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Abstract

In a recurrent event setting, we introduce a new score designed to evaluate the prediction
ability, for a given model, of the expected cumulative number of recurrent events. This
score can be seen as an extension of the Brier Score for single time to event data but works
for recurrent events with or without a terminal event. Theoretical results are provided
that show that under standard assumptions in a recurrent event context, our score can be
asymptotically decomposed as the sum of the theoretical mean squared error between the
model and the true expected cumulative number of recurrent events and an inseparability
term that does not depend on the model. This decomposition is further illustrated on
simulations studies. It is also shown that this score should be used in comparison with a
reference model, such as a nonparametric estimator that does not include the covariates.
Finally, the score is applied for the prediction of hospitalisations on a dataset of patients
suffering from atrial fibrillation and a comparison of the prediction performances of different
models, such as the Cox model, the Aalen Model or the Ghosh and Lin model, is investigated.

Keywords: Recurrent events; Prediction assessment; Right-censoring; Terminal event; Brier
Score.

1 Introduction

Recurrent event data are often encountered in follow-up studies. They can be seen as a gener-
alisation of the standard time to event data, where individuals may experience the same event
repeatedly over time. Typical examples may include HIV studies where patients can experience
repeated opportunistic infections, remission data from Leukemia patients who can experience
multiple relapses, repeated seizures for epileptic patients, or hospitalisation data where the
events of interest are the hospitalisations. In those studies, the focus might be on assessing
the effect of covariates on the risk of recurrences or on predicting the future recurrences. The
first model to deal with recurrent event data was the Andersen-Gill model [3] which was fur-
ther extended by [22] to account for possibly dependent jumps of the recurrent event process.
Further models were developed such as in [24], [8], [14], [13] or [1] where the last four pa-
pers incorporate the presence of a terminal event in the estimation procedure, or using random
effects such as in [18], [23], or [25]. In particular, in [8], [14], [13], [1] the authors focused
on the estimation of the expected cumulative number of recurrent events. This is a marginal
quantity that computes the expectation of the number of experienced events of an individual
before any time point. This quantity is particularly interesting as it summarises the evolution
of the recurrent event process with time. In the presence of a terminal event, it also includes
the fact that when the terminal event occurs the patient can no longer experience any further
recurrent events.

In some studies the focus is more on the predictiveness ability of a model rather than on the
interpretation of the covariates effects. This is the case when clinicians aim at predicting the
future repeated events in order to offer the best medical care. Being able to predict the future
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recurrences of any patients on a short time period also allows to predict the future burden of
the disease over the patient’s life. Moreover, a predictive model can be an important tool for
making medical decisions but also for communicating with the patients about the future course
of his/her disease. For instance, in [28] the authors studied patients with atrial fibrillation, a
well known cardiac disease, in an attempt to predict the future hospitalisations of patients due
to their disease. Since the patients suffering from this disease are usually old (the median age in
the study was 63 years) and since atrial fibrillation can be a severe disease in some cases, those
patients were also at risk of death. Several covariates were collected and a prediction of the
expected cumulative number of recurrent events over time was performed using a Cox model
with dependence on prior counts.

While such models are certainly of interest for clinicians, it is important to propose relevant
diagnosis tools that can evaluate the prediction performance of the proposed model. There
already exists several indicators for prediction performances in the standard context of time
to event data with only one event per individual. The Brier score was developed in [15] and
in [12], which basically is a score for computing the mean squared error of the time to event
in the presence of censoring. This score was further developed to deal with random effect
models in [30], or to evaluate the performance of dynamic prediction models in [27] where the
information available from a longitudinal covariate is updated at each time point. Note also
that other types of predictive accuracy measures exist, called discrimination measures, such as
the C-index (see [16], [11]) or the time dependent ROC curve and area under the curve (see
for instance [17]).

In this paper, the aim is to derive a predictive accuracy measure for recurrent events models
where the focus is on predictiveness rather than discrimination. The quantity of interest is
solely the expected cumulative mean number of recurrent events. Since no mean squared error
measure, such as the Brier score, exists in the context of recurrent events, the goal of this
work is to fill in this gap by deriving a new score of this type for recurrent events, which also
accommodates for the presence of a terminal event. In this work, we show that this score reduces
to the Brier score when only one event per individuals can occur and hence can be seen as a
direct generalisation of the standard Brier score. Also, since our prediction criterion focuses
on the marginal quantity of the expected cumulative number of recurrent events, it provides a
summary score that takes into account the prediction of all recurrent events. In the context of
a terminal event, it also incorporates the quality of prediction of the terminal event.

In Section 2.1, we introduce the general prediction criterion for recurrent events, denoted
M̂SE. This criterion is very general and can work under right-censoring, for situations with a
terminal event and for rate or intensity based models. In Section 2.2, we discuss the modelling
assumptions in the presence of a terminal event. In Section 2.3, we present some existing
estimators for the expected cumulative number of recurrent events. In Section 3, we derive
the main theoretical results of this paper. We first introduce a theoretical criterion and show
that it can be decomposed into an inseparability term and an imprecision term, similarly to
the results in [12]. The former does not depend on the model and cannot be removed while the
latter is exactly the mean squared error between the recurrent event process and the prediction
model of the expected cumulative mean number of recurrent events. We then show that our
prediction criterion asymptotically converges towards the theoretical criterion. In Section 4, we
demonstrate that when individuals can only experience one event, our prediction criterion is
equivalent to the standard Brier score. In Section 5, a simulation study is conducted. First, the
decomposition between inseparability and imprecision terms is illustrated. As the inseparability
is, by far, the dominant term, we then recommend to consider as a prediction score, the difference
of M̂SEs between the considered model and a reference model. Second, we illustrate how this
prediction score can be used in order to compare prediction models. In Section 6, the atrial
fibrillation dataset is studied. We show that the model with dependence on prior counts (which
is a multi-state model), stratified with respect to atrial fibrillation type, provides the best
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prediction performance among all other models considered.

2 Prediction criterion for the expected cumulative number of
recurrent events

2.1 The prediction criterion in the general framework

In this section we present a prediction criterion for a recurrent event setting under right-
censoring and a terminal event. We define a counting process of interest N∗(t) which counts
the number of recurrent events that have occurred before time t. A terminal event T ∗ is further
introduced such that this counting process cannot jump after T ∗. We denote T := T ∗ ∧ C
and N(t) := N∗(t ∧ C) where C is a censoring variable and a ∧ b represents the minimum
between a and b. We assume that a multivariate left-continuous external time dependent
covariate vector X(t) (see [20] for the definition of external covariates) is observed and we
note X̄(t) = {X(u) : 0 ≤ u ≤ t} the history of the covariate process up until time t. We
define M a class of bounded functions depending on t and X̄(t). For each t ≥ 0, we de-
note the support of all possible sample paths for the process X̄(t) by Xt. We also note τ
the endpoint of the study. On the basis of i.i.d. replications (Ni(t), Xi(t) : 0 ≤ t ≤ τ), we
will assume that an estimator µ̂ ∈ M of the expected cumulative number of recurrent events
µ∗(t | X̄(t)) := E[N∗(t) | X(u) : 0 ≤ u ≤ t] is available. We will say that this estimator is
consistent if there exists µ ∈M such that for all t ≤ τ ,

sup
x∈Xt

|µ̂(t | x)− µ(t | x)| → 0, in probability as n→∞.

The main goal of this paper is to develop a new mean squared error criterion designed to evaluate
the performance of this estimator.

