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1 Situations with right-censoring and no terminal event

This section considers the situation when no terminal event exists. In this case, the counting
process of interest N∗(t) counts the number of recurrent events that have occurred before time
t and the regression model is defined by:

E[dN∗(t) | X̄(t)] = λ∗(t | X̄(t))dt.

Let
∫ t
0 λ
∗(u | X̄(u))du be the true cumulative rate function. In the absence of a terminal event,

this cumulative function has a direct interpretation as the expected cumulative number of
recurrent events given the covariate process:

∫ t
0 λ
∗(u | X̄(u))du = µ∗(t | X̄(t)) where, as defined

at the beginning of Section (2) of the main paper, µ∗(t | X̄(t)) = E[N∗(t) | X(u) : 0 ≤ u ≤ t].
In the presence of censoring, a variable C is observed such that the observed recurrent event
process is now N(t) = N∗(t ∧ C). We assume independent censoring (see [1]) in the following
way:

E[dN∗(t) | X̄(t)] = E[dN∗(t) | I(C ≥ t), X̄(t)].

This assumption implies that C does not convey any additional information on the probability
of a jump of the recurrent event process. Under this assumption, we have

E[dN(t) | I(C ≥ t), X̄(t)] = I(C ≥ t)λ∗(t | X̄(t))dt, (1)

where I(·) denotes the indicator function. This last equation justifies the use of our criterion (1)
in the main paper since E[dN(t) | X̄(t)] = (1 − G(t− | X̄(t)))λ∗(t | X̄(t))dt and therefore
Equation (3) of the main paper holds. Next, we assume Assumption 1 of the main paper and
we make the following additional assumption.

Assumption (RC). We assume that there exists a constant τ > 0 and a constant c > 0 such
that

1. ∀t ∈ [0, τ ], P[C ≥ t | X̄(t)] ≥ c almost surely,

2. N(τ) is almost surely bounded by a constant.

Note that condition 1. was also assumed in [2]. It is stronger than simply assuming P[C ≥
τ ] ≥ c. Condition 2. is standard for recurrent event data, see for instance [1]. Finally, note
that through Equation (1), conditions 1. and 2. imply that E[µ∗(τ | X̄(τ))] <∞.

On the basis of i.i.d. replications (Ni(t), Xi(t) : 0 ≤ t ≤ τ), let µ̂ ∈ M be an estimator of
µ∗ where M is a class of models that are assumed to be bounded. We propose to evaluate the
prediction ability of this estimator through criterion M̂SE(t, µ̂) defined in Equation (1) of the
main paper. This criterion involves an estimator of G, the conditional cumulative distribution
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function of the censoring variable. If C and X(·) are independent, one can estimate G using
the empirical cumulative distribution function of the censored variables since all these variables
are observed. If C depends on X the conditional distribution of C must also be modelled.
This can be done using kernel based estimators such as the Nadaraya-Watson estimator for
the binary response variable I(C ≤ t) or extensions of this model. For instance, in [3], a local
logistic method and an adjusted Nadaraya-Watson estimator are proposed. If the dimension
of the covariates that are assumed to depend on the censoring distribution is too large, then
a dimension reduction technique can first be employed, for example through a Single-Index-
Modelling approach (see [4]). The theoretical results in Section 3 of the main paper are valid
under Assumption 1 of the main paper and Assumption (RC). The proof can be found in
Section 8 of the main paper.

2 Situations with dependence on prior counts

In this section, we model the probability of a jump of the recurrent events process as a function
of the number of previous recurrent events. We still consider a terminal event T ∗ and we assume
that the counting process of interest N∗ verifies:

E[dN∗(t) | I(T ∗ ≥ t), N∗(t−), X̄(t)] =

L∑
l=1

I(T ∗ ≥ t,N∗(t−) = l − 1)λ∗l (t | X̄(t))dt, (2)

where λ∗l (t | X̄(t)) is the true rate function that depends on l− 1 which represents the number
of previous recurrent events that have already occurred and L represents the maximum number
of events that can occur. This model was first introduced by [5] and further studied by [6]. It
is also important to stress that Equation (2) defines a multi-state model with a different state
for each value of N∗(t−) and an absorbing state for the terminal event. In total, there are
L + 2 different states and L different hazard rates for the recurrent event process. In general,
in order to estimate µ∗ it is usually necessary to also model the hazard rate for the terminal
event T ∗. It is then possible to specify L + 1 hazard rates models for the terminal event that
depend on the number of recurrent events previously experienced. An example of the multi-
state representation with L = 5 is illustrated in Figure 1. Note that the hazard rates for the
terminal event are also represented on the figure and are denoted λT

∗
l .
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Figure 1: Illustration of a recurrent event model with dependence on prior events as a multi-state
situation. The model is defined by Equation (2) with L = 5. Individuals start in the state Ev. 0 and
then can move to the other states as time increases. The state Term. Ev. represents the terminal event
and is an absorbing state. The state Ev. ≥ 5 encompasses all recurrent events greater than 5.

Under this model, we observe that

µ∗(t | X̄(t)) =
L∑
l=1

∫ t

0
P[T ∗ ≥ u,N∗(u−) = l − 1 | X̄(u)]λ∗l (u | X̄(u))du, (3)
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where P[T ∗ ≥ u,N∗(u−) = l − 1 | X̄(u)] is usually named the state probability in the usual
multi-state framework. An alternative formula for the expected cumulative number of recurrent
events can be found in [7], formula (6.51) page 226. It can easily be shown that the two formulas
coincide.

In this context, the independent censoring assumption is expressed in the following way:

E[dN∗(t) | I(T ∗ ≥ t), N∗(t−), X̄(t)] = E[dN∗(t) | I(T ≥ t), N∗(t−), X̄(t)].

As before, we denote T = T ∗ ∧ C the minimum between terminal event and censoring, N(t) =
N∗(T ∧ t) the observed counting process and Yl(t) = I(T ≥ t,N(t−) = l) the observed at-risk
process. Under the independent censoring assumption, it can be shown that

E[dN(t) | I(T ≥ t), N(t−), X̄(t)] =
L∑
l=1

Yl(t)λ
∗
l (t | X̄(t))dt. (4)

We assume Assumption (1) of the main paper and we make the following additional assumption.

Assumption (MSM). We assume that there exists a constant τ > 0 and a constant c > 0 such
that

1. ∀l = 0, . . . , L− 1, ∀t ∈ [0, τ ], P[T ≥ t,N(t−) = l | X̄(t)] ≥ c almost surely,

2. N(τ) is almost surely bounded by a constant.

We also assume that C is conditionally independent of (N∗(·), T ∗) given X̄(·).

Note that condition 2. of the assumption is automatically satisfied from our model (2).
Note also that the independent assumption can be equivalently stated as: C is conditionally
independent of N∗(·) given X̄(·) and T ∗ is conditionally independent of C given (N∗(·), X̄(·)).
Using Equality (4) one can easily observe that

E[dN(t) | X̄(t)] =
L∑
l=1

P[T ≥ u,N(u−) = l − 1 | X̄(u)]λ∗l (u | X̄(u))du,

=

L∑
l=1

Gc(u | X̄(u))P[T ∗ ≥ u,N∗(u−) = l − 1 | X̄(u)]λ∗l (u | X̄(u))du,

where we used the fact that P[T ≥ u,N(u−) = l− 1 | X̄(u)] = P[T ≥ u,N∗(u−) = l− 1 | X̄(u)]
and the independent censoring hypothesis. We then directly see that Equation (3) of the main
paper holds.

On the basis of i.i.d. replications (Ni(t), Xi(t) : 0 ≤ t ≤ τ), let µ̂ ∈ M be an estimator
of µ∗ where M is a class of models that are assumed to be bounded. We propose to evaluate
the prediction ability of this estimator through criterion M̂SE(t, µ̂) defined in Equation (1) of
the main paper. An estimator of G, the conditional cumulative distribution function of the
censoring variable, can be proposed in the same manner as in Section 2.2 of the main paper.
The theoretical results in Section 3 of the main paper are valid under Assumption 1 of the main
paper and Assumption (MSM). The proof can be found in Section 8 of the main paper.

