

A Software Performance Evaluation Approach using
Stochastic Process Algebra Tools

Osman Salem

IRIT
Université Paul Sabatier

Toulouse, France

Abdelmalek Benzekri

IRIT
Université Paul Sabatier

Toulouse, France

Abstract

In this paper we present an integrated approach to the
functional and performance analysis of software
modeling provided by Stochastic Process Algebra (SPA).
Three SPA languages have been appeared in the last
decade and are widely used for software architecture and
performance evaluation. We present these languages with
the difference between them and we show by an example
the methodology which must be used for an integrated
analysis.

Keywords: Stochastic process algebra; Performance
evaluation; Markov chain; DiffServ.

1. Introduction

Computer software can be described using classical
process algebra which provide a means for constructing
an abstract model of the software in question [1]. This
model is used only to establish the correct functional
behaviour of complex software by deriving qualitative
properties such as freedom from deadlock or livelock1
[2]. In the past years, many languages and tools have
been appeared for modelling design and they are used in
software architecture instead of the box and line diagram,
despite that these tools deal only with the functional
aspects of software architectures. So, the software
performance evaluation was in a separate phase, after the
fully design and implementation of the model.
Consequently, if the performance is detected to be poor,
the software will be redesigned with negative
consequences for both design costs and time lost, where
the need of integrating the software performance analysis
into the design process.

Stochastic Process Algebras (SPA) have been
developed for this purpose. It is a formal specification
.

1 State in LTS from which there is no possible exit transition represent
deadlocks and a subset of states in the graph from which no transition is
possible indicates a livelock.

technique which extends classical process algebras via the
inclusion of timing information by using random
variables in the generated models, in order to express the
durations of an activity [2,3]. Once the model has been
defined and parameterised, it can be used to investigate

numerically the performance parameters.
The formal description of the software architecture

makes available a precise document describing the
structure of the system to all the people involved in the
design, implementation and maintenance. So, modelling
in SPA offers flexibility, safety, economy and extended
facilities to system design.

This paper is organised as follows. In the second
section we recall the syntax and the semantics of existing
Markovian SPA languages with a comparison between
them. In the third section we describe the methodology
used by SPA for integrating performance and functional
analysis. Finally, conclusions work is presented.

2. Stochastic Process Algebra

Stochastic Process Algebra are formal descriptions
techniques used to describe the functionality of
concurrent and distributed systems and to analyze their
related performance [2, 3, 4]. Stochastic analysis of
systems is generally performed using either queueing
models or Petri Nets. Several SPA languages have been
appeared in the literature, these include PEPA [5, 6],
TIPP [7] and EMPA [8]. These languages have been
introduced as an extension to the calssical process algebra
like CCS [9] and CSP [10]. They are abstract languages
constructed from a small set of powerful operators where
it is possible to construct algebraic models whose key
features are: compositionality (which allow the designer
to built a complex model from smaller ones by means of
languages operators, and to study the behaviour of each
component .

separately), and abstraction (which allows the internal
details of a system description to be hidden from an
external observer at analysis time). In these languages,
softwares and systems are modeled as collections of
entities, called agents or processes, which execute actions.
These actions are the building blocks of these languages
and they are used to describe sequential behaviours which
may run concurrently by synchronisations or by
communications between them.

These languages propose the same approach to
performance modelling: a random variable is associated
with each action, representing its duration. This random
variable is assumed to be exponentially distributed and
this leads to a clear relationship between the process
algebra model and a Continuous Time Markov Chains
(CTMC). Via this underlying CTMC derived from the
model semantic description [2], different types of analysis
may be performed, like steady-state and transient
probability distribution. This analysis is done through the
compilation of the infinitesimal generator matrix of the
Markov process like we will explain in section 3.

Work on SPA has increased rapidly over the last few
years. Here, we describe the syntax and semantic for
PEPA, TIPP and EMPA:

2.1 PEPA

Performance Evaluation Process Algebra (PEPA), has
been developed at the university of Edinburgh by Jane
Hillston [6]. PEPA is Markovian process algebra by
means that associate an exponential delay to each activity
in a process description. This language is supported by a
tool called PEPA Workbench. A PEPA component is
represented syntactically according to the following
syntax:

P = (a,r).P│P + Q│P < L > Q│P/L│A

Prefix (.): the component (a,r).P performs the activity

"a" after exponential distributed delay with rate "r"
denoted by its distribution function F(t)=1-e-rt, then
behaves like P. The prefix combinator specifies sequential
behaviour of activities. In some cases, the rate of an
action is outside the control of this component, such
actions are carried out jointly with another component, so
this component playing a passive role. This is recorded by
the distinguished symbol T (called top).

