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Planning is a fundamental issue in multi-agent systems. In this work we focus on the coordination of
multiple agents in two different settings. In the first, agents are able to attain individual goals that are
necessary for the achievement of a global common goal. As the agents share the same environment, they
need to find a coordinated course of action that avoids harmful (or negative) interactions, and benefit
from positive interactions, whenever this is possible. In the second setting some of the agents may need
the assistance of other agents to achieve their individual goals. This is the case where some of the actions
of the plan of an agent may be executed by another agent who will play the role of the assistant. We
formalize these two problems in a more general way than in previous works, and present a coordination
algorithm which generates optimal solutions in the case of two agents. In this algorithm, agents use
l-SATPLAN as the underlying planner for generating individual and joint consistent plans. This planner
is an extension of the classical SATPLAN planner, that tackles negative and positive interactions and,
therefore, multi-agent planning. We also present an algorithm that solves the assistance problem. The
underlying algorithm is again l-SATPLAN, and is used for the generation of individual (based on assis-
tance) and joint consistent plans. Finally experimental results on multi-agent versions of problems taken
from International Planning Competitions demonstrate the effectiveness of l-SATPLAN and the coordina-
tion algorithm.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Planning is a central issue in multi-agent systems. Several
works have been proposed in the literature, covering different as-
pects of the problem of coordinating the plans of several agents
operating in the same environment (see e.g. [1–14]).

In this paper we study the coordination of multiple agents in
two different settings. In the first setting agents are able to achieve
individual goals by themselves and without any support or assis-
tance by other agents. These individual goals are necessary for
the achievement of a global common goal. The agents have com-
plementary capabilities and none of them has the necessary capa-
bilities in order to attain all the goals, and therefore the global goal,
alone. In the second setting the agents have still to achieve individ-
ual goals for the achievement of a common goal, but now some of
them need the assistance of other agents in order to attain their
individual goals. Therefore, some of the actions of their plans will
be executed by other agents, who will play the role of assistants.
ll rights reserved.
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We assume that in both settings the failure of individual goals
and therefore the failure of the global goal, is worst than achieving
individual and global goals through suboptimal plans (i.e. plans
with greater cost or execution time). Therefore suboptimal plans
may be taken in consideration by the agents during the planning
process. Both settings belong to the more general case of multi-
agent planning where both planning and execution are distributed
among the different agents.

As the agents operate in the same environment conflicts (e.g.
due to the sharing of resources or the interdependency of actions)
may arise. Therefore, they need to coordinate their course of action
in order to avoid harmful (or negative) interactions and also to ben-
efit from situations where positive interactions may arise [2]. We
call the first setting multi-agent coordinated actions problem (MA-
CAP). Moreover, there can be more than one solution to a MACAP,
and we are interested in finding an optimal one. We call the prob-
lem of finding an optimal solution multi-agent optimal coordinated
actions problem (MAOCAP). We call the second setting multi-agent
assistance actions problem (MAAAP).

On a high level, an important difference of our approach from
other works, is that it handles both coordination and assistance
in a uniform way. Moreover, the use of a classical method, brings
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recent and future advances in classical planning into multi-agent
planning. On a more technical level, and as far as coordination is
concerned, the works closer to ours are [10,4]. Although there
are similarities to the techniques presented in [10], our approach
tackles a more general problem. The main difference is that the in-
put to the algorithm of [10] is a fixed combination of individual
plans that need to be coordinated, whereas our coordination proce-
dure generates all such possible combinations from which it se-
lects an optimal one. On the other hand, the problem we tackle
here bares a resemblance to the one addressed in [4]. However,
our solution to the problem presents certain advantages. Firstly,
our algorithm is able to find optimal solutions, which is not the
case for [4] when there are ‘‘positive’’ interactions between the ac-
tions. Secondly, if optimality is not required, our algorithm can ter-
minate as soon as a consistent solution of acceptable quality is
found, or a time limit is reached, which is not the case for [4],
where only the optimal solution (assuming no positive interactions
between actions) is returned when the process terminates.

This work is based on the ideas of [15] which it significantly ex-
tends. More precisely, compared to the above work, this paper pro-
poses l-SATPLAN, an extension of the well-known classical
planner SATPLAN to deal with the multi-agent planning problem
by handling negative as well as positive interactions. The present
work also presents experimental results on multi-agent versions
of planning problems taken from classical planning. These results
show that our method is a viable approach to multi-agent plan-
ning. In a few words, our approach is an extension of techniques
similar to those presented in [10] to the more general problem
studied in [4], with the additional advantage of an efficient under-
lying classical planner.

It is worth noting that the idea of using satisfiability for solving
the closely related problem of plan merging has been considered in
[16]. However, in plan merging no new actions can be added in the
new plan, i.e. an action cannot belong to the final plan if it does not
appear in some of the plans that are merged. Moreover, [16] does
not study the parallel encoding of planning into satisfiability that
we investigate here. The idea of distributed planning as SAT prob-
lem has also been discussed in [17] where the distributed planning
problem is seen as the process of finding a satisfying assignment
for both propositional encodings performed by each agent, given
the domain theory, the goal to be reached and the initial situation
he is interested in, that is consistent on variables that are shared
between agents. Shared variables are identified as those variables
related to the same event of fact in the knowledge base of both
agents. However this work proposes only a general description of
how a distributed planning problem could be considered as a dis-
tributed satisfiability problem without any detail about the way
agents are generating individual plans, the way negative and posi-
tive interactions are handled, or individual plans are exchanged
and joint plans are generated and of course without an imple-
mented system and experimental results.

