happens, the agent will recognize it and react either following an alternative
best plan or constructing a new one. The new plan will have as initial state the state
that the agent had reached before the interruption and as final state the same as before

- 32 -

(i.e. where the fixed goal is achieved). Depending on the kind of changes, the agent
will adopt the most suitable reaction.
 In order to understand how our model works, let’s consider the following example.
An agent α1 has the goal to move outside of a room two objects a and b. To do this, he
must first open the door of the room, which is currently closed. The agent can move
the objects outside either one by one or both of them at the same time. So, the actions
he is able to perform are: move(a), move(b), move(ab), open(door). The preferences of
the agent are min-time and max-profit. We assume that the first three actions leave a
profit of 1 unit, while they generate a loss of 1 time unit. For the action open(door), we
assume that it does not leave any profit, but it generates a loss of 1 time unit.
 In the following we present the classification of possible changes we have
considered namely “best” paths revision, “efficient” paths revision, “possible” paths
revision. The algorithms implementing these revisions are presented in [Moraïtis &
Tsoukiàs, 00; Moraïtis & Tsoukiàs, 02a].
C1: Best Paths Revision. It concerns the weak order ∆. For different reasons the agent
may modify the weak order under which the specific best plan has been chosen among
the efficient ones.
 The best plans of the agent considering that his preferred goal is max- profit appear
in Figure 2, while in Figure 3 we have considered that the agent has modified the
priorities or importance of his preferences, by choosing now to satisfy the min-time
goal (i.e. case C1).

Figure 2: Best plans of agent for max-profit goal

- 33 -

Figure 3: Best plan of agent for min-time goal

C2. Efficient Paths Revision. It concerns the states of the world and particularly the
functions πk

j. Actually the way by which the agent evaluates the actions and therefore
the plans, as far as his preferences are concerned, can change (for instance the agent
may realize that some actions are "more expensive" from what has been considered at
the beginning, (i.e., consider that the agent, having chosen the plan for satisfying the
goal min-time and being on the node 1, notices that the action move(ab) generates a
loss of 3 time units, while it has been considered before that it generates a loss of 1
time unit see Fig. 4). Under this point of view the efficient graph ΓE could be modified
(although not strictly necessary) since a path considered efficient may not be any more,
while a dominated path may become efficient. From the execution point of view the
following possibilities may occur:
C21: the present best path is not more efficient and therefore is not any more the best
compromise (see Fig 5).
C22: the present best path is still efficient and but is no more the best compromise
C23: the present best path is still efficient and the best compromise. Obviously only the
first two cases may affect plan’s execution.

In Figure 4, we show how we can change the characteristics of the actions of the agent.
More particularly, we modify the cost of the action move(ab) in time by simulating the
fact that the agent can discover, during the execution of a plan (i.e., 0-1-4), that an
action is more expensive from what has been considered before.

- 34 -

Figure 4: Agent on node 1

Figure 5: New efficient and best paths

- 35 -

Figure 5 presents the situation (i.e. change C21) where the plan considered before is not
any more efficient and, therefore, is not the best any more. In this figure, the red arcs
correspond to the new, simultaneously efficient and best, plans.

C3: Possible Paths Revision 1. One or more possible actions from the set A can be
eliminated. Such modification affects the possible paths graph ΓE and therefore can
affect the efficient paths graph ΓE and the best paths graph ΓB. The possible
consequences of such a change are the following:
C31: some states of the world are modified as far as the functions πk

j are concerned (the
sequences under which a state can be reached are now different; the values of some πk

j
can be modified). The considerations of point 2 apply here. For example, consider that
agent discovers that he is unable to perform the action move(ab) (Fig. 4) because
objects a and b are finally together too much heavy to be simultaneously moved. Under
this possibility we include also the case where action(s) eliminated belong to the best
plan. That means that some states of the world which have been foreseen to be reached
under certain conditions remain reachable, but under new conditions.
C32: a state of the world becomes unreachable because all the actions leading to such a
state are eliminated. If such a state belongs to the best plan then the agent has to
reconsider the ongoing execution, otherwise the change will not affect his behavior.
We call such a state as "infeasible state" and we denote it as w⊥ (the state of node 4
(Fig. 4) if agent is unable to perform the action move(ab)).
C33: a state of the world becomes a "cul-de-sac" in the sense that all actions (arcs)
leaving this state (node) are eliminated. Again a problem will arise only if such a state
belongs to the best plan. We call such a state an "infeasible state" and we denote it as
w⊥ (i.e. the state of node 1 (Fig. 4) if agent is unable to perform the action move(ab)).

C4: Possible paths revision 2. It concerns the availability or necessity of one or more
actions, which before were impossible or unforeseen. Again such a modification
affects ΓP and therefore ΓE and ΓB. The possible consequences are the following:
C41: some states of the world are modified as far as the functions πk

j are concerned. A
node that was reachable for a certain value of the function πk

j is now reachable for new
values (possibly better). Under such a perspective the new action will connect nodes
that in the original possible paths graph were not adjacent. A problem will arise only if
the modified states of the world belong to the efficient paths graph and can influence
the best path graph.
C42: the new actions(s) may create a state of the world, which was not considered in the
set W (for instance the new action may correspond to the necessity to accomplish a
new task or subtask, which was not considered before). For example, if an unpredicted
event (the door is closed) occurs at the moment when the agent is in node 3 during the
execution of the path 0-1-3-4 (Fig.6), the agent will have to open the door (see Fig. 7)
before executing the remaining action of his current plan (i.e. move(a)) .

- 36 -

Figure 6: An unpredictable event arrives

.

Figure 7: New best plan

- 37 -

Figure 6 presents how we can generate an unpredictable event (i.e. the door is closed)
that modifies the current state of world. The new state of the world, not considered in
the beginning, is (OUT(b), IN(a), closed(door)). A problem will arise only if the new
action(s) and the new state(s) of the world may belong to a path, which compared to
the best path, can be considered as a better one. Figure 7 presents the new plan,
generated after the arrival of an unpredictable event that leads to the execution of a
new action (i.e. open(door)) and, therefore, to the generation of a new state of the
world. This is necessary in order for the execution of the remaining action (i.e.
move(a)) to be possible.

2.3.3 Future Work

 We believe that this work highlights interesting issues by having proposed
dynamic planning as a useful mean to reason about changes generated not only by the
environment, but also by the agent himself. Our future work will concern the problem
of how to detect the changes occurred and how to classify them according to the
categories defined in our work, as well as its integration in the existing model.
 Another direction will be to improve the planning model by studying different
ways to reduce the search space (e.g., by considering maximum or minimum
thresholds in the evaluation of the plans, which is based on the agent preferences)

- 38 -

L’ Agent comme une Entité Sociale

Résumé

 Dans cette section je présente mon travail concernant l’agent comme une entité
sociale. En accord avec cette dimension l’attention est focalisée sur les interactions
qu’un agent peut avoir avec les autres agents comme un membre d’une societé qu’il
partage avec eux. La littérature de l’Intelligence Artificielle Distribuée, considère la
coordination comme la forme pricipale d’interaction. L’objectif de la coordination est
de donner aux agents qui interagissent, la possibilité d’atteindre ou d’éviter des
situations selon qu’elles sont désirables ou à éviter pour un ou plusieurs parmi eux.
 La coordination des actions peut être assurée par différents moyens. Un moyen est
celui de la planification distribuée. Dans ce cas les agents essayent de trouver un plan
collectif cohérent (dans un contexte coopératif) ou de détecter des conflits possibles
parmi les actions individuelles. Dans la dernière situation, le but est de résoudre ou d’
éviter les conflits (dans un contexte d’agents individualistes), de telle façon que les
agents puissent exécuter leurs actions (afin d’achever leurs objectifs) sans interférences
négatives sur les objectifs des autres.
 Un autre moyen de coordination est celui de la négociation. Dans ce cas, les agents
essayent d’habitude de trouver un compromis afin d’achever, le mieux possible, leurs
objectifs respectifs (cas des agents individualistes) ou de trouver la meilleure façon
d’achever ensemble un objectif commun (cas des agents coopératifs).
 Cependant peu importe la procédure choisie, les agents doivent communiquer. Plus
précisèment, ils ont besoin d’un protocole de conversation qui va supporter l’échange de
la connaisance et des informations qui sont nécessaires dans le cadre du mécanisme de
la coordination choisie (p.ex., des plans dans cadre de planification distribuée, offres et
contre-offres dans un cadre de négociation, etc.).
 Alors plus précisément, dans cette section je présente mon travail en planification
distribuée, négociation et conversation.
 Le travail en planification distribuée exploite notre modèle de planification multi-
critère présenté dans la Section 2. Notre approche est fondée sur un cycle Planification-
Négociation-Execution (PNE) où chaque agent planifie, négocie, et execute ses propres
plans tout seul. La situation que nous considérons est celle où des agents essayent de
satisfaire des objectifs de travail (nécessaires pour un objectif global) tout en essayant
de satisfaire des objectifs personnels. Les agents développent leurs plans en utilisant le
modèle de planification multi-critère, ils élaborent les plans possibles pour les objectifs
de travail et ensuite ils évaluent les plans efficaces en utilisant les objectifs personnels
comme des critères d’évaluation. Ensuite, les plans efficaces sont échangés entre les
agents et une fusion de plans est effectuée. Cette fusion consiste en une recherche

- 39 -

combinée sur le comment ces plans pourraient coexister. La détection et la résolution
des conflits est effectuée par un algorithme de fusion que nous avons proposé. Le
résultat de cet algorithme est un ensemble des plans multi-agents possibles, libres de
conflits où apparaisent les actions que les agents peuvent éxecuter en parallele et de
manière asynchrone. Ces plans permettent tous la résolution des objectifs de travail de
chaque agent et par conséquent de l’objectif global et ils sont répresentés sur un graphe
orienté que nous appellons graphe de négociation. Cependant ces plans sont évalués
différemment par les agents leur évaluation étant fondée sur leurs objectifs personnels.
Ceci est une différence entre notre approche et celles qui apparaissent dans la
littérature. Un autre type de conflits est ainsi géneré. Ces conflits sont résolus
maintenant par négociation cherchant un compromis entre les agents qui essayent
simultanément de satisfaire au mieux leurs objectifs personnels.
 La négociation est fondée sur les modèles de négociation que nous avons proposés
et qui sont aussi présentés dans cette section. Tous ces modèles intégrent la dimension
multi-critère et sont appliqués au cas de la planification distribuée (en utilisant comme
base de négociation le graphe de négociation). Néanmoins ils peuvent être appliqués à
des situations plus générales. Par exemple un de ces modèles est fondé sur une
approche d’aggregation-desaggregation. Selon cette approche, les agents sont équipés
d’un modèle de prise de décision multicritère, font des offres, des contre-offres en
utilisant un modèle individuel de préférences, et essayent de trouver un accord, en
incluant dans leur modèle à chaque tour de négociation dans leur modèle, une
estimation du modèle de décision de leur contre-partie. L’estimation est fondé sur un
modèle de régression linéaire multiple. La négociation prend fin lorsque les agents font
la même offre.
 Finalement dans cette section je présente mon travail en protocoles de conversation
entre agents. Dans ce travail nous avons proposé un cadre fondé en logique
pour modéliser des dialogues complexes entre des agents autonomes. Ce modèle
s’appuie sur ma conception d’architecture modulaire pour les agents. Ainsi chaque
module est responsable pour un certain type de dialogue (p.ex., négociation,
persuasion, délibération, etc.), et le comportement global est le résultat de l’interaction
entre les différents modules. Dans ce travail nous définissons un ensemble de
performatifs (intégrant des actes illocutoires comme proposer, accepter, refuser, etc.)
de communication, une base de connaissance qui implémente chaque module (et où la
connaissance est répresentée en logique de prédicats de premier ordre), un ensemble de
poliques de dialogue qui permettent la génération automatique de dialogues et une
combinaison de raisonnements monotones, par chainage-arrière et par chainage-avant.
Le raisonnement par chainage-arrière a comme but la satisfaction des objectifs générés
de l’agent, alors que le raisonnement par chainage-avant a comme but de "batir" les
réponses appropriées aux performatifs reçus durant un dialogue (en exploitant les
politiques de dialogue).

- 40 -

3 The Agent as a Social Entity

 The social dimension of an agent is of equal importance to his individual one.
According to this dimension, the basic focus of attention is not on the capabilities of
the agent and his efforts to pursue his goals by executing actions that optimize some
given preferences. On the contrary, the focus of attention is on the interactions that an
agent can have with other agents, as a member of a social environment that he “shares”
with them. However, “interacting” indicates that the agents may be affected by other
agents or perhaps by human agents in pursuing their goals and executing their tasks.
The Distributed Artificial Intelligence literature (e.g. [Weis, 99]) considers coordination
as the main form of interaction that is particularly important with respect to goal
achievement and task completion. The purpose of coordination is to give the
possibility to interacting agents to achieve or avoid situations that are considered
desirable or undesirable by one or several of them. To coordinate their goals and tasks,
agents have to explicitly take into consideration the dependencies that may exist
among their actions. Coordination may concern agents that may are cooperative, self-
interested or bluntly competitive.
 In the first case, several agents work together as a team while, by assembling their
capabilities and their knowledge, they try to achieve a common goal. Agents are forced
to cooperate because nobody has the possibility to achieve the given goal alone.
Therefore, coordination is useful since, for instance, it may allow agents detect
situations where working together is better than working individually or avoid the
execution of the same actions by several agents (in the case that these actions are
useful for all). However, there exist situations (as in many human organizations
[March & Simon, 58]) where agents try to achieve a common goal by simultaneously
trying to optimize individual goals.
 In the case of self-interested agents, interacting agents have their own goals, which
could be conflicting (e.g. their achievement presupposes the use of the same
resources). In this case, coordination is useful because it allows agents to detect
harmful interactions before the execution of their actions and search (for example
through synchronization) a “modus-viventi”, which would allow them to achieve their
goals by avoiding or resolving conflicts.
 Finally, we can have situations where agents are bluntly competitive. That means
that an agent tries to maximize his own benefit (profit) at the expense of others, and
therefore, the success of this one implies the failure of others.
 Coordination of actions can be reached through different ways [see for example
Weiss, 99] and therefore, it can encapsulate different forms of interaction among
involved agents. One of them is through distributed planning [see for example Durfee,
01]. In this case, agents try to find a consistent collective plan (i.e. in cooperative
context) or detect possible conflicts among individual actions. In the later case, the aim

- 41 -

is to resolve or avoid the conflicts (i.e. self-interested context), in that agents can
execute their actions (in order to achieve their goals) without causing negative
interferences on the goals of the others. In the sequel, I will outline our model of
distributed planning presented in [Moraïtis & Tsoukiàs, 96; Moraïtis & Tsoukiàs, 02b].
 Another way to assure coordination is through negotiation. In this case, agents
usually try to find a compromise in order to achieve as better as they can their
respective goals (i.e. in a self-interested context [e.g. Zlotkin & Rosenchein, 91]) or to
find the best way to achieve together a joint goal (i.e. in a cooperative context [e.g.
Lander & Lesser, 92]). In the following, I will also present our work on negotiation
presented in [Moraïtis & Tsoukiàs, 96; El Fallah-Seghrouchni, Moraïtis & Tsoukiàs,
99; El Fallah-Seghrouchni, Moraïtis & Tsoukiàs, 00; Moraïtis & Tsoukiàs, 02b; Kakas
& Moraïtis, 03]. The distributed planning and a part of the proposed negotiation
models are both based on multi-criteria decision theory (e.g. [Vincke, 92]).
 Whatever the coordination procedure chosen is, agents must communicate. More
precisely, they need a conversation protocol that will support the exchange of
knowledge and information that is necessary in the framework of the chosen
coordination mechanism (e.g. plans in a distributed planning framework, offers and
counter-offers in a negotiation framework, etc.) In the next section, I will present the
conversation protocol we have proposed in [Karacapilidis & Moraïtis, 02a; 02b].
 It is obvious that the properties of the coordination mechanisms depend on the
characteristics of the involved agents (i.e. cooperative, self-interested, competitive). At
the same time, having defined a specific organizational structure with the ubiquitous
coordination mechanisms, any new agent integrating this structure must have the
appropriate profile (or acquire it) in order to be able to respect the behavioral rules
characterizing the organization (e.g. an self-interested agent could not survive for a
long time in a cooperative environment; if he wants to stay, he must change by
adopting a more cooperative profile). This is the expression of the “individual/social”
duality that is the property that, as already said, we consider as the most exciting one.

3.1 Agent Conversation

 This work proposes a logical framework for modeling of complex dialogues
between intelligent and autonomous agents [Karacapilidis & Moraïtis, 02a; 02b]. The
overall approach builds on the general assumption that I have adopted in my work,
which is that an agent is composed of a set of modules, each of them being responsible
for a particular feature of the agent’s overall behavior. Such features may concern,
abilities, such as deliberation, negotiation, persuasion, etc. [Walton & Krabbe, 95]. The
original idea here is that each such module performs the dialogue associated to the
ability which this module is responsible for. Thus, embedded dialogues (involving
different types of dialogue) are expressed as moves from one dialogue type to another
and performed through the interaction of the different modules an agent consists of.

- 42 -

For instance, the role of an agent’s deliberation module is to have a dialogue with its
peers in order to decide a sequence of actions in some situations, while the role of its
negotiation module is to negotiate with another agent about a specific goal. The above
assumption makes our approach different compared to existing work on developing
frameworks for conversational agents. It should be made clear here that one may build
an agent according to his particular interests in a specific application; that is, an agent
Agx may be composed of just a negotiation module, while another one Agy may also
include a deliberation and an information seeking module. Note that each agent has
only one instance of the module types mentioned above. The only constrain that we
impose in the design of such kind of agents is that all messages exchanged between
two conversational agents pass through their communication modules.
 Each of the above modules is triggered whenever it is necessary to play the
specific role it is conceived for, thus performing a dialogue corresponding to its “area
of expertise”. The idea is that the reaction of an agent to an input received, or his
global action towards achieving a goal, is based on a sequence of actions performed by
one or more of his modules. In other words, each agent’s module is associated with a
certain part of the overall dialogue.
 This work falls in the area of definition of conversation protocols and formal
frames supporting different dialogue types for agent communication (e.g. [Amgoud,
Parsons & Maudet, 00; Parsons & Jennings, 96; Sadri, Toni, & Torroni, 01; Hitchcock,
McBurney & Parsons, 01]). Much attention has been paid in keeping our framework as
operational as possible. The architecture of our agents and their conversational
protocol are fully implemented and thoroughly interrelated. Agents in our framework
operate combining two types of reasoning to regulate the continuity of dialogues. More
specifically, they perform backward reasoning aiming at satisfying the goal generated
upon the reception of a communication performative, and forward reasoning to build
the appropriate answers to the performatives received. The algorithm implementing the
execution cycle of the agent is presented in [Karacapilidis & Moraïtis, 02a].
 In the framework of this work, we have adopted the same structure for each
module an agent can have. Thus in order to serve its role, we assume that each module
δx is equipped with a knowledge base K(δx). The knowledge conveyed is expressed in a
declarative way, as described below:

Definition 1. A knowledge base is a tuple <F, G, A, solver, DP, PR, messenger, RF, D>,
where:
� F contains application-specific knowledge (facts) related to the role of the module and the

specific topics.
� G is the goal to be achieved (represented by sentences).
� A is the set of possible actions (represented by if-then rules).
� solver is an application-independent inference engine that exploits facts and actions to

reach a goal. It is activated whenever a new goal G’ replaces the existing goal G. It is
based on a backward reasoning mechanism.

