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1Université Paris Cité, CNRS, MAP5, F-75006 Paris, France

1 Fast approximation of pseudo-observations for right-censored
data using the infinitesimal jackknife

The classical jackknife procedure can be seen as giving a weight to each observation, then
omitting an observation corresponds as giving it a weight of zero. This procedure can further
be modified by giving the observation a weight slightly smaller than the other observations and
then taking the limit as this weight tends to 0. This is the idea behind the infinitesimal jackknife
as introduced by [1]. The weighted version of the Kaplan-Meier estimator is defined as:

Ŝw(t) =
∏
Tj≤t

(
1−

∑
iwi4Ni(Tj)∑
iwiYi(Tj)

)
,

where Ni(t) = I(Ti ≤ t,∆i = 1), 4Ni(t) = Ni(t) − Ni(t−) and Yi(t) = I(Ti ≥ t). From the
results of [1], we have, as n tends to infinity that

nŜ(t)− (n− 1)Ŝ(−l)(t) = Ŝ(t) + D̂l(t) + oP(1),

where

D̂l(t) =
∂

∂wl
Ŝw(t)

∣∣∣∣
wj=1/n, j=1,...,n

.

In the following we will compute the derivative of Ŝw with respect to wl, by separating the cases
when the lth observation is censored (∆l = 0) and when it is observed (∆l = 1).

(i) ∆l = 0
In that case, only the terms

∑
iwiYi(Tj) might contain wl, since the term

∑
iwi4Ni(Tj)

is not 0 only for uncensored observations. We have:

∂

∂wl
Ŝw(t)(1−∆l) =

∑
Tj 6=Tl,Tj≤t

Yl(Tj)

∑
iwi4Ni(Tj)

(
∑

iwiYi(Tj))2

∏
Tk 6=Tj ,Tk≤t

(
1−

∑
iwi4Ni(Tk)∑
iwiYi(Tk)

)
× (1−∆l)

=
∑

Tj 6=Tl,Tj≤t
Yl(Tj)

∑
iwi4Ni(Tj)∑
iwiYi(Tj)

Ŝw(t)(1−∆l)∑
iwiYi(Tj)−

∑
iwi4Ni(Tj)

, (1)

using the fact that∏
Tk 6=Tj ,Tk≤t

(
1−

∑
iwi4Ni(Tk)∑
iwiYi(Tk)

)
=

Ŝw(t)
∑

iwiYi(Tj)∑
iwiYi(Tj)−

∑
iwi4Ni(Tj)

· (2)
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(ii) ∆l = 1
In that case, the term

∑
iwi4Ni(Tj) might also contain wl if the uncensored observation

occurs before time t.

∂

∂wl
Ŝw(t)∆l =

∑
Tj 6=Tl,Tj≤t

Yl(Tj)

∑
iwi4Ni(Tj)∑
iwiYi(Tj)

Ŝw(t)∆l∑
iwiYi(Tj)−

∑
iwi4Ni(Tj)

+ I(Tl ≤ t,∆l = 1)

(
− 1∑

iwiYi(Tl)
+

∑
iwi4Ni(Tl)

(
∑

iwiYi(Tl))
2

)

×
∏

Tj 6=Tl,Tj≤t

(
1−

∑
iwi4Ni(Tj)∑
iwiYi(Tj)

)
.

Then, I(Tl ≤ t,∆l = 1) is replaced by Nl(t), the product term is expressed as in Equa-
tion (2) and we obtain:

∂

∂wl
Ŝw(t)∆l =

∑
Tj 6=Tl,Tj≤t

Yl(Tj)

∑
iwi4Ni(Tj)∑
iwiYi(Tj)

Ŝw(t)∆l∑
iwiYi(Tj)−

∑
iwi4Ni(Tj)

−Nl(t)
Ŝw(t)∑
iwiYi(Tl)

· (3)

Now, gathering the terms in Equations (1), (3) and evaluating the derivatives at wl = 1/n, we
get:

D̂l(t) = Ŝ(t)

 ∑
Tj 6=Tl,Tj≤t

Yl(Tj)4N̄(Tj)

Ĥ(Tj)(Ĥ(Tj)−4N̄(Tj))
− Nl(t)

Ĥ(Tl)


= Ŝ(t)

∑
Tj≤t

Yl(Tj)4N̄(Tj)

Ĥ(Tj)(Ĥ(Tj)−4N̄(Tj))
− Nl(t)4N̄(Tl)

Ĥ(Tl)(Ĥ(Tl)−4N̄(Tl))
− Nl(t)

Ĥ(Tl)


= Ŝ(t)

∑
Tj≤t

Yl(Tj)4N̄(Tj)

Ĥ(Tj)(Ĥ(Tj)−4N̄(Tj))
− Nl(t)

Ĥ(Tl)−4N̄(Tl)

 , (4)

where Ĥ(u) =
∑

i Yi(u)/n (using the notation in the main document), N̄(u) =
∑

iNi(u)/n. If
we assume that only a finite number of ties can occur at a given time point, then the terms
4N̄(Tl) and N̄(Tj) in the two denominators will tend to 0 as n tends to infinity. Then, writing
this result using the standard counting process we obtain:

nŜ(t)− (n− 1)Ŝ(−l)(t) = Ŝ(t) + Ŝ(t)

∑
Tj≤t

Yl(Tj)4N̄(Tj)

(Ĥ(Tj))2
− Nl(t)

Ĥ(Tl)

+ oP(1)

= Ŝ(t) + Ŝ(t)

[
1

n

n∑
i=1

∫ t

0

Yl(u)dNi(u)

(Ĥ(u))2
−
∫ t

0

dNl(u)

Ĥ(u)

]
+ oP(1)

= Ŝ(t)− Ŝ(t)

∫ t

0

dM̂l(u)

Ĥ(u)
+ oP(1),

where M̂l is the martingale residual, as defined in the main document. As it turns out, this
is exactly the same approximation as the one proposed in the main document, in Proposition
1. Pseudo observations based on the infinitesimal jackknife are implemented in the survival

library through the pseudo function. This function takes a survfit object as input which can
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be computed in two different ways, depending on the value of the stype argument. The pseudo

function returns the pseudo-observations obtained using Formula (4) when the survfit object
has been implemented with stype= 1 (the default for the survfit function).