Finally, the Distributed Graphplan algorithm [18] extends the
classical Graphplan method [19] to a multi-agent setting. The algo-
rithm essentially solves a plan merging problem i.e., an action can-
not be included in the joint plan if it is not in the plan of at least
one of the individual agents. Moreover, unlike l-SATPLAN, Distrib-
uted Graphplan does not tackle positive interactions, and is re-
stricted to two agents.

The rest of the paper is organized as follows. Section 2 recalls
some background for the planning as satisfiability framework,
whereas Section 3 defines formally MACAP and MAOCAP. Section 4
presents the solution to MACAP by presenting l-SATPLAN, our
extension of the SATPLAN to multiple agents. Sections 5 presents
the proposed solution for MAOCAP. Section 6 presents the MAAAP
setting, while Section 7 presents the experimental results for the
MACAP setting. Section 8 concludes and discusses future work.
2. Propositional satisfiability based planning

We assume that the agents’ planning domain theories are de-
scribed in the STRIPS language, and denoted by Da the set of ac-
tions that appear in the domain theory of agent a. To generate
their plans the agents use l-SATPLAN, our extension of SATPLAN
system [20]. The rationale behind choosing the propositional satis-
fiability approach to planning is twofold. First, it is one of the most
computationally effective approaches to optimal (wrt plan length)
STRIPS planning [21,22]. Second, it can be easily extended to
accommodate the needs of the multi-agent planning scenario,
but also other desirable features such as planning with preferences
(e.g. [23,24]).

We assume that the reader is familiar with the propositional
satisfiability encoding of STRIPS planning. Here we recall very
briefly the basics of SATPLAN approach to planning. First, a plan
length k is assumed, and the planning problem is translated into
a propositional theory (set of clauses). If the resulting satisfiability
problem is solvable, a plan of length k is extracted from the model
that has been found. Otherwise, the plan length is set to k + 1 and
the procedure iterates.

Among the several ways to transform a planning problem into
satisfiability one, we adopt the Graphplan-based parallel encoding
[20]. The facts of the (fully specified) initial state and the final state
are translated into literals. The propositional theory also contains
clauses that constraint actions to imply their preconditions, and
fluents to imply the disjunction of all actions that have these flu-
ents in their add-effects. Finally, conflicting actions are declared
as mutual exclusive through suitable binary clauses that are added
to the theory. For a description of the latest version of SATPLAN the
reader is referred to [22], and for an introduction to planning as
satisfiability to [25].

In the following we assume that a plan is a set of temporal
propositions of the form A(t), where A is an action and t is a
time point, meaning that action A executes at time t. If D is a
domain theory, I an initial state, P a plan and G a set of goals,
the notation P �D,I G denotes that P is a plan for goal G in the do-
main D with initial state I, under the standard STRIPS semantics.
When there is no possibility for confusion, we simply write
P � G.

For the purposes of multi-agent assistance actions problem we
slightly extend the STRIPS language to accommodate the represen-
tational needs of cooperation between the agents. In the extended
language, the preconditions prec(A) of an action A is the union of
the sets norm_prec(A) and extern_prec(A). The set norm_prec(A)
contains normal action preconditions, i.e. fluents that must hold
before the execution of the action for that action to succeed. The
elements of the set extern_prec(A) are fluents that the agent may
request some other agent to bring about in the world. Therefore,
the agent can assume that these fluents will be true in the world
when needed, and ignore them during planning. In the context of
the SATPLAN framework this means that the agent plans by taking
into account only the propositions in the sets norm_prec and
ignores extern_prec. The following is an example of a multi-agent
assistance actions problem.

Example 1. Let DA be the domain theory of agent A that includes the
operators pickup(X,L) and putdown(X,L) for picking up and putting
down an object X at location L, respectively, with the usual
preconditions and effects. Moreover, DA contains the operator
move(X,Y) for moving from location X to location Y, with precondi-
tions norm_prec(move(X,Y)) = {at(X,Y)} and extern_prec(move(X,Y))
= {opendoor(X,Y)}, and the usual effects. The external precondition
opendoor(X,Y) means that the agent expects that some other agent
will open the doors for him. Assume the initial state IA = {at(l1),a-
t(obj, l1)} and the set of goals GA = {at(obj, l2)}. A plan for this problem
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is PA = h{pickup (obj, l1,0),move (l1, l2,1), putdown(obj, l2,2)}, {open-
door(l1, l2,1)}i. Note that for this plan to succeed, some other agent
needs to bring about opendoor(l1, l2) at time 1.

The domain theory of an agent may contain different versions of
the same action A, say A1 and A2, that differ only in the elements
they contain in their sets norm_prec and extern_prec, i.e. prec(A1) =
prec(A2) but norm_prec(A1) – norm_prec(A2).

3. MACAP and MAOCAP

In a multi-agent coordinated actions scenario, a number of
agents need to generate individual plans that achieve individual
goals which are necessary for the achievement of a common global
goal. The case is illustrated by the following example.

Assume two agents a and b, and two object, one heavy and one
fragile, that lay on a table. The common goal of the agents is to clear
the table (i.e. put the objects on the floor). Agent a can move heavy
objects and agent b fragile ones. The objects can be moved by the
two agents in any order or in parallel. Thus the goal of the agent a
is to put the heavy object on the floor and the goal of agent b to put
the fragile on the floor. It is therefore obvious that none of the agents
has is able to achieve the common goal (i.e. to clear the table), alone
and its attainment depends on the cooperation of agents a and b.