We propose to evaluate the prediction ability of a given estimator µ̂ ∈ M, through the
following criterion:

M̂SE(t, µ̂) =
1

n

n∑
i=1

(∫ t

0

dNi(u)

Ĝc(u | X̄i(u))
− µ̂(t | X̄i(t))

)2

, (1)

where Ĝc(u | X̄i(u)) = 1− Ĝ(u− | X̄i(u)) is an estimator of Gc(u | X̄i(u)) = 1−G(u− | X̄i(u)),
the conditional survival function of the censoring variable C given X̄(·). The notation Ĝ(u− |
X̄i(u)) indicates the left limit of the function Ĝ at u. We will assume uniform consistency of
this censoring estimator in the following way.

Assumption 1 Let G be a model for the conditional censoring distribution. We say that Ĝ is
a uniformly consistent estimator for G ∈ G if for all t ≤ τ ,

sup
x∈Xt

|Ĝ(t | x)−G(t | x)| → 0, in probability as n→∞.

Presentations of different estimators for G are discussed in Section 2.2.
We now introduce a theoretical criterion that would be available if the censoring distribution

was known. For some function µ ∈M, let:

MSE(t, µ) = E

[(∫ t

0

dN(u)

Gc(u− | X̄(u))
− µ(t | X̄(t))

)2
]
. (2)

The crucial idea behind our criterion (1) comes from the fact that

E
[∫ t

0

dN(u)

Gc(u | X̄(u))

]
= E[µ∗(t | X̄(t))], (3)
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a relationship that is proved in Section 2.2. In Section 3, we provide theoretical results that
justify the appropriateness of the proposed criterion. In particular, Proposition 1 of Section 3
shows that the theoretical criterion can be decomposed in the following way:

MSE(t, µ) = E
[(
µ∗(t | X̄(t))− µ(t | X̄(t))

)2]
+A(t),

with A(t) not depending on µ. The first term is an imprecision term and the second term is
an inseparability (or residual) term that does not depend on the chosen model. It should be
noted that this kind of result is similar to the imprecision/inseparability decomposition of the
Brier score (see [12]). This result shows that it is a relevant purpose to aim at estimating the
expectation in Equation (2) as it is a valid surrogate for the mean squared error between µ∗

and µ. Since the inseparability term is not affected by the value of µ, the quantity MSE(t, µ)
can be used to compare different models in terms of their mean squared error. Of course, this
theoretical criterion depends on unknown quantities and needs to be estimated in practice. As
a matter of fact, Proposition 2 of Section 3 states that if µ̂ is a consistent estimator for some
µ ∈M then as n tends to infinity, our empirical criterion (1) is asymptotically equivalent to the
theoretical criterion (2) evaluated at µ. Combining Propositions 1 and 2 thus shows that our
empirical prediction criterion (1) can be used to evaluate the mean squared error between µ and
µ∗. Such a criterion is especially useful when one wants to compare different models in terms of
their prediction performances. One common practice (see [29]) is then to use a reference model,
typically a model that does not use any covariate, and to compare the prediction ability of each
model relatively to the reference model. To do so, we introduce the score criterion, defined as:

Score(t, µ̂, µ̂0) = M̂SE(t, µ̂0)− M̂SE(t, µ̂), (4)

where µ̂0 is the reference model. Using this score offers the advantage that the inseparability
term will cancel out in the difference and as a result, this score criterion will asymptotically
converge towards the difference between the two mean squared errors of the two models. In the
rest of the paper, we will call prediction criterion the quantity M̂SE defined in Equation (1)
and prediction score the quantity defined in Equation (4). Of note, we have chosen to define
the score as the difference between the prediction criterion of the null model and of the model
of interest such that the larger the score the better the model in terms of prediction accuracy.
In the simulation section, we will also show that the inseparability term tends to be very large
as compared to the imprecision term which limits the interpretation of the prediction criterion
and advocates for the use of the prediction score instead.

When analysing recurrent events it is common to model the recurrent event increments. But
because Equation (3) needs to hold, the validity of the criterion will depend on the modelling
assumptions made on those increments. In the next section we will specify those assumptions
under which Proposition 1 and Proposition 2 hold when a rate model is used, that is when one
models the probability that a jump occurs given some covariates. Other models are possible,
typically based on the intensity of the recurrent event process, such as models that depend
on prior counts. Our criterion (1) will also be valid with such models. However, the required
assumptions in this context need to be slightly adapted and are specified in the Supplementary
Information. Finally, our prediction criterion is also valid when there is no terminal event and
the recurrent events are right-censored. In that case, the precise assumptions needed for our
Propositions to hold are also specified in the Supplementary Information.

2.2 Assumptions when a rate model is used

In this section, we consider the following rate model (see e.g. [7], [26]):

E[dN∗(t) | I(T ∗ ≥ t), X̄(t)] = I(T ∗ ≥ t)λ∗(t | X̄(t))dt, (5)
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where λ∗(t | X̄(t)) is the true rate function. In real-data analysis situations, a terminal event
often occurs, typically caused by death which precludes the occurence of further recurrences.
Under this model, we observe that

µ∗(t | X̄(t)) = E[N∗(t) | X̄(t)] =

∫ t

0
S(u | X̄(u))λ∗(u | X̄(u))du,

where S(t | X̄(t)) := P[T ∗ ≥ t | X̄(t)] is the conditional survival function of the terminal event.
This implies that in order to define an estimator of µ∗(t | X̄(t)) = E[N∗(t) | X̄(t)] one usually
needs to also model the hazard rate for the terminal event and to derive an estimator of the
conditional survival function. As a result our prediction criterion will both take into account
the predictive performance of the survival function and of the rate function of N∗ since, if one
of those two estimators behaves poorly, the resulting estimator for µ∗ is likely to perform badly
as well.

We assume independent censoring in the following way:

E[dN∗(t) | I(T ∗ ≥ t), X̄(t)] = E[dN∗(t) | I(T ≥ t), X̄(t)].

We denote Y (t) = I(T ≥ t) the observed at-risk process and N(t) = N∗(T ∧ t) the observed
counting process. Under the independent censoring assumption, it can be shown that

E[dN(t) | Y (t), X̄(t)] = Y (t)λ∗(t | X̄(t))dt. (6)

We assume Assumption 1 and we make the following additional assumption.

Assumption 2 We assume that there exists a constant τ > 0 and a constant c > 0 such that

1. ∀t ∈ [0, τ ], P[T ≥ t | X̄(t)] ≥ c almost surely,

2. N(τ) is almost surely bounded by a constant.

We also assume that T ∗ is independent of C conditionally on X̄(·).

Those conditions are standard in the context of regression for recurrent events with a terminal
event, see [14] for example. Using Equality (6) one can easily observe that E[dN(t) | X̄(t)] =
S(t | X̄(t))Gc(t | X̄(t))λ∗(t | X̄(t))dt under the independent censoring hypothesis. We then
directly see that Equation (3) holds.

On the basis of i.i.d. replications (Ni(t), Xi(t) : 0 ≤ t ≤ τ), let µ̂ ∈ M be an estimator of
µ∗ where M is a class of models that are assumed to be bounded. We propose to evaluate the
prediction ability of this estimator through criterion M̂SE(t, µ̂) defined in Equation (1). This
criterion involves an estimator of G, the conditional cumulative distribution function of the
censoring variable. If C and X(·) are independent, one can estimate G using the Kaplan-Meier
estimator by considering C to be the variable of interest that is incompletely observed due to the
terminal event T ∗. If C depends on X the conditional distribution of C must also be modelled.
Several possible models are presented in [12] such as the Cox model, the Aalen additive model,
or the kernel type model of [10]. Alternatively, a single-index approach for right-censored data,
as in [5], or the random survival forest method developed in [19] can be used.