- 43 -

� DP is a set of application-independent knowledge, namely dialogue policies, which are
represented by if-then rules (see below) and used by the messenger to regulate the
dialogues.

� PR is a set of preference relations >pr on the set of F and on the set of A.
� messenger is an application-independent inference engine that filters the received

messages and permanently consults the existing dialogue policies and preference relations
by exploiting a forward reasoning mechanism.

� RF is a list of the reasons (facts or actions) leading to the failure of the current goal.
� D contains the messages exchanged during the current dialogue. It is implemented as a

queue that is emptied after the end of each dialogue.

Conversation between agents is therefore based on dialogues. A dialogue between
agents can be a complex process, taking place through the exchange of messages
conveying communication performatives. In a dialogue context, each time an agent
receives a message, it has to know immediately which module it must be activated in
order to set up the appropriate dialogue.

Definition 2. A message is an instance of a schema of the form Msg=(id, P), where P declares
the performative conveyed. In our framework, it is P=S (x, y, σ, T), where:
id is the message’s identification number;
� S is an illocutionary act belonging to the set {propose, accept, request, assert, refuse,

challenge, reject}. It should be noted here that this set corresponds to the current
implementation of our framework and can be easily changed according to a particular
setting;

� x and y are the sender and the receiver of the performative, respectively;
� σ is the subject (i.e., body) of the performative, which may take one of the following

forms:
-a tuple σ = <sentence [support]> where support consists of elements (facts, actions,
etc.) expressing arguments supporting sentences. When no support is available (or
necessary to be explicitly mentioned), its value is ∅;

 -a dialogue context structure DC (see below);
 -∅, meaning “nothing to say” representing the silence in a dialogue
� T is the time when the performative is uttered (times are actually timestamps of the related

transaction).

In fact, the first of the forms proposed for σ may express any message content, provided that it
respects first-order logic representation.

One of the most important aspects in a conversation protocol is the automated
generation of the appropriate illocutionary acts, as well as the initiation and termination
of a dialogue. To this end, we have defined a set of application-independent rules,
namely dialogue policies, which are exploited by the forward reasoning mechanism and

- 44 -

serve this automated generation. The above concept is similar to that of dialogue
constraints [Sadri, Toni, & Torroni, 01]; however, our dialogue policies are associated
with the specific profile of an agent, thus characterizing his personality and behavior.

Definition 3. For an agent Agy, a dialogue policy is a if-then rule of the form P (x, y, σ, T) ∧
C ⇒ P' (y, x, σ’, T+1), where:
� P (x, y, σ, T) is a performative uttered at time T, P’ (y, x, σ’, T+1) is a performative sent at

time (T+1) from the receiver of P (x, y, σ, T) to its utterer, and σ (σ’) is the subject of the
performative, as described above (the subject of P’ is not always the same with that of P).
The above concept is similar to that of dialogue constraints [Sadri, Toni, & Torroni,
01], which however correspond to integrity constraints in an abductive logic programming
framework.

� C, hereafter referred to as condition.

 The idea is that when a module of an agent receives a message related to a subset
of the defined dialogue policies (see DP1, DP2, DP3, DP4, DP5 below), its subject
σ is considered as a goal Gσ. The operation of the solver (which uses backward
reasoning exploiting the if-then rules of the set A), corresponds to the reduction of G to
sub-goals, which in turn correspond to the if parts (or premises) of the triggered rules.
The satisfaction (or not) of these rules defines what DP will be triggered and
consequently what is the condition C to be checked in order to choose the message to
be sent. Otherwise, C depends on the type of the received message (see DP6, DP7,
DP8, DP9). In other words, the dialogue policy is a procedure of entailment that
defines what is the next message to be sent by an agent Agy, after the reception of a
specific message coming from another agent Agx (this task is performed by the
messenger). In the framework of this work we have proposed a set of dialogue policies
corresponding to a (rather usual) profile and are formally presented below (condition C
appears within the square brackets):

� DP1: request (x, y, σ, T) ∧ [K(δy) ⊢ Gσ] ⇒ assert (y, x, σ, T+1)
� DP2: request (x, y, σ, T) ∧ [K(δy) ⊬ Gσ] ⇒ refuse (y, x, σ, T+1)
� DP3: propose (x, y, σ, T) ∧ [K(δy) ⊢ Gσ] ⇒ accept (y, x, σ, T+1)
� DP4: propose (x, y, σ, T) ∧ [K(δy) ⊬ Gσ ∧ {∃ σ' ∈ K(δy) (σ' >pr σ) ∧ (K(δy) ⊢ Gσ’)}] ⇒

propose (y, x, σ', T+1)

The first three policies above are rather straightforward. The condition imposed in DP4
means that if K(δy) does not entail Gσ (i.e., the goal associated to the subject σ of the
received performative), it is checked whether there exists another σ' belonging to K(δy)
along with a preference in PR stating that σ' is preferable than σ, such that Gσ’ can be
entailed by K(δy).

- 45 -

� DP5: propose (x, y, σ, T) ∧ [K(δy) ⊬ Gσ ∧ {∄ σ' ∈ K(δy) (σ' >pr σ) ∧ (K(δy) ⊢ Gσ’)}] ⇒
refuse (y, x, σ, T+1)

� DP6: refuse (x, y, σ, T) ∧ [support (σ) = ∅] ⇒ challenge (y, x, σ, T+1)

The meaning of the above is that an unsupported refusal, sent from agent x to agent y,
triggers a challenge act from y (which actually asks x to justify his decision).

� DP7: challenge (x, y, σ, T) ∧ [∃ reason ∈ RF(y) | reason ⊢ (¬σ)] ⇒ assert (y, x, σ, T+1)

This condition actually checks RF to verify whether there exists a reason of failure of
the goal associated to the subject σ (i.e. a fact or an action that contradicts σ); if yes, the
reason found is sent back to the utterer of the challenge act (as a support of σ).

� DP8: assert (x, y, σ, T) ∧ [support (σ) ≠ ∅ ∧ {∄ support’ ∈ K(δy) support’ ⊢

(¬support)}] ⇒ accept(y, x, σ, T+1)
� DP9: assert (x, y, σ, T) ∧ [support (σ) ≠ ∅ ∧ {∃ support’ ∈ K(δy) support’ ⊢

(¬support)}] ⇒ reject(y, x, σ, T+1)

The meaning of condition DP8 is that if a support’, which contradicts support, cannot be
found then y has to accept the assertion of x. Otherwise (in DP9) y will reject it.

Definition 4. Given that agents convey knowledge in their constituent modules, as described in
the previous section, and inspired by the work presented in [Reed, 98; Walton & Krabbe, 95],
we define a dialogue context as a tuple DC=(t, (τ, M)), where:
� t is the type of the dialogue (t ∈ {deliberation, negotiation, persuasion,…})
� τ is the topic of the dialogue, that is, what agents discuss about
� M is the medium used for the dialogue, (e.g. messages exchanged between agents x and y

either directly (denoted by Direct) or through a mediator z (denoted by med(z)), etc.)

3.1.1 Future Work

 Our primary future work direction concerns the automation of moves from one
dialogue type to another. Moreover, we plan to integrate agents’ mental attitudes
(beliefs, desires, intentions) in our framework.
 Another direction concerns the definition of more properties for our framework
and its enrichment with more performatives and dialogue policies (including policies
for nested dialogues).
 Finally, we plan to use argumentation-based reasoning (by exploiting our
framework) in order to make the reasoning mechanism of our agents more powerful
and handle cases where non-monotonic reasoning is necessary.

- 46 -

3.2 Distributed Planning

 Distributed planning is an important subfield of Distributed Artificial Intelligence.
As Durfee [Durfee, 99; 01] says, “it is something of an ambiguous term, because it is
unclear exactly what is distributed”. By adopting the terminology proposed by
[Durfee, 01], it may concern the case where the planning is centralized while the
execution is distributed (centralized planning for distributed plans, see e.g., [Lansky,
90]), the case where planning is distributed (distributed planning for centralized plans,
see e.g., [Wilkins & Myers, 95]) while the final plan is the result of a collaboration
among a variety of cooperative planning agents or, finally, the case (distributed
planning for distributed plans, see e.g., [Kabanza, 95; Ephrati, Pollack & Rosenschein,
95]) where both the planning process and the resulting plans for execution are
distributed.
 My work in distributed planning [Moraïtis & Tsoukiàs, 96, 02b] exploits our
multi-criteria planning model I have already presented in Section 2.3. Our perspective
for distributed planning integrates elements from the last two-abovementioned cases
and corresponds, as said in Section 3, to situations that characterize many human
organizations. More precisely, we consider that agents accomplish work goals necessary
for a global goal achievement, while simultaneously trying to optimize private goals
(interests or motivations). Our approach is based on a planning-negotiation-execution
(PNE) cycle, similar to the coordination process of Martial [v. Martial, 92], but in our
approach all agents have the same capabilities. In our current model, we take into
account only the stages of planning and negotiation. As it is also assumed in [Durfee,
99], we consider multiple agents formulating plans for themselves as individuals (i.e.
as they were alone) and then ensuring that their separate plans can be executed without
conflict. The difference with the general setting presented in [Durfee, 99], is that in our
case agents have simultaneously two types of goals, namely work and private goals. In
our setting, each agent conceives, negotiates and executes its plans (for example there
is no coordinator agent to which the agents can transfer their plans or an executor agent
who is unable to negotiate about plans). The agents develop plans using a multi-criteria
planning model, calculate the “possible” plans for work goals and evaluate the
“efficient” ones (i.e. the non-dominated plans, computed according to the private goals
which are used as evaluation criteria). Then, “efficient” plans are exchanged among
agents and a plan merging is elaborated, which consists of a combination search of
how these plans can fit together.

3.2.1 The Plan Merging Procedure

 The detection and removal of conflicts are made by the merging algorithm we have
proposed (the detailed algorithm is presented in Moraïtis & Tsoukiàs, 02b), which

- 47 -

builds totally ordered multi-agent plans achieving the global goal; in these plans, there
appear pairs of actions (an action per agent) that can be executed in a parallel and
asynchronous way. The resulting graph is called negotiation graph. The merging
algorithm examines all possible combinations of efficient plans of two agents. More
precisely, it considers all the actions of the efficient plans by pairs, starting by the first
actions of the plans until no more actions appear in both plans and checks whether they
can fit together or not. To this aim, the merging algorithm has to consider three
situations.
 In the first situation, available action for checking appears only in one of the two
plans. That means that an agent has already executed all the actions that he has to,
while the other disposes some actions yet to execute. In this situation, the merging
algorithm forms a pair with the available action (i.e. of one agent) and the
synchronization action of “wait” (i.e. for the other agent). That means that the second
agent will be waiting until the other executes the remaining action. We consider that
agents cannot leave the space of work before the joint goal is successfully achieved
(this can be useful in dynamic environments, where one agent could help the other in
unpredictable situations).
 In the second situation, available actions for checking appear in both plans. That
means that both agents dispose actions for execution. If both actions can be executed
(i.e. if their pre-conditions are satisfied in the current state of the multi-agent plan
under consideration), our algorithm verifies whether there exists a temporal constraint
between them (i.e. if an action must be executed before the other), which would
prevent them to be executed in parallel. If such a constraint exists, the algorithm forms
a pair with the action, which has the priority and the synchronization action of “wait”.
Thus, the action that has the priority will be executed while the other will be replaced
by the synchronization action “wait” and it will be taken into account in the next step
of the merging procedure (it will be checked along with the next action of the other
plan). That means that while an agent is executing his action, the other is waiting until
the first one is finished. Otherwise (i.e. if no constraint exists), the algorithm forms a
pair with the two actions, which means that both actions will be executed in a parallel
and asynchronous way.
 In the third situation, available actions for checking appear in both plans. Thus,
both agents dispose actions for execution. However, in this case one action can be
executed (i.e. his pre-conditions are satisfied in the current state of the multi-agent plan
under formation) while the other cannot (i.e. his pre-conditions are not satisfied). The
algorithm forms also a pair with the executable action and the synchronization action
of “wait”. Thus, the first action will be executed while the other one will be replaced
by a synchronization action “wait” and it will be taken into account in the next step of
merging procedure. As in the previous situations, that means that while an agent is
executing his action, the other is waiting until the first one is finished.

- 48 -

3.2.2 An Example

 In order to better present our model, let’s adapt the example presented in Section
2.3.2 in a distributed context. We therefore consider that one more object c and another
agent α2 exist in the room. We assume that this object is fragile and also that object b is
now on object a. Agent α2 is careful and that is why he is in charge to transfer fragile
objects. Thus, he will move object c outside of the room. Agent α2 is also in charge to
put down objects being on other objects. So, he must put down b in order for agent α1

to be able to move outside the objects a and b. In this new situation, agents α1 and α2

have a global goal, which is to empty the room, which means to move objects a, b and
c outside of the room. This global goal will be achieved through the achievement of the
work goals of the agents, which are to move outside the objects a and b (for α1) and the
object c (for α2). Simultaneously, we consider that both agents have the private goals
min-time and max-profit. We remind that the agents are able to perform the following
actions: agent α1: move(α1, x) and agent α2: putdown(α2, y) and move(α2, x). All these
actions leave a profit of 2 units, while they generate a lost of a 1 time unit. We have
also the relations: before(putdown(α2, b), move(α1, b)), before(putdown(α2, b),
move(α1, a)).
 Remark: the synchronization action “wait” has a cost of 1 profit unit while it
generates a lost of 1 time unit. The lost of 1 profit unit is set because we want to push
agents searching a compromise by avoiding (as much they can) the option of waiting.

Figure 8 represents the graph of efficient paths for agent α2 while Table 3 presents how
these paths are evaluated following the criteria profit and time modeling the private
goals of the agents.

Figure 8: Efficient paths graph of agent α2

Paths Profit Time
1-2-4 4 2
1-3-4 4 2

Table 3: Agent α2 efficient plans’ evaluation

move(α2, c)

4

putdown(α2, b)

move(α2, c)

1

2

putdown(α2, b) 3

- 49 -

Figure 9 represents the graph of efficient paths for agent α1 while Table 4 presents how
these paths are evaluated following the criteria profit and time modeling the private
goals of the agents.
.

Figure 9: Efficient paths graph of agent α1

Paths Profit Time
1-2-4 4 2
1-3-4 4 2
1-4 2 1

Table 4: Agent α1 efficient plans’ evaluation

Figure 10: Negotiation graph for agents α1, α2

wait(α1), putdown(α2, b)

move(α1, a), wait(α2)

move(α1, ab), move(α2, c)

move(α1, a), wait(α2)

move(α1, b), move(α2, c)

move(α1, a), move(α2, c) move(α1, b), wait(α2)

wait(α1), putdown(α2, b)

wait(α1), move(α2, c) move(α1, a), wait(α2)

move(α1, b), wait(α2)

move(α1, b), wait(α2)

move(α1, ab), wait(α2) 1

2

5

3

4

6
8

7

9

move(α1, b)

move(α1, b) move(α1, a)
move(α1, ab) 1

3

2 move(α1, a)

4

- 50 -

 Agent α1 Agent α2
Paths Profit Time Profit Time

1-2-4-9 3 3 3 3
1-2-9 1 2 4 2

1-2-5-9 3 3 3 3
1-3-6-9 0 3 3 3

1-3-6-7-9 2 4 2 4
1-3-6-8-9 2 4 2 4

Table 5: Possible multi-agent plans evaluation for agents α1, α2

Figure 10 represents the graph of possible multi-agent plans (also called negotiation
graph), which is the result of the merging procedure, while Table 5 presents how these
paths are evaluated following the criteria profit and time modeling the private goals of
the agents.

3.2.3 Conflicts Resolution and Negotiation

 In our setting, each total ordered sequence of actions (appearing in the pairs
labeling the arcs of the negotiation graph and forming each possible multi-agent plan)
gives a different evaluation of the same plan for each agent. This is why each agent
evaluates a multi-agent plan by using his own private goals as evaluation criteria.
These private goals can be different, partially the same, or completely the same (as in
our example), having in this case the same importance for each agent or not (in our
example we can consider that for agent α1 min-time is more important than max-profit,
while for agent α2 is the opposite). Therefore, even if all the possible multi-agent plans
achieve the joint global goal, the payoff for each agent is different. Thus, there is a
conflict between the agents of our example, since agents simultaneously want to
optimize, as much as they can, their preferred private goals (or a trade off between all
the private goals). This is a difference between our approach and the other approaches
in the literature.
 In fact, this conflict is due to two reasons. The first is that the private goals of an
agent can be inconsistent with his work goal, in the sense that the best actions allowing
the work goal optimization for the global good are not necessarily the ones, which
optimize its motivations. In other words, the agent would not have done the same
actions for its work goal if it was completely benevolent (devoted) to the global
success (personal interest is sacrificed in front of the collective one’s) and if it had no
"back thoughts" on what it can win from its cooperation with the others. The second
reason is that there may exist a conflict among the private goals of the agents. In any
case, these reasons generate this conflict that concerns the decision about which of the
possible multi-agent plans to choose for execution, taking into account that each agent

- 51 -

would prefer the plan that contains the total ordered sequence of his actions that
optimizes his preferred private goal.
 In order to resolve this conflict we use negotiation. The base of the negotiation is
the negotiation graph and the cycle of negotiation is initiated in order to decide which,
among the possible multi-agent plans (i.e. plans free of conflicts where the actions to
be taken by the agents in parallel and asynchronous way appear in a strict order),
constitutes the best compromise for the involved agents. Negotiation is based on our
work proposed in this field [Moraïtis & Tsoukiàs, 96; El Fallah-Seghrouchni, Moraïtis
& Tsoukiàs, 99; El Fallah-Seghrouchni, Moraïtis & Tsoukiàs, 00; Moraïtis &
Tsoukiàs, 02b], which is presented in the following section.

 Let’s now consider again our example. According to our planning model presented
in section 2.3, in order to compute the best plans, agents must specify a relative
importance between their private goals. Considering for example that for agent α1 min-
time is more important than max-profit, while for agent α2 is the opposite, the reader
can easily conclude that agents α1, α2 will have an agreement on the plan represented
by the path 1-2-9 (Fig. 10). This is easily computed by applying our negotiation
models presented in the next section. If now we consider the opposite situation (i.e.
max-profit for α1 and min-time for α2 as more important), the result is less obvious but
(by applying for example our utility functions based negotiation model) the candidate
plans will be 1-2-4-9 or 1-2-5-9 (Fig. 10).

3.2.4 Future Work

 Our future work in distributed planning is related to two aspects. The first one
concerns the extension of the current model, by combining it with our dynamic
planning model, in order to take into account the execution stage in dynamic
environments. This will imply an enrichment of the model in order to allow a dynamic
PNE cycle in case of unpredictable execution failures during the execution stage (e.g.
an agent who cannot execute alone an action, despite his initial consideration and
therefore he needs help). This also implies an update of the plan-merging algorithm we
have proposed.
 The second aspect concerns the proposal of efficient plan merging algorithms for
distributed planning models in dynamic environments, based on HTN formalism (e.g.
[Erol, Hendler & Nau, 94]). This work will be integrated in the context of a relatively
new paradigm for planning in complex, dynamic environments, called distributed,
continual planning (desJardins et al, 1999).