We restrict ourselves to the case of two agents, and study a sce-
nario that is defined by the following characteristics.

� Each agent is able to achieve his goals by himself. These individ-
ual goals may be necessary for the achievement of a global com-
mon goal that none of the agents can achieve alone. Moreover,
agents have different capabilities. In the simplest case, the
effects of the actions of the agents are disjoint.
� Plan length is the criterion for evaluating the quality of both the

individual and the joint plans, with preference given to the joint
plan length.

The coordinated actions problem is defined formally as follows:

Definition 1 (MACAP). Given two agents a and b with goals Ga and
Gb that are necessary for a global common goal Gglobal achievement
i.e. Gglobal = Ga [ Gb, initial states Ia and Ib, and sets of actions Da and
Db, respectively. Find a pair of plans (Pa,Pb) such that
� Pa�Da ;Ia Ga and Pb�Db ;Ib Gb

� Pa and Pb are non-conflicting

Such pair of plans (Pa,Pb) is called a solution to the MACAP.

We refer to the plans Pa and Pb as individual plans, and to the
pair (Pa,Pb) as joint plan. Moreover, we use the term joint plan to
also refer to the plan Pa [ Pb. The length of a joint plan (Pa,Pb) is de-
fined as max(l(Pa), l(Pb)).

Definition 2 (MAOCAP). Given two agents a and b with goals Ga
and Gb that are necessary for a global common goal Gglobal

achievement i.e. Gglobal = Ga [ Gb, initial states Ia and Ib, and sets
of actions Da and Db, respectively. Find a pair of plans (Pa,Pb) such
that
� (Pa,Pb) is a solution to the MACAP for agents a and b.
� There is no other solution P0a; P

0
b

� �
to the problem such that

max l P0a
� �

; l P0b
� �� �

< maxðlðPaÞ; lðPbÞÞ.

In MAOCAP, agents seek to minimize the length of the joint
plan, even in the case where this leads to non-optimal individual
plans.
4. Solving the MACAP using l-SATPLAN

MACAP is solved in a setting where an agent, say agent a com-
putes his individual plan without taking into account possible con-
flicts with the plans of other agents. Then this plan is sent to the
other agent, say agent b, who computes a plan that is not in conflict
(i.e. with no negative interactions) with the plan of agent a, and
which avails the cooperative opportunities (i.e. positive interac-
tions) offered by agent a, if such opportunities exist. Such a plan
of agent b is called consistent with the plan of agent a. Negative
and positive interactions have been suggested by von Martial [2].

The negative interactions occur when agents mutually hinder
themselves in reaching their goals. They may come from two dif-
ferent sources that are discussed below.

1. Causal link threatening. This conflict is well known in the context
of partial order planning [26]. Let A1(t1) and A2(t2) be two
actions of a plan P such that t1 < t2 and A1(t1) is the latest action
of the plan P1 that adds the precondition p of action A2(t2). Then,
we say that there is causal link between time points t1 and t2

related to p, denoted by the triple (t1, t2,p).
Furthermore, if p is a precondition of an action A(t), p appears in
the initial state, and there is no action in plan P that adds p and
is executed at some time point t0 < t, then there is a causal link
(0, t,p) in P. Moreover, if A(t) is the last action that adds a goal g,
there exists a causal link (t, tfin,g), where tfin is the plan length.
Finally, if p is a proposition that belongs both to the initial and
the final state of planning problem, and there is no action in
plan P that adds p, then P contains the causal link (0, tfin,p).
An action A(t) threatens the causal link (t1, t2,p) if t1 6 t 6 t2 and A
deletes p.

2. Parallel actions interference. This conflict was introduced in
Graphplan [19]. Two actions interfere if they are executed in
parallel and one deletes the preconditions or add effects of
the other.

The positive interactions are all those relationships between two
plans from which a benefit for at least one party can be derived.
Such a positive relationship can be requested (explicit) or non-re-
quested (implicit). von Martial distinguishes three types of non-re-
quested relationships.

Action equality: Two agents plan to perform an identical action.
While recognizing this fact they agree that only one agent per-
forms the action and makes the result available to the other.

Consequence: One agent’s actions have the side-effect to achieve
one of another agents goals as well. So the second one is relieved
from pursuing that strategy.

Favor: The plan of one agent has the side-effect to contribute in
some way to the goals of another agent.

Thus in our context the agent b can use some effects generated
by agent a’s actions and therefore avoid the need to attain facts
that have been already brought about by agent a.

The following sections explain how agents a and b compute
their plans using l-SATPLAN.
4.1. Independent plan computation

Initially, agent a computes an individual plan along with a set of
causal links. This is done by l-SATPLAN which is invoked by the
call ComputeNewPlanðTa;Ga; L; Pa;CPa Þ, where Ta includes the
agent’s domain theory and initial state, Ga is the set of goals of
the agent and L is an upper bound on the length of the generated
plan (i.e. if l(Pa) is the length of the generated plan, l(Pa) < L holds).
This call either returns a plan Pa that achieves all goals of Ga or fail
in argument Pa. This call also returns the set of causal links CPa of
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plan Pa. l-SATPLAN uses the original SATPLAN to compute plan Pa
and computes the set of causal links CPa using Algorithm 1.