An alternative formula for the pseudo observations using the infinitesimal jackknife can also
be obtained using the Breslow estimator of the survival function (the exponential of minus the
Nelson-Aalen estimator). The weighted version of this estimator is defined as:

S̃w(t) = exp

(
−
∫ t

0

∑
iwidNi(u)∑
iwiYi(u)

)
·

Taking the derivative with respect to wl gives

∂

∂wl
S̃w(t) =

∫ t

0

(
− dNl(u)∑

iwiYi(u)
+
Yl(u)

∑
iwidNi(u)

(
∑

iwiYi(u))2

)
S̃w(t),

and evaluating this expression in wj = 1/n for j = 1, . . . , n, leads to

∂

∂wl
S̃w(t)

∣∣∣∣
wj=1/n, j=1,...,n

=

(
−
∫ t

0

dNl(u)

Ĥ(u)
+

1

n

n∑
i=1

∫ t

0

Yl(u)dNi(u)

(Ĥ(u))2

)
S̃(t),

= −S̃(t)

∫ t

0

dM̂l(u)

Ĥ(u)
· (5)

We therefore retrieve the same approximation as the one obtained using the Von-Mises expan-
sion developed in the current paper in Proposition 1, but with the Breslow estimator instead of
the Kaplan-Meier. Those two estimators are very similar (even for small sample sizes), in partic-
ular they are asymptotically equivalent. The pseudo function returns the pseudo-observations
obtained using Formula (5) when the survfit object has been implemented with stype= 2.

The pseudo function also allows to compute pseudo-observations for the Restricted Mean
Survival Time using the infinitesimal jackknife. This has been implemented by computing the
integral of the pseudo-observation for the survival function using the simple trapezoid rule.

2 Supplementary simulations for interval censored when τ is
equal to infinity

This section contains a supplementary simulation analysis for interval-censored data. In this
scenario we assume a standard linear model for the time of interest:

T ∗i = β0 + β1Zi + εi, i = 1, . . . , n (6)

where β0 = 6, β1 = 4, Zi ∼ U [0, 2] and εi ∼ N (0, 1). Here τ = ∞, and for the interval-
censored data the values of Li and Ri were determined through a visit process with a total
of K = 5 simulated visits such that V1 ∼ U [0, 10] and Vk = Vk−1 + U [0, 4], for k = 2, . . . ,K.
The left, interval and right-censored observations where obtained as in Section 5.2 of the main
document. This simulation setting corresponds to 10% of left-censoring, 26% of right-censoring
and 64% of interval-censoring. For interval-censored data, the average length of the intervals
was approximately equal to 3.5. The results are presented in Table 1 where the pch estimator
was used with cuts equal to 6, 8, 10, 12, 14.

This scenario is challenging both due to the fact that τ equals infinity (and thus causing
estimation problems in the tails) and to the width of the intervals that are larger on average
than in Section 5.2 of the main document. As a result, the algorithm seems to fail in some rare
cases for n = 500 and generates a drastic overestimation of the parameter value. This seemed
to be caused by the generation of samples for which too few values of Li and Ri satisfy the
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regularity conditions of Equation (5) of the main document. In the simulations for n = 500, this
situation occurred for one sample for both the jackknife method and the approximated formula
and for 3 other samples for the jackknife method. Table 1 only displays the results with those
4 samples generating drastic overestimations removed, which shows very similar performances
of the two methods. All samples were kept for n = 1, 000 and the results are identical for
both methods. We also compared the absolute difference between the two estimators of β0
componentwise: 99% of those values are less than 2.039× 10−2 for the first component and less
than 2.760× 10−2 for the second component, when n = 500, while 99% of those values are less
than 5.521× 10−3 for the first component and less than 7.453× 10−3 for the second component
when n = 1, 000. In terms of computation time, the approximated formula is 258 and 426 times
faster than the jackknife method for n = 500 and n = 1, 000 respectively. Again, those results
emphasise the importance of verifying the regularity conditions in Equation (5) of the main
document for the pch model in choosing the number and location of the cuts.

Jackknife Approximated formula

n Bias(β̂) SE(β̂) MSE(β̂) Time Bias(β̂) SE(β̂) MSE(β̂) Time

500 -0.116 0.168 0.042 4.086 min -0.105 0.203 0.052 0.949 s
0.083 0.150 0.029 0.078 0.151 0.029

1,000 -0.108 0.119 0.026 11.216 min -0.105 0.119 0.025 1.580 s
0.077 0.106 0.017 0.075 0.106 0.017

Table 1: Simulation results for the estimation of β in the RMST model (6) based on pseudo-
regression with 10% of left-censored data, 26% of interval-censored data and 64% of right-
censored data. The piecewise constant hasard model with cuts equal to 6, 8, 10, 12, 14 was used
for the estimation of the survival function in the computation of the pseudo-observations. In
the pseudo-regression, the true jackknife is compared to the approximated pseudo-estimates.
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