- 52 -

3.3 Automated Negotiation

 As said above, one of the most important features of agents is their autonomy to
carry out tasks, and make choices and decisions. Hence, it is necessary for agents to be
able to develop their own strategy (i.e. no coordination mechanism can be imposed
externally). Consequently, the diversity of strategies may raise conflicts that can be
solved through negotiation among agents. Several definitions of negotiation have been
proposed in the MAS literature. We adopt the one proposed in [Lomuscio, Wooldridge
& Jennings, 00], that is “negotiation is defined as the process by which a group of
agents communicate with one another to try and come to a mutually acceptable
agreement on some matter”. In fact, negotiation helps agents to modify their local
plans and/or decisions in order to avoid negative (i.e. harmful) interactions and
emphasize the situations where positive (i.e. helpful) interactions are possible.
 Automated negotiation has long been studied in the MAS field. Different
negotiation mechanisms have been proposed (e.g. [Jennings & al., 98; Sandholn &
Lesser, 95; Sycara, 89; Zlotkin & Rosenschein, 96; Aknine, Pinson & Shakun, 02]).
Most of these approaches are based on operational research techniques. For an
interesting overview on negotiation in multi-agent environments, the reader may see
[Jennings & al., 01; Kraus, 97; Műller, 96]. However, the multi-criteria dimension of
the negotiation process is basically ignored in the different approaches presented in the
literature; an exception to that is the work of Faratin, Sierra & Jennings (see for
example [Faratin, Sierra & Jennings, 98; 00]) and Sycara [Sycara, 90] who combines
case-based reasoning and optimization of multi-attribute utilities. Our work lies in this
context and has been presented in [Moraïtis & Tsoukiàs, 96; El Fallah-Seghrouchni,
Moraïtis & Tsoukiàs, 99; El Fallah-Seghrouchni, Moraïtis & Tsoukiàs, 00].

3.3.1 Negotiation Strategies

 More precisely, in [Moraïtis & Tsoukiàs, 96; El Fallah-Seghrouchni, Moraïtis &
Tsoukiàs, 99] we have presented a set of multi-criteria negotiation strategies where the
negotiating agents are "sincerely cooperative", in the sense that they look for a
compromise, while they may accept, if necessary, to have a loss in their private goals
in order to reach the global goal. These negotiation procedures are used in the context
of distributed planning and are applied on the negotiation graph representing the
possible multi-agent plans and created by the merging of the individual efficient paths
graphs of the involved agents (i.e. presented in the previous section). We remind that
agents in this setting have two sort of goals (i.e. work and private) and that work goals
are necessary for a global goal achievement. We also remind that the offer of an agent
(in this setting) consists of the choice of a path of the negotiation graph (corresponding
to a possible multi-agent plan) and we remark that each agent makes his choice by
using his strictly individual preference model.

- 53 -

 The negotiation procedures we have proposed may concern the settling of a new
multi-criteria model using the union of the set of criteria of each negotiating agent.
There exist two possibilities: the first one is to use a hierarchical model of preference
aggregation (all criteria of an agent are aggregated to a single criterion and so on); the
second one is to use a flat model considering all the criteria simultaneously. The choice
depends on the nature of the criteria and the agent’s preferences.
 A first negotiation strategy corresponds to the definition of a compromise solution
among the efficient paths of the negotiation graph. Different procedures can be used as
establishing a global utility function (if the agents accept establish trade-offs among
their criteria), go through direct pair wise comparisons (if the agents accept to simply
compare their criteria) and so on. A second negotiation strategy, in case that the first
one fails to find a compromise solution, is to re-discuss the model enhancing the
criteria set. Under the new model, a negotiation of the first type can be set again. A
third negotiation strategy, in case that the two previous ones fail, is to change again the
model, by introducing a new common criterion, which could be more important than
their previous criteria. A fourth negotiation strategy is to change the model introducing
actions that were not previously considered. If such a situation occurs, the set of
criteria has also to be redefined. The negotiation can go back to the first strategy and
the whole process restarts.

3.3.2 An Aggregation-Disaggregation Approach

 In [El Fallah-Seghrouchni, Moraïtis & Tsoukiàs, 00], we proposed an automated
negotiation framework for a more general setting (always for agents using a multi-
criteria decision model though), which is based on an aggregation-disaggregation
procedure. This work is an extension of the ideas developed in [Moraïtis & Tsoukiàs,
96; El Fallah-Seghrouchni, Moraïtis & Tsoukiàs, 99]. Under the perspective proposed
in [Moraïtis & Tsoukiàs, 96] and presented before in Sections 2.3 and 3.2, the agent's
problem consists in solving a dynamic programming problem, that is to define the
“best path” on a graph whose nodes are the states of the world, the arcs are the
elementary actions, paths correspond to plans, and Hi and Gi represent the agent's
preferences in order to define what is “best” (see Section 2.3).

 Moving up an abstraction level, the decision model presented in section 2.3 may be
extended to a community of agents Ag as follows:

Ag: 〈T, ∆, H, P, Γ, ℜ S 〉 where:

� T: a set of tasks to be accomplished by the community (different levels of
accomplishment may be considered);

� ∆: a set of elementary actions available to the community of agents;

- 54 -

� H: a collection of Hj ⊆ ∆×∆ binary preference relations on the set ∆ of the
type ∀ x, y ∈ ∆: Hj(x,y): the community, on dimension j, considers action
x at least as good as action y;

� P: a set of plans (ordered sets of actions) the community may perform in
order to accomplish the tasks belonging to T;

� Γ: is a collection of Gl ⊆ P×P binary preference relations on the set P of
the form: ∀χ, ψ ∈ P, Gl(χ,ψ) means that the community, on dimension l,
considers plan χ at least as good as plan ψ;

� ℜ: is an aggregation procedure enabling to establish a global relation H
and Γ (if it is the case) and to connect the relations Hj to the relations Gl;

� S: is a set of states of the world representing the consequences of each
elementary action the community may perform.

Under a conventional negotiation scheme the only object on which the negotiation may
hold are the parameters defining ℜ. In such a case it is necessary to consider:

T = ∪iTi and ∆ =∪iAi

 It is clear that such a perspective is very reductive with respect to the negotiation
requirements of a multi-agent system. Moreover the existence of a multi-agent system
level may enable actions not foreseen on a single agent level and modify the way by
which plans are evaluated (i.e. each agent Gl).

Under such a perspective we claim that the negotiation objects in a multi-agent system
include:
� the establishment of ℜ and its parameters, considering T, and ∆ fixed;
� the establishment of Γ possibly modifying each agent Gi;
� the establishment of P possibly modifying each agent Ai, Ti and Hi.

 In our work presented in [El Fallah-Seghrouchni, Moraïtis & Tsoukiàs, 00] we
have proposed a procedure concerning the first among the above negotiation objects. In
fact, although it concerns the most commonly explored problem (at least in decision
theory), it turns out that the extension of conventional negotiation models in the
context of multi-agent systems is far than trivial.

 In this setting, an agent can make an offer using his strictly individual preference
model (called multiple criteria aggregation based decision step), while the same agent
can receive the counter-offer of a counterpart. Such a model takes the form of a
multiple-attribute additive value function. Using a multiple linear regression model

- 55 -

(disaggregation step), agents are able to estimate the parameters of the preference
model of their counterpart (that is the trade-offs and the shape of the value functions).
Based on this estimation, agents are able to create an enhanced preference model by
including the estimated preference model of their counterpart in their own model and
compute a new offer on the basis of the enhanced model. The procedure loops until a
consensus is reached; that is, all the negotiating agents make the same offer.

 The key idea above is that during a negotiation process, each participant making an
offer (that is, making a choice) tries to take into account the preferences of his/her
counterpart. However, such preferences are initially unknown and are revealed
gradually during the negotiation process through the counter-offers of the counterpart.

The negotiating agents, α1 and α2, use the same reference set of possible actions A.

There is a common family of criteria G. Each of the two negotiators uses a preference
model:

The evaluation scheme)(jii agu = is common, and the different elements are the
trades-off pi providing so two different rankings R1, R2 of the alternatives belonging in
set A.

The linear multiple regression method used in order to estimate the utility functions is
the one adopted in the UTA approach [Jacquet-Lagrèze & Siskos, 82]. We use the
weighting sum of criteria values:

Let us call P the strict preference relation and I the indifference relation. If

)](),...,(),([)(21 imiii agagagagg == is the multi-criteria evaluation of an action
αi, then the following properties generally hold for the utility function U:

U [g(α)] > U [g(b)] ⇔ αPb

U [g(α)] = U [g(b)] ⇔ αIb

or

U [g(α)] > U [g(b)] ⇔ α > b

U [g(α)] = U [g(b)] ⇔ α = b

It is possible then to use the relation R=P∪I as a weak ordering depicting the
subjective preferences of an agent. In order to assess parameters pi of the utility
function, the UTA method uses special linear programming techniques. As inputs to
the method we use the common evaluations gi(ai) and the weak ordering of the actions.

∑ ∑= iii uvp

∑∑
==

==
n

i
ii

n

i
ii gugpgu

11

)()(

- 56 -

We suppose that possible actions have the same value for both agents. The procedure
of the negotiation is presented as following:

begin

Each agent evaluates the possible actions based on his individual preference model and
computes an initial ranking of these actions expressing his preferences.
loop

1. agent α1 makes an offer x1* such that: x1*=maxx∈∆ ∑jp1
jg1

j(x)
2. agent α2 makes an offer x2* such that: x2*=maxx∈∆∑jp2

jg2
j(x)

3. knowing agent's α2 counter-offer, agent α1 can establish that: ∀x ∈ A,
∑jp2

jg2
j(x2

*)>∑jp2
jg2

j(x);
4. on these grounds and using a multiple linear regression model agent α1 is

able to make a first estimation of the parameters of the preference model of
agent α2 (that is the trade-offs and the shape of the value functions);

5. using such estimation, agent α1 creates an enhanced preference model
including the estimated preference model of agent α2 in its own model
(actually agent α2 estimated value function will become a criterion to add
to agent's α1 preference model) and computes a new ranking;

6. agent α1 goes back to the first step and choose a new offer on the basis of
the enhanced model; the procedure loops until a consensus is reached (agent
α2 makes the same offer as agent α1);

end loop

end

3.3.3 A Utility-Based Negotiation Model

 In [Moraïtis & Tsoukiàs, 02b] we propose a new negotiation model inspired by the
work proposed in [Faratin, Sierra & Jennings, 98]. The negotiation process ensures an
easy way to find an agreement. We have applied it in a distributed planning context,
where the negotiating agents are "sincerely cooperative", in the sense that they look for
a compromise. However, the above model can be also used in a more general setting.

 Let’s consider the following setting:
-m economically rational agents (αi, i=1,…m) each of which using n criteria (always
the same) in order to evaluate alternative options;
-to each criterion j (j=1,…,n) we associate an utility function gj: A↦[0, 1], A being the
set of alternative options; we assume A=[0, 1]n;

- 57 -

-each agent considers a vector of trade-offs <wi
1,…,wi

n>, such that is possible to
obtain for each agent his linear additive comprehensive utility function
Vi(x)=∑jwi

jgi
j(x); without loss of generality we assume ∀i ∑jwi

j =1;
-without loss of generality we consider that an agent l establishes his own aspiration
level θ(αl)=Vl(α) where α is an alternative for which gk(α)=1, gj≠k(α)=0, k being the
criterion for which wl

k=maxj(wl
j); in other terms θ(αl)= maxj(wl

j).

 The negotiation process can be as follows: Any among the agents makes an offer.
The agent being economically rational the offer will be any point satisfying the
equation ∑jwi

jgi
j(x)=maxj(wl

j). Then the next agent will make a new offer which,
besides satisfying its own comprehensive utility function, it will be as near as possible
(in terms of Euclidean distance) to the previous offer and so on. It is obvious that after
n x m offers each agent perfectly knows the hyperplanes containing all the possible
offers of all the other agents. Then we just have to compute the intersection of such
hyperplanes (and any agent is able to do it) in order to find the set of offers which
satisfy contemporaneously the aspiration level of all agents. Rationally, any such offer
can be an agreement ending the negotiation process.

In order to better understand our model let’s consider the following example. Consider
the situation where two agents 1,2 have the following comprehensive utility functions:

 V1(x)=0.25x1+0.75x2

 V2(x)=0.6x1+0.4x2

Clearly θ(1)=0.75 and θ(2)=0.6 and the hyperplanes (in this case the lines) containing
the possible offers of the two agents will be:

 agent 1: 0.25x1+0.75x2=0.75

 agent 2: 0.6x1+0.4x2=0.6

Agent 1 will make the first offer and we assume without loss of generality that he will
propose the extreme point most favorable to him: <0, 1>. Agent 2 can compute which
is the point of his hyperplane nearest to this offer: <0.33, 1>. Agent 1 can compute on
its turn the nearest offer satisfying his hyperplane, which is: <0.3, 0.9>. Agent 2 is now
able to infer exactly the utility function of agent 1 (the two points exactly describe it)
and therefore is able to compute the intersection with his own utility function, therefore
suggesting: <0.42, 0.85>. Agent 1 does the same calculation and will reach the same
point, therefore will agree to this offer. The agreement is reached (see Fig. 11).

- 58 -

Figure 11: Graphical representation of the utility functions

3.3.4 An Argumentation-Based Negotiation Model

 In [Kakas & Moraïtis, 03] we propose an argumentation-based approach for
negotiation (an important issue for automated negotiation [Jennings et al., 01]), based
on our argumentation framework. Negotiation is built on the exploitation of the
internal argumentative policy theory of the agents, their current goals and other
supporting information about the external environment that each agent has
accumulated from the other agent. This extra supporting information is build gradually
during the negotiation and it allows an incremental deliberation of the agents as they
acquire more information. Here we must make clear, that for the moment, we are not
interested in the conversation protocol supporting the negotiation.

The negotiation protocol applied by the agents could be described as follows:
� Each agent insists in making proposals and counter-proposals as long as his

deliberation with his theory and the accumulated supporting information (agreed
by the two agents so far) produces new supporting evidence (see Definition 4,
Section 2.2.1) for his goal, suitable to convince the other agent. A goal contains
several offers and each of them is supported by its supporting information (e.g. a
goal to buy at a low price may contain several prices each of them being supported
by the appropriate information).

x2

x1

(0.33, 1)

agent 2

(0.3, 0.9)

(0.42, 0.85)

agent 1

1

1 0.8 0.6 0.4 0.2

0.2

0.4

0.6

0.8

0

- 59 -

� The first of the two negotiating agents, who is unable to produce a new such

supporting evidence, abandons his proposal (i.e. his goal) and searches for
supporting information, if any, under which he can accept the counter-proposal (i.e.
the goal) of the other agent (e.g. a seller agent unable to find another way to
support his high price considers selling at a cheap price, provided that the buyer
has a regular account and pays cash).

� In such a case, if the receiver agent can endorse the proposed supporting

information the interaction ends with the agreement on this goal and the supporting
information accumulated so far.

� Otherwise, if the receiver refuses some of the proposed supporting information the

sender takes this into account and tries again to find another way to support the
goal of the other agent. If this is not possible then the interaction ends in failure to
agree on a common goal.

Besides the argumentative functions deliberate and accept (see Definition 6, Section
2.2.1), in our model, we use three more auxiliary functions, which are external to the
argumentative reasoning of an agent and relate to other functions of the agent in the
negotiation procedure.

� The function propose(Goal, ej, si) is used by a sender agent to determine what

information to send to the other agent: Goal is a goal proposed, ej is the evaluation
by the sender of the supporting information sj sent to him in the previous step by
the other agent and si is a new supporting evidence produced by the deliberation
function of the sender.

� The function evaluate(Ag, si) produces ei where each (abducible) literal in the

supporting information si may remain as it is or negated according to some external
process of evaluation of this by an agent Ag. This function used by an agent within
the negotiation process in order to decide if he can accept a proposed supporting
information si, can vary in complexity from a simple check in the agent’s database
on the other hand to a new (subsidiary) argumentative deliberation on si according
to a related argumentative policy theory that the agent may have.

� The function update(S,e) updates, through an external mechanism, the

accumulated supporting information S with the new information e consisting of the
agent's evaluation of the supporting evidence sent by the other agent and the
evaluation of his own supporting information by the other agent.

- 60 -

The negotiation protocol described above can be represented, more formally, by the
following algorithm:

begin
1. agent X receives a proposal Oi from an agent Y,
2. if the proposal is of the form (GY, eY→X, snY) then
3. en

X→Y←evaluate(X, sn
Y);

4. S←update(S, en-1
Y→X ∪ en

X→Y)
5. if X accept(X, GY, S) then End (agreement, GY)

else
6. n ←n+1; deliberate(X, GX, S; sn

X)
7. if sn

X exists then
8. propose(GX, en-1

X→Y, sn
X) to Y

else
9. S←update(S, en

Y→X)
10. n ←n+1; deliberate(X, GY, S; sn

X)
11. if sn

X exists then
12. propose(GY, ∅, sn

X) to Y
13. else end(Failure)
14. endif
15. endif
16. endif
17. endif
18. if the proposal is of the form (GY, en

Y→X,∅) then goto 9; endif
19. if the proposal is of the form (GX, ∅, sn

Y) then
20. en

X→Y←evaluate(X, sn
Y)

21. if en
X→Y = sn

Y then End (agreement, GX)
22. else propose(GX, en

X→Y, ∅)
23. endif
24.endif
end

where e.g., en

X→Y stands for agent X’s evaluation of the supporting evidence sent by
agent Y.

3.3.5 Future Work

 My future work directions on negotiation concern different aspects. One aspect is
related to the multi-criteria negotiation per se. The objective here is to extent the
negotiation objects by considering i) the establishment of G (collection of binary
preference relations for the community of agents), possibly modifying each agent’s Gi

- 61 -

(binary preferences relations on the set of his plans), and ii) the establishment of P (the
set of plans the community may perform), possibly modifying each agent Ai (set of
elementary actions), Ti (set of tasks) and Hi (set of binary preferences on his actions).
This can be viewed as negotiating the negotiation model itself.
 Another aspect concerns a more precise consideration of the aggregation-
disaggregation approach, where work must be done in order to efficiently define how
an agent can automatically decide which is the weight he would assign to the estimated
value function of the other agent (which he uses as an additional criterion). A related
issue concerns the decision policy the agent uses in order to update the weights of the
other criteria.
 Concerning the proposed argumentation-based model, the aim is to integrate in it,
our work on the influence of personality in an agent’s decision making policies related
to his capabilities (see Section 2.2.3), in order to study how this dimension can
influence the behavior of an agent during a negotiation process (i.e. negotiation
between a selfish and an altruist agent, or between two selfish agents, etc.). We will,
finally, also explore the combination with the multi-criteria aspects already proposed.

4 Miscellaneous

 In this section, I present some ideas concerning a new work on automatic decision-
making and, more particularly, on multi-criteria evaluation of abstract operators in
hierarchical planning. Moreover, I discuss issues concerning two other problems that
attracted my interest. These concern the task allocation problem and the inherent
difficulty in making decisions under multi-criteria (e.g. in the planning and scheduling
context).

4.1 Multiple Criteria Evaluation of Actions in Hierarchical
Decomposition

 This is a common project with Alexis Tsoukiàs. Hierarchical decomposition in
planning appears useful when some operators can be decomposed in more than one
way [Russel & Norving, 95]. The problem we address in this work is exactly this one
and the originality is situated into the introduction of a multi-criteria evaluation of
actions in the hierarchical decomposition algorithms. So, we consider that when an
agent has to undertake a task he has to decide the action (or plan) to follow for its
accomplishment. Therefore the agent has to compare the different actions (plans) and
make a choice. Then he may execute the decided action (plan) and possibly may
reconsider the evaluations under which that precise decision has been taken. In any
case the agent, in order to be able to decide, has to elaborate preferences. We consider
two types of preferences. One, which is independent from the precise decision process

- 62 -

for which the planning is undertaken and we call them generic preferences. The other
which depends from the decision process. In this case we distinguish again two types
of preferences. One where only the labels of the operator(s) of actions (plans) are
considered and we call them contextual preferences and the other where besides the
label of the operator(s) also the instances of their variables are considered and we call
them structural preferences.
 It is obvious that hierarchical decomposition is just a specific application case.
This work could be applied in a more general setting of automated decision making for
autonomous agents, where agents have to choose among several alternatives, based on
various criteria.