Algorithm 1: Computing Causal Links

CP ;
for Every level i from goal level going back to level 1 do

for Every action a at level i do
for Every precondition p of action a do

Search in previous layers the latest action, which adds
fact p

if Found an action at level k, which adds fact p then
Add causal link (k, i,p) to the set CP

end if
if No action found which adds fact p then

Add causal link (0, i,p) to the set CP

end if
end for

end for
end for
for Every goal fact g do

for Every level i starting from goal level going back to level 1
do

for Every action a at level i do
Search in previous layers the latest action, which adds

fact g
if Found an action at level k which adds fact g then

Add causal link (k,goal level,g) to the set CP

end if
if No action found which adds fact g then

Add causal link (0,goal level,g) to the set CP

end if
end for

end for
end for
4.2. Coordinated plan computation

Agent b receives a plan Pa and a set of causal links CPa from
agent a and computes a plan Pb which is consistent with Pa by
invoking l-SATPLAN through the call ComputeCoordinatedPlan
ðTb;Gb; Pa;CPa ; PbÞ, where Tb includes the agent’s domain theory
and initial state, Gb is the set of goals of the agent. The plan gener-
ation method involves resolving the problem of negative and posi-
tive interactions. The method that is employed for tackling this
problem is detailed in the following sections.

4.2.1. Handling negative interactions
As it has been discussed earlier, negative interactions come

either from causal link threatening or from parallel actions interfer-
ence. This section explains how l-SATPLAN resolves causal link
threatening.

During the construction of his planning graph, agent b checks for
all operators O, whether O at action level i threatens any of the cau-
sal links (t1, t2,p) from the set CPa where t1 6 i 6 t2. If this holds true,
agent b does not add operator O in the planning graph at level i,
even if the case where all its preconditions are satisfied at this level.
As agent b expands his planning graph by adding new levels, he
may add O at later levels which do not threaten the causal link. If
the threat persists through all levels, operator O is abandoned.

Example 2. Assume the Blocks World domain where ON(X,Y)
means that block X is on block Y and MOVE(X,Y,Z, i) represents the
action of moving block X from Y onto Z at time i. Furthermore,
assume that CPa contains the causal link (1,3,ON(A,B)). Then,
MOVE(A,B,C,1) cannot be added to the planning graph of agent b as
it threatens a causal link of agent a. The same holds for levels 2 or
3. In fact, causal link (1,3,ON(A,B)) means that block A should be on
block B from time 1 to time 3, as it is needed by agent a at time 3. If
agent b moves block A from B onto C between time points 1 and 3,
the plan of agent a is destroyed.
4.2.2. Handling positive interactions and parallel actions interference
Handling positive interactions involves further modifications to

the original SATPLAN system, that have been implemented in
l-SATPLAN.

When l-SATPLAN attempts to generate a plan for agent b, it
adds a fresh action, called NONAME, for each time step i in the plan
of agent a. This means that if there are n time steps in the plan of
agent a, it creates n actions NONAME namely NONAME(0), NON-
AME(1), NONAME(2), . . ., NONAME(n) such that:

� The add effects of action NONAME(i) are the facts added by (the
actions of) agent a at time i.
� The delete effects of action NONAME(i) are the facts deleted by

agent a at time i.
� The preconditions of action NONAME(i) are the facts that are

preconditions of the actions of agent a at time i.

Thus an action NONAME(i) represents all the actions in the plan
of agent a, which are executed at time i. Agent b while constructing
his planning graph, explicitly puts the action NONAME(i) at action
level i. So it is obvious that proposition level i has now all the facts
added or deleted by agent a in his plan at time i. By doing so, agent
b has all the information about the facts added and deleted by
agent a at each level.

In the SATPLAN algorithm, the planning graph translates into a
CNF theory and then a solver searches for a satisfying truth value
assignment for this theory. From this truth assignment a solution
to the planning problem is extracted. Here an important issue arises.
The purpose of adding NONAME actions in the planning graph of
agent b is to ensure that the agent does not introduce any actions
in his plan that are in conflict with the plan of agenta. To achieve this,
l-SATPLAN adds these NONAME actions as unary clauses in the CNF
theory. Thus the solver now has to find a solution that includes all the
NONAME actions. This approach has an important advantage. It
solves easily the problem of positive interactions, and at the same
time it also tackles parallel actions interference as follows. All actions
that interfere with those of a are marked as mutually exclusive (by
appropriate binary clauses) in the CNF theory of agent b. Therefore,
since the NONAME actions must be necessary true in all models of
the theory, all interfering actions of agent b are excluded from his
plans. The following example illustrates the approach.

