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Abstract 
 

In this paper we present an integrated approach to the 
functional and performance analysis of software 
modeling provided by Stochastic Process Algebra (SPA). 
Three SPA languages have been appeared in the last 
decade and are widely used for software architecture and 
performance evaluation. We present these languages with 
the difference between them and we show by an example 
the methodology which must be used for an integrated 
analysis.  
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1. Introduction 
 

Computer software can be described using classical 
process algebra which provide a means for constructing 
an abstract model of the software in question [1]. This 
model is used only to establish the correct functional 
behaviour of complex software by deriving qualitative 
properties such as freedom from deadlock or livelock1 
[2].  In the past years, many languages and tools have 
been appeared for modelling design and they are used in 
software architecture instead of the box and line diagram, 
despite that these tools deal only with the functional 
aspects of software architectures. So, the software 
performance evaluation was in a separate phase, after the 
fully design and implementation of the model. 
Consequently, if the performance is detected to be poor, 
the software will be redesigned with negative 
consequences for both design costs and time lost, where 
the need of integrating the software performance analysis 
into the design process.  

Stochastic Process Algebras (SPA) have been 
developed for this purpose. It is a formal specification         
.    

                                                 
1 State in LTS from which there is no possible exit transition represent 
deadlocks and a subset of states in the graph from which no transition is 
possible indicates a livelock. 

 
 
 
 

technique which extends classical process algebras via the 
inclusion of timing information by using random 
variables in the generated models, in order to express the 
durations of an activity [2,3]. Once the model has been 
defined and parameterised,     it        can be   used to      investigate        

numerically the performance parameters.  
The formal description of the software architecture 

makes available a precise document describing the 
structure of the system to all the people involved in the 
design, implementation and maintenance. So, modelling 
in SPA offers flexibility, safety, economy and extended 
facilities to system design. 

This paper is organised as follows. In the second 
section we recall the syntax and the semantics of existing 
Markovian SPA languages with a comparison between 
them. In the third section we describe the methodology 
used by SPA for integrating performance and functional 
analysis. Finally, conclusions work is presented. 
 
2. Stochastic Process Algebra 
 

Stochastic Process Algebra are formal descriptions 
techniques used to describe the functionality of 
concurrent and distributed systems and to analyze their 
related performance [2, 3, 4]. Stochastic analysis of 
systems is generally performed using either queueing 
models or Petri Nets. Several SPA languages have been 
appeared in the literature, these include PEPA [5, 6], 
TIPP [7] and EMPA [8]. These languages have been 
introduced as an extension to the calssical process algebra 
like CCS [9] and CSP [10]. They are abstract languages 
constructed from a small set of powerful operators where 
it is possible to construct algebraic models whose key 
features are: compositionality (which allow the designer 
to built a complex model from smaller ones by means of 
languages operators, and to study the behaviour of each 
component     .  

 
 



separately), and abstraction (which allows the internal 
details of a system description to be hidden from an 
external observer at analysis time). In these languages, 
softwares and systems are modeled as collections of 
entities, called agents or processes, which execute actions. 
These actions are the building blocks of these languages 
and they are used to describe sequential behaviours which 
may run concurrently by synchronisations or by 
communications between them. 

These languages propose the same approach to 
performance modelling: a random variable is associated 
with each action, representing its duration. This random 
variable is assumed to be exponentially distributed and 
this leads to a clear relationship between the process 
algebra model and a Continuous Time Markov Chains 
(CTMC). Via this underlying CTMC derived from the 
model semantic description [2], different types of analysis 
may be performed, like steady-state and transient 
probability distribution. This analysis is done through the 
compilation of the infinitesimal generator matrix of the 
Markov process like we will explain in section 3.  

Work on SPA has increased rapidly over the last few 
years. Here, we describe the syntax and semantic for 
PEPA, TIPP and EMPA: 

 
2.1 PEPA  
 

Performance Evaluation Process Algebra (PEPA), has 
been developed at the university of Edinburgh by Jane 
Hillston [6]. PEPA is Markovian process algebra by 
means that associate an exponential delay to each activity 
in a process description. This language is supported by a 
tool called PEPA Workbench. A PEPA component is 
represented syntactically according to the following 
syntax: 

 
P = (a,r).P│P + Q│P < L > Q│P/L│A 

 
Prefix (.): the component (a,r).P performs the activity 

"a" after exponential distributed delay with rate "r" 
denoted by its distribution function F(t)=1-e-rt, then 
behaves like P. The prefix combinator specifies sequential 
behaviour of activities. In some cases, the rate of an 
action is outside the control of this component, such 
actions are carried out jointly with another component, so 
this component playing a passive role. This is recorded by 
the distinguished symbol T (called top). 