Choice (+): a choice between two possible behaviours
is represented as the sum of the possibilities such P + Q
behaves either like P or like Q. A race condition is
assumed to govern the behaviour of simultaneously
enabled actions, the action with the least duration is
executed.

Cooperation <L>: the component P <L> Q specifies
interaction between components on a given set of action

types. This means that for action types outside the set L, P
and Q proceed independently, but for action types in L, P
and Q must cooperate and synchronise over given gates
listed in L, so actions in L require the simultaneous
involvement of both components. Shared activities should
proceed at the rate of the slower of the two participating
components. If the set of action "L" is empty, then there
is no interaction between P and Q, and in this case,
cooperation reduces to parallel composition, written <> or
|| and these components will behave in an interleaved
manner. It is clear that if a component is behaviourally
independent, then it may be studied in isolation without
affecting its behaviour.

Hiding (/): this operator hides the behaviour of
components from an external observer and transforms it
to an internal action (i in LOTOS [13]). So the component
P/L behaves like P, excepting that any activity with type
in L is not visible to an external observer.

Constants (A): constants allow names to be assigned to
components and give the variable on the left hand side of
the assignment operator the behaviour of the component
on the right hand side.

Distinct precedence were assigned to the PEPA: the
hiding operator was given highest precedence with prefix
next, followed by cooperation. The choice operator was
given the lowest precedence.

2.2 TIPP

TImed Processes and Performability evaluation
(TIPP), was developed at the university of Erlangen by
the group of Prof Ulrich Herzog [7,11]. The semantics
rules of this language can be described by the following
expression:

P = Stop│(a,r).P│P + Q│P ||s Q│P\a│rec X : P│X

The term Stop denotes the terminated process. Prefix

operator ".", Choice "+", parallel (cooperation) "||s" and
hiding "\" operators have the same functions like in
PEPA. Passive actions are represented with rate 1 instead
of T which is used in PEPA. The recursion operator "rec"
is used to express the recursion equation when X
reappears in P expression and finally the constant
component which allow names to be assigned for
components.

TIPP is supported by TIPPtool [12] which is closely
related to LOTOS [13]. It allows one to model immediate
activities in addition to exponentially timed actions and
its semantics rules can be expressed by the following:

P = Stop│(a,r);P│(tau,r);P│a;P│tau;P│exit│P >> Q

P [> Q│P [] P│P ||| P│P | [a1,a2, ... an] | Q
P[a1,a2, ... an](r1,r2, ... rn)

hide a1,a2, ... an in P

"tau" is used to express an unobservable action. The
prefixed process a;P behaves like P after "a" is
immediately executed. Exit is used to express successful
termination. The enable operator P >> Q is used to allow
the execution of process Q if process P is successfully
terminated. The disabled operator P [> Q allows process
Q to interrupt the execution of process P. The choice
operator is represented by "[]" instead of "+". The pure
interleaving operator, which is used when the
synchronisation list between two processes is empty is
represented by "|||" and by |[a1,a2, ... an]| if the
synchronisation list contains a1,a2, ... an.

2.3 EMPA

Extended Markovian process algebra (EMPA), has
been developed at the university of bologna by Marco
Bernardo [8]. Its development has been strongly
influenced by the stochastic process algebra PEPA and
TIPP. Those are witnessed by the fact that in EMPA there
are three different kinds of actions: exponentially timed
actions, passive actions and prioritised weighted
immediate actions. The syntax of EMPA can be
summarized by the following expression:

P = 0│<a,λ>.P│<a,*>.P│<a ,∞L,W>.P│P/L│

P\L│P[φ]│P + P│ P ||s P│A

Since the null term "0" is the deadlock operator, the

prefix operator is "<a,λ>.P", the functional abstraction
operator or hiding operator is "P/L", the functional
relabelling operator is "P[φ] ", the choice operator "+",
the parallel composition operator "||s" and the constant are
the same operators that we have seen in the previous SPA
languages. This SPA language is supported by a software
tool called TwoTowers.

A passive action whose duration is unspecified, is
represented in EMPA by "*" in order to model activities
waiting for synchronisation. An immediate action is
represented by "<a ,∞L,W>._" where L is used to express
the priority level and W is used for the probability weight.
In the race condition, immediate actions take precedence
over exponentially distributed actions and over other
immediate actions having small priority level with respect
to their level. If two immediate actions have the same
priority level, they will be executed according to the
probability associated with each one. The temporal
restriction operator "P\L" prevent the execution of passive
actions who are listed in L.