3 Computation of A(t) in the simulation section 5.1

While the inseparability term cannot be computed on real data, it is possible to obtain its
expression when the distribution of all variables are known. In this section, we provide the
explicit expression of the inseparability term A(t), in the simulation setting of Section 5.1 of
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the main paper. To this end, we use Equation (13) of the main paper. We first notice that, for
u < v, dN(u)dN(v) = I(C ≥ v)dN∗(u)dN∗(v) and

E[dN(u)dN(v)] = E[I(C ≥ v)E[dN∗(u)dN∗(v) | X,C]

= E[I(C ≥ v)λ0(u)λ0(v) exp(2θ>0 X)]dudv

= (1−G(v−))λ0(u)λ0(v)E[exp(2θ>0 X)]dudv,

where we used the fact that E[dN∗(u)dN∗(v) | X,C] = E[dN∗(u) | X]E[dN∗(v) | X] =
λ0(u)λ0(v) exp(2θ>0 X)dudv, since under our simulation scheme, N∗ is independent of C and
dN∗(u) is independent of dN∗(v) conditionally on X, for u 6= v. Let γ = 3, such that C follows
a uniform distribution on [0, γ]. For t < γ, we have:

E

[(∫ t

0

dN(u)

1−G(u− | X(u))

)2
]

= A1(t) +A2(t),

where

A1(t) = 2

∫∫
0<u<v<t

λ0(u)λ0(v)

1−G(u−)
dudvE[exp(2θ>0 X)], (5)

A2(t) =

∫ t

0

E[dN(u)]

(1−G(u−))2
· (6)

We now compute∫ v

0

λ0(u)

1−G(u−)
du = 2× γ

β2

∫ v

0

u

γ − u
du = 2× γ

β2
×
(
γ log

(
γ

γ − v

)
− v
)
,

where we replaced λ0 by the hazard of a Weibull distribution with shape parameter α = 2, scale
parameter β and the last equality was obtained from the change of variables w = γ − u. We
then need to compute the following integral in A1(t):∫ t

0

(
γ log

(
γ

γ − v

)
− v
)
λ0(v)dv =

2

β2

∫ t

0

(
γ log

(
γ

γ − v

)
− v
)
vdv

=
2

β2

(
γt2

2
log(γ)− γ

∫ t

0
v log(γ − v)dv − t3

3

)
.

The last integral is computed using integration by parts and then by using the change of variables
w = γ − v: ∫ t

0
v log(γ − v)dv =

∫ t

0

v2

2

dv

γ − v
+
t2

2
log(γ − t)

=

∫ γ

γ−t

(γ − w)2

2w
dw +

t2

2
log(γ − t)

=
γ2

2
log

(
γ

γ − t

)
− γt+

γ2

4
− (γ − t)2

4
+
t2

2
log(γ − t)

=
t2 − γ2

2
log(γ − t)− γt

2
− t2

4
+
γ2

2
log(γ).

Gathering all the parts in A1(t), we have:

A1(t)

=
8γ

β4

(
γt2

2
log(γ)− γ

2
(t2 − γ2) log(γ − t) +

γ2t

2
+
γt2

4
− γ3

2
log(γ)− t3

3

)
E[exp(2θ>0 X)].
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On the other hand, computation of A2(t) is straightforward, using the relation (see Section 1)
E[dN(t) | X(t)] = (1−G(t−))λ∗(t | X(t))dt. For t < γ, we have

A2(t) =

∫ t

0

λ0(t)

1−G(t−)
dtE[exp(θ>0 X)]

= 2× γ

β2
×
(
γ log

(
γ

γ − t

)
− t
)
E[exp(θ>0 X)].

Finally, according to Equation (13) of the main paper, we need to compute

A3(t) = E
[
(µ∗(t | X(t)))2

]
. From Equation (11) of the main paper, we directly have

A3(t) =

(
t

β

)2α

E[exp(2θ>0 Xi)].

To conclude, A(t) = A1(t) + A2(t) − A3(t) and the terms involved in this equation including
E[exp(θ>0 Xi)] or E[exp(2θ>0 Xi)] can easily be computed using Monte-Carlo simulations.