Choice (+): a choice between two possible behaviours 
is represented as the sum of the possibilities such P + Q 
behaves either like P or like Q. A race condition is 
assumed to govern the behaviour of simultaneously 
enabled actions, the action with the least duration is 
executed. 

Cooperation <L>: the component P <L> Q specifies 
interaction between components on a given set of action 

types. This means that for action types outside the set L, P 
and Q proceed independently, but for action types in L, P 
and Q must cooperate and synchronise over given gates 
listed in L, so actions in L require the simultaneous 
involvement of both components. Shared activities should 
proceed at the rate of the slower of the two participating 
components.  If the set of action "L" is empty, then there 
is no interaction between P and Q, and in this case, 
cooperation reduces to parallel composition, written <> or 
|| and these components will behave in an interleaved 
manner. It is clear that if a component is behaviourally 
independent, then it may be studied in isolation without 
affecting its behaviour. 

Hiding (/): this operator hides the behaviour of 
components from an external observer and transforms it 
to an internal action (i in LOTOS [13]). So the component 
P/L behaves like P, excepting that any activity with type 
in L is not visible to an external observer. 

Constants (A): constants allow names to be assigned to 
components and give the variable on the left hand side of 
the assignment operator the behaviour of the component 
on the right hand side. 

Distinct precedence were assigned to the PEPA: the 
hiding operator was given highest precedence with prefix 
next, followed by cooperation. The choice operator was 
given the lowest precedence.  
 
2.2 TIPP  
 

TImed Processes and Performability evaluation 
(TIPP), was developed at the university of Erlangen by 
the group of Prof Ulrich Herzog [7,11]. The semantics 
rules of this language can be described by the following 
expression: 

 
P = Stop│(a,r).P│P + Q│P ||s Q│P\a│rec X : P│X 
 
The term Stop denotes the terminated process. Prefix 

operator ".", Choice "+", parallel (cooperation) "||s" and 
hiding "\" operators have the same functions like in 
PEPA. Passive actions are represented with rate 1 instead 
of T which is used in PEPA. The recursion operator "rec" 
is used to express the recursion equation when X 
reappears in P expression and finally the constant 
component which allow names to be assigned for 
components.  

TIPP is supported by TIPPtool [12] which is closely 
related to LOTOS [13]. It allows one to model immediate 
activities in addition to exponentially timed actions and 
its semantics rules can be expressed by the following: 

 
P = Stop│(a,r);P│(tau,r);P│a;P│tau;P│exit│P >> Q 

P [> Q│P [ ] P│P ||| P│P | [a1,a2, ... an] | Q 
P[a1,a2, ... an](r1,r2, ... rn) 

hide a1,a2, ... an in P 



"tau" is used to express an unobservable action. The 
prefixed process a;P behaves like P after "a" is 
immediately executed. Exit is used to express successful 
termination. The enable operator P >> Q  is used to allow 
the execution of process Q if process P is successfully 
terminated. The disabled operator P [> Q  allows process 
Q to interrupt the execution of process P. The choice 
operator is represented by "[ ]" instead of "+". The pure 
interleaving operator, which is used when the 
synchronisation list between two processes is empty is 
represented by "|||" and by  |[a1,a2, ... an]| if the 
synchronisation list contains a1,a2, ... an.  
 