Example 3. Assume two agents a and b, and suppose that agent a
has already computed his plan Pa = {A1(0),A2(0),A3(1)}. The add
effects of the actions of Pa are eff(A1) = a0, eff(A2) = a1, eff(A3) = a2.
Agent a sends this information to agent b. Agent b creates two
NONAME actions as there are two time steps in the plan of agent a.
The add effects of NONAME(i) equals the union of all the add effects
of the actions of agent a at time i. So we have eff(NONAME(0)) =
eff(A1) [ eff(A2) = {a0,a1} and eff(NONAME(1)) = eff(A3) = {a2}. The
domain theory of agent b contains the actions Db = {B1,B2,B3,B4}
with the following preconditions and add effects: prec(B1) = {a6},
eff(B1) = {a5}, prec(B2) = {a5}, eff(B2) = {a0}, prec(B3) = {a5}, eff(B3)
= {a7}, prec(B4) = {a0,a7}, eff(B4) = {a8}. The goal of agent b is
Gb = {a2,a4,a7,a8}. Thus agent b creates his planning graph and
adds all actions NONAME(i) at action level i. The planning graph of
agent b is shown in Fig. 1. Gray lines are NOOPS, and boxes
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correspond to actions. Small letters followed by numbers are
propositions. A line from proposition F to an action O means that F
is the precondition of O. A line from an action O to a proposition F
means that F is an add effect of O. Observe that a0 is needed by B4
to produce a8, and there are two actions which add a0, namely
NONAME(0) and B2. So the solver has to choose between
NONAME(0) and B2, when this planning graph is converted into a
CNF theory. As NONAME(0) and NONAME(1) are unit clauses they
must be assigned the value true, and therefore the plan of agent b
is Pb = {B1(0),B3(1),B4(2)}. Therefore agent b does not re-establish
a0 which has already been established by agent a.

Finally, we note that l-SATPLAN is capable of solving MACAP
for n agents, with n > 2. This means that l-SATPLAN can be used
for finding a plan for the nth agent when n � 1 agents have already
computed their non conflicting plans. Suppose that n � 1 agents
have generated their consistent plans P1, P2, . . . , Pn�1. Suppose also
that the sets of their causal links are C1, C2, . . . , Cn�1. Then a call
ComputeCoordinatedPlan(Tn,Gn,P1 [ P2 [ . . .[ Pn�1, C1 [ C2 [ . . . [
Cn�1,Pn) returns a plan Pn for the nth agent which is consistent with
the plans of n � 1 agents.

5. Solving the MAOCAP

Algorithm 2 is a coordination procedure that solves MAOCAP for
two agents a and b with goals Ga and Gb, domain theories Da and Db

and initial states Ia and Ib, respectively. Each agent uses l-SATPLAN
for plan generation, and exchanges messages with the other agent.

First agent a computes his plan Pa by invoking l-SATPLAN via
the call ComputeNewPlan. Plan Pa is sent to agent b as a candidate
sub-plan of a joint plan. Then, agent b computes a plan Pb

consistent with Pa by calling procedure ComputeCoordinatedPlan
of l-SATPLAN, and sends the joint plan (Pa,Pb) to agent a. At this
point (Pa,Pb) becomes the best current joint plan and now it’s agent
b’s turn to compute and propose a candidate sub-plan, which is
then processed by agent a. In this way agents take turns to gener-
ate and propose candidate sub-plans which are then processed by
the other agent who attempts to generate a new consistent joint
plan. Each time, a joint plan that is shorter than the current best
joint plan is found, it becomes the current best joint plan. In this
way the agents split the work of optimal joint plan generation.

The agents exchange messages of the form (P1,P2), where P1 and
P2 are (possibly empty) individual plans. The coordination algo-
rithm (Algorithm 2) refers to agent b and describes how these mes-
sages are processed by the agents. The messages can be of three
different types, each carrying a different meaning. They are either
of the type (P1,P2), or (P1,;), or (;,;), where P1 and P2 are non-
empty plans. The meaning of each of these messages, and the reac-
tion of the agents to these messages, are described in the following.

Before entering the main body of the algorithm, the agents go
through a phase in which the variables and data structures of the
algorithm are initialized. Moreover, agent a sends a message of
the form (P,;), where P is the (optimal) plan generated by the call
ComputeNewPlan(T,G,1,P,C), where T and G are the agent’s do-
main theory and goals respectively.

Each incoming message is processed by the coordination algo-
rithm in a way that depends on its type. A message of the form
(P,;), means that the other agent proposes P as a candidate sub-
plan of a joint plan. The set of causal links C is also sent along with
the plan. In order to simplify the presentation, it is omitted here.
The receiving agent checks, by invoking l-SATPLAN as explained
earlier, if he can generate a plan P0 that achieves his own goals
and is consistent with P. An additional requirement is that the
length of the joint plan P [ P0, defined as max(l(P), l(P0)), must be
shorter than the best joint plan. If this is the case, the agent sends
the message (P,P0) to the other agent, meaning that P can be a part
of an improved joint plan (P,P0). If the agent that receives the mes-
sage (P,;) fails to find a plan as specified above, he sends the mes-
sage (P, fail), indicating that P cannot be part of a better joint plan.
Then, the agent attempts to generate a new sub-plan with length
shorter than lbest. If such a sub-plan exists, he sends it to the other
agent. Otherwise, he sends the message (;,;), indicating that there
are no shorter individual plans.

A received message of the form (P1,P2), with P1 – ; and P2 – ;, is
a reply to an earlier message, where the agent receiving (P1,P2) has
proposed plan P1 to the other agent. Upon processing such a mes-
sage, if P2 – fail and the proposal (i.e. plan P2) leads to an improved
joint plan (P1,P2), the variables Pbest and lbest are updated accord-
ingly. If P2 = fail then the agent removes P1 from the set of stored
plans as it does not lead to an improved joint plan. This ensures
that at any point at most two plans are stored, one which is under
consideration and one which is part of the current optimal plan.
The agent that receives (P1,P2) attempts to generate a new candi-
date sub-plan which is sent to the other agent. Otherwise a mes-
sage (;,;) is sent.