2.4 Comparison

The main difference between these stochastic process
algebras is related to the synchronisation of stochastic
actions of two concurrent component of the software

model [3]. In order to illustrate this difference, we take
the following behaviour expression:

(a,λ).B || a || (a,µ).C = (a, λ*µ).(B || a || C)
And we will show the solution adopted by these
languages for finding the function "*" (law of
cooperation) that makes the equality in the previous
equation hold.
In PEPA, the function "*" correspond to the minimum of
the related rates, in order to express that synchronisation
between these components is determined by the rate of
the slowest one. In contrast TIPP adopts another solution,
where "*" is interpreted as the ordinary multiplication,
but the operational intuition behind the choice of
multiplication for this function is not at all obvious and
no useful stochastic interpretation of this solution other
than algebraic simplicity. EMPA deals with
synchronisation by adopting the client/server (or
master/slave) model, where the server determines the rate
of service and the client plays a passive role with this
respect. This synchronisation discipline imposes that
action (a,λ) can be synchronised with action (a,µ), if and
only if min(λ,µ) is unspecified and the rate of the
resulting action is given by max(λ,µ), or in other words,
in synchronisation at most one action must be active and
all the other involved actions must be passive.

3. EMPA specification for a DiffServ router

In this section we illustrate an example that should
highlight the expressive power of SPA languages in
performance evaluation. We have chosen a simple
DiffServ router which deals with 2 classes of services,
one for handling packets with high priority level and the
other for packets with low priority level. This router can
be modelled by a server with a limited buffer, and packets
by clients which wait for service in the buffer if the server
is busy. This queueing model is represented by M/M/1/N
in kendall notation if we suppose that both arrival and
departure rates are Markovian. H and L will be used for
indexing actions and rates for high and low priority levels
respectively.

Figure 1. DiffServ router model

EMPA language provide an algebraic method for

performance evaluation with the model description
instead of manual method (full scan of the CTMC
diagram) used by other tools. This is the reason why this

language is chosen through this queueing modelling
example.

We assume that the arrival rate for the two different
classes are λH, λL respectively, and the service rate are
equal (only for simplicity of equation due to lack of
space). The priority mechanism affects the service
discipline, i.e that possible preemption of low priority
packet being served can be exercised in addtion to
dropping low priority packets when the queue become
full. This queueing system (QS) can be modelled as
follows:

DiffServ = Arrival ||A(Queue0,0 ||D Pre_emp_Server);
A= {arrH, arrL};
D = {deliverH, deliverL};
Arrival = <arrH,λH>.Arrival + <arrL,λL>.Arrival;
Queue0,0 = <arrH,*>.Queue1,0 + <arrL,*>.Queue0,1;
Queuei,0 = <arrH,*>.Queuei+1,0 + <arrL,*>.Queuei,1 .
 + <deliverH,*>. Queuei-1,0; (if 0<i<N-1)
Queue0,j = <arrH,*>.Queue1,j + <arrL,*>.Queue0,j+1 .
 + <deliverL,*>. Queue0,j-1; (if 0<j<N-1)
Queuei,j = <arrH,*>.Queuei+1,j + <arrL,*>.Queuei,j+1
 + <deliverH,*>. Queuei-1,j
 + <deliverL,*>.Queuei,j-1; (if i,j>0 and i+j<N-1)
QueueN-1,0 = <deliverH,*>. QueueN-2,0;
Queue0,N-1 = <deliverL,*>. Queue0,N-2

 + <arrH,*>.<looseL,∞2,1>.Queue1,N-2;
Queuei,j = <deliverH,*>.Queuei-1,j + <deliverL,*>.Queuei,j-1
 + <arrH,*>.<looseL,∞2,1>.Queuei+1,j-1;
 (if i,j>0 and i+j = N-1)
Pre_emp_Server = <deliverH,∞2,1 >. ServePLHigh
 + <deliverL,∞1,1>.ServePLLow;
ServePLHigh = <serve,µ>.Pre_emp_Server;
ServePLLow = <serve,µ>.Pre_emp_Server
 + <deliverH,∞2,1>.<serve,µ>. ServePLLow;

When the model is loaded in TwoTowers [14], its

descriptions are syntactically and semantically analyzed
using a parser for detecting errors, then TwoTowers will
find all possible states and transitions or in another word
the labelled transition diagram or derivation graph.