4.2 Multi-Criteria based Task Allocation

 In the multi-agent systems domain, cooperation among agents is a fundamental
process, in that it aids them to resolve a global problem taking into account that agents
have only a partial view of the overall problem. In this work [Balbo, Moraïtis &
Pinson, 96a; 96b], we have presented a multi-criteria based cooperation approach.
According to this approach, tasks and agents are characterized by a (separate) set of
criteria. Then, our approach exploits agents’ preferences. More precisely, it tries
(through preferences’ aggregation) to find a satisfactory combination for the task
allocation problem, according to the current situation of each time instance.

4.3 Why is Difficult to Make Decisions under Multiple
Criteria

 This work [Della Croce, Tsoukiàs & Moraïtis, 02] makes a survey of the principal
difficulties the multi-criteria decision making introduces with a particular emphasis on
scheduling and planning problems. Two types of difficulties are considered. The first is
of conceptual nature and has to do with the difficulty of defining the concept of
optimality in presence of multiple criteria and the impossibility to define universal
preference aggregation procedures. The second difficulty is of more technical nature
and concerns the increasing computational complexity of multiple criteria decision
making problems.

- 63 -

PART 2

APPLICATION AND EXPERIMENTAL
WORK

- 64 -

Commerce Electronique

Résumé

 Dans cette section je présente mon travail en commerce électronique. Ce travail
concerne la proposition d’un système de marché électronique artificiel qui peut être
utilisé dans deux situations différentes. La première concerne l’achat et la vente des
produits, la deuxième l’achat et la vente des services.
 Dans la première situation, en utilisant ce système, des acteurs (c.a.d. des clients et
des marchands) peuvent déléguer une varieté de tâches à des agents intelligents
personnels, qui agissent comme leurs employés artificiels. Plus particulièrement,
l’originalité de ce travail est fondée sur la personnalisation des agents qui "vivent" en
permanence dans le marché (contrairement aux autres travaux), en représentant les
intérêts de leurs acteurs. Elle réside aussi dans les points suivants: a) les agents peuvent
prendre l’initiative de demander la permission à leurs utilisateurs d' initier une
transaction b) le système possède un outil hautement interactif de prise de décision
multicritère, qui est capable de prendre en compte des informations incomplètes durant
une transaction d’achat et de réaliser une synthèse progressive et une évaluation
comparative des propositions existantes.
 Dans la seconde situation, nous validons l’applicabilité de notre protocole de
conversation présenté auparavant entre agents. Plus précisément dans cette situation,
des utilisateurs ayant besoin d’un service (p.ex., reserver une table dans un restaurant
et/ou des billets de cinéma), interagissent avec leurs agents artificiels afin de décrire le
service qu’ils souhaitent. Ensuite l’agent artificiel, en utilisant ses acquointances dans
le marché (c.a.d les fournisseurs de services), cherche d’abord le fournisseur le plus
approprié afin d’établir un dialogue avec lui avant de lui soumettre une demande avec
les caractèristiques du service dont il a besoin. Si le fournisseur est capable de
satisfaire la demande dans sa totalité il informe le demandeur de la solution trouvée et
le dialogue s’arrête. Autrement (si seuleument une partie de la demande est satisfaite),
un dialogue secondaire est initié par le fournisseur afin de trouver des solutions
alternatives qui pourraient satisfaire le demandeur du service. Si les deux agents
arrivent à un accord le dialogue est terminé et la transaction est validée, autrement la
transaction échoue et le dialogue s’arrête là.

- 65 -

5 E-Commerce

My work on e-commerce concerns the design and implementation of an agent-
mediated artificial market system with advanced features. In this framework, agents
collaborate in real-time mode. Using the system, actors (i.e., customers and providers
of services and products) delegate various tasks to their personal intelligent agents,
which act as artificial employees. In the proposed system, we have considered the case
of buying and selling of products [Karacapilidis & Moraïtis, 01a; Karacapilidis &
Moraïtis, 01b; Karacapilidis & Moraïtis, 00a; Karacapilidis & Moraïtis, 00b] and the
case of buying and selling of services [Karacapilidis & Moraïtis, 04]. Our approach
highly builds on the feature of pro-activeness and semi-autonomy of all software
agents involved.

5.1 Buying and Selling of Products

Contrary to the majority of the already implemented systems, our system addresses
efficiently many important issues. In the case of buying and selling of products, agents
(due to the properties of pro-activeness and semi-autonomy) can take the initiative to
contact their actors in order to start a transaction that seems “interesting” to them (e.g.,
when a new product, which matches one’s profile, appears in the market), or trigger an
actor’s action (e.g., they can inform their merchant that a specific offer is of no interest
in the market for the last month). We argue that semi-autonomy of agents assures the
right level of control for the actions they could take; a fully autonomous agent could
cause problems in such environments.
 Second, our framework is based on a long (or even permanent) existence of agents
in the e-market. In other words, agents do not “live” only during a specific transaction
but much longer, upon the subscription paid by their owners at the time they were
launched (i.e., an actor may “hire” an agent for a month, a year, etc.). This is highly
associated with the personalization of the agents involved, through the maintenance of
each actor’s profile. For instance, a customer’s agent can be assigned with a number of
general interests (e.g., classical music, cruises) and preferences (e.g., one may dislike
the black color on any product) of its actor, which can be enriched with more detailed
ones each time the customer initiates a transaction, takes a decision to buy a certain
product from a certain supplier, etc.
 More precisely the development of the software agents proposed in our system is
based on a generic and reusable architecture. My modular conception for an agent’s
architecture presented in Section 2.1 is applied here. The purchaser and seller agents
are composed of three modules (namely, the communication, coordination and
decision making modules), which run concurrently and intercommunicate by
exchanging internal (i.e., intra-agent) messages. The first two modules are identical;

- 66 -

the third one is different, reflecting the different roles that purchaser and seller agents
play in the system.

Coordination
Module

External Receiver

Incoming Messages Message Transmitter Outgoing MessagesOutgoing Messages

 Addresses Internal Receiver

Offers
Synthesis

Graph

Inference
Mechanism

Library of
Offer Synthesis

Strategies

Purchase
Database

(sellers, user
choices,
purchase

categories)

Purchase
Coordinator

Purchaser AgentPurchaser AgentPurchaser Agent

Finished
Tasks

Current
Tasks

Communication Module

Decision Making
Module

External Receiver

Incoming Messages Message Transmitter Outgoing MessagesOutgoing Messages

Addresses Internal ReceiverInternal Receiver

Inference
Mechanism

Library of
Offer Building

Strategies

Selling
Coordinator

Seller AgentSeller AgentSeller Agent

Finished
Tasks

Current
Tasks

Communication Module

Coordination
Module

Decision Making
Module

Selling
Database

(ads,
products,
potential

customers)

Figure 12: Architecture of a purchaser agent and a seller agent

 The communication module of a purchaser agent (or seller agent) is responsible for
the agent’s interaction with its environment, that is the seller agents (purchaser agents)
and the human user it assists. It sends and receives messages, while internally interacts
with the coordination module.
 The coordination module handles the parts of the cooperation protocol that concern
any type of interaction between (i) the purchaser and the seller agents, and (ii) the
purchaser agent (or the seller agent) and the customer it assists.
 The decision-making module of a purchaser is composed of three components,
namely an inference mechanism, a library of offer synthesis strategies, and the offers
synthesis graph. It actually deploys the agent’s reasoning mechanism that: (i)
implements the behavior of the agent by using appropriate rules; for instance, the agent
acts proactively upon the reception of some messages, sent by seller agents, and (ii)
performs a synthesis and a comparative evaluation of the offers proposed by the seller
agents; this process ultimately aims at finding the best offer (to be then recommended
to the customer), according to the customer’s choices and the information at hand.
 Finally, the decision-making module consists of an inference mechanism and a library
of offer building strategies. As in a purchaser agent, the inference mechanism of a
seller also implements its proactive behavior. Furthermore, it uses the appropriate
strategies to build offers for a requested or promoted product. Each such strategy
reflects the selling policy to be followed by the seller agent, and may depend on the
specific customer, product to be sold, merchant status, and so on (for instance, a
different policy may be adopted when selling a new than a second-hand car).

 As already said, E-market transactions in our system are initiated either by an actor
or an agent. In the first case (see Fig. 13), a customer looking for a certain good or
service contacts his/her purchaser agent and initiates a purchase transaction (Fig. 13,
purchInitMsg message); in turn, the purchaser agent requests (from all or some seller

- 67 -

agents) offers that may fulfill its actor’s interests (Fig.13, offerReqMsg messages).
Whenever a match between a purchaser and a seller agent is established, the latter gets
information about the customer’s buying criteria, preferences that may hold among
them, as well as constraints explicitly imposed. By getting such a request, and
presuming that the appropriate information exists in its selling database, a seller agent
can directly build and propose an offer that is as close as possible to the purchase
request (offerPropMsg message, sent by S1: seller agent). Otherwise (i.e., not enough
information in the database), it has first to contact its merchant for an update of the
related specifications (merSpecUpdReqMsg and merSpecUpdAnsMsg messages,
exchanged between Sn: seller agent and its associated merchant, before the
offerPropMsg message, sent by Sn: seller).

Figure 13: Agent-human interaction diagram

 So, our system enables the e-market’s seller agents to refine (some of) a
customer’s purchase criteria during a transaction, argue in favor or against them, or
even bring up new information to persuade him/her to accept their offers.
 Finally, our approach is able to handle incomplete, inconsistent and conflicting
information during a purchase transaction, and perform a progressive synthesis and
comparative evaluation (across a set of attributes) of the existing proposals. This is
performed through the use of a highly interactive tool, based on multi-criteria decision
theory, which enables customers easily examine alternative scenarios (by selecting
which of the proposals’ attributes to be taken into account) and recommends the best
solution according to the information at hand.
 More precisely, as soon as a purchaser agent gets a new offer proposal, it integrates
it with the ones already arrived and constructs an offers synthesis graph, which is
presented to the customer through the web interface shown in Figure 14. Preferences
and constraints are kept together at the bottom part of the graph, since these refer to the

- 68 -

overall purchase transaction. Each graph entry has an activation label indicating its
current status (it can be active or inactive). By default, all entries are initially active.
Viewing the graph through a standard web browser, the customer is able to inactivate
any of its nodes (by using the mouse and clicking on them), the rationale being that
their corresponding data types do not suit to his/her interests.

offer-12: car-6.1, submitted by sellerAgent-33

criterion-22.5: safety

criterion-22.8: cost

feature-22.5.3: (airbag, 2)

feature-33.4.2: (sidebars, double)

feature-22.8.1: (purchase_price, 25000)

f+

cr

offer-29: car-A25, submitted by sellerAgent-12

criterion-22.3: performance

criterion-12.8: image

feature-22.3.1: (maximum_speed, 230)

feature-22.3.3: (acceleration, 10.3)

feature-12.8.1: (firm_reputation, high)

f+

f+

cr

f+

offer-16: car-XY-34, submitted by sellerAgent-3

criterion-22.8: cost

criterion-22.3: performance

feature-3.6.4: (annual_service_cost, low)

feature-22.3.7: (consumption, low)

f+

f+

cr

f+

feature-22.8.1: (purchase_price, 29500)

cr

cr

preference-22.13: (performance, more_important, safety), submitted by purchaserAgent-22

argument-33.11: (if (maximum_speed > 200) then (accident_risk, high))

preference-33.3: (safety, more_important, performance), submitted by sellerAgent-33

argument-33.12: (if (maximum_speed > 200) then (accident_risk, high))

argument-33.13: (report12: “safety was the big issue in 1998 car sales”)

cr

a+

a+

pr

pr

a-

pr

co constraint-22.1: (purchase_price, less_than, 30000), submitted by purchaserAgent-22

purchase-6.1: new car, initiated bypurchaserAgent-22

preference-12.13: (purchase_price, less_important, firm_reputation), submitted by sellerAgent-12

argument-12.21: (if (firm_reputation = high) then ((robustness, high) and(life_cycle, long))a+

f+

f

Figure 14: The offers synthesis graph.

 Each preference has a consistency label, which can be consistent or inconsistent.
Each time a preference is inserted in the offer synthesis graph, a mechanism checks if
the constituent features or criteria of it exist in another (already inserted) preference. If
yes, the new preference is considered either redundant, if it also has the same
importance relation, or conflicting, otherwise. A redundant preference is ignored (not
inserted in the graph), while a conflicting one is put next to the previously inserted
preference, the rationale being to gather together conflicting preferences and stimulate
the user to contemplate on them (that is, to select which one to inactivate), until only
one becomes active.
 Active and consistent preferences participate in the weighting scheme. A detailed
description of the algorithm used to assign weights to an offer’s features appears in
[Karacapilidis & Papadias, 98]. The basic idea is that the weight of a feature (or a
criterion) is increased every time it is more important than another one (and decreased
when is less important), the final aim being to extract a total order of offers. Since only

- 69 -

partial information may be given, the choice of the initial maximum and minimum
weights may affect the purchaser agent’s recommendation.

5.2 Buying and Selling of Services

The case of buying and selling of services validates the applicability of the
conversation protocol we have presented (see Section 3.1). In our system, a (human)
user wanting to find a service (for instance, to reserve a table at a restaurant and/or
some movie tickets) interacts with his artificial agent in order to describe the service
he/she is looking for [Karacapilidis & Moraïtis, 04]. Using his “acquaintances” in the
e-market (i.e., service providers), the artificial agent looks for the most appropriate one
in order to first, establish a dialogue with him and then, submit a query with the
characteristics of the service required. If the provider is able to fully satisfy the query
submitted (i.e., all criteria and features can be satisfied), he informs the service
demander about the solution found and the dialogue is over. Otherwise, that is only a
part of the service requested can be satisfied, a subsidiary dialogue may start between
the demander and provider agents aiming at finding alternatives that satisfy the request
(such alternatives reside in the knowledge base of the providers). If they arrive to an
agreement, the dialogue is over; otherwise, the transaction fails and the dialogue is
closed. As in the case of buying/selling goods, artificial agents can also interact with
their (human) users in order to get further information about the alternatives suggested
each time. In this work, we present transactions carried out between artificial agents
only; more specifically, we describe the way they autonomously convey dialogues
about alternatives and we associate it with the representation of their profiles and
behavior.

In the following, we present an example of buying and selling of services. Let
agent Z acting towards making some reservations for his owner, who is actually a user
of our system that looks for some services. His goal is to find a solution that combines
dining at a good restaurant and going to the movies. To achieve this goal, Z contacts
agents X and Y, which act as representatives (information providers) of the city’s
cinemas and restaurants, respectively.

Figure 15 illustrates the inter-agent dialogues performed by the agents Z, Y
and X concerning a real application about the organization of a soirée. As it can be
noticed, agent Z has first a successful dialogue with X about the movie reservation and
then a dialogue with Y about the restaurant reservation. Because of the movie’s
reservation, the restaurant reservation necessitates nested dialogues. In fact, a dialogue
about dinner-time is necessary, in order to solve the conflict with the already fixed
movie’s time.

- 70 -

Figure 15: Inter-agent dialogues for a soirée organization

- 71 -

Marketing

Résumé

 Dans cette section je présente mon travail en marketing. Ce travail concerne la
proposition d’un système multi-agent pour implémenter une méthodologie de selection
de stratégies pour la meilleure pénétration de nouveaux produits dans un marché. Le
système que nous proposons répartit les agents en deux niveaux: un niveau fonctionnel
et un niveau structurel. Au niveau fonctionnel, nous avons adopté une séparation en
trois types d’agents, proposé dans la littérature, à savoir: des agents de tâches, des
agents d’information et des agents d’interface. Au niveau structurel nous avons des
agents élémentaires et des agents complexes. Les agents complexes peuvent être
considerés comme des organisations d’agents et aussi appartenir aux trois types
présentés auparavant, c.a.d. les agents de tâches, agents d’information et agents
d’interface.
 L’architecture des agents élémentaires respecte mon point de vue d’architecture
modulaire et est fondée sur un modèle reutilisable, inspiré du modèle classique des
agents BDI (croyances, désirs, intentions) mais aussi d’autres architectures présentées
dans la littérature. Elle est constituée de trois modules, un module de raisonnement, un
module de planification de coopérations et un module de communication. L’architecture des
agents complexes est fondée sur le même type de modules. Les modules planification
de coopérations et communication étant exactement les mêmes, la seule différence
constitue le module de raisonnement. Celui-ci est composé d’un ensemble d’agents
élémentaires qui interagissent afin de résoudre d’une manière coopérative les
problèmes pris en compte par un agent complexe. Cette organisation d’agents est
constituée de manière dynamique.
 La résolution d’une tâche complexe est fondée sur deux types de processus. Un
processus top-down qui assure que la décomposition de la tâche en plusieurs sous-
tâches est effectuée à travers les différentes couches d’agents (c.a.d. élémentaires et
complexes) considerés, alors qu’un processus bottom-up effectue la synthèse de
différentes solutions proposées aux différents niveaux.
 Plus précisément maintenant, les agents élémentaires que nous proposons en
accord avec la méthodologie que nous implémentons sont les suivants:
-Agent Analyse de Données (AAD): un agent de ce type effectue une analyse de données
d’entrée.
-Agent Choix de Marque (ACM): un agent de ce type utilise comme entrée des tables
multi-critères afin de choisir la méthode appropriée de choix de marque et ensuite
effectuer de manière efficace la modèlisation du comportement du consommateur.

- 72 -

-Agent UTASTAR (AUTS): un agent de ce type exécute la méthode multi-critères
UTASTAR. Le résultat est une table d’utilités concernant une analyse de produits
alternatifs du marché.
-Agent Expert de Marchés (AEM): un agent de ce type choisit une stratégie de marché
fondé sur des scénari et d’autres connaissances spécifiques (p.ex., informations sur les
canaux de distribution, etc.).
 Les agents complexes de notre système sont crées à partir des agents élémentaires
ci-dessus et ils sont les suivants:
-Agent Génération de Scénari: un agent de ce type est composé d’un agent ACM, d’au
moins un agent AAD et d’un agent AUTS.
-Agent Sélection de Stratégies: un agent de ce type est composé d’un agent ACM, d’un
agent AEM et d’un agent AUTS.

- 73 -

6 Marketing

 This application has given us the opportunity to develop our proper multi-agent
platform and then design and implement a specific multi-agent system in order to
implement an original consumer-based methodology for product penetration strategy
selection in real world situations. Different aspects and implications of this work are
presented in [Matsatsinis & al., 99a; 99b; 99c; 99d; 02].

