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Abstract. This paper provides a new framework for efficient detection
and identification of network anomalies over high speed links, in early
stage of its occurrence to quickly react by taking the appropriate counter-
measures. The proposed framework is based on change point detection
in counters value of reversible sketch, which aggregates multiple data
streams from high speed links in a stretched database. To detect net-
work anomalies, we apply the cumulative sum (CUSUM) algorithm at
the counter value of each bucket in the proposed reversible sketch, to
detect change point occurrence and to uncover culprit flows via a new
approach for sketch inversion. Theoretical framework for attacks detec-
tion is presented. We also give the results of our experiments analysis
over two real data traces containing anomalies, and extensively analyzed
in OSCAR French research project. Our analysis results from real-time
internet traffic and online implementation over Endace DAG 3.6ET card
show that our proposed architecture is able to detect culprit flows quickly
with a high level of accuracy.

Key words: Network anomaly detection, Change point detection, Multi-
chart Cumulative Sum, DoS, Sketch

1 Introduction

Security threats for computer network have increased significantly, which include
viruses, worm-based attacks, PortScan, NetScan, denial of service (DoS), and its
distributed version (DDoS), etc. However, with the increasing of link speeds and
traffic volume, the real time monitoring and analyzing of IP traffic to detect
attacks become a complicated task, but crucial for managing large networks
(e.g. for ISP, Enterprise, etc.).

Two approaches to network anomaly detection are used. The first is signature
based-approach, which is extensively explored in many software systems and
toolkits such as Bro [17] and Snort [18]. This approach is used for anomaly
detection with signatures known in advance, and it can not be applied to identify
new anomalies.

The second approach is the statistics based approach, which does not require
prior knowledge about the nature and properties of anomalies and therefore can
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be effective even for new anomalies or variants of existing anomalies. A very im-
portant component of statistics based approach is change detection [11]. It builds
a model for normal user behavior in learning phase, and any inconsistent behav-
ior with the build model is considered as anomaly. While wide range anomaly
detection algorithms have been introduced to undermine attacks, the effective-
ness of these models is largely dependent of traffic distributions parameters and
their variations. They lack the capability of handling shape irregularities and
unpredictable large fluctuations of real IP traffic.

Furthermore, most existing intrusion detection systems (IDS) reside at end
host or end router. They are mostly host based or located on end routers. They
lack scalability in handling large state space traffic information at high speed
links, where even the handling at flow level is very costly in term of per-flow
storage requirement, and update/search operations complexity. Flows are usually
characterized by 5 fields (e.g. Netflow [2]): source and destination IP address,
source and destination port, and protocol number. This means monitoring flows
state space requires updating and handling a database table of size 214,

A naive idea for monitoring flows over high speed links is to maintain a
database for active flows in a fixed time interval T, and to track the k frequent
destination addresses in IP traffic (top ten or heavy hitter destinations). For ex-
ample, to detect victim servers of SYN flooding DDoS attack, an ISP can query
database for destinations IP with a received number of SYN that exceeds a given
percentage of the total number of SYN, which was relayed by the monitoring
node. However, this strategy is not scalable, where spatial and temporal com-
plexities, for update and query operations, on active flows database prevent its
use for handling a large number of flows at high speed links in real time.

In response to these limitations, an efficient data structure based on k — ary
hash tables (Fig. 1), called sketch [1,11,12] was proposed and used to handle
large state space, with a small amount of memory requirement and a linear
computational (update/query) complexity. It is a multistage bloom filter based
on random aggregations, where flow identifier (denoted by key) is mapped to
index of bucket using k different hash functions (one index per stage of the
array of k hash tables). These hash functions are generally chosen to reduce
collision effect and to uniformly distribute keys over buckets of hash table.

To use sketch in context of network anomalies detection, IP flows can be
classified by some combinations of fields in packet header, such as destination
IP address (DIP), or source and destination IP address (SIP/DIP), etc. This
flow identifier is used as key to update the k" hash table by its associated
value (key,value). The value is a reward associated with key, and which can
be the number of: packets, bytes, connection requests (#SY N), number of half
open connections (#SY N — #SYNACK), or other flow characteristics.

Recent work with Count-Min Sketch (CMS [5]) has showed that random ag-
gregation of flows does not significantly disrupt their variations. The CMS query
request algorithm can indicate if a given key exhibits large accumulated value,
and even one can query sketch data structure about an approximate estimation
of occurrence frequency for a given key.
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However, sketch is based on universal hash functions, which are not reversible.
Consequently, we cannot use sketch to report the set of frequent or heavy hitter
keys, because sketch does not store any information about its key entry. Thus,
the only way to get all heavy keys (which exhibit heavy accumulated value) is
to test all possible entry, by hashing for the second time all keys, in order to
determine those mapped to heavy buckets. That mean when monitoring high
speed links, all keys must be recorded and verified. Unfortunately, this approach
is neither scalable nor accurate for online monitoring.