The Labelled Transition System (LTS) which is called
in EMPA integrated interleaving semantics model, is a
graph (described by a list) where each state is represented
by a node and transitions between states are represented
by arrows labelled with the actions that fire this transition
and the rates of the corresponding actions as a list (figure
2.A). From such an integrated model, two other models
can be derived: the functional model which can be
obtained by discarding the performance related
information e.g the rate of actions (see figure 2.B) and
can be used to detect the functional errors such as a
deadlock or a livelock, and the performance model or the
Markovian (figure 2.C) semantic model is obtained from
integrated model by discarding action type and hiding
(discarding) the immediate transition and the related
source states (vanishing states). The reason of removing
immediate transitions and their related source states is
that the sojourn time in those states is zero, so they are
irrelevant from the performance view point.

The objective of this modelling study is to calculate
the steady-state and transient probability distribution for
the system which will be used to derive the performance
measures such as system throughput and resource
utilization.

The performance semantic model (figure 2.C) can be
used for constructing the infinitesimal generator matrix
defined by these following expressions:

 = for i≠j ijq ijλ

 =iiq ∑
≠=

−
N

ji,1i
ijq => = 0 ∑

=

N

1i
ijq

The transient state can be found by solving the
equation: (dπ/dt) = π(t).Q, and at the equilibrium, the
probability distribution vector will be unchangeable
(dπ/dt) = 0, so using the steady-state probability we
obtain π.Q = 0, where π is the distribution probability
vector of the model at the steady state [2], so =1.∑ =

N
1i iπ

But in using TwoTowers, no need to waste our time in
calculating Q matrix because TwoTowers will give us the
steady state and the transient state probability. So given
.

 Figure 2. Label Transitions System

 (arrL,λL) (arrH,λH)

2 3

4

1

 (delH,∞2,1)
 (SH,µ)

 arrH arrL

 delH
 SH

 C

 B

 A

2 3

4

1

2 3

4

1
λH λL

λH
 µ

the CTMC diagram (performance model) and the value of
probability distribution in steady and transient state, we
can evaluate the performance of the system by using
queueing system theory. For example, the throughput is
defined as the mean number of customers served per time
unit, and is given by the service rate multiplied by the
stationary probability of being in a state where service
can be provided. It is given by the following formula:

T = = µ.(1-π∑
=

N

2i
iπ.μ 1)

Where µ and π1 are given, so the throughput can be
computed by a simple multiplication.

The utilization rate of the QS is defined by the fraction
of time during which the server is busy, and which is the
sum of the stationnary probabilities of states where there
is at least one packet. It is given by the following formula:

U= = = 1-π∑
=

N

2i
i)π.1(∑

=

N

2i
iπ 1

The vector distribution probability πi for all states is
given by TwoTowers and the utilisation rate can be
calculated by a simple addition.

The mean number of customer which is given by:

E[N] = ∑
=

N

2i
i)π.i(

It can be computed using the CTMC diagram in order
to determine the number of customer in each state, but
a full scan to the performance semantic model graph will
be excendingly expensive for finding the number of
paquets in each state (especialy if we have a big number
of states) and this technique must be avoided. This is why
EMPA take into account the performance aspects of a
system in the early stages of its design (with algebra
description) where designers can assign reward to each
action. Actions with reward will be specified according to
the following syntax:

A= <a,r,y,b>.A
Where y is the yield reward and b is the bonus reward.
A performance measure for a CTMC can be specified
by attaching a yield reward yi to every state i, which
expresses the rate at which reward is accumulated at state
i, and by attaching a bonus reward bi,j to every transition
from state i to state j, which expresses the instantaneous
gain due to the execution of the transition from state i to
state j. Readers interested about yield and bonus reward
can refer to [14].

Given yield and bonus rewards, the corresponding
stationary performance measure can be computed in
EMPA according to the following equation:

∑∑∑
= ==

π+π
N

1i

N

1j
ijiij

N

1i
ii q..b.y

and for transient phase, we use πi(t) in place of πi in this
equation. Many of the performance measures can be
obtained using this formula, for exemple: if we want to
compute the throughput, we must replace every action of
the form <serve,µ> with <serve,µ,µ,0> (e.g yi = µ and bij
= 0) for obtaining the following equation:

 = ∑∑∑
= ==

+
N

1i

N

1j
ijiij

N

1i
ii q.π.bπ.y ∑

=

N

2i
iπ.μ

EMPA will take into account all states that provides the
service s and will assign a reward to them. Like we know
from CTMC of this router, that the first state is the only
state that can not execute action serve, this is why the
index in the answer begin from 2 and the first state will
not be taken into account by the tool.