Upon receiving a message (;,;), an agent sets his expect variable
to false, meaning that he does not expect any further candidate
sub-plans from the other agent. If variable continue is true, the
agent generates another plan that is sent to the other agent. If this
is not possible he exits the algorithm.

The algorithm terminates when the condition (not con-
tinue) ^ (not expect) becomes true. In such a case, the agent has re-
ceived replies to all the sub-plans that he has proposed, he has no
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other plan to propose, and he does not expect any further propos-
als from the other agent.

Algorithm 2: Coordination Algorithm

while true do
get_incom_message (Pa,P)
if Pa – ; and P = ; then

ComputeCoordinatedPlanðTb;Gb; Pa;CPa ; PbÞ
if Pb – fail and max(l(Pa), l(Pb)) < lbest then

lbest:¼max(l(Pa), l(Pb)), Pbest :¼ (Pa,Pb)
send message (Pa,Pb)

else
send message (Pa, fail)

if (continue) then
Call Procedure New_Proposal_Coordination

if (not continue) and (not expect) then
exit (Pbest)

else
if Pa – ; and P – ; then

if P – fail then
lbest :¼max(l(Pa), l(P)), Pbest :¼ (Pa,P)

else
Delete P from memory

if continue and (not expect) then
Call Procedure New_Proposal_Coordination

if (not continue) and (not expect) then
exit (Pbest)

else (i.e. Pa = ; ^ P = ;)
if (not continue) then

exit (Pbest)
if (continue) then

expect = false
Call Procedure New_Proposal_Coordination
exit (Pbest)

Procedure 3: New_Proposal_Coordination

ComputeNewPlanðTb;Gb; lbest; Pb;CPb
Þ

if Pb – fail then
send message (Pb,;)

else
continue = false
send message (;,;)
6. Multi-agent assistance actions problem

As in the MACAP case, in MAAAP two agents a and b need to
achieve their goals with non-conflicting individual plans. The dif-
ference here is that one of the agents may request the other agent
to achieve specific subgoals that will enable the requesting agent
to attain his own goals. When an agent receives such a request,
he attempts to generate a plan that, apart from his own goals, also
achieves the requesting agent’s subgoals. The MAAAP problem can
be defined formally as follows.

Definition 3 (Multi Agent Assistance Actions Problem (MAAAP)). Given
two agents a and b with goals Ga and Gb, initial states Ia and Ib and
sets of actions Da and Db, respectively, find a pair of plans (Pa,Pb)
such that

� Pa ¼ Pa
a [ Pb

a and Pb ¼ Pb
b [ Pa

b;
� Pa

a [ Pa
b�Da[Db ;Ia[Ib Ga and Pb

b [ Pb
a�Da[Db ;Ia[Ib Gb;

� if Pa
a�Da ;Ia Ga then Pa

b ¼ ;, and if Pb
b�Db ;Ib Gb then Pb

a ¼ ;;
� if c(t) 2 Pa then c 2 Da, and if c(t) 2 Pb then c 2 Db;
� Pa and Pb are non-conflicting.

Note that coordinated actions setting is a special case of assis-
tance actions setting, where Pb

a and Pa
b are empty. Also, we may im-

pose the additional requirement that in an assistance actions
scenario one or both agents are not able to achieve their goals by
themselves, in other words :$P s.t. P �D,I G, where D, I and G are
the domain theory, the initial state and the goal of the agent. How-
ever, we do not enforce this restriction. Indeed, it can be the case
that an agent can achieve some of his subgoals by executing his
own actions, but he may seek the assistance of other agents as this
may lead to better quality (in our case shorter) plans.

The assistance procedure for agent b is given in Algorithm 4. It is
very similar to the coordination algorithm, with the main differ-
ences being in the way the classical planner is invoked and the
form of the messages that the agents exchange. The main differ-
ence in the implementation of l-SATPLAN for assistance actions
problem is discussed in Section 6.1. In the assistance algorithm
agents generate their individual plans via a call to procedure Com-
puteNewPlan(T,G,L, hP,Ri,CP), which given the CNF encoding T of the
domain theory (represented in the extended STRIPS language de-
scribed in Section 2), a set of goals G and a bound l, generates a plan
P together with a (possibly empty) set of assistance requests R. The
plan P succeeds only if the propositions of the set R are true at their
specified time points. This more general form of generated plans
necessitates a slightly more complex form of messages. The mes-
sages are now of the form (hP,Ri,P0), where P and P0 are plans and
R is a set of assistance requests. When an agent generates a new
individual plan hP,Ri, he sends out the message (hP,Ri,;). Moreover
the agents also send a set of constraints which are omitted here.

Algorithm 4: Assistance Actions Algorithm

while true do
get_incom_message (hPa,Rai,P)
if Pa – ; and P = ; then

ComputeAssistanceActionsPlanðTb;Gb; Pa;Ra;CPa ; hPb; ;iÞ
if Pb – fail and max(l(Pa), l(Pb)) < lbest then

lbest :¼max(l(Pa), l(Pb)), Pbest :¼ (Pa,Pb)
send message (hPa,Rai,Pb)

else
send message (hPa,Rai, fail)

if (continue) then
Call Procedure New_Proposal_Assistance

if (not continue) and (not expect) then
exit (Pbest)

else
if Pa – ; and P – ; then

if P – fail then
lbest :¼max(l(Pa), l(P)), Pbest :¼ (Pa,P)

else
Delete P from memory

if continue and (not expect) then
Call Procedure New_Proposal_Assistance

if (not continue) and (not expect) then
exit (Pbest)