6.1 Consumer-Based Methodology for Products Penetration
Strategy Selection

To support the product development process an original consumer-based methodology
has been proposed in [Matsatsinis & Siskos, 99] proposed. It is based on the use of
different models for data analysis, multi-criteria analysis and brand personal choice.
During the market survey, every consumer expresses his evaluations on a set of
reference products involved in the research, on the base of a group of criteria. Finally,
he is requested to rank the products according to the order of preference. The collection
of this kind of data requires a specific questionnaire. The initial phase of this
methodology aims to acquire an overall frame of the particular survey. This is followed
by the use of data analysis models in order to determine consumer and market features.
This task is called "Market Segmentation". Market trends are identified through this
approach. Concurrently, the multi-criteria method UTASTAR [Siskos &
Yannacopoulos, 85] is applied to the multi-criteria consumer preferences, in order to
determine the criteria explaining each of the consumer’s choices. This method assesses
a utility function u(g) which is as consistent as possible with the consumer ranking,
where g=(g1, g2, ..., gn) is the vector of the criteria on which the products are evaluated.
The consumer’s utility function is assumed to be additive: u(g) =
p1u1(g1)+p2u2(g2)+...+pnun(gn), where ui(gi) is the estimated marginal utility of the
criterion gi, normalized between 0 and 1, and pi is a weighting factor of the i-th
criterion, the sum of weights being equal to one: ∑

n

i=1pi=1.
 The UTASTAR method estimates for each consumer separately his utility
function, which is as consistent as possible with his rank order of the products used;
the relative importance of the criteria is then derived from this utility model. This
preference disaggregation analysis is called "Criteria Analysis". The use of models of
consumer personal choice allows the market simulation and the calculation of the
market shares of the competitive products taking part in the research. This aims at the
selection of the most suitable model approach, as close as possible to the real market
shares ("Brand Choice Task”). The next step concerns the design of the new product
by simulating its introduction into the market using the multi-criteria estimations. It is
followed by the application of alternative scenarios. With the help of the selected brand

- 74 -

choice model, the market simulation and the calculation of the new market shares to be
expected (after the introduction of the new product), are performed. This process
involves "Scenario Generation and Complex Scenario Generation". Based on the
results of the scenarios application, the choice of the most appropriate penetration
strategy for the new product is made. This is the main task and is called "Penetration
strategy selection".

6.2 Agent’s Types, Functionalities, Structure

 Agents are simultaneously considered according to two different levels: a
functional and a structural level. According to the functional level, we have adopted the
three types of agents proposed in [Sycara & Zeng, 96]: task agents, information agents
and interface agents assuming task’s fulfillment through cooperation, information
gathering tasks, and mediation between users and artificial agents respectively. In the
structural level we have elementary agents based on a generic reusable architecture
and complex agents considered as an agent organization created dynamically in a
hierarchical way.

In Figure 16 we present an agent-based system used by decision-makers, who can be
corporation board members, each simulating his own scenarios and finally selecting a
penetration strategy for a new or an existing product in a board meeting.

INFO1 INFO2 INFOn

DB1 DBkDB2

INTi INTj

DMi DMj

Complex
Task Agent Information Agent Interface Agent User

INTBOARD DMBOARD

Legend

SGi StS SGj

Figure 16: The system’s architecture

- 75 -

An agent’s knowledge is acquired during a knowledge acquisition stage, using
different domain experts knowledge, and through interactions with the other agents of
the system as well as the human users. As we have said before, in our approach, agents
are considered according to two different levels: a functional level and a structural
level.
 The functionalities of interface agents are those we can find in the literature (e.g.
[Laurel, 1997; Sycara & Zeng, 1996]): initiation of a task, responsibility of system
interactions with the user, results presentation to user queries, in a way appropriate to
the user's profile (e.g. according to the level of responsibility in an organization),
determination of what categories of task agents should be involved, so that a user query
is correctly taken into account.
 The functionalities of information agents are also those we can find in the literature
(e.g. [Knoblock & Ambite, 97; Sycara & Zeng, 96]). Their goal is to provide
information and expertise on various topics, by drawing on relevant information from
the system’s general database, remote heterogeneous databases in the Internet, other
information agents or interface agents.
 Finally, task agents specialize in performing specific tasks. They can interact with
all types of agents in order to carry out their jobs. These are the most sophisticated
agents of our system and they can have an elementary or complex structure. For the
application presented in this paper, we conceived different types of task agents
(elementary and complex) each corresponding to different generic tasks (e.g. perform
data analysis, generate a scenario), involved in the methodology presented before. We
can have several occurrences performing the same specific task (for example several
agents performing data analysis).

We therefore have the following types of elementary task agents:
� Data Analysis (DA) agent: such an agent performs data analysis on an input data set.

(see Figure 1, e.g. correspondence analysis, principal components analysis, etc.).
Such an agent has the knowledge that enables him to choose appropriate data
analysis methods, which are effective on any particular input data set. Finally he
can combine and evaluate each applied method’s outputs.

� Brand Choice (BC) agent: such an agent uses inputted multi-criteria tables in order to
choose the appropriate brand choice model(s) and effectively model the behavior
of the consumers that participated in a particular market research (e.g. LUCE, Mc
Fadden 1, etc.).

� UTASTAR agent (UTS): such an agent performs the UTASTAR multi-criteria
method on an inputted market research. He can locate and distinguish multi-criteria
questions while identifying alternative products used in any market research. Its
output is the utility table.

� Market Expert agent (ME): such an agent selects a market strategy depending on
scenarios and on knowledge that includes corporate information, distribution
channels information, etc.

- 76 -

The agents, which are used for the presented application modeling, are based on a
generic reusable architecture that we conceived, following my modular conception of
an agent architecture [e.g. (Moraïtis, 94; Boussetta, Cohen & Moraïtis, 96)], and
inspired by the general BDI type philosophy (see for example [Georgeff & Ingrand,
89]) and the different agent architectures presented in the literature (e.g. [Brazier & al.,
97; Sycara & Zeng, 96; Witting, 92]). Different functional agent types have the same
basic architecture principles, regardless of the category they belong to. However, the
different modules are more or less sophisticated according to their specific type (e.g.
the planning model of an information agent is simpler than that of a task agent). Our
agent architecture (Figure 17) is composed of three modules (Communication,
Planning and Reasoning module) that intercommunicate through internal message
exchanging (called intra-agent messages).

Meta - Planning

Cooperative
Plan Library

Finished
Tasks

Self Model

Current
Tasks

Acquaintances

Reasoner

Library
Plans

Beliefs

Goals

Intentions

Executable
ActionsInternal Receiver

Outgoing
Messages

Incoming
Messages

Addresses

External
Receiver

Message
Transmitter

Communication
Module

Planning
Module

Reasoning
Module

Elementary Agent

Figure 17: An elementary agent structure

These modules run concurrently. An agent remains idle while no messages arrive to his
communication module. As soon as a message arrives, the communication module
determines its importance and, after transforming it to an intra-agent message, sends it
to the planning module by means of a message queuing mechanism. All modules adopt
this behavior and remain idle while no messages are available for procession. The
same intra-agent queuing mechanism facilitates all modules. Thus, intra-agent control
is achieved via the intra-message mechanism. By using these elementary agents, we
build complex agents, taking into account the methodology's complex tasks

- 77 -

achievement. We consider that by using the complex agent concept to gather together
agents involved in some complex task (if the task’s nature allows it) achievement, the
system's scale and coordination complexity can be decreased, making the application's
modeling easier. Actually, coordination, even within a large-scale application, is
carried out, either between agents within relatively small-scale groups or between a
reduced number of complex agents that are entities of an upper layer. The involved
complex agents are:
� Scenario Generation (SG) agent: such an agent is composed by at least a DA, a BC

and an UTS agent. He coordinates the scenario and complex scenario generation
task (Figure 18).

� Strategy Selection (StS) agent: such an agent is composed by a BC, a ME and an
UTS agent. He coordinates the penetration strategy selection task.

 Complex agents can belong to the three functional types defined before. The
architecture of a complex agent is similar to the one of an elementary agent. Therefore
he is composed of the same three modules (Communication, Planning and Reasoning
module), which intercommunicate through internal message exchanging. The intra-
agent control (interaction between the three components) is the one of the elementary
level.

Figure 18: A Complex Agent Structure

 The difference is situated in the structure of the reasoning module. The group of
agents (elementary and/or complex) that compose it assumes its role. The task
achievement of an agent (parent) developed in n-layer is therefore the result of the set
of agent’s (his descendants) cooperation belonging to the previous (n-1) layer. The
reasoning module could be therefore considered as an agent organization.

- 78 -

 The interaction between a complex agent’s reasoning and planning modules (like
in the elementary level) of an (i+1) layer agent is established through the i layer agents
that are components of the reasoning module of the (i+1) layer agent (for example the
"Brand Choice" Agent sends the results of his work to the planning module of the
"Scenario Generation" Agent, Figure 18). In this context, an inter-agent message sent
by an i layer agent to an (i+1) layer agent is transformed to an intra-agent message of
the (i+1) layer agent. The organization of reasoning module agents is dynamically
generated. Its role is to achieve any task(s) allocated by the planning module. The
agent's organization generation process is initiated by selecting appropriate agent(s)
(according to the task's nature) chosen by the planning module. Agents can be of a
different nature (e.g. static, mobile), not necessarily implemented in the locality of the
parent agent, but they are, however, aware that they have the same parent. In Figure
18, a UTA* agent, a BC agent and a SIM agent compose the reasoning module of a
complex SG agent. The UTA* agent provides the multi-criteria analysis service (using
his knowledge on analyzing a market research and selecting multi-criteria questions),
the BC agent selects a brand choice model for the multi-criteria analysis (using his
knowledge base on model selection), while the SIM agent simulates scenarios for the
user (using either its knowledge base or user input provided via an INT agent to the SG
agent). The reader will find in [Matsatsinis & al., 03] all the technical details
concerning the implementation of complex agents.

 Actually, we can say that two processes facilitate a complex task achievement. A
top-down process assumes that the task's decomposition in several subtasks is achieved
across the different layers, while a bottom-up process performs the synthesis of
different solutions proposed at different layers. We can have complex information
agents when an information retrieval must be accomplished through the achievement
of several specific information-gathering goals. Different specialized information
agents representing layers of a complex information agent can take these goals into
account. We can also have a complex interface agent able to take into account (through
his elementary interface agents) the different points of view of board members during a
distributed decision making process.

- 79 -

Services d’Information: le système IMAGE

Résumé

 Dans cette section je présente mon travail dans le domaine de services
d’informations. Plus précisément mon travail concerne la conception et le
développement d’un système multi-agent qui constitue le coeur du système IMAGE.
Ce système a comme objectif de fournir aux utilisateurs de services d’informations,
mobiles et personnalisées basés sur la localisation des utilisateurs, ainsi que des
moyens pour accéder à ces informations mais aussi leur paiement. Alors certains des
objectifs principaux pour IMAGE sont:
-Développer des services avancés de navigation, localisation et de commerce
éléctronique
-Réorganiser le business model en introduisant l’Agent Mobility qui joue le rôle
d’intermédiaire entre les acteurs impliqués
 Le système IMAGE est constitué de modules suivants:
-Un module d’interface avec l’utilisateur
-Un module intelligent qui constitue notre système multi-agent
-Un module de services géo-référenciels (localisation/navigation)
-Un module de services de commerce éléctronique
-Un module GIS
-Un module de SGBD
 Plus précisément le système multi-agent que nous développons est constitué de
différents types d’agents qui sont les suivants:
-Agent Interface: ce type d’agents est le lien avec l’interface utilisateur du système et il
peut a) prendre en considération des demandes simples non personnalisées b)
authentifier l’utilisateur c) décider si l’utilisateur va être servi par un agent assistant ou
assistant personnalisé
-Agent Assistant: ce type d’agents peut prendre en considération des demandes
complexes d’utilisateurs qui n’ont pas un profil enregistré
-Agent Assistant Personnalisé: ce type d’agents peut prendre en considération des
demandes complexes d’utilisateurs qui ont un profil enregistré. Il sera capable
d’adapter le service aux habitudes et préférences personnelles de l’utilisateur, en
gardant et exploitant l’historique des services demandés dans le passé.
-Agent Guide de Voyage: ce type d’agents peut prendre en considération des demandes
concernant des services géo-référentiels, le GIS et le SGBD.
-Agent Educateur Touristique: ce type d’agents peut prendre en considération des
demandes concernant des informations touristiques pour une ville (p.ex., musées,
théatres, monuments, etc.).

- 80 -

-Agent Services: ce type d’agents peut prendre en considération des demandes
concernant des services tels que le contrôle de disponibilité de tickets, des places, etc.
-Agent Evénements: ce type d’agents reçoit des informations par le SGBD concernant
des nouveaux événements et informe les agents assistants personalisés.
-Agent Services SMA: cet agent est responsable de garder un enregistrement et la trace
des agents du système et de fournir des informations (sous forme de pages jaunes) sur
les agents des autres systèmes IMAGE qui sont géographiquement distribués.

- 81 -

7 Information Services: The IMAGE System

 My work in this domain concerns the design and implementation of a multi-agent
system, which constitutes the core element of the Image system. This system aims to
provide the users with mobile, personalized, location based information services, how
to reach them and how to pay for them with flexible mobile and stationary means. To
meet this aim the following objectives are defined for Image:
- To design and develop an open and modular service platform, which as a transparent
central point co-ordinates both end user data (user request) and service provider data
(provider response);
- To develop advanced key services, such as navigation, localization applications, and
e-commerce services, and facilitate the easy integration between them;
- To re-organize the business models and relationships at the potential sites by
introducing a new business role, the Mobility AGENT, that intermediates between the
actors involved in the service delivery (the network of content providers, service and
product providers and end users);
- To verify the integrated platform and the inter-operation between Agents of different
test-beds;
- To prove the feasibility of the proposed platform through the conduction of thorough
financial and marketing analysis;
- To facilitate the further implementation of the Image system across Europe, to devise
a strategic plan for achieving this and to provide guidelines for Agent and service
providers.

7.1 The IMAGE Agent Scenario

A potential Image customer is able to set an inquiry to the Agent: the satisfaction of
his/her need (for example “I would like to visit a museum”). However, for the sake of
the flexibility and the modularity of the project’s end product the user is enabled to a
simper request, such as a travel request only: a journey between two geographical
points, O (origin) and D (Destination). The origin could either be defined by the
potential customer (“I know where I would like to start my journey”) or be a task for
the Agent (“I do not know where I am now”) by utilizing localization technologies.
The destination could be again directly defined by the customer (“I would like to go
there, don’t ask why”) or determined by his/her current needs as mentioned previously
(“Museum”), or a combination of both options. The request is accompanied by a set of
parameters, containing general profile & general preference, and also current
preferences (for example transport mode, optimizing journey time or price, etc.).
Nevertheless the Agent is capable of providing the user with new options as well.

- 82 -

The core element of the Image Agent dealing with the users’ re-quests is the intelligent
module (a multi-agent system), which bases its operation on a geographical
information system (GIS platform) that is interpreting the incoming information from
both the end user and the service providers into geographic co-ordinates. The same tool
is also responsible for tracking the geo-data (transport nodes, tourism activities, retail
activities, etc.) of the geographic environment where the Agent is active. Thus the
Agent is acknowledging the 3-D background characteristics of the potential customer’s
travel and also the characteristic points along the route.
User requests are obtained and analyzed into a bundle of separate services by the user
interface (UI), which is closely co-operating with the intelligent Agent and the GIS
platform.

7.2 General Description of IMAGE Modules

 Image investigates the link between current agent research, emerging standards
(FIPA, XML, and W3C) and strong user needs in this new mobile world.
The work of implementing the Agent has been divided in the development of the
following individual modules: a) User interface, b) Intelligent module, c) geo-
referenced services (Localization/Navigation), d) e-commerce/payment services, e)
GIS platform and f) Data Management/Interface which in combination are performing
all the necessary steps for an integrated service delivery according to the end user’s
request(s).

The Image Agents will operate between the Image modules:
� User Interface Module
� Intelligent module
� Geo-referenced service module (Localization / Navigation)
� E-commerce service module
� GIS platform module
� Data Management / Interface module.

-User Interface Module (UI)

 Image will design and develop a suitable Use interface module (UI) for handling
interaction with the user in a way that is consistent across various types of end device.
This will entail a task-oriented approach to the interface design, leaving the various
device-dependent I/O options open. This should also permit sufficient customization
and adaptation of the UI by both the end user and any new service provider who
wishes to plug into the Image platform. Such a design should also be particularly
suited to new generation hand-held devices, as it will permit appropriate flexibility in
the choice of media for presentation to and from the user (text, graphics, keypad, voice,

- 83 -

touch or stylus etc.) will develop an interactive, bi-directional User Interface able to
present all provided services and analyze the user’s request in an consistent way,
decomposing it into a set of basic services.

-Intelligent Module (IM)

 The intelligent module (IM) (the IMAGE agents) will ‘intelligently’ manage,
process and monitor end users’ requests and individual profiles/preferences for geo-
referenced and time-dependent servicing. The intelligent module bases its operation on
a geographical information system that is interpreting the incoming information from
both the end user and the service providers into geographic co-ordinates. The same tool
is also responsible for tracking the geo-data (transport nodes, tourism activities, retail
activities, etc.) of the geographic environment where the Image Agent is active. The
core of the IMAGE is actually the intelligent module's Agents and the user interface
module.

-Service Modules for Geo-referencing (Localization LM /Navigation NM)

 The services for geo-referencing consist of localization and navigation techniques,
which will be developed in Image localization services, aim to acquire the exact
position of the end user in the geographic environment. The navigation services aim to
guide the end user to the required point of interest (POI) so as to satisfy his/her need.
Positioning and navigation are particularly important as transport and tourism services
always require geographic references. The necessary components are either newly
developed for this or existing components are extended in such a way that they do
justice to the Image system requirements i.e. they support the Agents to a large extent.
This requires the development of new features and interfaces.

-E-Commerce/Payment Service Module (EM)

 Many of the Image services will require some form of financial transaction, either
before, during or at some stage after the service has been provided to the user. To
achieve this a standard set of rules and a technical realization of an E-commerce sub-
module for Image will be investigated and implemented. The main idea is that each
service provider takes care of the payment functions related to their own services.
Image will provide a payment procedure only for the Image services. Image services
are such services, which are provided by the Image server (customer identification,
customer profile etc)
 The E-commerce/payment service module (EM) will use the identified modes of
payment used with Image Agent. The roles of the different players/levels of the
services will be analyzed in order to develop the most appropriate common solution for
the Image Agents. For the E-commerce/payment it is important to define a common set

- 84 -

of interfaces (new and standardized) and security solutions between the different levels
of the Image system. The E-commerce module will depend on the payment services
offered by other vendors and the user payment preferences. Special attention will be
paid on the different laws applied on money transfer across the European countries.
The E-commerce/payment module provides a common mechanism for the transaction
data exchange and clearing functions in a multi-application environment. This
segregation is required due to the enhanced security considerations for financial
transactions.

-GIS Platform Module (GIS)

 The GIS platform will initially be developed on a test-bed dependent basis. A
robust handling of spatial information will assure the satisfaction of the end user
request through a set of tools for retrieval and processing of the relevant data and
production of the results. The GIS infrastructure will support additional information of
different nature to be linked to specific locations.
 The project’s philosophy being to design and develop an open GIS platform is
fully compliant to the Open GIS Consortium’s (OGC) objective to remove barriers in
access and use of spatial information implied by the proliferation of software and data
standards for geo-information. The Internet will be used as a standard access means for
all project related information and the database developed can be used elsewhere and
implemented with any technology and software tools that support the Open GIS
specifications.