Theoretical results on the validity of this criterion are derived in Section 3. When dealing
with recurrent events, intensity based models are also possible. In particular, in some situations,
it might be relevant to consider models with dependence on prior counts, as studied in [7]. Such
models are multi-state models where the recurrent event intensity is allowed to change after
each recurrence. They are detailed in the Supplementary Information with the appropriate
assumptions needed in such context.
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2.3 Examples of estimators for the expected cumulative number of recurrent
events

In this section we present some estimators for the expected cumulative mean number. In
the context of right-censored data and no terminal event, the expected cumulative number of
recurrent events is simply equal to the cumulative hazard function: µ∗(t | X̄(t)) =

∫ t
0 λ
∗(u |

X̄(u))du, see the Supplementary Information for more details. It is then common to model the
rate function λ∗ using the Cox (see [9]), Aalen (see [26]) or Accelerated Failure Time (see [21])
models. We note Λ̂ an estimator of Λ∗, where Λ∗(t | X̄(t)) =

∫ t
0 λ
∗(u | X̄(u))du. The estimator

of µ∗ can then be expressed in the following way (see [7]):

µ̂(t | X̄(t)) =

∫ t

0
dΛ̂(u | X̄(u)). (7)

In the presence of a terminal event, a common approach is to first model the hazard rate
of the terminal event (using again a Cox model for instance) and to derive an estimator of the
survival function Ŝ(t | X̄(t)) = exp(−

∫ t
0 dΛ̂T

∗
(u | X̄(u))du) where Λ̂T

∗
is the estimator of the

cumulative hazard rate of the terminal event. Then, the final estimator of µ∗ is (see [7] and [1]):

µ̂(t | X̄(t)) =

∫ t

0
Ŝ(u | X̄(u))dΛ̂(u | X̄(u)). (8)

Alternative approaches that directly model µ∗ also exist. In [14] the authors consider the
following Cox type model: µ∗(t | X̄(t)) = µ0(t) exp(X(t)>β). A more general approach consists
in using a Single-Index-Model for estimating µ∗: in [4] the authors assume the existence of a
nonparametric function g and a parameter β such that µ∗(t | X̄(t)) = g(X(t)>β). Those two
approaches provide a direct estimator of the quantity of interest µ∗. However, in the presence
of a terminal event, it is no longer possible to disentangle the effects on the recurrent event
process or the terminal event. As a result, the regression parameters should be interpreted
with caution. See also [7] for a discussion about this issue. Nevertheless, those estimators are
appealing in the context of prediction as they do not require to separately model the hazard for
the terminal event and the hazard for recurrent events.

A popular modelling approach, when dealing with recurrent events, is to use multi-state
models. In particular, the dependence on prior counts model allows to specify a separate hazard
risk after each new recurrence. It can also incorporate different hazards for the terminal event
that differ according to the number of previous recurrent events that were already experienced.
We refer the reader to [7] and to the Supplementary Information for more details on this model.
Let Λ̂l(t | X̄(t)) be an estimator of the cumulative hazard for the lth recurrent event at time t
knowing the covariates and that the individual is at risk (that is, he/she is alive and has already
experienced l − 1 recurrent events) at time t−. Then, an estimator of µ∗ can be derived as

µ̂(t | X̄(t)) =
L∑
l=1

∫ t

0
Q̂l(u | X̄(u))dΛ̂l(u | X̄(u)),

where Q̂l(u | X̄(u)) is an estimator of the state probability P[T ∗ ≥ u,N∗(u−) = l − 1 |
X̄(u)]. These probabilities can be easily estimated using standard R packages for multi-state
models (mstate or msm). On the other hand, the hazard rates for each state can typically be
modelled using Cox models and the integral will be evaluated by summing the product of the
two quantities evaluated at the jumps, which will occur when an individual experiences his/her
lth recurrent event.

3 Theoretical results

In this section we provide theoretical results on the proposed criterion (1) in the context of
right-censoring and a terminal event. Two results are obtained. The first one is concerned with
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the theoretical criterion (2). It shows that this criterion applied to a function µ ∈M reduces to
the mean squared error between µ and µ∗ and a term that does not depend on µ. The second
result shows the asymptotic consistency between M̂SE(t, µ̂) and MSE(t, µ) when the estimator
µ̂ is an asymptotically consistent estimator of µ.

Proposition 1 We assume Assumption 2 and independent censoring. We then have for µ ∈
M,

MSE(t, µ) = E
[(
µ∗(t | X̄(t))− µ(t | X̄(t))

)2]
+A(t), (9)

where A(t) ≥ 0 for all t ≥ 0 and A(t) does not depend on µ.

Proposition 2 We assume Assumptions 1, 2, and independent censoring. Then, if the esti-
mator µ̂ ∈M is consistent for µ ∈M, we have

sup
t≤τ

∣∣∣M̂SE(t, µ̂)−MSE(t, µ)
∣∣∣→ 0, in probability as n→∞.

The proofs are provided in the Appendix, in Sections 8.1 and 8.2, with an explicit expression
of A(t). The results of the two propositions can be extended to intensity based models and the
proof is also provided in the Appendix with the appropriate assumptions. As a special case,
they also apply to the situation with no terminal event.

4 Link with the Brier score

The Brier score (see [12]) is a popular criterion to evaluate the prediction performance of a
regression model for the conditional survival function in the context of right-censoring when
only a single event can be observed per individual. We show in this section that if we use our
criterion when individuals can only experience one event at most, then our theoretical criterion
denoted MSE′ and defined as follows

MSE′(t, π) = E

[(
1−

∫ t

0

dN(u)

Gc(u | X̄(u))
− π(t | X̄(t))

)2
]
, (10)

where π = 1−µ, reduces to the theoretical Brier score up to a term that does not depend on the
modelM. Note that when individuals can only experience one event, the recurrent event process
reduces to N∗(t) = I(T ∗ ≤ t) and µ∗(t | X̄(t)) = E[N∗(t) | X̄(t)] is the conditional cumulative
distribution function of T ∗. Since the Brier score has been designed for the prediction of the
conditional survival function, we have simply rewritten our criterion in Equation (2) such that
π represents the model for the conditional survival function.

We first recall that the theoretical Brier score is defined as (see Equation (1) from [12]):

MSEBrier(t, π) = E [(I(T ∗ > s)− π(t | X))2],

where the expectation is taken with respect to the joint distribution of T ∗ and X. For simplicity,
the covariate X is not time dependent in the formula, as presented in the paper of [12], but
the results presented in this section are still valid for time dependent covariates. In their work,
the authors show similar results as Propositions 1 and 2 of the present paper when the aim
is to provide a prediction of the survival function S(t | X) = P[T ∗ > t | X]. Note that we
have suppressed the dependency with respect to S in the definition of the Brier score to stay
consistent with the notations used throughout this paper. Also, in the definition of the Brier
score, π plays the role of 1 − µ in the present paper, that is, it is the limiting function of a
proposed conditional survival estimator Ŝ(t | X). We have the following result.
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Proposition 3 We assume that only one event per individual can be experienced, that is,
N(t) = I(T ≤ t,∆ = 1), with T = T ∗ ∧ C is the observed time, T ∗ is the true event time,
C is the censoring variable and ∆ = I(T ∗ ≤ C) is the censoring indicator. Then, under
independent censoring, we have:

MSE′(t, π) = MSEBrier(t, π) +B(t),

where B(t) ≥ 0 for all t ≥ 0 and B(t) does not depend on π.