else (i.e. Pa = ; ^ P = ;)
if (not continue) then

exit (Pbest)
if (continue) then

expect = false
Call Procedure New_Proposal_Assistance
exit(Pbest)
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As in the coordination case, each incoming message is processed
by the assistance algorithm of the receiving agent in a way that
depends on its type. A message of the form (hPa,Rai,;) in the incom-
ing message queue of agent b, is interpreted as a request to search for
a plan that is consistent with Pa and achieves Ra. Upon processing
such a message, agent b invokes l-SATPLAN via the call
ComputeAssistancePlanðTb;Gb; Pa;Ra;CPa ; hPb; ;iÞ. The empty set in
the last parameter hPb,;i of the call, enforces the generation of a plan
that does not contain assistance requests. This means that agent b
must achieve his goals without the assistance of agent a. In a more
general version of the assistance algorithm, one could allow a call
of the form ComputeAssistancePlanðTb;Gb; Pa;Ra;CPa ; hPb;RbiÞ, where
agent b may reply to agent a with a plan Pb but also a set Rb of assis-
tance requests. In the general case, we may end up with a situation of
‘‘nested assistance’’, where an agent can reply to an assistance re-
quest with a new assistance request. Such a situation terminates
successfully if one of the agents achieves his goals without the need
for further assistance. However, handling the general case requires
more complicated data structures, and it is not discussed further.

All other message types are processed by the assistance proce-
dure in a manner similar to the way they are handled by the coor-
dination algorithm.

6.1. Handling cooperation

The handling of cooperation is implemented in l-SATPLAN by a
number of additional modifications to the original SATPLAN
algorithm.

Agent a computes his plan by taking into account only the nor-
mal preconditions of the actions and ignores all external precondi-
tions. Therefore, if all the normal preconditions of an action A are
valid at time step i then a may add this action in his plan even if
action A’s external preconditions are not valid at time step i. This
is because agent a plans under the assumption that agent b will
add the external preconditions.

For agent b,l-SATPLAN creates an action REQUESTED_GOAL(i)
for each time step i in the plan of agent a that includes an action
having external preconditions which are assumed to be handled
by agent b. The preconditions of REQUESTED_GOAL(i) is the union
of the external preconditions of all actions that are included at time
step i in the plan of agent a, whereas its add and delete effects are
empty. It means that, if in the plan of agent a, there are two actions
at time steps 2 and 5, which has external preconditions then agent
b creates two actions namely REQUESTED_GOAL(2) and REQUES-
TED_GOAL(5), such that the preconditions of REQUESTED_GOAL(2)
and REQUESTED_GOAL(5) are the external preconditions of the ac-
tions at time steps 2 and 5, respectively in the plan of agent a. Thus
an action REQUESTED_GOAL(i) represents all the preconditions at
time step i in the plan of agent a that has to be fulfilled by agent
b. Agent b adds action REQUESTED_GOAL(i) at action level i of his
planning graph. Moreover, when this planning graph is encoded
into a CNF theory, all the REQUESTED_GOAL actions are added as
unit clauses into the theory. Therefore, all solutions that are re-
turned for agent b by the solver establish the external precondi-
tions of the actions in the plan of agent a.

Procedure 5: New_Proposal_Assistance

ComputeNewPlanðTb;Gb; lbest; hPb;Rbi;CPb
Þ

if Pb – fail then
send message (hPb,Rbi,;)

else
continue = false
send message (h;,;i,;)
7. Experimental results

In this section we present some preliminary experimental re-
sults for the coordination algorithm presented in Section 5.
Although the algorithm is able to find optimal solutions to MACAP,
doing so can be inefficient. This is because finding an optimal plan
(and more importantly, proving optimality) requires searching the
entire space of plan combinations, which can be very large even for
moderately sized problems. Hence, the current implementation of
l-SATPLAN follows a different approach that aims at generating
quickly sub-optimal plans of good quality.

Every time an agent searches for a new candidate sub-plan, the
length of the solution that is sought is increased by one. For in-
stance, if the first plan found by an agent is of length 6, the length
of his second plan must be 7. This process iterates until the length
of the plan reaches the current value of lbest. At this point, the va-
lue of variable continue is set to false. Therefore, the current imple-
mentation of the coordination algorithm does not guarantee the
optimality of the solutions that it returns, but it has been observed
experimentally that the generated solutions are of good quality. In
many cases the length of the plan that is returned is considerably
shorter than that of the first solution that is found.

We run l-SATPLAN and the coordination algorithm on multi-
agent versions of the well-known Logistics planning domain as well
as the Storage and TPP domains from the 5th International Plan-
ning Competition [21]. The TPP (Traveling Purchaser Problem) is
a generalization of the Traveling Salesman Problem. A purchaser
can buy products from different markets that provide the products
in different amounts and prices. The storage domain is about mov-
ing a certain number of crates from some containers to some de-
pots by hoists. Inside a depot, each hoist can move according to a
specified spatial map connecting different areas of the depot. For
more information about the domains the reader is referred to
[21]. To obtain the multi-agent version of a problem, we split the
goals of the original problem into different sets and assign each
goal set to a different agent. All our experiments concern the case
of two agents. We assume that each agent can execute all the ac-
tions in the domain, and therefore he can achieve its goals without
assistance from other agents.