If we want to compute the utilization of the QS, we
must replace every action of the form <serve,µ> with
<serve,µ,1,0> (e.g yi=1 and bij=0) in order to obtain the
following equation:

∑∑∑
= ==

+
N

1i

N

1j
ijiij

N

1i
ii q.π.bπ.y = ∑

=

N

2i
iπ.1

Performance results for our model specification are
computed using queueing theory and EMPA reward
technique. Like expected and like we have shown in the
previous equations, these results are equal.
In table 1 we summarize the results obtained from EMPA
supported tool (TwoTowers) by varying the capacity of
the previous queueing system from 3 to 6, where λH = λL=
2 and µ = 4. The columns show respectively, the capacity
of the system, the number of states of the integrated
interleaving semantic model, the number of tangible
states (which have only outgoing exponentially
transitions and which appear in the Markov chain), the
number of vanishing states (which have immediate
transitions), the number of deadlock states, the number of
transitions, the number of exponentially timed transitions,
the throughput of the system in stationary phase and in
transient phase (at time = 3 second), the utilization rate at
stationary phase and at transient phase (at time = 3
second).

 N states ts vs ds transitions ett it

throughput throughput
at t = 3s

utilisation utilisation
at t = 3s

3 29 16 13 0 51 38 13 3.10

3.09 0.78 0.77
4 47 25 22 0 85 63 22 3.28 3.23 0.82 0.80
5 69 36 33 0 127 94 33

3.39 3.30 0.85 0.82
6 95 49 46 0 177 131 46 3.47 3.33 0.86 0.83

Table 1. Results of the analysis of the DiffServ router with 2 classes

4. Conclusions

In this paper we have shown the methodology used by
SPA languages for modeling and analyzing both
functional and performance characteristics of a system.
This is done in two phases:

- The first phase requires the designer to specify the
system in the stochastically timed process algebra, in
order to perform a behavioral analysis such as deadlock
free.

- The second phase consists in deriving from the
algebraic representation of a system the performance
characteristics.

We have applied TwoTowers (which is a tool
supporting EMPA SPA language) for modelling and
analyzing a DiffServ router with two classes and we
illustrate how this language integrates functional
verification and performance evaluation.

5. References

[1] Marco Bernardo, On the Formalization of
Architectural Types with Process Algebras, Proc.
ACM/IEEE Int. Conf. on Fundamentals of Software
Engineering, 2000.
[2] Abdelmalek Benzekri, Qualitative and Quantitative
Evaluation using Process Algebra, The 17th International
Symposium on Computer and Information Sciences,
Orlando, Florida USA, pp. 415-418, 28 October 2002.
[3] Ed Brinksma and Holger Hermanns, Process Algebra
and Markov Chains, Lectures on Formal Methods and
Performance Analysis, pp. 183 – 231, Nijmegen, 2001.
[4] Jane Hillsotn and Marina Ribaudo, Stochastic
Process Algebra: A New Approach To Performance

Modeling, Modeling and Simulation of Advanced
Computer Systems, Gordon Breach, 1998.
[5] Jane Hillston, A Compositional Approach to
Performance Modelling, Cambridge University Press,
1996.
[6] Jane Hillston, PEPA Performance Evaluation Process
Algebra, Technical Report of Computer Science,
Edinburgh University, March 1993.
[7] H. Hermanns, V. Mertsiotakis, A Construction and
Analysis Tool Based on the Stochastic Process Algebra
TIPP, 2nd Int. Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, 1996.
[8] M.Bernardo, A Tutorial on EMPA: A Theory of
Concurrent Processes with Nondeterminism, Priorities,
Probabilities and Time, in Theoretical Computer Science,
pp. 1-54, July 1998.
[9] Robin Milner, Communication and Concurrency,
Prentice-Hall, 1989.
[10] C.A.RHOARE, Communicating Sequential
Processes, Prentice-Hall, 1985.
[11] U. Herzog, Performance Evaluation and Formal
Description, IEEE CompEuro 91, IEEE Computer
Society Press, May 1991.
[12] U. Klehmet, V. Mertsiotakis, TIPPtool: Timed
Processes and Performability Evaluation, User’s Guide,
Technical Report IMMD VII-3/98 University of
Erlangen-Nurnberg, January 1998.
[13] T. Bolognesi, E. Brinksma, Introduction To The ISO
Specification Language LOTOS, Computer Networks
and ISDN Systems 14, Elsevier Science Publishers
B.V.(North Holland), pp. 25-59, 1987.
[14] M. Bernardo, An Algebra-Based Method to
Associate Rewards with EMPA Terms, the 24th Int. Coll.
On Automata Languages and programming (ICALP 97),
1997.