4 Supplementary simulations in the context of right-censored
data with no terminal event

Using the same simulation setting as in Section 5.1 of the main paper, we compare the perfor-
mance of four different models based on the Cox and Aalen models, implemented using either
only the first covariate Xi,1 or the two covariates Xi,1 and Xi,2. Figure 2 displays the prediction
scores for 100 training samples of size 50 and a unique test sample of size 1, 000. The reference
model is the one that uses no covariates and is estimated from the Nelson-Aalen estimator.
Roughly, we see that all models have a better prediction performance than the Nelson-Aalen
estimator as time increases especially from time equal to 1.5 and time equal to 2, for the mod-
els with one covariate and the models with two covariates, respectively. The models with two
covariates clearly outperform the ones with one covariate with a slightly better performance for
the Cox model as compared to the Aalen model. This is further illustrated in Table 1 where we
compare the mean score of those four different models based on 500 training samples of size 20
and 50 and one single test sample of size 1, 000. We clearly observe that the correctly specified
Cox model with two covariates outperforms all other models on average, for all time points
and sample sizes. However, it tends to have a slightly bigger standard deviation, especially
for ntrain = 20 and t = 2 or t = 2.9. We have also computed the best prediction score that
could be attained, using the correctly specified Cox model with two covariates. In that case,
our prediction score reduces to the difference of MSE between the reference and the correctly
specified model. Since the latter is equal to 0, the prediction score is equal to the mean squared
error between µ∗(t | X(t)) and µ0(t), where µ0 is the expected cumulative number of recurrent
events for the reference model. Since we are using a non-parametric estimator for µ̂0 it con-
verges towards µ0(t) = (t/γ)αE[exp(θ>0 X)]. To conclude, for the correctly specified model, the
prediction score converges towards

E
[(
µ∗(t | X(t))− µ0(t))

)2]
=

(
t

γ

)2α

V[exp(θ>0 X)].

This quantity can be computed using Monte-Carlo simulations and is equal to 1.7, 27.7, 122.4
at times t = 1, 2, 2.9, respectively.
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Figure 2: Prediction scores (see Equation (4) of the main paper) using four different models. The data were
generated from a Cox model with two covariates and the expected cumulative number recurrent of events was
predicted using the Cox model with one covariate, the Cox model with two covariates, the Aalen model with one
covariate, the Aalen model with two covariates, respectively. The reference model uses no covariates and was
estimated from the Nelson-Aalen estimator. The prediction scores are computed for 100 training samples of size
ntrain = 50 and a unique test sample of size ntest = 1, 000.

5 Sensibility analysis for the estimation of the censoring distri-
bution on simulated data

In this section, we study the effect of the misspecification of the censoring model. For simplicity,
we consider the no terminal event situation of Section 5.1 in the main paper, but this time the
censoring times are generated following a Cox model. We use the same two covariates as the
one used to generate the recurrent events, but with a different effect βC0 , and the baseline is
supposed to be exponential:

λC(t | Xi) = λC0 exp(X>i β
C
0 ),

with λC0 = 1/3 and βC0 = (log(0.8), log(1.5))>. Using those parameters, we observe 0 or 1
recurrent event for 45% of the individuals, less than or equal to 5 events for 64% of the indi-
viduals, and less than or equal to 12 events for 76% of the individuals. On average, we observe
approximately 16.7 recurrent events per individual.

In Figure 3 the prediction criterion (see Equation (1) of the main paper) is computing using
four different censoring models based on 100 training samples of size ntrain = 20 and a unique
test sample of size ntest = 2, 000. The expected cumulative number of recurrent of events was
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ntrain = 20 ntrain = 50
t = 1 t = 2 t = 2.9 t = 1 t = 2 t = 2.9

Cox one cov. 0.89 (0.33) 9.17 (6.04) 40.6 (54.93) 0.96 (0.15) 10.06 (2.19) 46.93 (16.06)
Cox two cov. 1.8 (0.56) 24.69 (8.58) 119.11 (45.56) 1.95 (0.17) 26.33 (2.54) 127.52 (17.73)
Aalen one cov. 0.14 (1.33) 9.53 (4.4) 42.72 (16.27) 0.34 (0.82) 10.09 (1.99) 44.7 (9.21)
Aalen two cov. 0.44 (1.76) 24.18 (4.8) 103.78 (25.28) 0.51 (1.22) 25.13 (1.9) 109.36 (14.21)