2.3 EMPA 
  

Extended Markovian process algebra (EMPA), has 
been developed at the university of bologna by Marco 
Bernardo [8]. Its development has been strongly 
influenced by the stochastic process algebra PEPA and 
TIPP. Those are witnessed by the fact that in EMPA there 
are three different kinds of actions: exponentially timed 
actions, passive actions and prioritised weighted 
immediate actions. The syntax of EMPA can be 
summarized by the following expression:  

 
P = 0│<a,λ>.P│<a,*>.P│<a ,∞L,W>.P│P/L│ 

P\L│P[φ]│P + P│ P ||s P│A 
 
Since the null term "0" is the deadlock operator, the 

prefix operator is "<a,λ>.P", the functional abstraction 
operator or hiding operator is "P/L", the functional 
relabelling operator is "P[φ] ", the choice operator "+", 
the parallel composition operator "||s" and the constant are 
the same operators that we have seen in the previous SPA 
languages. This SPA language is supported by a software 
tool called TwoTowers. 

A passive action whose duration is unspecified, is 
represented in EMPA by "*" in order to model activities 
waiting for synchronisation. An immediate action is 
represented by "<a ,∞L,W>._" where L is used to express 
the priority level and W is used for the probability weight. 
In the race condition, immediate actions take precedence 
over exponentially distributed actions and over other 
immediate actions having small priority level with respect 
to their level. If two immediate actions have the same 
priority level, they will be executed according to  the 
probability associated with each one. The temporal 
restriction operator "P\L" prevent the execution of passive 
actions who are listed in L.  

 
2.4 Comparison 
  

The main difference between these stochastic process 
algebras is related to the synchronisation of stochastic 
actions of two concurrent component of the software 

model [3]. In order to illustrate this difference, we take 
the following behaviour expression: 

(a,λ).B || a || (a,µ).C = (a, λ*µ).(B || a || C) 
And we will show the solution adopted by these 
languages for finding the function "*" (law of 
cooperation) that makes the equality in the previous 
equation hold. 
In PEPA,   the   function    "*"  correspond    to    the   minimum    of 
the related rates, in order to express that synchronisation 
between these components is determined by the rate of 
the slowest one. In contrast TIPP adopts another solution, 
where "*" is interpreted as the ordinary multiplication, 
but the operational intuition behind the choice of 
multiplication for this function is not at all obvious and 
no useful stochastic interpretation of this solution other 
than algebraic simplicity. EMPA deals with 
synchronisation by adopting the client/server (or 
master/slave) model, where the server determines the rate 
of service and the client plays a passive role with this 
respect. This synchronisation discipline imposes that 
action (a,λ) can be synchronised with action (a,µ), if and 
only if min(λ,µ) is unspecified and the rate of the 
resulting action is given by max(λ,µ), or in other words, 
in synchronisation at most one action must be active and 
all the other involved actions must be passive. 
 
3. EMPA specification for a DiffServ router 
 

In this section we illustrate an example that should 
highlight the expressive power of SPA languages in 
performance evaluation. We have chosen a simple 
DiffServ router which deals with 2 classes of services, 
one for handling packets with high priority level and the 
other for packets with low priority level. This router can 
be modelled by a server with a limited buffer, and packets 
by clients which wait for service in the buffer if the server 
is busy. This queueing model is represented by M/M/1/N 
in kendall notation if we suppose that both arrival and 
departure rates are Markovian. H and L will be used for 
indexing actions and rates for high and low priority levels 
respectively. 

 

 
Figure 1. DiffServ router model 

 
EMPA language provide an algebraic method for 

performance evaluation with the model description 
instead of manual method (full scan of the CTMC 
diagram) used by other tools. This is the reason why this 



language is chosen through this queueing modelling 
example. 

We assume that the arrival rate for the two different 
classes are λH, λL respectively, and the service rate are 
equal (only for simplicity of equation due to lack of 
space). The priority mechanism affects the service 
discipline, i.e that possible preemption of low priority 
packet being served can be exercised in addtion to 
dropping low priority packets when the queue become 
full. This queueing system (QS) can be modelled as 
follows: 
 