-Data Management/Interface Module (DM)

Image will develop a data management module that will interface with external entities
databases in order to deliver the required data. The project data sources are both private
and public and the data, which will have to be integrated and processed, have been
built on different standards and concepts. Image will propose a standard travel and
traffic data access interface allowing the connection to the data in a uniform way,
independently of the providers' set-up. The goal is to develop an open platform in the
sense that various formats and data capture and management concepts will be
supported. A set of generic thoroughly analyzed interfaces will be implemented in
order to assure that data retrieval will be successfully carried out beyond the planned
operations. Specifically, with respect to the point of view of the e-commerce data, the
Data Management Module mainly manages all related information from and to the
external applications and/or to the E-commerce/payment module.
 The data interfaces will be developed so that they in combination will perform all
the necessary steps for an integrated service delivery according to the end user’s
request(s). Generic data interfaces include components that work with heterogeneous
and new data coming from various sources/databases. The data interfaces will form

- 85 -

part of the actual Image platform, from where different kinds of intelligent agents
(forming the intelligent module) can retrieve data that fits the user’s requirements.
Standards (e.g. DATEX) and ongoing work (e.g. TRIDENT) in the domain of travel
and traffic data exchange will be taken into particular account while defining and
implementing the data interfaces. They will greatly help in the process and will drive
Image towards solutions that are interoperable with existing and forthcoming systems.
The Data Management module will be capable to push information regarding new
traffic or recreational city events to the Intelligent module.

7.3 The Intelligent Module Architecture

In order to take into account the requirements concerning the intelligent module, we
have proposed a set of intelligent agents types, which are shown in the overall Image
architecture diagram (Fig. 19). More specifically:

Interface Agent type: This agent is the link with the user interface, he can a) handle
simple not personalized queries, b) authenticate the user, c) decide if he will be served
by an assistant or a personalized assistant and finally he can forward messages from
the user interface to the assistants and messages from the assistants to the user
interface.

Assistant Agent Type: This agent can handle complex queries from users who do not
have a profile.

Personalized Assistant Agent type: This agent can handle complex queries from users
who do have a profile. He will be able to adapt the service according to user’s habitual
patterns, by keeping and processing the history of service requests and profile modes
of the particular user, presenting, thus, the user with a personalized.

Travel Guide Agent type: This Agent handles queries relevant to the Geo-referenced
services, the GIS and the Data Management/Interface module (wraps them).

Educator/Tourist agent type: This Agent handles queries (wrapping the Data Interface)
relevant to tourist information for a city (e.g. museums, theatres, monuments, etc).

 Services Agent type: This agent handles queries (wrapping the Data Interface) relevant
to services like checking for availability of tickets/seats.

Events Handler Agent type: He receives new events from the data management module
and subsequently informs the personalized user assistant agents.

- 86 -

Any service operator/provider will be able to contact the interface agent and enjoy the
Image services. The system (see Figure 19) will function as in the case of a user
interface request.

6

DM Module

GS Module

UI Module

IMAGE
Database

Services Agent

Interface
Agent

Assistant
Agent

Events Handler
Agent

Educator
Agent

Travel Guide
Agent

Personal Assistant
Agents

IMAGE Intelligent Module (IM)

1
2

3

IMAGE AGENT

7

5

4

8

Figure 19: Agents and their relationships with the other modules

 Presently, our work concerns the design and implementation of the previously
defined agents. As I will present in Section 9, we have combined the Gaia
methodology [Wooldridge, Jennings & Kinny, 00] and the JADE framework
[Bellifemine & al., 02] for the analysis, design and implementation of our multi-agent
system. Simultaneously, our work concerns the components and technologies that will
enable communication with external to MAS systems. More precisely:
• The UI (user interface), which will enable users to access the MAS services

through mobile devices (PDAs, mobile phones) and the Internet. The UI invokes
MAS services by exchanging XML messages through plain TCP/IP sockets.

• The DM (Data management module), which offers on-line traffic data, access to
user position through GPS, GIS information regarding points of interest (theatres,
banks, hotels, etc). The DM pushes data (like new events) to the IM using XML
messages through plain TCP sockets while the IM accesses DM services through
SOAP.

• The GS (Geo-services), which include the address geocoding, map generation and
route calculation functions through SOAP/XML messaging.

- 87 -

Diagnostic

Résumé

 Dans cette section je présente mon travail dans le domaine du diagnostic. Plus
précisément je présente l’architecture des agents conçus et développés ainsi que des
éléments sur le modèle de coordination utilisé afin de développer un système muti-
agent pour la surveillance d’un réseau téléphonique. En effet l’idée était d’associer des
agents aux différents équipements du réseau, qui analyseraient d’une manière
coordonnée les alarmes émises par ces équipements, afin d’aider les spécialistes à
effectuer un meilleur et plus rapide diagnostic.
 Le concept du plan est utilisé dans le raisonnement de l’agent ainsi que dans ses
interactions avec les autres agents du système (c.a.d. modèle de coordination). Un plan
modélise donc les connaissances de l’agent en tant qu’entité individuelle et sert de
support aux échanges nécessaires à la résolution distribuée d’un problème. Le
formalisme de représentation de plans retenu est celui des réseaux de Petri récursifs.
Un réseau de Petri ordinaire est composé d’un ensemble de transitions et d’un
ensemble de places. Les transitions correspondent aux actions à entreprendre et les
places aux différents états du système modélisé.
 Les réseaux de Petri récursifs permettent de distinguer des transitions abstraites
raffinables en un nouveau plan, des transitions élémentaires correspondant aux actions
à éxecuter et des transitions de fin qui achèvent un plan. Notre modèle d’agent est
composé de trois modules assurant des fonctionnalités différentes: le module de
planification, le module de décision et le module de communication. Le module de
planification assure l’éxecution de plans. Le module de décision contient l’expertise de
l’agent et effectue le raffinement des actions abstraites (c.a.d. les transitions abstraites)
d’un plan. Finalement le module de communication assure la communication inter-
agents par envoi de plans. Le modèle de coordination fondé sur les réseaux de Petri
récursifs permet la spécification des activités concurrentes et le raisonnement sur des
actions simultanées et des processus continus

- 88 -

8 Diagnosis

 My work in this domain concerns the design and implementation of a multi-agent
system for fault diagnosis and monitoring of a telecommunication network. Actually,
the idea was to associate agents to different equipments in a telecommunication
network (i.e. the French telecommunication network), who will analyze in a
coordinated way the alarms issued by these equipments, in order to help the specialists
making a better and faster diagnosis. Due to confidentiality reasons, I will focus the
presentation of this work [Boussetta & al., 98; Boussetta, Cohen & Moraïtis, 96;
Moraïtis, Boussetta & Cohen, 95a; 95b; 95c; Haddad & al., 95a; 95b; Boussetta,
Mazouzi & Moraïtis; 96; Moraïtis & al., 96; Haddad & al., 96] only on the structure of
the agents and the coordination model (which is based on distributed planning).

8.1 The Agents Architecture

 All agents have the same structure. It is only the underlying domain knowledge of
each agent that differentiates them. An agent is composed of three modules: the
planning module, the decision module and the communication module (see Fig. 20). This
architecture is inspired by the COSMIMA architecture, presented in [Moraïtis, 94].
The three modules run concurrently. Interaction among modules is based on a message
queuing mechanism (which is associated to each module).

Figure 20: Agents architecture

Decision
Module

Planning
Module

Communication
Module

Incoming
messages

Outcoming
messages

 Messages
queue

 Shared Memory

 Plans’
Library

 Working
Memory

- 89 -

Modules have access to a shared memory, which is divided to two parties: the plans’
library and the objects managed by the agent. Modules communicate by notification
sending (i.e. intra-agent messages). These notifications are sent in the queue that is
associated to the modules concerned.

-The Planning Module

 This module ensures the execution of plans. An agent interleaves planning and
execution. The knowledge of the agent consists of the domain objects and the plans of
actions that he manipulates. Plans are generic (non instantiated) and grouped in a
library. They are instantiated by the decision module by using the domain objects. The
adopted model of plans is that of Recursive Petri Nets, presented in [El Fallah &
Haddad, 96]. So, the know-how of the agent resides in plans’ skeletons defined during
the creation phase and methods associated to actions (the reader will find a more
detailed description in the next section).

-The Decision Module

 The main functionality of the decision module is the refinement of an abstract
action of a plan. It is the planning module that notifies the need of refinement. A
notification arrival can generate an immediate refinement, a pending refinement (until
some missing resources are available), or a refinement achievement (when the
notification informs about the existence of the missing resources). A need of
refinement corresponds to the instantiation of the variables of the possible plans’
skeletons, (which form candidate plans) and the choice of a candidate plan.

 -The Communication Module

 The communication module ensures the perception of the environment and the
exchange of messages among agents (by using his acquaintances list). Its mechanism
relies on two processes managing the incoming and outcoming communications. The
incoming communication process is “listening” for messages coming from the
environment or the other agents. Once a message arrives, it transforms it in the
appropriated form and prepares a notification, which is put in the queue of the module
concerned. The flow of the notifications depends on the type of the messages and it is
therefore independent of the messages’ content. The outcoming communication
process handles the demands for interaction with the other agents that exist in the
queue (i.e. plan merging demand, object sending, plans sending, etc.). Taking into
account the content of notifications, it prepares the messages to be sent (after having
consulted the acquaintances list of the agent).

- 90 -

8.2 Agents Coordination

 Agents’ coordination is based on a formal model of representation and handling of
plans [Boussetta & al., 98]. It is based on Recursive Petri Nets (RPT) (see [El Fallah &
Haddad, 96]), which support the specification of concurrent activities, reasoning about
simultaneous actions and continuous processes, a theory of verification and a
mechanism of transformation (e.g. abstraction, refinement, merging). The main
features of the RPN formalism are domain independence, broad coverage of interacting
situations and operational coordination. So a RPN models a plan. More precisely a
plan organizes a collection of actions, which can be performed sequentially or
concurrently in some specific order. A plan involves both elementary actions
associated with irreducible tasks (but not instantiated ones) and complex actions (i.e.
abstract views of the task). Methods may be viewed as some way to perform an action.
Several methods can be associated with an action. In RPN formalism, nodes represent
the states of the system (i.e. resources, processes, etc.), while transitions model actions
and their firing correspond to executing these actions. There are three types of
transitions: elementary, abstract and end transitions. Elementary transitions correspond
to actions to be executed by the agent, while abstract transitions correspond to new
plans of actions. These plans are located in the agent himself or in his acquaintances.
Finally end transitions close the subnets.
 In [Boussetta & al., 98], we show how an approach for interleaving of planning
and execution, based on the RPN semantics, can be used to coordinate agents’ plans in
a dynamic environment.
 The RPN formalism provides a graphic expression of the synchronization of the
parallel activities, which represent the execution of the agents’ tasks. It also allows the
expression of the actions’ scheduling (causal or temporal relation order) as well as the
information sharing among agents. In addition, it authorizes the dynamic assignment of
tasks and the update of the plans of resolution by merging or refinement. The
hierarchical aspect of the RPN allows us to consider a distributed system at different
levels of abstraction and to refine the abstract transitions (i.e. an abstract transition can
be seen as a subnet), when necessary. In addition, the approach we have adopted
allows us to dynamically choose among several concurrent plans based on the
structural properties of the RPN.
 In our application domain (i.e. the surveillance of a telecommunication network),
each agent executes constantly a plan called “supervising”. This plan is generally
refined after the arrival of an alarm. Figure 21 gives an example of a RPN structure
along with a possible refinement for the alarm “A1” by the plan P1.
 .

- 91 -

Figure 21: Example of plan’s execution

. .

Plan’s refinement
concerned by the alarm

Inhibition=.T. Clock Value>=8

Inhibit plan P2 Activate plan P2

End End

Alarm arrival

Plan “Supervising” Plan P1
Alarm=”A1”

End

Elementary
Transitions

 Abstract
Transitions

End
Transitions

- 92 -

Génie Logiciel Orienté Agent

Résumé

Dans cette section je présente un travail experimental dans le domaine du génie logiciel
orienté agent. Plus précisément il s’agit du travail que nous effectuons dans le cadre du
projet IST IMAGE. Ce travail concerne la combinaison de la méthodologie Gaia , qui
couvre les phases d’analyse et de design du génie logiciel et la plate-forme JADE qui
couvre la phase d’implémentation, pour une analyse, un design et une implémentation
faciles, de systèmes multi-agents. Ainsi nous avons essayé de partager notre expérience
avec ceux qui sont intéressés par le développement des systèmes réels, fondés sur le
concept d’agent.
 Gaia est une méthodologie générale qui supporte à la fois les deux niveaux, à
savoir la structure individuelle de l’agent et la société d’agents, dans le processus de
développement de systèmes multi-agents. L’objectif du processus d’analyse de Gaia ,
est l’identification de rôles et la modélisation des interactions entre les rôles définis.
Les rôles sont constitués de quatres attributs: responsabilités, permissions, activités et
protocoles. Les responsabilités sont de deux types: proprietés "liveness"-le rôle doit
ajouter quelque chose de positif au système et proprietés de "safety"-le rôle doit éviter
que quelque chose de mauvais arrive au système. Liveness décrit les tâches qu’un
agent doit achever étant donné les conditions environementales, alors que safety assure
qu’un état d’affaires acceptable est maintenu durant le cycle d’éxecution.
 JADE est un cadre de développement logiciel où les tâches ou les intentions de
l’agent sont implémentées avec l’utilisation de comportements. Les comportements
sont des “threads” logiques d’éxecution qui peuvent être composés de diférentes façons
afin d’achever des combinaisons d’exécution complexes et ils peuvent être initialisés,
suspendus ou engendrés à chaque moment..
 L’idée générale, sur laquelle est fondée la combinaison de Gaia et JADE que nous
proposons, concerne la traduction de toutes les formules définisant les proprietés de
liveness en comportements JADE ainsi que la dédicace de comportements à
l’assurance des conditions de safety. Cette idée, avec tous les autres éléments
conceptuels ou techniques nécessaires pour sa mise en œuvre, est utilisée pour
développer notre système multi-agents, qui comme nous l’avons signalé dans la section
précédente, constitue le cœur du système IMAGE.

- 93 -

9 Agent Oriented Software Engineering (AOSE)

 Agent Oriented Software Engineering (AOSE) is one of the fields of the agent
domain with a continuous growing interest. The reason is that the possibility to easily
specify and implement agent-based systems is of a great importance for the recognition
of the add-value of the agent technology in many application fields. During the last few
years, there has been a growth of interest in the potential of agent technology in the
context of software engineering. This has led to the proposal of several development
environments to build agent systems (e.g., Zeus [Collis & Ndumu, 99]; RETSINA
[Sycara & al., 02], [Occello & al., 02], etc), software frameworks to develop agent
applications in compliance with the FIPA specifications (see for example FIPA-OS
[http://fipa-os.sourceforge.net], JADE [Bellifemine & al., 02], etc) and of some
promising agent-oriented software development methodologies, as Gaia [Wooldridge,
Jennings & Kinny, 00], AUML [http://www.auml.org], Tropos [Giunchiglia,
Mylopoulos & Perini, 02], MASE [Wood & DeLoach, 00]. However, despite the
possibilities provided by these methodologies, we believe that a further progress must
be made, so that agent-based technologies realize their full potential, concerning the
full covering of the software life cycle and the proposal of standards to support agent
interoperability.
 In this work presented in [Moraïtis, Petraki & Spanoudakis, 02] we have presented
an attempt towards this direction, by proposing a kind of roadmap of how one can
combine the Gaia methodology for agent-oriented analysis and design and JADE, a
FIPA compliant agent development framework, for an easer analysis, design and
implementation of multi-agent systems. Our objective was to share our experience to
conceive and develop a MAS, by combining Gaia and JADE, in the context of the IST
IMAGE project (presented above), with people who are interested in the development
of real life agent-based systems.
 The Gaia methodology is an attempt to define a complete and general methodology
that it is specifically tailored to the analysis and design of multi-agent systems (MASs).
Gaia is a general methodology that supports both the levels of the individual agent
structure and the agent society in the MAS development process. MASs, according to
Gaia, are viewed as being composed of a number of autonomous interactive agents that
live in an organized society in which each agent plays one or more specific roles. Gaia
defines the structure of a MAS in terms of a role model. The model identifies the roles
that agents have to play within the MAS and the interaction protocols between the
different roles.
 The objective of the Gaia analysis process is the identification of the roles and the
modeling of interactions between the roles found. Roles consist of four attributes:
responsibilities, permissions, activities and protocols. Responsibilities are the key
attribute related to a role since they determine the functionality. Responsibilities are of

- 94 -

two types: liveness properties – the role has to add something good to the system, and
safety properties – the role must prevent and disallow that something bad happens to
the system. Liveness describes the tasks that an agent must fulfill given certain
environmental conditions and safety ensures that an acceptable state of affairs is
maintained during the execution cycle. In order to realize responsibilities, a role has a
set of permissions. Permissions represent what the role is allowed to do and in
particular, which information resources it is allowed to access. The activities are tasks
that an agent performs without interacting with other agents. Finally, protocols are the
specific patterns of interaction, e.g. a seller role can support different auction protocols.
Gaia has formal operators and templates for representing roles and their attributes and
also it has schemas that can be used for the representation of interactions between the
various roles in a system.

The operators that can be used for liveness expressions-formulas along with their
interpretations are presented in Table 1.

Operator Interpretation
x . y x followed by y

x | y x or y occurs

x* x occurs 0 or more times
x+ x occurs 1 or more times

x ω x occurs infinitely often
[x] x is optional

x || y x and y interleaved

Table 6. Gaia Operators for Liveness Formulas

 In the Gaia design process the first step is to map roles into agent types and to
create the right number of agent instances of each type. An agent type can be an
aggregation of one or more agent roles. The second step is to determine the services
model needed to fulfill a role in one or several agents. A service can be viewed as a
function of the agent and can be derived from the list of protocols, activities,
responsibilities and the liveness properties of a role. Finally, the last step is to create
the acquaintance model for the representation of communication between the different
agents. The acquaintance model does not define the actual messages that are
exchanged between the agents it is rather a simple graph that represents the
communication pathways between the different agent types.

- 95 -

 JADE is a software development framework fully implemented in JAVA language
aiming at the development of multi-agent systems and applications that comply with
FIPA standards for intelligent agents. JADE provides standard agent technologies and
offers to the developer a number of features in order to simplify the development
process:
� Distributed agent platform. The agent platform can be distributed on several hosts,

each one of them executes one Java Virtual Machine.
� FIPA-Compliant agent platform, which includes the Agent Management System the

Directory Facilitator and the Agent Communication Channel.
� Efficient transport of ACL messages between agents.
All agent communication is performed through message passing and the FIPA ACL
[www.fipa.org] is the language that is used to represent the messages. Each agent is
equipped with an incoming message box and message polling can be blocking or non-
blocking with an optional timeout. Moreover, JADE provides methods for message
filtering. The developer can apply advanced filters on the various fields of the
incoming message such as sender, performative or ontology.
 In JADE, agent tasks or agent intentions are implemented through the use of
behaviours. Behaviours are logical execution threads that can be composed in various
ways to achieve complex execution patterns and can be initialized, suspended and
spawned at any given time. The agent core keeps a task list that contains the active
behaviours. JADE uses one thread per agent instead of one thread per behaviour to
limit the number of threads running in the agent platform. A scheduler, hidden to the
developer, carries out a round robin policy among all behaviours available in the
queue. The behaviour can release the execution control with the use of blocking
mechanisms, or it can permanently remove itself from the queue in run time. Each
behaviour performs its designated operation be executing the core method action().
Behaviour is the root class of the behaviour hierarchy that defines several core methods
and sets the basis for behaviour scheduling as it allows state transitions (starting,
blocking and restarting). The children of this base class are SimpleBehaviour and
CompositeBehaviour. The classes that descend from SimpleBehaviour represent
atomic simple tasks that can be executed a number of times specified by the developer.
Classes descending from CompositeBehaviour support the handling of multiple
behaviours according to a policy. The actual agent tasks that are executed through this
behaviour are not defined in the behaviour itself, but inside its children behaviours.