The proof is provided in the Appendix, in Section 8.3, with an explicit expression of B(t).
Since B(t) does not depend on the model π, those two criterions are completely equivalent. In
particular, one may consider the score prediction as defined in Equation (4) which represents
the difference, in terms of MSE, of a regression model to a reference model, such as a model
that does not include covariates. In that case, the two criterions will provide exactly the same
values since the B(t) term will cancel out in the difference. As we will see in the next section,
comparing a model to a reference is typically what we recommend in practice. Since recurrent
events are a generalisation of the single-event per individual situation, our criterion can be seen
as an extension of the Brier score for recurrent events.

5 Simulations

5.1 A scenario with right-censoring and no terminal event

For i = 1, . . . , n, we first simulate a two-dimensional covariate vector Xi = (Xi,1, Xi,2)
> with

Xi,1 a Bernoulli variable with parameter 0.5 and Xi,2 a Gaussian variable with expectation
2 and standard deviation 0.5. Conditional on Xi, the recurrent events are generated from a
non-homogeneous Poisson process with rate λ∗(· | Xi) that follows a Cox model with Weibull
baseline and a two-dimensional time independent covariate. More specifically,

λ∗(t | Xi) = λ0(t) exp(θ>0 Xi), λ0(t) =
α

β

(
t

β

)α−1
,

with α = 2 the shape parameter, β = 0.39 the scale parameter and θ0 = (log(2), log(0.5))>.
Under this simulation setting, the true expected number of recurrent events is equal to (see
Section 1 of Supplementary Information for more details):

µ∗(t | Xi) =

∫ t

0
λ∗(u | Xi)du =

(
t

β

)α
exp(θ>0 Xi). (11)

We further simulate a censoring variable Ci that follows a uniform distribution on [0, 3]. Using
those parameters, we observe 0 or 1 recurrent event for 30% of the individuals, less or equal than
5 events for 54% of the individuals, and less or equal than 12 events for 77% of the individuals.
On average, we observe approximately 8 recurrent events per individual.

Based on a single simulated sample, we first illustrate Propositions 1 and 2 when the class of
modelsM that contains µ assumes no effect of the covariates on the occurrence of the recurrent
events. For this purpose, we independently simulate a training and a test samples. The training
sample is used to compute µ̂train based on Equation (7) where Λ̂ does not depend on X and is
simply the Nelson-Aalen estimator:

Λ̂(t) =
1

n

n∑
i=1

∫ t

0

dNi(u)

Ĝc(u)
,

with Ĝ the Kaplan-Meier estimator of C. We then compute M̂SE(t, µ̂train) from Equation (1)
based on the test sample of size ntest, that is, the computation is performed on a sample
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(N1(·), X1), . . . , (Nntest(·), Xntest) independent of the training sample. This quantity should pro-
vide an accurate estimation of MSE(t, µ) from Proposition 2. We then compute the imprecision

term E
[(
µ∗(t | X)− µ(t | X)

)2]
in Equation (9) using the true value of µ∗(t | X̄(t)), replacing

µ by µ̂train and replacing the expectation by its empirical sum. In other words, we compute

1

ntest

ntest∑
i=1

(
µ∗(t | Xi)− µ̂train(t | Xi)

)2
,

which should give a very accurate estimation of the imprecision term. The A(t) term is exactly
computed based on its explicit expression (see Section 3 of Supplementary Information). The
decomposition of the MSE between its imprecision and inseparability terms is displayed in
Figure 1 using ntrain = 200 and ntest = 1, 000. In Equation (1) the Kaplan-Meier estimator
of G was computed from the combination of the training and test samples. The solid line
represents the estimated MSE while the dotted and dashed lines represent the inseparability
and imprecision terms, respectively. The inseparability term is seen to be very close to the MSE.
In contrast, the imprecision term, which clearly is not null here since the estimated model uses
no covariates, is relatively small as compared to the other two terms. This plot suggests that
it might be difficult to compare different models as the inseparability term is dominant in the
decomposition of the MSE, which implies that two MSEs computed from two different models
will tend to look very similar (for instance, for t = 2.5, the inseparability term represents
approximately 84% of the value of the MSE). As a result, we advocate the use of a reference or
null model and to compute the prediction score as defined in Equation (4): for a given model,
this score computes the difference between the MSE of the reference and the MSE of this model.
Therefore, this score will represent the prediction gain of the model as compared to the null
model. A typical choice of the null model is the one that uses no covariates. Those models
will usually be implemented based on a training sample. The idea behind this score is that
the inseparability term will cancel out in the difference, and the score is therefore equal to the
difference between the imprecision terms of the two models. More simulations that compare
the prediction scores between several models in the context of no terminal event are presented
in the Supplementary Information. Also, the importance of Assumption 1 is investigated in the
Supplementary Information based on data where the censoring distribution is allowed to depend
on the covariates. It is seen in particular that the random survival forest model from [19] for the
censoring distribution provides a good approach for computing the prediction criterion when
the relationship between censoring and covariates is not known in advance.

5.2 A scenario with right-censoring and a terminal event

We now consider a simulation scenario which also includes a terminal event. The recurrent event
process and its covariates are simulated in the same manner as in the previous section, with
the same parameter values. The censoring variable is simulated following a uniform variable
on [0, 8]. The terminal event is simulated according to a Cox model with baseline following a
Weibull distribution with shape parameter equal to 5 and scale parameter equal to 1.8. This
Cox model also includes the same two covariates as for the recurrent event process with the same
effects on the hazard function (i.e. the effects are equal to log(2), log(0.5) for the Bernoulli and
Gaussian covariates respectively). This setting leads to 8.5 events per individual on average,
with 26%, 50%, 77% of individuals that experience less than or equal to 3, 7 and 12 events,
respectively. On average 28% of individuals are censored.

We estimate the expected cumulative number of recurrent events based on Equation (8)
where in the formula, the Breslow estimator is used to estimate the conditional survival function
of the terminal event, if the estimation model for the terminal event includes covariates. In other
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Figure 1: Decomposition of the MSE (solid line) in Proposition 1 as the sum between the the inseparability
term A(t) (dotted line) and the imprecision term (dashed line). The data were simulated from a Cox model with
two covariates and the expected cumulative number of recurrent events was predicted using the Nelson-Aalen
estimator. The train sample (ntrain = 200) is used for the computation of the Nelson-Aalen estimator, the test
sample (ntest = 1, 000) is used for the computation of the MSE. More simulations under this scenario with no
terminal event can be found in the Supplementary Information.

words:

Ŝ(t | X) = exp

(
−
∫ t

0
exp(X>β̂T

∗
)dΛ̂T

∗
0

)
,

with β̂T
∗

is the estimated regression parameter from the Cox model for the terminal event and
Λ̂T

∗
0 its corresponding baseline estimator known as the Breslow estimator. If the terminal event

model does not contain any covariates, then the Kaplan-Meier estimator is used instead. As
previously, we use the score defined in Equation (4) to evaluate the quality of prediction of a
model where the reference model µ̂0 is defined as

µ̂0(t) =

∫ t

0
Ŝ(u)dΛ̂(u), (12)

with Ŝ the Kaplan-Meier estimator of the terminal event and Λ̂ the Nelson-Aalen estimator
of the recurrent event process. The same score is also used for the prediction of the survival
function with the Kaplan-Meier estimator as the reference model. We consider four different
regression models: a correctly specified model that includes the two covariates for both the
recurrent event process and the terminal event in two Cox models, a model where the Gaussian
covariate is missing for the Cox model of the terminal event (but the Cox model of the recurrent
event is correctly specified) and a model where the Gaussian covariate is missing for both Cox
models.