The results are shown in Table 1. The underlying planning sys-
tem that is used is SATPLAN 2006. All experiments were run on a
machine with a 2.80 GHz CPU, 4096 MBs of memory, and the
CPU cut-off limit for l-SATPLAN was set to 3600 s. Column Goals
a/b contains pairs of the form a/b where a(b) is the number of goals
assigned to agent a(b). The columns Time 1st Plan and Length 1st
Plan provide information about the run time (in seconds) and
length of the first joint plan found by l-SATPLAN. More specifi-
cally, an entry (a,b) means that in the first joint plan that is found,
agent a(b) finds a plan of length a(b). Similar information is pro-
vided in columns Best Plan Length and Time for Best Plan, but for
the best plan found by the system. Finally, the entries under ]Joint
Plans are the total number of joint plans computed by the coordi-
nation algorithm, before its termination. An entry No Plan in the
column Length 1st Plan means that there was no consistent plan
of agent b for the first plan proposed by agent a.

To understand the effects of positive interactions we discuss a
pair of plans generated by l-SATPLAN (Table 2). The problem un-
der consideration is from TPP domain. There is one market M1
and one depot D1. Moreover there are two trucks T1 and T2 in
the world. M1 is selling products P1 and P2. The goal of agent a
is to buy and store P1 in D1 and the goal of agent b is to buy and
store P2 in D1. We can see from the plan generated by agent b that
he does not utilize truck T2, but instead he avails the cooperative
opportunities offered by agent a by using the same truck T1. At
time 0, agent b remains idle waiting for agent a to move T1 to



Table 1
l-SATPLAN performance on multi-agent problems.

Problem Goals a/b Time 1st plan Length 1st plan Best plan length ] Joint plans Time for best plan

AIPSLog11 5/4 3 (9,14) (13,10) 7 16
AIPSLog15 4/7 4 (10,17) (15,10) 10 28
AIPSLog18 4/4 5 (10,14) (11,11) 3 12
AIPSLog20 5/5 7 (14,18) (14,18) 8 39
AIPSLog24 5/4 3 (12,14) (13,12) 5 14
AIPSLog28 5/5 7 (10,16) (15,13) 7 36
AIPSLog30 4/5 4 (12,16) (12,16) 10 28
Storage10 2/2 12 No plan (11,18) 16 64
Storage12 2/2 32 No plan (9,9) 10 216
Storage16 3/3 129 No plan (13,8) 16 942
TPP11 3/3 4 (13,13) (13,13) 3 9
TPP13 4/4 7 (9,14) (10,11) 5 22
TPP14 4/5 8 (7,13) (9,10) 4 34
TPP15 5/5 12 (9,15) (11,11) 6 50
TPP17 6/6 29 (11,11) (11,11) 3 65
TPP19 7/7 47 (10,12) (11,10) 2 90
TPP20 9/6 58 (12,11) (12,11) 4 117

Table 2
A plans pair generated by l-SATPLAN.

Time Plan of agent a Plan of agent b

0 (DRIVE T1 D1 M1) []
1 (BUY T1 P1 M1) (BUY T1 P2 M1)
2 (LOAD P1 T1 M1) (LOAD P2 T1 M1)
3 (DRIVE T1 M1 D1) []
4 (UNLOAD P1 T1 D1) (UNLOAD P2 T1 D1)
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M1. At times 1 and 2, agent b also buys and puts his product P2 in
T1 along with agent a. Then again at time 3 agent b remains idle
waiting for agent a to drive T1 from M1 to D1. At time 4, both
agents unload and store their products in D1.

The preliminary experimental results of Table 1 show that
l-SATPLAN represents a viable approach to the problem of mul-
ti-agent planning.

8. Conclusion and future work

In this paper we formalized the multi-agent coordinated actions
problem (MACAP), multi-agent optimal coordinated actions prob-
lem (MAOCAP) and the multi-agents assistance actions problem
(MAAAP). We presented l-SATPLAN, a multi-agent version of SAT-
PLAN the most powerful planner in classical planning, which is
used by the agents to solve the MACAP, MAOCAP and MAAAP.
The multi-agent assistance algorithm we propose is an innovative
approach to dealing with the problem of mutual assistance among
agents with complementary capabilities, whereas our coordination
procedure presents certain advantages over previous approaches.
We also presented all the details of how l-SATPLAN deals with
negative as well as positive interactions in order to find consistent
plans for multiple agents working in the same environment. More-
over, we presented for the first time in multi-agent planning do-
main, several experimental results that show the added value of
adapting SATPLAN to multi-agent planning. We believe that pre-
senting these results is an important issue because it will give
the opportunity to other researchers working in multi-agent plan-
ning to use these domains and to compare the performance of their
planners with l-SATPLAN.

There are several lines for future work. As in our current imple-
mentation, we can not guarantee the global optimal solution, so
currently we are investigating the use of heuristics to guide the
search of the coordination algorithm, in order to ensure the opti-
mality of the global joint plan and at the same time not to generate
a lot of sub-optimal plans before coming up with the optimal one.
There seems also to be room for improvement by combining the
classical planning based algorithms we presented with techniques
from multi-agent plan merging as those presented e.g. in [7,10].
Another direction of future study concerns the extension of the
proposed framework to other problems from multi-agent planning,
such as action synchronization and interleaved planning and exe-
cution. As a concluding remark, we reiterate that this work can
be seen as a first step towards establishing a framework where dif-
ferent multi-agent planning problems can be studied in the light of
recent advances in classical planning.
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