 When moving from the Gaia model to an implementation using the JADE
framework we have to make some assumptions and definitions. Let’s consider the
liveness part of each role as its behaviour (usually having the same name with the role)
in correspondence with the JADE terminology. Thus a simple or a complex behaviour
represents each role. This behaviour is considered as the top-level behaviour of the
role. Each behaviour may contain other behaviours, as in the JADE behaviours model.
Let the contained behaviours be called lower level behaviours. The ω and || operators

- 96 -

on Gaia liveness formulas now have the following meaning. The ω means that a lower
level behaviour is added by the behavior that contains it in the Gaia liveness formula
and is only removed from the agent’s scheduler when the behavior that added it, is
removed itself. If such behaviours are more than one, they are connected with the ||
symbol which denotes that they execute “concurrently”. Concurrency in JADE agent
behaviours is simulated. As noted before, only one thread executes per agent and
behaviour actions are scheduled in a round robin policy.
 The procedure we have proposed is quite straightforward. All Gaia liveness
formulas are translated to JADE behaviours. Activities and protocols can be translated
to JADE behaviours, to action methods or to simple methods of behaviours. The
behaviours that start their execution when a message arrives, can receive this message
either at the beginning of the action method (simple behaviours) or by spawning an
additional behaviour whose purpose is the continuous polling of the message box
(complex behaviours). For behaviours that start by a message from the Graphical User
Interface (GUI), a GUI event receiver method should be implemented on the agent that
starts the corresponding behaviour. Finally, those behaviours that start by querying a
data source, or by a calculation, should be explicitly added by their upper level
behaviour.
 The safety properties of the Gaia roles model must be taken into account when
designing the JADE behaviours. Some behaviours of the role, in order to execute
properly, require the safety conditions to be true. Towards that end, one at least
behaviour is responsible for monitoring each safety condition of a role. Whenever a
safety condition is found to be false, the functionality of the behaviours that depend on
this safety condition is suspended and the monitoring behaviour initializes a procedure
that will reestablish the validity of safety conditions. This procedure, for instance, can
be the addition to the agent scheduler of a specific behaviour that will address the task
of restoring the validity of safety conditions. In general, this procedure depends on the
nature of the implemented system and the safety conditions. When the safety
conditions are restored, the suspended functionalities are reactivated.

Summarizing, the following steps should be followed in order to easily translate a Gaia
model to a JADE implementation:
� Define all the ACL messages by using the Gaia protocols and interactions models.
� Design the needed data structures and software modules that are going to be used

by the agents by using the Gaia roles and agents models.
� Decide on the implementation of the safety conditions of each role.
� Define the JADE behaviours. Start by implementing those of the lowest levels,

using the various Behaviour class antecedents provided by JADE. The Gaia model
that is useful in this phase is the roles model. Behaviours that are activated on the
receipt of a specific message type must either add a receiver behaviour, or receive a
message (with the appropriate message filtering template) at the start of their
action. Gaia activities that execute one after another (sequence of actions that

- 97 -

require no interaction between agents) with no interleaving protocols can be
aggregated in one activity (behaviour method or action). However, for reusability,
clarity and programming tasks allocation reasons, we believe that a developer
could opt to implement them as separate methods (or actions in an FSM like
behaviour).

� Keep in mind that Gaia roles translated to JADE behaviours are reusable pieces of
code. In our system, the same code of the behaviours GetAcquainted and
MeetSomeone will be used both for the personal assistant and events handler
agents.

� At the setup method of the Agent class invoke all methods (Gaia activities) that are
executed once at the beginning of the top behaviour (e.g. RegisterDF). Initialize all
agent data structures. Add all behaviours of the lower level in the agent scheduler.

- 98 -

10 Conclusion

 In this document, I have presented my work done during the last eight years. My
effort has been led by my intention to produce theoretical work on different aspects
concerning the concept of agent, both as individual and social entity. Moreover, I
wanted my work to be useful in the development of a formal multi-agent theory. In
parallel, I permanently had the anxiety to keep in touch with the applications domain,
trying to prove the applicability of my theoretical results within specific environments.

What has been presented in this document could be recapitulated as follows:
� A point of view about agent architectures based on a modular structure, where

each module is responsible for one of the possible capabilities an agent may have
(e.g. problem solving, cooperation, communication, etc.) and, therefore,
responsible for a part of the overall agent’s behavior. This behavior is the result of
the different modules interaction. This point of view also suggests the integration
of another specific module in the agents’ architectures, which is dedicated to the
agent’s personality and shows how this can have an influence on the other
modules.

� The completion of the above point of view with the observation that decision-
making is a common characteristic of several deliberation processes involved in the
operation of the modules and the idea to propose a unified argumentation based
model for their representation.

� The presentation of this argumentation model which is based on the extension of
the Logic Programming without Negation as Failure (LPwNF) framework, the
integration of the concepts of roles and context to it as well as its use to model
personalities.

� A dynamic planning model based on graph representation, taking into account
changes that are generated not only by the environment but also by the agent
himself and its exploitation to build a multi-criteria distributed planning
framework.

� A multi-criteria negotiation, as well as an argumentation-based negotiation
approach. The first approach is mainly used in a distributed planning context, but is
also able to find a compromise between agents having work and private goals in a
more general setting.

� A logical framework for modeling of complex dialogues, adopting the modular
agent’s architecture and associating each type of the possible dialogues (i.e.
negotiation, persuasion, deliberation, etc.) to a specific module, ensuring the
automated generation of dialogues and allowing the representation of embedded
dialogues.

- 99 -

� Applications of the presented theoretical results in different domains, like e-
commerce, marketing, information services, diagnostic and some experimental
work on agent software engineering.

 This work reflects the road I have covered towards my scientific and professional
objectives. As the reader can imagine, the road to go is still too long. I do not know if
the chosen itinerary will lead me to the objectives I would like to attain. But at the end
of the day, this is not the most important thing. As the Greek poet Konstantinos
Kavafis says in his “ITHAKA”:

“WHEN YOU SAIL FOR ITHAKA,
WISH THAT YOUR TRIP BE LONG,

FULL OF ADVENTURES, FULL OF KNOWLEDGE.
THE LAISTRYGONIANS AND THE CYCLOPES,
ANGRY POSEIDON DO NOT FEAR; THINGS

LIKE THESE ON YOUR TRIP YOU'LL NEVER FIND
IF YOUR THOUGHTS ARE PURE, IF ECLECTIC

EMOTIONS FILL YOUR HEART AND YOUR MIND.
THE LAISTRYGONIANS AND THE CYCLOPES,

ANGRY POSEIDON YOU WILL NOT MEET
IF YOU DO NOT CARRY THEM IN YOUR HEART,
IF YOUR MIND IS NOT FILLED WITH THEM.

WISH THAT YOUR TRIP BE LONG.
MANY A SUMMER MORNS ARRIVE

THAT WITH JOY AND PLEASURE YOU ENTER
INTO PORTS THAT YOU'VE NEVER SEEN BEFORE;

TO STOP BY PHOENICIAN TRADING POSTS
AND BUY THINGS OF VARIOUS SORTS:

MOTHER OF PEARL AND CORALS, EBONY AND AMBER,
AND HEDONIC PERFUMES OF ALL SORTS -

AS MANY AS YOU CAN CARRY SENSUAL PERFUMES;
MANY AN EGYPTIAN CITY YOU MUST SEE,

AND FROM THE EXPERTS LEARN AND LEARN.

FOREVER ITHAKA MUST BE IN YOUR MIND.
TO GET THERE IS THE GOAL OF YOUR TRIP.
BUT DO NOT HURRY YOUR JOURNEY AT ALL.

IT IS BETTER IF IT WERE TO TAKE MANY YEARS;
AND YOU AN OLD MAN TO FINALLY ANCHOR THERE,
RICH WITH WHAT YOU GATHERED FROM THIS TRIP,

EXPECTING NO WEALTH THAT ITHAKA WILL GIVE YOU.

- 100 -

ITHAKA ALREADY GAVE YOU THAT GREAT TRIP.

WITHOUT HER, YOU WOULD HAVE NEVER SAILED AT ALL.
BUT SHE HAS NOTHING ELSE TO GIVE YOU FROM NOW ON.

AND IF YOU FIND HER POOR, SHE DIDN'T MISLEAD YOU.

SO WISE THAT YOU ALREADY ARE, SO EXPERIENCED,
YOU NOW COMPREHEND WHAT ITHAKAS REALLY ARE “

(Translated by A. Moskios)

- 101 -

Personal References

1. Kakas A., Moraïtis P., (03). "Agents Negotiating via Argumentation”, in
Journal of Autonomous Agents and Multi-Agent Systems, (JAAMAS), 2003,
submitted.

2. Moraïtis P., Tsoukiàs A., (02a). "A Formal Model of Dynamic Planning for
Autonomous Agents", in Journal of Artificial Intelligence Research, 2002,
submitted.

3. Moraïtis P., Tsoukiàs A., (02b). "Multi-Criteria Distributed Planning", in
Journal of Autonomous Agents and Multi-Agent Systems, (JAAMAS),
submitted.

4. Kakas A., Moraïtis P., (03). "Argumentation Based Decision Making for
Auronomous Agents", in 2nd International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS’03), pp 883-890, Melbourne,
Australia

5. Karacapilidis, N, Moraïtis P., (04). "Inter-Agent Dialogues in Electronic
Marketplaces", in Journal of Computational Intelligence, Vol. 20, No 1, 2004.

6. Matsatsinis N, Moraïtis P., Psomatakis V., Spanoudakis N, (03). "A Multi-
Agent System for Products Penetration Strategy Selection", in Applied
Artificial Intelligence Journal, 17:901-925, 2003.

7. Moraïtis P., Petraki E., Spanoudakis N., (02). "Engineering JADE Agents with
Gaia Methodology", in International Workshop on Agent Technology and
Software Engineering, (AgeS’02), Germany, 2002.

8. Kakas A., Moraïtis P., (02a). "Argumentative Agent Deliberation, Roles and
Context " in Computational Logic in Multi-Agent Systems (CLIMA02),
Copenhagen, Denmark, 2002. Also in Electronic Notes on Theoretical
Computer Science, 70, No. 5, (2002).

9. Kakas A., Moraïtis P., (02b)."Argumentative Deliberation for Autonomous
Agents" in ECAI’02 Workshop on Computational Models of Natural
Argument, pp.65-74, Lyon, France, 2002.

10. Karacapilidis, N, Moraïtis P., (02a)."Engineering Issues in Inter-Agent
Dialogues", in 15th European Conference on Artificial Intelligence (ECAI’02),
pp. 58-62, Lyon, France, 2002.

11. Della Croce, F., Tsoukiàs A., Moraïtis P., (02). "Why is difficult to make
decisions under multiple criteria" in AIPS’02 Workshop on Planning and
Scheduling with Multiple Criteria, pp. 41-45, Toulouse, 2002.

- 102 -

12. Karacapilidis, N., Moraïtis P, (02b). "Modeling Dialogues in Multi-Agent
Systems", in First International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’02), pp. 798-799, Bologna, Italy, 2002.

13. Karacapilidis, N., Moraïtis P., (01a). "Building an Agent-Mediated Electronic
Commerce System with Decision Analysis Features", in Decision Support
Systems Journal, 32 (2001), pp. 53-69, 2001.

14. Karacapilidis, N., Moraïtis P., (01b). "Intelligent Agents for an Artificial
Market System", in 5th International Conference on Autonomous Agents
(Agents’01), Montreal, Canada, pp. 592-599, 2001.

15. Karacapilidis, N., Moraïtis P., (00a). "Intelligent Agents Acting as Artificial
Employers in an Artificial Market", in Journal of E-Commerce Research,
Special Issue on Intelligent Agents in E-Commerce, Vol. 1, No 4, November
2000.

16. Moraïtis P., Tsoukias A., (00). "Graph Based Representation of Dynamic
Planning", in 14th European Conference on Artificial Intelligence (ECAI
2000), Berlin, Germany, pp. 516-520, 2000.

17. El Fallah Seghrouchni A., Moraïtis P., Tsoukias A., (00). "An Aggregation-
Disaggregation Approach for Automated Negotiation in Multi-Agent
Systems", in International ICSC Symposium on Multi-Agents and Mobile
Agents in Virtual Organizations and E-Commerce (MAMA'2000),
Wollongong, Australia, 2000.

18. Karacapilidis, N., Moraïtis P., (00b). "On the Development of Intelligent
Agents for a Web-based Electronic Market System", in 4th Pacific Asia
Conference on Information Systems (PACIS-2000), Hong Kong, pp. 687-702,
2000.

19. Moraïtis P., Tsoukias A., (99). "Dynamic Planning Model for Agent's
Preferences Satisfaction: First Results", in Intelligent Agent Technology:
Systems, Methodologies and Tools, World Scientific Company, J. Liu (Ed.),
pp. 182-191, 1999 (in 1st Asia-Pacific Conference on Intelligent Agent
Technology (IAT'99), Hong Kong, 1999; nominated for the Best Paper Award).

20. Matsatsinis N, Moraïtis P., Psomatakis V., Spanoudakis N, (99a). "Intelligent
Software Agents for Products Penetration Strategy Selection", in Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW'99), short paper,
Spain, 1999.

21. El Fallah Seghrouchni A., Moraïtis P., Tsoukias A., (99). "Multi-Criteria
Negotiation for Agent-Based Decision Makers", in 5th International
Conference of the Decision Sciences Institute, Athens, (DSI’99), Greece, pp.
622-625, 1999.

22. Matsatsinis N, Moraïtis P., Psomatakis V., Spanoudakis N, (99b). "Towards an
Intelligent Decision Support System for Differentiated Agricultural Products

- 103 -

Development", in 5th International Conference of the Decision Sciences
Institute, (DSI’99), Athens, Greece, pp. 1373-1376, 1999.

23. Matsatsinis N, Moraïtis P., Psomatakis V., Spanoudakis N, (99c). "A Multi-
Agent System for Agricultural Applications", in 2nd European Conference of
European Federation for Information Technology in Agriculture, EFITA’99,
Germany, 1999.

24. Matsatsinis N, Moraïtis P., Psomatakis V., Spanoudakis N, (99d). "An

Intelligent Software Agent Framework for Decision Support Systems
Development", in European Symposium of Intelligence Techniques, ESIT’99,
Greece, 1999.

25. Boussetta S., El Fallah A., Haddad S., Moraïtis P, Taghelit M., (98).
"Coordination d’Agents Rationnels par Planification Distribuée", Revue
d’Intelligence Artificielle (RIA), Special Issue on Distributed Artificial
Intelligence and Multi-Agent Systems, Vol.12, No1, pp.73-101, Janvier 1998.

26. Pinson S., Louca J.A, Moraïtis P., (97). " A Distributed Decision Support
System for Strategic Planning", in Special Issue: Intelligent Agents as a Basis
for Decision Support Systems, Decision Support Systems Journal, Vol. 20, 1,
pp 35-51, North-Holland Elsevier Science Publishers, May 1997.

27. Pinson, S., Moraïtis P., (96). "An Intelligent Distributed System for Strategic
Decisions Making", in Group Decision and Negotiation, 6:77-108, Kluwer
Academic Publishers, 1996.

28. Moraïtis P., A. Tsoukias, (96). "A Multicriteria Approach for Distributed
Planning and Conflict Resolution for Multiagent Systems", in Second
International Conference on Multiagent Systems (ICMAS’96), Kyoto, Japan,
pp. 212-219, 1996.

29. Pinson S., Moraïtis P., Louca., J., (96). "A Cooperative Multi-Agent System
for Strategic Decision Making", in Applications of Artificial Intelligence:
Expert Systems, Robots and Vision Systems, Fuzzy Logic and Neural
Networks, N.J. Mamede and C.P. Ferreira (Eds), Advanced Manufacturing
Forum, Vol. 1, pp. 41-55, 1996 (also in EPIA, Portuguese Conference on
Artificial Intelligence).

30. Boussetta S., Cohen D., Moraïtis P., (96). "Un Modèle d’Agent pour La
Plannification Distribuée", in PRC-IA Journée Systèmes Multi-Agents, pp. 23-
35, Toulouse, France, 1996

31. Balbo F., Moraïtis P., Pinson S., (96a). "Une méthode multi-critère pour
l’allocation des tâches dans les systèmes multi-agents", in Intelligence
Artificielle Distribuée et Systèmes Multi-Agents, Hermes (Eds.), pp. 85-100,
1996 (4th Journées Francophones en Intelligence Artificielle Distribuée et
Systèmes Multi-Agents, JFIADSMA).

- 104 -

32. Balbo F., Moraïtis P., Pinson S., (96b). AMCA: méthode multicritère pour la
coopération d’agents, Rapport Technique LAMSADE, No 138, Université
Paris Dauphine, 1996.

33. Haddad S., Moraïtis P., Taghelit M., Boussetta S., Mazouzi H., Salah M., (96).
RAPID1.0: Réseau d’Agents à Planification Interactive Distribuée, Manuel
des Specifications, Partie 2, Rapport Technique No7, PROJET CNET No 904-
15-4371-123, CNET, FRANCE TELECOM, 1996 (confidentiel).

34. Moraïtis P., Taghelit M., Boussetta S., Mazouzi H., Salah M., (96). RAPID1.0:
RAPID1.0: Réseau d’Agents à Planification Interactive Distribuée, Manuel
des Specifications, Partie 1, Rapport Technique No6, PROJET CNET No 904-
15-4371-123, CNET, FRANCE TELECOM, 1996 (confidentiel).

35. Moraïtis P., Boussetta S., Mazouzi H., (96). Agent Interface. Rapport
Technique No5, PROJET CNET No 904-15-4371-123, CNET, FRANCE
TELECOM, 1996, (confidentiel).

36. Haddad S., Moraïtis P., Boussetta S, Cohen D., (95a). Un Modèle Réactif pour
Planification Distribuée. Rapport Technique No4, PROJET CNET No 904-15-
4371-123, CNET, FRANCE TELECOM, 1995, (confidentiel).

37. Haddad S., Moraïtis P., Boussetta S, Cohen D., (95b). Un Modèle de Réseux de
Petri Récursif pour la Répresentation de Plans. Rapport Technique No3,
PROJET CNET No 904-15-4371-123, CNET, FRANCE TELECOM, 1995,
(confidentiel).

38. Moraïtis P., Boussetta S., Cohen D., (95a). Une Architecture d’Agent Cognitif,
Partie2. Rapport Technique No2, PROJET CNET No 904-15-4371-123, CNET,
FRANCE TELECOM, 1995, (confidentiel).

39. Moraïtis P., Boussetta S., Cohen D., (95b). Une Architecture d’Agent Cognitif,
Partie1. Rapport Technique No1, PROJET CNET No 904-15-4371-123, CNET,
FRANCE TELECOM, 1995, (confidentiel).

40. Moraïtis P., (95). Intelligence Artificielle Distribuée et Systèmes Multi-
Agents : un état de l’art, Rapport Technique LAMSADE, No 89, Université
Paris Dauphine, 1995.

41. Pinson S., Moraïtis P, (95). "Communication and Cooperation in a Distributed
Decision Making System", in Frontiers in Artificial Intelligence and
Applications, Aamodt & Komorowski (eds), vol 28, IOS Press, Amsterdam,
Netherlands, Burke, USA, 1995, pp 441-447, (in Fifth Scandinavian
Conference on Artificial Intelligence, SCAI-95, Trondheim, Norway, 1995)

42. Moraïtis P., Boussetta S., Cohen D., (95c). "Système Multi-agent Cognitif pour
la Surveillence de Réseaux", in Journées "Gestion et Supervision de Réseaux
de Télécommunications", FRANCE TELECOM-CNET, Lannion, 1995.