DiffServ = Arrival ||A(Queue0,0 ||D Pre_emp_Server); 
A=  {arrH, arrL}; 
D = {deliverH, deliverL}; 
Arrival = <arrH,λH>.Arrival + <arrL,λL>.Arrival; 
Queue0,0 = <arrH,*>.Queue1,0 + <arrL,*>.Queue0,1; 
Queuei,0 = <arrH,*>.Queuei+1,0 + <arrL,*>.Queuei,1   .  
              + <deliverH,*>. Queuei-1,0;                           (if 0<i<N-1) 
Queue0,j = <arrH,*>.Queue1,j + <arrL,*>.Queue0,j+1     . 
              + <deliverL,*>. Queue0,j-1;                             (if 0<j<N-1) 
Queuei,j  = <arrH,*>.Queuei+1,j + <arrL,*>.Queuei,j+1     
              + <deliverH,*>. Queuei-1,j   
              + <deliverL,*>.Queuei,j-1;                 (if  i,j>0 and  i+j<N-1) 
QueueN-1,0 =  <deliverH,*>. QueueN-2,0; 
Queue0,N-1 = <deliverL,*>. Queue0,N-2               

                         +  <arrH,*>.<looseL,∞2,1>.Queue1,N-2; 
Queuei,j = <deliverH,*>.Queuei-1,j + <deliverL,*>.Queuei,j-1  
             + <arrH,*>.<looseL,∞2,1>.Queuei+1,j-1; 
                                                                        (if i,j>0 and i+j = N-1) 
Pre_emp_Server = <deliverH,∞2,1 >. ServePLHigh                       
                           + <deliverL,∞1,1>.ServePLLow; 
ServePLHigh  = <serve,µ>.Pre_emp_Server; 
ServePLLow  = <serve,µ>.Pre_emp_Server  
                       + <deliverH,∞2,1>.<serve,µ>. ServePLLow; 

 
When the model is loaded in TwoTowers [14], its 

descriptions are syntactically and semantically analyzed 
using a parser for detecting errors, then TwoTowers will 
find all possible states and transitions or in another word 
the labelled transition diagram or derivation graph.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Labelled Transition System (LTS) which is called 
in EMPA integrated interleaving semantics model, is a 
graph (described by a list) where each state is represented 
by a node and transitions between states are represented 
by arrows labelled with the actions that fire this transition 
and the rates of the corresponding actions as a list (figure 
2.A). From such an integrated model, two other models 
can be derived: the functional model which can be 
obtained by discarding the performance related 
information e.g the rate of actions (see figure 2.B) and 
can be used to detect the functional errors such as a 
deadlock or a livelock, and the performance model or the 
Markovian (figure 2.C) semantic model is obtained from 
integrated model by discarding action type and hiding 
(discarding) the immediate transition and the related 
source states (vanishing states). The reason of removing 
immediate transitions and their related source states is 
that the sojourn time in those states is zero, so they are 
irrelevant from the performance view point.  

The objective of this modelling study is to calculate 
the steady-state and transient probability distribution for 
the system which will be used to derive the performance 
measures such as system throughput and resource 
utilization. 

The performance semantic model (figure 2.C) can be 
used for constructing the infinitesimal generator matrix 
defined by these following expressions:  

 

 =                       for i≠j ijq ijλ
 

 =iiq ∑
≠=

−
N

ji,1i
ijq       =>  = 0 ∑

=

N
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ijq

 

The transient state can be found by solving the 
equation:  (dπ/dt) = π(t).Q, and at the equilibrium, the 
probability distribution vector will be unchangeable 
(dπ/dt) = 0, so using the steady-state probability we 
obtain π.Q = 0, where π is the distribution probability 
vector of the model at the steady state [2], so  =1.∑ =

N
1i iπ      

But in using TwoTowers, no need to waste our time in 
calculating Q matrix because TwoTowers will give us the 
steady state and the transient state probability. So given     
. 

 
 
 
 
 
 
 
 
 
 
 
 
            Figure 2. Label Transitions System 
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the CTMC diagram (performance model) and the value of 
probability distribution in steady and transient state, we 
can evaluate the performance of the system by using 
queueing system theory. For example, the throughput is 
defined as the mean number of customers served per time 
unit, and is given by the service rate multiplied by the 
stationary probability of being in a state where service 
can be provided. It is given by the following formula: 

T = = µ.(1-π∑
=

N

2i
iπ.μ 1) 

Where µ and π1 are given, so the throughput can be 
computed by a simple multiplication. 

The utilization rate of the QS is defined by the fraction 
of time during which the server is busy, and which is the 
sum of the stationnary probabilities of states where there 
is at least one packet. It is given by the following formula: 

U= = = 1-π∑
=

N

2i
i )π.1( ∑

=

N

2i
iπ 1 

The vector distribution probability πi for all states is 
given by TwoTowers and the utilisation rate can be 
calculated by a simple addition. 