In Figure 2, we simulated 100 training samples each of size 800 and we evaluated the pre-
diction score on a unique test sample of size 1, 000. In the bottom panel, we see that including
the two covariates in the survival model increases the prediction performance as compared to
the model with only one covariate. Also, for both models, the gain in terms of prediction is
more important for small time points and is reduced after time 2 approximately, as compared
to the Kaplan-Meier estimator. This is due to the fact that the added predictive value of the

10



models as compared to the reference decreases as we reach the tails and equals 0 at time 3 (97%
of the terminal events will occur before time 3). This loss in terms of prediction efficiency of
the survival function for large time points impacts the prediction of the expected cumulative
number of recurrent events. In the top panel, we see that adding the correct covariates in the
Cox models of the survival function and of the recurrent event models increases the prediction
performances. After time 2, the gain in terms of the performance prediction of the expected
cumulative number of recurrent events slightly decreases due to the loss of efficiency in the pre-
diction of the survival function. Tables 1 and 2 provide the mean score of the different models
for the recurrent event process and the survival function, based on 500 training samples of size
100, 200, 400 and 800 and one single test sample of size 1, 000. We see the same trend as in
Figure 2 for all sample sizes. Clearly, increasing the sample size does not provide much gain
in terms of average especially for small time points but it does reduce the variability of the
predictors.
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Figure 2: Prediction scores for the recurrent events (top panels) and the survival function (bottom panels) using

different models. The data were generated from a Cox model with two covariates (n = 200) for the recurrent event

process and with the same two covariates for the terminal event. The expected cumulative number recurrent

of events and the survival function of the terminal event were predicted using the Cox model with one or two

covariates. The reference model uses no covariates and was estimated from the non-parametric estimator in

Equation (12) and from the Kaplan-Meier estimator in the top and bottom panels, respectively. The prediction

scores are computed for 100 training samples of size ntrain = 800 and a unique test sample of size ntest = 1, 000.
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ntrain = 100 ntrain = 200
t = 1 t = 2 t = 2.9 t = 1 t = 2 t = 2.9

One cov.-one cov. 0.68 (0.05) 6.47 (0.43) 6.14 (0.83) 0.69 (0.03) 6.54 (0.24) 6.33 (0.45)
Two cov.-one cov. 1.67 (0.07) 12 (0.92) 6.43 (2.71) 1.67 (0.04) 12.11 (0.6) 6.84 (1.77)
Two cov.-two cov. 1.67 (0.07) 12.61 (0.59) 10.07 (1.18) 1.68 (0.04) 12.75 (0.3) 10.51 (0.59)

ntrain = 400 ntrain = 800
t = 1 t = 2 t = 2.9 t = 1 t = 2 t = 2.9

One cov.-one cov. 0.69 (0.01) 6.57 (0.14) 6.42 (0.28) 0.69 (0.01) 6.59 (0.08) 6.47 (0.17)
Two cov.-one cov. 1.68 (0.02) 12.11 (0.39) 6.92 (1.22) 1.68 (0.01) 12.15 (0.27) 7.07 (0.85)
Two cov.-two cov. 1.68 (0.02) 12.82 (0.17) 10.69 (0.35) 1.68 (0.01) 12.84 (0.09) 10.78 (0.23)

Table 1: Means and standard deviations (in bracket) over 500 simulations for the prediction score of the expected

number of recurrent events in the presence of a terminal event. The results are presented for the same three

models as in Figure 2. The reference model uses no covariates and was estimated from the non-parametric

estimator in Equation (12). Large values indicate better predictive performances.

×104 ntrain = 100 ntrain = 200
t = 1 t = 2 t = 2.9 t = 1 t = 2 t = 2.9

One cov. 0.58 (0.55) 77.22 (34.77) 22.57 (8.29) 0.69 (0.25) 84.71 (15.22) 23.96 (3.81)
Two cov. 1.71 (1.49) 214.84 (46.73) 32.3 (18.05) 2.07 (0.73) 227.83 (23.1) 38.3 (8.86)

ntrain = 400 ntrain = 800
t = 1 t = 2 t = 2.9 t = 1 t = 2 t = 2.9

One cov. 0.74 (0.17) 86.26 (8.65) 24.29 (2.81) 0.77 (0.12) 89.74 (5.44) 27.22 (3.02)
Two cov. 2.2 (0.51) 231.51 (13.94) 40.49 (3.74) 2.28 (0.36) 238.41 (9.88) 46.23 (4.27)

Table 2: Means and standard deviations (in bracket) over 500 simulations for the prediction score of the survival

function. The results were multiplied by 104 and are presented for the model with one or two covariates. The

reference model uses no covariates and is estimated from the Kaplan-Meier estimator. Large values indicate

better predictive performance.

6 Real data analysis: the Atrial Fibrillation dataset

In this section, we analyse a dataset on patients with atrial fibrillation (AF). The aim is to
compare different regression models for the prediction of the expected cumulative number of
atrial fibrillation hospitalisations, using the prediction score developed in this work. Patients
were enrolled from January 1st 2008 to December 1st 2012 in the “Atrial Fibrillation Sur-
vey–Copenhagen (ATLAS-CPH)” from both the in- and outpatient clinics at the Department
of Cardiology at University Hospital Copenhagen, Hvidovre, Denmark. All patients were previ-
ously diagnosed with AF and were categorised at baseline, into either suffering from paroxysmal
atrial fibrillation (PAF) or persistent atrial fibrillation (PeAF).

In total, 174 patients were enrolled with 50 PAF patients and 124 PeAF patients. Time is
measured in days, with a mean follow-up duration of 1 279 days. In terms of observed events,
the patients experienced a total of 325 AF hospitalisations, with 305 AF hospitalisations in the
PeAF group and 20 in the PAF group. A terminal event was defined as either progression to
permanent AF or as the occurence of death. In the dataset, 45 patients experienced a terminal
event and the remaining 129 patients were censored. Finally, in top of the AF type, the dataset
also includes 11 additional variables: gender, age, alcohol consumption (with two levels 0−5 and
> 5), tobacco consumption (with three levels “never smoked”, “ex-smoker”, “current smoker”),
presence of hypertension, heart failure, valvular heart disease, ischemic heart disease, diabetes,
COPD, antiarrythmic medication. The data are presented in great details in [28]. Note also
that the data are fully available from the Plos One website.

In [28], the authors analysed the data using a multi-state approach with four possible states:
no experience of recurrent events yet, 1 recurrent event, 2 or more recurrent events and the ab-
sorbing state for the terminal event. The transition intensities were assumed to be proportional
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with each other using a Cox model, where the number of previous recurrent events was included
in the model. Those types of multi-state models with terminal event are described for instance
in [7] (see Section 6.6.4 of their book). Those analyses showed a high significant effect of the AF
type, the number of previous recurrent events (p-values < 10−4) and of age (p-value= 0.0253)
for the risk of future AF hospitalisations. The effect of diabetes had a p-value equal to 0.0955.
All other variables were assessed as non significants (p-values> 0.2). A Cox model was also
implemented for the terminal event using the multi-state approach (that is including the ef-
fect of previous AF hospitalisations through a proportional effect) with all variables. Only the
age variable was significant (in the multivariate Cox model, the hazard rate was equal to 1.05
and the p-value was equal to 0.0016). In this previous work, the authors then decided to only
include the covariates AF type and age, with a proportional effect of the number of previous
AF hospitalisations for the modelisation of the recurrent event process. For the terminal event
model, they only included the age variable. Based on those models, it is then possible to pro-
duce predictions for the expected cumulative number of future AF hospitalisations, for a given
patient based on his/her characteristics. Using the prediction score developed in this paper,
we will compare the performance of the model used in [28] with several other possible models.
Since diabetes is a known risk factor for AF, we will also consider models with this variable,
along with AF type and age. As in the simulation section, the prediction score will be computed
from a training and a test samples, but this time using 10-fold cross validation, that is one tenth
of the observations are used for the test sample and the remaining observations are used for
the model estimations and the procedure is repeated and averaged ten times. The aim of this
section is to compare different prediction models for the recurrent hospitalisations. Since the
data contain a terminal event, a model for the survival function of this terminal event needs
first to be proposed. We use a Cox model with age as the only covariate. We refer the reader
to the Supplementary Information for a more detailed comparison between different regression
models for the prediction of the terminal event.