- 105 -

43. Moraïtis P., Pinson S., (94a). "Strategic Decision Making: an Intelligent
Cooperative System", in International Workshop on Knowledge-Based
Systems and Strategic Management, Abo, Finland, 1994.

44. Moraïtis P., Pinson S., (94b). "Distribution, Coopération, Cohérence dans un
Univers de Prise de Décisions Stratégiques", in 2èmes Journées Francophones
Intelligence Artificielle Distribuée et Systèmes Multi-Agents, (JFIADSMA),
Grenoble, 1994.

45. Moraïtis P., (94). "Paradigme Multi-Agent et Prise de Décision Distribuée",
Ph.D. Thesis, University of Paris-Dauphine, France, 1994.

46. Pinson S., Moraïtis P., (93). "A Multi-Agent Approach for Strategic
Decisions", in Workshop on Artificial Economics, International Joint
Conference on Artificial Intelligence, IJCAI-93, pp. 85-96, Chambery, France,
1993.

47. Moraïtis P., (93). "Architecture Distribuée pour des Problèmes d'Aide à la
Décision", in PRC-IA Journée Systèmes Multi-Agents, Montpellier, 1993.

References

1. Agent UML: http://www.auml.org/

2. Aknine, S., Pinson, S., Shakun, M.F. (02). ''An Extended Multi-agent
Negotiation Protocol'', in International Journal on Autonomous Agents and
Multi-agent Systems, Jennings, N.R., Sycara, K., (eds.), Kluwer, to appear.

3. Amgoud, L. and Parsons, S., (01). “Agent dialogues with conflicting
preferences”, in ATAL-01, 2001.

4. Amgoud, L., Maudet, N., and Parsons, S., (00)."Modelling dialogues using
argumentation", in ICMAS-00, 31-38, 2000.

5. Amgoud, L., Parsons, S. and Maudet, N., (00). “Arguments, dialogue and
negotiation”, in Proceedings of ECAI 2000, W. Horn (ed.), Berlin, Germany,
IOS Press, 338-342, 2000.

6. Bellifemine, F., Caire, G., Trucco, T. and Rimassa, G., (02). Jade
Programmer’s Guide, JADE 2.5, http://sharon.cselt.it/projects/jade/, (2002)

7. Bellman R., (57). Dynamic Programming, Princeton University Press,
Princeton, 1957.

8. Bondarenko, A., Dung, P. M., Kowalski, R. A. and Toni, F., (97). “An
abstract, argumentation-theoretic framework for default reasoning”, Artificial
Intelligence, 93(1-2), 63-101, 1997.

9. Brazier, F.M., Dunin-Keplicz, B.M., Jennings, N.R. and Treur, J., (97).
“DESIRE: Modeling Multi-Agent Systems in a Compositional Formal
Framework”, Huhns, M., Singh, M. (eds.), in International Journal of

http://www.auml.org/
http://sharon.cselt.it/projects/jade/

- 106 -

Cooperative Information Systems. Special issue on Formal Methods in
Cooperative Information Systems: Multi-Agent Systems, 1997.

10. Brewka, G., (01).”Dynamic argument systems: a formal model of
argumentation process based on situation calculus”, in Journal of Logic and
Computation, 11(2), 257-282, 2001.

11. Climaco, J. and Martins, E. (82). “A bicriterion shortest path algorithm”, in
European Journal of Operational Research, 11:399-404, 1982.

12. Collis, J. and Ndumu, D., (99). Zeus Technical Manual. Intelligent Systems
Research Group, BT Labs. British Telecommunications, 1999.

13. Cyert, R.M. and March, J.G., (63). A Behavioral Theory of the Firm.
Englewood Cliffs, New York: Prentice Hall, 1963

14. desJardins, M.E., Durfee, E.H., Ortiz, C.L. and Wolverton, M.J., (99). “A
Survey of Research in Distributed, Continual, Planning”, in AI Magazine,
20(4), 1999.

15. Dimopoulos, Y. and Kakas, A. C., (95). “Logic Programming without
Negation as Failure”, in Proc. ILPS-95, 369-384, 1995.

16. Dung, P.M., (95). "On the acceptability of arguments and its fundamental role
in non-monotonic reasoning, logic programming and n-person games",
Artificial Intelligence, 77, 321-357, 1995.

17. Durfee, E.H., (01). “Distributed Problem Solving and Planning”, in Multi-
Agent Systems and Applications, 9th ECCAI Advanced Course, ACAI 2001
and Agent Link’s 3rd European Agent Systems Summer School, EASSS 2001,
LNCS 2086, 118-149, 2001.

18. Durfee, E.H., (99). “Distributed Problem Solving and Planning”, in Multi-
Agent Systems: A Modern Approach to Distributed Artificial Intelligence, G.
Weiss (ed.), MIT Press, 121-164, 1999.

19. El Fallah-Seghrouchni, A. and Haddad, S., (96). “A Recursive model for
distributed planning”, in Proc. ICMAS-96, AAAI Press, 307-314, 1996.

20. Ephrati, E., Pollack, M.E. and Rosenschein J.S., (95). “A tractable heuristic
that maximizes global utility through local plan combination”, in Proc.
ICMAS-95, 94-101, 1995.

21. Erol, K., Hendler, J. and Nau, D.S., (94). Semantics for hierarchical task
network planning, in Tech. Report CS TR-3239, UMIACS TR-64-31, ISR-TR-
95-09, University of Maryland, 1994.

22. Faratin P., Sierra C. and Jennings N.R., (98). “Negotiation Decision Functions
for Autonomous Agents”, in Int. Journal of Robotics and Autonomous Systems
24 (3-4) 159-182, 1998.

- 107 -

23. Faratin, P., Sierra, C., and Jennings, N. R., (00) "Using similarity criteria to
make negotiation trade-offs", in Proc. ICMAS-2000, Boston, USA, 119-126,
2000.

24. Ferber, J. (99). Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence, Addison-Wesley, 1999.

25. FIPA-OS: A component-based toolkit enabling rapid development of FIPA
compliant agents: http://fipa-os.sourceforge.net/

26. Firby R.J., (94). “Task networks for controlling continuous processes: issues in
reactive planning”, in Proc. AIPS-94, 49-54, 1994.

27. Gat E., (92). “Integrating planning and reacting in a heterogeneous
asynchronous architecture for controlling real-world mobile robots”, in
Proc. AAAI-92, 802-815, 1992.

28. Georgeff, M.P., and Ingrand F., (89). “Decision-Making in an Embedded
Reasoning System” in Proceedings IJCAI-89, 972-978, 1989.

29. Giunchiglia, F., Mylopoulos, J. and Perini, A., (02). The Tropos Software
Development Methodology: Processes, Models and Diagrams, in AAMAS-02,
2002.

30. Hansen P., (80). “Bi-criterion path problems”, G. Fandel, T. Gal, (eds.), in
Multiple Criteria Decision Making: Theory and Applications, LNEMS 177,
Heidelberg: Springer-Verlag, 109-127, 1980.

31. Henig M., (94). “Efficient Interactive Methods for a Class of Multi-attribute
Shortest Path Problems”, Management Science, 40, 891 – 897, 1994.

32. Hitchcock, D., McBurney, P. and Parsons, S., (01). “A Framework for
deliberation dialogues, Argumentation and its Applications”, in Proc. of the
Fourth Biennial Conference of the Ontario Society for the Study of
Argumentation, 2001.

33. Huhns, M. and Singh, M. (Eds.), (98). Readings in Agents, Morgan Kaufmann
Publishers, Inc., 1998.

34. Jacquet-Lagrèze E. and Siskos J., (82). “Assessing a set of additive utility
functions for multicriteria decision making: the UTA method”, in European
Journal of Operational Research, 10: 151-164, 1982.

35. Jennings, N. R., Faratin, P., Lomuscio, A. R., Parsons, S., Sierra, C. and
Wooldridge, M., (01). "Automated negotiation: prospects, methods and
challenges", in Int. J. of Group Decision and Negotiation 10 (2), 2001.

36. Jennings, N.R., Sycara, K. and Wooldridge, M., (98). "A Roadmap of Agent
Research and Development", in Int. Journal of Autonomous Agents and Multi-
Agent Systems, 1 (1), 7-38, 1998.

37. Kabanza, F., (95). “Synchronizing multiagent plans using temporal logic
specifications”, in Proc. ICMAS-95, 217-224, 1995.

http://fipa-os.sourceforge.net/

- 108 -

38. Kakas, A.C., Mancarella, P. and Dung, P.M., (94). “The Acceptability
Semantics for Logic Programs”, in Proc. ICLP-94, 504-519, 1994.

39. Karacapilidis, N., and Papadias, D. (98). “A Computational Approach for
Argumentative Discourse in Multi-Agent Decision Making Environments”, in
AI Communications Journal 11(1), 21-33, 1998.

40. Knoblock, G.A. and Ambite, J.L, (97). “Agents for Information Gathering”, in
Bradshaw, J.M. (ed.), Software Agents, 347-373, 1997.

41. Kraus, S., (97). “Negotiation and cooperation in multi-agent domains”, in
Artificial Intelligence, 94, 79-97, 1997.

42. Kraus, S., Sycara, K. and Evenchik, A., (98)."Reaching agreements through
argumentation: a logical model and implementation", in Artificial Intelligence,
104, 1-69, 1998.

43. Lander, S. and Lesser, V., (92). “Customizing distributed search among agents
with heterogeneous knowledge”, In Proc. First Int. Conf. On Information
Knowledge Management, 335-344, 1992.

44. Lansky, A.L., (90). “Localized search for controlling automated reasoning”, in
Proc. Of the DARPA Workshop on Innovative Approaches to Planning,
Scheduling and Control, 115-125, 1990.

45. Laurel, B. (97). “Interface Agents: Metaphors with Character”, in Bradshaw,
J.M. (ed.), Software Agents, 67-77, 1997.

46. Lomuscio, A., Wooldridge, M. and Jennings N.R., (00). “A classification
scheme for negotiation in electronic commerce”, in Agent-Mediated Electronic
Commerc, A European AgentLink Perspective (eds. F. Dignum and C. Sierra),
Springer Verlag, 19-33, 2000.

47. March, J.G. and Simon, H.A. (58). Organizations, New York: Wiley, 1958.

48. Martial, v., F., (92). Coordinating Plans of Autonomous Agents, Heidelberg,
Springer-Verlag, 1992.

49. Maslow, A., (54). Motivation and Personality. Harper and Row, New York,
1954.

50. Matsatsinis, N.F. and Siskos, Y., (99). “MARKEX: An intelligent decision
support system for product development decisions” in European Journal of
Operational Research, Vol. 113, No. 2: 336-354, 1999.

51. Morignot, P. and Hayes-Roth, B., (95)."Adaptable motivational profiles for
autonomous agents", in Knowledge Systems Laboratory, Report No. KSL 95-
01, Dept of Computer Science, Stanford University, 1995.

52. Morignot, P. and Hayes-Roth, B., (96). "Motivated agents", in Knowledge
Systems Laboratory, Report No. KSL 96-22, Dept of Computer Science,
Stanford University, 1996.

- 109 -

53. Müller H.J., (96). “Negotiation Principles”, in Foundations of Distributed
Artificial Intelligence, O´Hare and Jennings (Eds.), 211-229, 1996.

54. Nii, P.H. (86). Blackboards Systems: The Blackboard model of problem
solving and the evolution of blackboard architectures”, in AI Magazine, 1986.

55. Occello, M., Baeijs, C., Demazeau, Y. and Koning, J-L., (02). MASK: An
AEIO Toolbox to Develop Multi-Agent Systems. in Cuena et al. (eds), in
Knowledge Engineering and Agent Technology, IOS Series on Frontiers in AI
and Applications, Amsterdam, The Netherlands. 2002.

56. Panzarasa, P., Jennings, N.R. and Norman, T., (02)."Formalizing collaborative
decision-making and practical reasoning in multi-agent systems", in Journal of
Logic and Computation, 12 (1), 2002.

57. Parsons, S. and Jennings, N.R., (96). “Negotiation through argumentation - a
preliminary report”, in Proc. ICMAS-96, 267-274, 1996.

58. Parsons, S., Sierra, C. and Jennings, N.R., (98). “Agents that reason and
negotiate by arguing”, in Logic and Computation, 8 (3), 261-292, 1998.

59. Prakken, H. and Sartor, G., (96). “A dialectical model of assessing conflicting
arguments in legal reasoning”, in Artificial Intelligence and Law, Vol. 4, 331-
368, 1996.

60. Reed, C., (98). “Dialogues frames in agent communication”, in Proc. ICMAS-
98, 246-253, 1998.

61. Russell, S. and Norvig P., (95). Artificial Intelligence: A Modern Approach.
Prentice-Hall, NJ, 1995.

62. Saaty, T.L., (80). The Analytic Hierarchy Process. New York: McGraw-Hill,
1980.

63. Sabater, J., Sierra, C., Parsons, S. and Jennings, N. R., (02). "Engineering
executable agents using multi-context systems", in Journal of Logic and
Computation, 12, 2002.

64. Sadri F., Toni, F. and Torroni, P., (01). “Dialogues for negotiation: agent
varieties and dialogue sequences”, in Proc. ATAL-01, 2001.

65. Sandholm T. and Lesser V. (95). “Issues in Automated Negotiation and
Electronic Commerce: Extending the Contract Net Framework”, in Proc.
ICMAS-95, San Fransisco, 328-335, 1995.

66. Schoppers M.J., (87). “Universal Plans for Reactive Robots in Unpredictable
Environments”, in Proc. IJCAI-87, 1039-1046, 1987.

67. Sierra, C., Jennings, N.R., Noriega, P. and Parsons, S., (97)."A framework for
argumentation-based negotiation", in Proc. ATAL-97, 167-182, 1997.

68. Simon, H.A., (75). Administrative Behavior, New York: Macmilan Company,
1975.

- 110 -

69. Siskos, J., and Yannacopoulos, D., (85). “UTASTAR: An ordinal regression
method for building additive value functions”, in Investiçao Operational, Vol.
5, No. 1: 39-53, 1985.

70. Stentz A., (95). “The Focussed D* Algorithm for Real-Time Re-planning”, in
Proc. IJCAI-95, 1652-1659, 1995.

71. Sycara, K., (89)."Argumentation: Planning other agents' plans", in Proc.
IJCAI-89, 517-523, 1989.

72. Sycara, K., (90). “Persuasive argumentation in negotiation”, in Theory and
Decision, 28:203-242, 1990.

73. Sycara, K., and Zeng, D., (96). “Coordination of Multiple Intelligent Software
Agents”, in International Journal of Cooperative Information Systems, World
Scientific Publishing Company.

74. Sycara, K., Paolucci, M., van Velsen, M. and Giampapa, J., (02). “The
RETSINA MAS Infrastructure”. Accepted by the Journal of Autonomous
Agents and Multi-agent Systems (JAAMS), to appear.

75. Vincke P., (92). Multi-criteria Decision Aid. New York: John Wiley, 1992.

76. Walton, D.N. and Krabbe, E.C.W., (95). Commitment in dialogue: Basic
Concepts of Interpersonal Reasoning. State University of New York Press,
NY, 1995.

77. Weiss, G., (Ed.), (99). Multi-Agent Systems: A Modern Approach to
Distributed Artificial Intelligence, 1999.

78. Wilkins, D.E. and Myers, K.L., (95). “A common knowledge representation
for plan generation and reactive execution”, in Journal of Logic and
Computation, 5(6): 7311-761, 1995.

79. Witting, T. (Ed.), (92). ARCHON: An Architecture for Multi-Agent Systems,
Ellis Horwood Series in AI, 1992.

80. Wood, M.F. and DeLoach, S.A., (00). “An Overview of the Multiagent
Systems Engineering Methodology” in AOSE-2000, The First International
Workshop on Agent-Oriented Software Engineering, Limerick, Ireland, 2000.

81. Wooldridge, M. and Jennings, N.R. (95). “Intelligent Agents: Theory and
Practice”, The Knowledge Engineering Review, 10 (2), 115-152, 1995.

82. Wooldridge, M., (02). Introduction to Multi-Agent Systems, J. Wiley, 2002.

83. Wooldridge, M., Jennings, N.R. and Kinny, D., (00). “The Gaia Methodology
for Agent-Oriented Analysis and Design”, in Journal of Autonomous Agents
and Multi-Agent Systems, Vol. 3, No.3, 285-312, 2000.

84. Zlotkin, G. and Rosenschein, J.S. (91). Cooperation and Conflict Resolution
via Negotiation Among Autonomous Agents in Noncooperative Domains, in

	Universite Paris-Dauphine
	Memoire d’Habilitation a Diriger des Recherches
	Acknowledgements
	Table of Contents
	Introduction
	Multi-Agent Decision Support Systems
	The ARISTOT System (A coopeRative Information STrategic Operation Tool)

	L’ Agent comme une Entite Individuelle
	Resume
	The Agent as an Individual Entity
	2.1	Agent Architectures
	2.2	Argumentation
	2.2.1 Argumentation with Roles and Context
	A Computational Model for Agent Personality Modelling
	Capabilities and Personality
	2.2.4.	Future Work

	2.3	Dynamic Planning
	2.3.1	The Multi-Criteria Planning Model
	2.3.2	Classification of Possible Changes and Reaction
	2.3.3	Future Work€

	L’ Agent comme une Entite Sociale
	Resume
	The Agent as a Social Entity
	Agent Conversation
	3.1.1	Future Work

	Distributed Planning
	3.2.1 The Plan Merging Procedure
	3.2.2 An Example
	3.2.3 Conflicts Resolution and Negotiation
	3.2.4	Future Work

	Automated Negotiation
	3.3.1	Negotiation Strategies
	3.3.2	An Aggregation-Disaggregation Approach
	3.3.3	A Utility-Based Negotiation Model
	3.3.4 An Argumentation-Based Negotiation Model
	3.3.5 Future Work

	Miscellaneous
	4.1	Multiple Criteria Evaluation of Actions in Hierarchical Decomposition
	4.2	Multi-Criteria based Task Allocation
	4.3	Why is Difficult to Make Decisions under Multiple Criteria

	Commerce Electronique
	Resume
	5	E-Commerce
	5.1	Buying and Selling of Products
	5.2	Buying and Selling of Services

	Marketing
	Resume
	6	Marketing
	Consumer-Based Methodology for Products Penetration Strategy Selection
	Agent’s Types, Functionalities, Structure

	Services d’Information: le systeme IMAGE
	Resume
	7	Information Services: The IMAGE System
	The IMAGE Agent Scenario
	General Description of IMAGE Modules
	The Intelligent Module Architecture

	Diagnostic
	Resume
	8	Diagnosis
	The Agents Architecture
	Agents Coordination

	Genie Logiciel Oriente Agent
	Resume
	9	Agent Oriented Software Engineering (AOSE)
	10	Conclusion
	Personal References

	Karacapilidis, N., Moraitis P., (01b). "Intelligent Agents for an Artificial Market System", in 5th International Conference on Autonomous Agents (Agents’01), Montreal, Canada, pp. 592-599, 2001.
	
	References

	Annexe
	Encadrement d’activites de recherche
	A) Encadrement dans le cadre de projets de recherche
	B) Encadrement dans le cadre de diplomes de troisieme cycle (DEA-Master)

	Collaborations liees a la Recherche