The mean number of customer which is given by:  

E[N] =  ∑
=

N

2i
i )π.i(

It can be computed using the CTMC diagram in order 
to determine the number of customer in each state, but           
a full scan to the performance semantic model graph will 
be excendingly expensive for finding the number of 
paquets in each state (especialy if we have a big number 
of states) and this technique must be avoided. This is why 
EMPA take into account the performance aspects of a 
system in the early stages of its design (with algebra 
description) where designers can assign reward to each 
action. Actions with reward will be specified according to 
the following syntax: 

A= <a,r,y,b>.A 
Where y is  the yield reward and b is the bonus  reward.  
A performance measure  for a  CTMC can be specified  
by attaching  a  yield  reward  yi   to  every state i, which 
expresses the rate at which reward is accumulated at state 
i, and by attaching a bonus reward bi,j to every transition 
from state i to state j, which expresses the instantaneous 
gain due to the execution of the transition from state i to 
state j. Readers interested about yield and bonus reward 
can refer to [14]. 
 
 
 
 
 
 
 
 

Given yield and bonus rewards, the corresponding 
stationary performance measure can be computed in 
EMPA according to the following equation: 

∑∑∑
= ==

π+π
N

1i

N

1j
ijiij

N

1i
ii q..b.y  

and for transient phase, we use πi(t) in place of πi in this 
equation. Many of the performance measures can be 
obtained using this formula, for exemple: if we want to 
compute the throughput, we must replace every action of 
the form <serve,µ> with <serve,µ,µ,0> (e.g yi = µ and bij 
= 0) for obtaining the following equation: 
 

    =  ∑∑∑
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N
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N
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EMPA will take into account all states that provides the 
service s and will assign a reward to them. Like we know 
from CTMC of this router, that the first state is the only 
state that can not execute action serve, this is why the 
index in the answer begin from 2 and the first state will 
not be taken into account by the tool. 

If we want to compute the utilization of the QS, we 
must replace every action of the form <serve,µ> with 
<serve,µ,1,0> (e.g yi=1 and bij=0) in order to obtain the 
following equation: 
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Performance results for our model specification are 
computed using queueing theory and EMPA reward 
technique. Like expected and like we have shown in the 
previous equations, these results are equal. 
In table 1 we summarize the results obtained from EMPA 
supported tool (TwoTowers) by varying the capacity of 
the previous queueing system from 3 to 6, where λH = λL= 
2 and µ = 4. The columns show respectively, the capacity 
of the system, the number of states of the integrated 
interleaving semantic model, the number of tangible 
states (which have only outgoing exponentially 
transitions and which appear in the Markov chain), the 
number of vanishing states (which have immediate 
transitions), the number of deadlock states, the number of 
transitions, the number of exponentially timed transitions, 
the throughput of the system in stationary phase and in 
transient phase (at time = 3 second), the utilization rate at 
stationary phase and at transient phase (at time = 3 
second).  

 
 N states ts vs ds transitions ett it 
 

throughput throughput 
at t = 3s 

 
 

utilisation utilisation 
at t = 3s 

3 29 16 13 0 51 38 13 3.10 

 

3.09 0.78 0.77 
4 47 25 22 0 85 63 22 3.28 3.23 0.82 0.80 
5 69 36 33 0 127 94 33 

 
 

3.39 3.30 0.85 0.82 
6 95 49 46 0 177 131 46 3.47 3.33 0.86 0.83 

 

Table 1. Results of the analysis of the DiffServ router with 2 classes 



4. Conclusions 
 

In this paper we have shown the methodology used by 
SPA languages for modeling and analyzing both 
functional and performance characteristics of a system. 
This is done in two phases: 

- The first phase requires the designer to specify the 
system in the stochastically timed process algebra, in 
order to perform a behavioral analysis such as deadlock 
free. 

- The second phase consists in deriving from the 
algebraic representation of a system the performance 
characteristics. 

We have applied TwoTowers (which is a tool 
supporting EMPA SPA language) for modelling and 
analyzing a DiffServ router with two classes and we 
illustrate how this language integrates functional 
verification and performance evaluation. 
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