The prediction performance for the recurrent event process is now investigated. In the
definition of our prediction criterion (see Equation (1)), we will always estimate the censoring
distribution from the survival random forest, base on the rfsrc package (see [19]). We consider
the following models for the recurrent events:

• four multivariate Cox models based on the age, diabetes and AF type variables,

• the Cox model stratified with respect to AF type and adjusted for age and diabetes,

• the Aalen model with covariates age, diabetes and AF type,

• the Cox multi-state model with covariates age, diabetes and AF type,

• the Cox multi-state model stratified with respect to AF type and adjusted for age and
diabetes,

• the Ghosh and Lin model [14] with covariates age, diabetes and AF type.

The reference model is taken as the non-parametric estimator (see Equation (12)) and the
score is again computed using formula (4). The results are displayed in Table 3 and Figure 3
(in the figure only six different models are represented). The Ghosh and Lin model has been
implemented with the recreg function from the mets package. We observe that the Cox model
with the age variable has a poor predictive performance. From this model, adding the diabetes
or AF type improves the model, with a much bigger gain with the AF type variable. Further,
combining all three variables in the same model provides a substantial gain with respect to
all previous models. On the other hand, the two multi-state models provide only a minor
improvement of the predictions with a slight advantage for the stratified model. The Ghosh and
Lin model shows a good prediction performance but it is slightly less performant than the Cox
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model with all three covariates. On the overall, the Aalen model has a very good prediction
performance. Finally, the predictions for some of these models on the expected cumulative
number of AF hospitalisations are displayed in Figure 4. In this figure, the predictions are made
for two 60 year old patients with diabetes, one with persistent AF and the other with paroxysmal
AF. While the different models do not vary much in their predictions for the paroxysmal AF
patient, they offer different results for the persistent AF patient. According to the results from
Table 3 and Figure 3, the Aalen model and the Cox multi-state model stratified with respect to
AF type have the greatest prediction performances and therefore should be chosen. After 1 500
days after AF diagnosis, the latter model predicts an expected number of AF hospitalisations
equal to 1.03 approximately. On the other hand, if one uses the multi-state Cox model, the
prediction is equal to 0.98, if one uses the multivariate Cox model with all three variables, the
prediction is equal to 0.76.
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Figure 3: Prediction scores for the expected cumulative number of recurrent events in the atrial fibrillation

dataset. With the non-parametric estimator (see Equation (12)) as the reference, six different models are com-

pared. All the models use the Cox model with age as the unique covariate for the estimation of the survival

function. For ease of visualisation, we describe the six models (for the recurrent events) in increasing order of

their scores at time t = 2000: the Cox model with covariate age (score = 0.200), the Cox model with covariates

age and diabetes (score = 0.391), the Cox model with covariate age and AF type (score = 1.790), the Ghosh

and Lin model (score= 2.121), the multi-state (MSM) Cox model with covariates age, AF type and diabetes

(score = 2.156) and the Cox model with covariates age, AF type and diabetes (score = 2.194). The MSM Cox

model assumes that the transition intensities from 0 event to 1 and to “one event or more” to a new event are

proportionals.
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t = 1000 t = 1500 t = 2000

Cox with age 0.008 [−0.538, 0.323] 0.050 [−0.790, 0.603] 0.200 [−1.114, 1.407]
Cox with age and diabetes 0.118 [−0.147, 0.560] 0.166 [−0.726, 0.948] 0.391 [−0.807, 2.480]
Cox with age and AF type 0.622 [−0.205, 1.201] 1.237 [0.741, 1.875] 1.790 [0.480, 5.149]
Cox with age, AF type and diabetes 0.847 [0.042, 1.557] 1.490 [0.168, 2.390] 2.194 [0.222, 6.002]
Aalen with age, AF type and diabetes 0.818 [0.381, 1.352] 1.541 [0.556, 2.540] 2.227 [0.182, 5.011]
Cox with age, diabetes and strata(AF type) 0.843 [0.035, 1.559] 1.491 [0.120, 2.412] 2.184 [0.222, 6.000]
Cox (MSM) with age, AF type and diabetes 0.849 [0.123, 1.401] 1.520 [0.221, 2.319] 2.156 [0.306, 5.027]
Cox (MSM/strata) with age, AF type and diabetes 0.853 [0.142, 1.442] 1.526 [0.269, 2.426] 2.160 [0.267, 5.020]
Ghosh and Lin 0.810 [0.015, 1.542] 1.423 [0.177, 2.332] 2.121 [0.150, 6.195]

Table 3: Means and 80% intervals (in curly bracket) over 10-folds cross validation for the prediction
score of the expected cumulative number of recurrent events in the atrial fibrillation dataset. With the
non-parametric estimator (see Equation (12)) as the reference, nine different models (for the recurrent
events) are compared at three different time points: five Cox and Aalen models with covariates age,
diabetes and AF type, one Cox model stratified with respect to AF type, two multi-state Cox models,
Cox (MSM) and Cox (MSM/strata) and the Ghosh and Lin model. The difference between the two
MSM models is that the first one assumes the baseline transition intensities from 0 event to 1 and to
“one event or more” to a new event to be proportionals while the last one uses two different baselines
functions. All the models use the Cox model with age as the unique covariate for the estimation of the
survival function.
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Figure 4: Expected cumulative number of recurrent events predicted from four different models for two 60 year

old patients with diabetes, one with persistent AF and the other with paroxysmal AF. Those models had similar

prediction performances (see Table 3 and Figure 3).

7 Conclusion

In this work a new prediction criterion was proposed in the context of recurrent event data. The
criterion evaluates the prediction performance of the expected cumulative number of recurrent
events, while taking into account censoring and a possible terminal event. We showed that it
can be decomposed into an inseparability and imprecision terms in the same manner as in [15].
Moreover, the simulations revealed that the inseparability term was largely dominant in the
decomposition. As a result, we recommend to use the prediction score defined in Equation (4),
as the difference between the prediction criterion of a given model and of a reference model,
typically a model that does make use of the covariates, such that the score provides the absolute
gain from the covariates in the proposed model. An alternative score could be derived by
computing the relative gain as proposed in [29]. This produces a score that ranges from 0%
to 100% and shares similarities with the Pearson’s R2 statistic. However, care should be taken
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with such a score, due to the fact that we normalise with respect to the prediction criterion of
the reference model, which itself can be decomposed into imprecision and inseparability. This
criterion could therefore be misleading due to the magnitude of the inseparability term which
is unknown in practice.

The proposed prediction criterion is simple to compute and has the advantage to include
all the recurrent events. As a result, it can be seen as an overall performance measure that
provides information about the global predictive ability of the proposed model in a recurrent
event context. Nevertheless, it would be possible to modify the criterion if one is interested
into evaluating the performance of a model to only predict further recurrent events after a
fixed number of events have already been experienced by a patient. This would amount to
conditionning on a given number of experienced recurrent events in a multi-state framework.
This type of criterion would be similar to the one developed in [27] which conditions on being
alive up to a time t∗ and evaluate the prediction of the model for a time s > t∗. Another
improvement would be to allow for frailty models in the manner of [30]. A marginal score
that integrates the frailty variable could be derived. Such a score would provide an overall
evaluation of the frailty model and would be a natural extension of the score proposed in this
paper. Alternatively, a conditional score could be proposed for the conditional (with respect to
the frailty) expected cumulative number of recurrent events. More work is needed to develop
these two scores. Another extension of interest is the construction of confidence intervals for
the prediction score. This would allow to ascertain the sampling variability of the prediction
score without performing V-fold cross-validation, as done in the application of this work. In [6],
the authors have studied the asymptotic distribution of the Brier score when the data are fully
observed. This result could be first extended to right-censored data and then to the recurrent
events framework. This is left to future research.