Table 1: Means and standard deviations (in bracket) over 500 simulations for the prediction score of
the expected number of recurrent events. Large values indicate better predictive performances. Using
Monte-Carlo experiments, the best predictive values for times t = 1, 2, 2.9 are equal to 1.7, 27.7 and
122.4, respectively

predicted using the correct Cox model but the prediction criterion in Equation (1) of the main
paper is implemented using either the true censoring distribution, the Kaplan-Meier estimator,
the correct Cox model with estimated parameters or the random survival forest from [8]. The
mean over 500 training samples where the censoring cumulative distribution function was cal-
culated using the true censoring distribution was computed and is represented by a dashed line
on all four plots. We clearly see that using the correct specification of the Cox model gives rea-
sonable estimates with a very slight overestimation of the prediction criterion while the random
survival forest also provides very accurate estimates with a very slight underestimation of the
prediction criterion. On the other hand, the Kaplan-Meier estimator that omits the covariate
effects on the censoring distribution performs poorly: there is a clear overestimation of the
estimated prediction criterion.

6 Prediction of the terminal event for the Atrial Fibrillation
dataset

In this section, we evaluate the prediction performance for the terminal event in the Atrial
Fibrillation dataset, with the Cox models with age only and with age, AF type and diabetes,
the Aalen model with age and the random survival forests with age. The reference model is
taken as the Kaplan-Meier estimator and the score is computed using formula (4) of the main

paper, where the prediction criterion M̂SE is computed from the Kaplan-Meier estimator of
the censoring variable. The random survival forests were implemented from the rfsrc package
(see [8]). The results are presented in Table 2 and Figure 4. We clearly see that the survival
random forests perform poorly, especially before time 1 000 where the Kaplan-Meier shows a
better performance. The Cox model with age, AF type and diabetes shows a better performance
for all time points and the Aalen and Cox models with age show very similar performances and
outperform all four models. Other models were also investigated with the different combinations
of all three variables with each algorithm and the results were similar and are therefore omitted.
In the main manuscript, we then decided to use the Cox model with age for the modelling of
the terminal event.

t = 1000 t = 1500 t = 2000

Aalen with age 0.011 [0.002, 0.017] 0.015 [0.001, 0.039] 0.038 [−0.001, 0.035]
Cox with age 0.010 [−0.006, 0.023] 0.016 [−0.001, 0.042] 0.037 [−0.005, 0.053]
Cox with age, AF type, diabetes 0.006 [−0.009, 0.019] 0.011 [−0.007, 0.04] 0.027 [−0.002, 0.04]
RSF with age 0.005 [−0.021, 0.032] 0.010 [−0.014, 0.039] 0.010 [−0.031, 0.045]

Table 2: Means and 80% intervals (in curly bracket) over 10-folds cross validation for the prediction score of

the survival function of the terminal event in the atrial fibrillation dataset. With the Kaplan-Meier estimator as

the reference, four different models are compared at three different time points: the Aalen and Cox models with

covariate age, the Cox model with covariates age, AF type and diabetes and the Random Survival Forest model

with covariate age.
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Figure 3: Prediction criterions (see Equation (1) of the main paper) using four different censoring models. The
recurrent event data and the censoring distribution were generated from a Cox model with two covariates. The
expected cumulative number recurrent of events was predicted using the correct Cox model but the prediction
criterion in Equation (1) of the main paper is implemented with four different censoring models: with the true
censoring distribution, with the Kaplan-Meier estimator, with the correct Cox model (but the parameters are
estimated) or with the random survival forest. The prediction criterions are computed for 100 training samples
of size ntrain = 20 and a unique test sample of size ntest = 2, 000. The mean over 500 training samples was
computed when the censoring cumulative distribution function is calculated using the true censoring distribution
and is represented by a dashed line on all four plots.
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