Acknowledgement

We thank the reviewers for their constructive criticisms and comments that have helped improve
the paper.

8 Appendix: proofs of the convergence of the prediction crite-
rion for the expected cumulative number of recurrent events
under the two scenarios

In the proof of Proposition 1, we need to verify the key equality from Equation (3). This
result depends on the modelling assumptions and has already been proved in all three different
scenarios, see Section 1 of Supplementary Information, Section 2.2 of the main manuscript and
Section 2 of Supplementary Information for the right-censoring case with no terminal event,
the terminal event case, and the dependence on prior counts case, respectively. In the proof of
Proposition 2, we also need to have E[µ∗(τ | X(τ))] < ∞ which also depends on the different
modelling assumptions made under each scenario.
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8.1 Proof of Proposition 1

In all three scenarios, we directly have:

MSE(t, µ) = E
[(
µ(t | X̄(t))− µ∗(t | X̄(t))

)2]
+ E

(∫ t

0

dN(u)

Gc(u | X̄(u))
− µ∗(t | X̄(t))

)2


+ 2E

[(∫ t

0

dN(u)

Gc(u | X̄(u))
− µ∗(t | X̄(t))

)(
µ∗(t | X̄(t))− µ(t | X̄(t))

)]
.

Using the fact that E[
∫ t
0 dN(u)/(Gc(u | X̄(u))) | X̄(t)] = µ∗(t | X̄(t)), we conclude that

MSE(t, µ) = E
[
(µ(t | X̄(t))− µ∗(t | X̄(t)))2

]
+A(t),

where

A(t) = E

[(∫ t

0

dN(u)

Gc(u | X̄(u))

)2
]
− E

[(
µ∗(t | X̄(t))

)2]
. (13)

Now, using the remarkable identity a2−b2 = (a−b)(a+b) and observing that
∫ t
0 dN(u)/(Gc(u |

X̄(u))) =
∑

ev.≤t{1/(Gc(u | X(ev.)))} either equals 0 if no observed recurrent events occurred
before time t or is greater than 1 if at least one recurrent event occurred before time t, we
conclude that(∫ t

0

dN(u)

Gc(u | X̄(u))
− µ∗(t | X̄(t))

)(∫ t

0

dN(u)

Gc(u | X̄(u))
+ µ∗(t | X̄(t))

)
≥
(∫ t

0

dN(u)

Gc(u | X̄(u))
− µ∗(t | X̄(t))

)
µ∗(t | X̄(t)),

almost surely. Taking the expectation on both sides proves A(t) ≥ 0.

8.2 Proof of Proposition 2

We start by proving that E[µ∗(τ | X̄(τ))] <∞ in the presence of a terminal event (the scenario
without terminal event follows from the same arguments). We have for all t ∈ [0, τ ] : P[C ≥ t |
X̄(t)] ≥ P[T ≥ t | X̄(t)] ≥ c, from Assumption 2. From the same assumption, N(τ) is almost
surely bounded by a constant. As a consequence,

µ∗(τ | X̄(τ)) =

∫ τ

0

E[dN(t) | X̄(t)]

Gc(t | X̄(t))

is almost surely bounded, where the equality has been proved in Section 2.2. In the dependence
on prior counts case, we have for all t ∈ [0, τ ] : P[C ≥ t | X̄(t)] ≥ P[T ≥ t | X̄(t)] =

∑L+1
l=1 P[T ≥

t,N(t−) = l−1 | X̄(t)] ≥ (L+1)c > 0, where the two last bounds come from Assumption MSM
in the Supplementary Information. From the same assumption, N(τ) is almost surely bounded
by a constant. As a consequence,

µ∗(τ | X̄(τ)) =

∫ τ

0

E[dN(t) | X̄(t)]

Gc(t | X̄(t))

is almost surely bounded, where the equality has been proved in the Supplementary Information.
The rest of the proof of Proposition 2 is identical in all three scenarios.
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We first note FX(t)(x) = P[X(t) ≤ x], we let Xu,v denote the support of the joint distribution
(X(u), X(v)) and we note FX(u),X(v)(x, y) = P[X(u) ≤ x,X(v) ≤ v]. We then introduce the
quantity

ξ(t) =

∫
0≤u,v≤t

∫
Xu,v

E[dN(u)dN(v) | X(u) = x,X(v) = y]

Ĝc(u | x)Ĝc(v | y)
dFX(u),X(v)(x, y)

− 2

∫
Xt

µ̂(t | x)µ∗(t | x)dFX(t)(x)

+

∫
Xt

(µ̂(t | x))2 dFX(t)(x) =: ξ1(t) + ξ2(t) + ξ3(t).

Write: ∣∣∣M̂SE1(t, µ̂)−MSE1(t, µ)
∣∣∣ ≤ ∣∣∣∣∣ξ(t)− E

[(∫ t

0

dN(u)

Gc(u | X̄(u))
− µ(t | X̄(t))

)2]∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

(∫ t

0

dNi(u)

Ĝc(u | X̄i(u))
− µ̂(t | Xi(t))

)2

− ξ(t)

∣∣∣∣∣
≤: C(t) +D(t).

By decomposing the square term into three other terms, we bound C(t) in the following way:
C(t) ≤ |C1(t)|+ |C2(t)|+ |C3(t)| with

C1(t) =

∫
0≤u,v≤t

∫
Xu,v

Gc(u | x)Gc(v | y)− Ĝc(u | x)Ĝc(v | y)

Ĝc(u | x)Ĝc(v | y)Gc(u | x)Gc(v | y)

E[dN(u)dN(v) | X(u) = x,X(v) = y]dFX(u),X(v)(x, y),

C2(t) = −2

∫
Xt

(µ̂(t | x)− µ(t | x))µ∗(t | x)dFX(t)(x),

C3(t) =

∫
Xt

(
(µ̂(t | x))2 − (µ(t | x))2

)
dFX(t)(x).

For C1(t) we have

Gc(u | x)Gc(v | y)− Ĝc(u− | x)Ĝc(v− | y)

=
(
Ĝ(u− | x)−G(u− | x)

)
+
(
Ĝ(v− | y)−G(v− | y)

)
+G(u− | x)

(
G(v− | y)− Ĝ(v− | y)

)
+ Ĝ(v− | y)

(
G(u− | x)− Ĝ(u− | x)

)
,

and we can deal with all four terms in the same fashion. For instance, for the first term,

∫
0≤u,v≤t

∫
Xu,v

(
Ĝ(u− | x)−G(u− | x)

)
E[dN(u)dN(v) | X(u) = x,X(v) = y]

Ĝc(u | x)Ĝc(v | y)Gc(u | x)Gc(v | y)
dFX(u),X(v)(x, y)

≤
∫ t

0

∫
Xu

∣∣∣Ĝ(u− | x)−G(u− | x)
∣∣∣E[dN(u) | X(u) = x]

Ĝc(u | x)Gc(u | x)
dFX(u)(x),

using the fact that
∫ t
0 dN(v)/(Ĝc(v | y)Gc(v | y)) is bounded. Then, since

∫ t
0 E[dN(u)/(1 −

G(u− | X(u))) | X(u) = x] = µ∗(t | X̄(t)) and Ĝc(u | x)−1 is asymptotically uniformly
bounded, we conclude that |C1(t)| tends towards 0 in probability using the uniform consistency
of the censoring estimator.

For C2(t) we use the consistency of µ̂ and the fact that E[µ∗(t | X̄(t))] is finite to prove that
|C2(t)| tends towards 0 in probability.
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For C3(t), we directly write (µ̂(t | x))2− (µ(t | x))2 = (µ̂(t | x)−µ(t | x))(µ̂(t | x) +µ(t | x))
and we use the fact that µ(t | x) is bounded and the consistency of µ̂ to prove that |C3(t)| tends
towards 0 in probability.

Similarly to C(t) we obtain the following bound: D(t) ≤ |D1(t)|+ |D2(t)|+ |D3(t)| with

D1(t) =
1

n

n∑
i=1

∫
0≤u,v≤t

dNi(u)dNi(v)

Ĝc(u | X̄i(u))Ĝc(v | X̄i(v))
− ξ1(t),

D2(t) = − 2

n

n∑
i=1

∫ t

0

dNi(u)

Ĝc(u | X̄i(u))
µ̂(t | Xi(t))− ξ2(t),

D3(t) =
1

n

n∑
i=1

(
µ̂(t | X̄i(t))

)2
− ξ3(t).

We now use the bound |D1(t)| ≤ |D1,1(t)|+ |D1,2(t)|+ |D1,3(t)| with

D1,1(t) =
1

n

n∑
i=1

∫
0≤u,v≤t

dNi(u)dNi(v)

Gc(u | X̄i(u))Gc(v | X̄i(v))

−
∫
0≤u,v≤t

∫
Xu,v

E[dN(u)dN(v) | X(u) = x,X(v) = y]

Gc(u | x)Gc(v | y)
dFX(u),X(v)(x, y),

D1,2(t) =
1

n

n∑
i=1

∫
0≤u,v≤t

χ(u, v,Xi(u), Xi(v))dNi(u)dNi(v)

D1,3(t) = −
∫
0≤u,v≤t

∫
Xu,v

χ(u, v, x, y)E[dN(u)dN(v) | X(u) = x,X(v) = y]dFX(u),X(v)(x, y)

and

χ(u, v, x, y) =
{(
Ĝ(u− | x)−G(u− | x)

)
+
(
Ĝ(v− | y)−G(v− | y)

)
+
(
Ĝ(v− | y)−G(v− | y)

)
+G(u− | x)

(
G(v− | y)− Ĝ(v− | y)

)
+ Ĝ(v− | x)

(
G(u− | y)− Ĝ(u− | y)

)}
× 1

Ĝc(u | x)Ĝc(v | y)Gc(u− | x)Gc(v | y)
·

The term |D1,1(t)| converges towards 0 in probability from the strong law of large numbers.
The term |D1,2(t)| is bounded by

sup
u,v,x,y

|χ(u, v, x, y)| 1
n

n∑
i=1

∫
0≤u<v≤t

dNi(u)dNi(v),

supu,v,x,y |χ(u, v, x, y)| converges towards 0 from the uniform consistency of Ĝ while the other
term converges towards a bounded quantity from the law of large numbers. The same argument
applies to |D1,3(t)| which also converges towards 0 in probability.
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For D2(t) we write |D2(t)| ≤ |D2,1(t)|+ |D2,2(t)|+ |D2,3(t)|+ |D2,4(t)| with

D2,1(t) = − 2

n

n∑
i=1

∫ t

0

dNi(u)

Gc(u | X̄i(u)
µ(t | X̄i(t)) + 2

∫
Xt

µ(t | x)µ∗(t | x)dFX(t)(x),

D2,2(t) =
2

n

n∑
i=1

∫ t

0

dNi(u)

Gc(u | X̄i(u)
(µ(t | X̄i(t))− µ̂(t | X̄i(t)))

D2,3(t) = 2

∫
Xt

(µ̂(t | x)− µ(t | x))µ∗(t | x)dFX(t)(x),

D2,4(t) =
2

n

n∑
i=1

∫ t

0

(G(u− | X̄i(u))− Ĝ(u− | X̄i(u)))dNi(u)

Gc(u | X̄i(u))Ĝc(u− | X̄i(u))
µ̂(t | X̄i(t)).

The D2,1(t) term converges towards 0 in probability from the law of large numbers. For
D2,2(t), D2,3(t) and D2,4(t) we use the consistency of µ̂, the convergence in probability of∑

i

∫ t
0 dNi(u))Gc(u | Xi(u))/n, the boundedness of E[µ∗(t | X̄(t))], the uniform consistency of

Ĝ and the asymptotic boundedness of µ̂ and Ĝc(u | x)−1 to prove that all three terms converge
towards 0 in probability.

Finally, for D3(t), we write

D3(t) =
1

n

n∑
i=1

(
µ(t | X̄i(t))

)2
−
∫
Xt

(
µ(t | x)

)2
dFX(t)(x)

+
1

n

n∑
i=1

((
µ̂(t | X̄i(t))

)2
−
(
µ(t | X̄i(t))

)2)
+

∫
Xt

((
µ̂(t | x)

)2
−
(
µ(t | x)

)2)
dFX(t)(x).

Each of the three terms converges towards 0 in probability using the law of large numbers for
the first term and the uniform consistency of µ̂ for the other two.

8.3 Proof of Proposition 3

First, note that the Brier score can be written in the following way:

MSEBrier(t, π) = E[S(t | X)]− 2E[S(t | X)π(t | X)] + E[(π(t | X))2].

We now study, our prediction score MSE′(t, π). Using standard martingale properties (see for
instance [2]), we directly have that E[dN(t) | X] = H(t | X)λ∗(t | X)dt, where H(t | X) =
P[T > t | X] = S(t | X)Gc(t | X) under independent censoring and λ∗ is the hazard rate of T ∗.
As a consequence,

E
[∫ t

0

dN(u)

Gc(u | X)
| X
]

=

∫ t

0
S(u | X)λ∗(u | X)du = 1− S(t | X), (14)

since S(u | X)λ∗(u | X) is equal to the conditional density function of T ∗. Also, it is important
to notice that

E

[(∫ t

0

dN(u)

Gc(u | X)

)2
]

= E
[∫ t

0

dN(u)

(Gc(u | X))2

]
= E

[∫ t

0

S(u | X)

Gc(u | X)
λ∗(u | X)du

]
,
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where the first equality is due to the fact that N can only jump once and thus (
∫ t
0 dN(u)/(Gc(u |

X)))2 is simply equal to ∆I(T ≤ t)/(Gc(T | X))2. Now,

MSE′(t, π) = E

[(
1−

∫ t

0

dN(u)

Gc(u | X)

)2
]
− 2E

[(
1−

∫ t

0

dN(u)

Gc(u | X)

)
π(t | X)

]
+ E[(π(t | X))2]

= 1− 2E[(1− S(t | X))] + E

[(∫ t

0

dN(u)

Gc(u | X)

)2
]
− 2E[S(t | X)π(t | X)]

+ E[(π(t | X))2]

= MSEBrier(t, π) +B(t),

with

B(t) = −E[1− S(t | X)] + E
[∫ t

0

S(u | X)

Gc(u | X)
λ∗(u | X)du

]
.

Now, using Equation (14), we can rewrite B(t) in the following way:

B(t) = −E
[∫ t

0
S(u | X)λ∗(u | X)du

]
+ E

[∫ t

0

S(u | X)

Gc(u | X)
λ∗(u | X)du

]
= E

[∫ t

0

G(u−)

Gc(u | X)
S(u | X)λ∗(u | X)du

]
.

This shows that B(t) ≥ 0 and that this quantity does not depend on π.
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