In this paper, we consider the problem of online detection of network anoma-
lies over high speed links, in order to cope with attacks as soon as possible. We
propose a new variation of sketch by adding an inversion procedure for sketch,
and we use a parametric version of multi-channel CUSUM (M-CUSUM [10, 21,
22]) as sequential algorithm [9] for anomaly detection in each bucket of sketch.
Our contribution is twofold. First, we resolve the problem of sketch inversion
with a software compliant procedure method, and second we analyse the effi-
ciency of M-CUSUM (a sequential algorithm for anomaly detection) over this
compact way for storing flows information. Sketch was used for offline anomaly
detection through searching heavy hitter flows, and the use of sequential change
point detection algorithm over sketch was never been addressed.

In fact, the combination of M-CUSUM and sketch improves the efficiency
of the detection mechanism, where CUSUM is used to undermine anomalies,
and sketch to significantly reduce the required memory and the computational
complexity, when handling a large amount of data. Proposed method has been
validated practically and implemented over Endace DAG 3.6ET, and has been
rigorously analyzed. Our results are encouraging in terms of accuracy and re-
sponse time.

The remainder of this paper is organized as follows. In the following section,
we discuss the related work and previous research related to our work. In sec-
tion 3, we give a brief overview of CMS Sketch and parametric M-CUSUM mech-
anisms that are related to our studies. Section 4 describes our proposed method
for detecting change point in a reversible sketch. In section 5, we present the
analysis results from the application of the proposed framework over real inter-
net traces. Finally, section 6 presents concluding remarks and the future work.

2 Related work

The authors of [24] use a non parametric version of CUSUM, as sequential hy-
pothesis testing algorithm [9] for anomaly detection with TCP SYN flooding.
In [20], the authors evaluate and compare two anomaly detection algorithms
(adaptive threshold and CUSUM) for detecting TCP SYN attacks. They con-
clude that CUSUM is more efficient than adaptive threshold, especially for the
detection of low intensity attacks. Moreover, they compare their results obtained
with a parametric version of CUSUM (by assuming a normal distribution for
SYN inter-arrival packets), with the result of non-parametric version used in [24],
and they conclude to better performance. For this reason, we will restrict our
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study in this paper to the parametric version of CUSUM. However, CUSUM al-
gorithm is not able to pinpoint the malicious flow responsible of anomaly. It only
raises an alarm after the detection of anomaly. In [10, 21, 22], the authors prove
that multi-channel CUSUM is more efficient than single channel, which means
applying CUSUM at flow level (given some criteria for packets aggregations and
flows classifications), is more efficient in anomaly detection than applying this
algorithm over the total number of ingoing packets.

The Multi-channel CUSUM [10, 21, 22] (M-CUSUM) is statistical self learn-
ing algorithm for initializing required parameters (e.g. mean and variance) in
order to build an initial normal profile, in an adaptive manner with various net-
work load and traffic patterns. M-CUSUM belongs to anomaly-based intrusion
detection class, which detect a change in traffic parameters, through using the
assumption that most anomalies induce a change in distributions of monitored
parameters (mean, variance, etc.).

However, per flow application of CUSUM is prohibitive for real time opera-
tions over high speed networks, where storage and update operations of state-
space flows information are very costly. In [1,11,12], a stretched data structure
with a linear complexity of update/search operations, was proposed and used to
handle large data. The authors in [3,4,13] have tackled the problem of offline
anomaly detection over sketch by verifying if the values of the sketch buckets
associated to a given key are heavy hitter or not. Recent work in [19] lookup for
heavy buckets in the sketch resulted from the difference between current epoch
and time series forecasting sketches. However, heavy hitter flows do not neces-
sarily correspond to malicious flows. Therefore, we will address this problem by
using M-CUSUM over sketch buckets in this paper.

Sketch is based on universal hash functions and random aggregations, and
does not store information about active flows identifiers. In [12], it was used with
the storage of all existing flows identifiers during a time interval, and through
re-hashing of all stored identifiers to determine malicious flows. Unfortunately,
storing all flows identifiers, especially when monitoring high speed links, is nei-
ther scalable nor efficient for online monitoring. There is a need for a software
compliant reversal procedure over sketch to pinpoint corresponding keys to ma-
licious flows.

3 Background

In this section, we briefly survey the underlying count-min sketch data structure
and multi-channel CUSUM theory related to our work.

3.1 Count-Min Sketch

Let S = s189...5s, be the set of input stream that arrives sequentially, item by
item [5]. Each item s; = (k;,v;) is identified by a key x; € U drawn from a
fixed universe U of items. A reward (or frequency occurrence) value v; € R is
associated with each key. The arrival of item with key ; increments its associated
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Fig. 1. Sketch data structure

counter in the j** hash table by v; (Cjn,(x))+ = Vi), as shown in Fig. 1. The
update procedure is realized by d different hash function, chosen from the set of
2-universal hash function Hj;(k;) = {((a;k;+b;) mod Py) mod w}, to uniformly
distribute k; over hash tables and to reduce collision. Parameter Py is a prime
number larger than the maximum number in universe, and Mersenne prime
numbers of the form 2! — 1 are generally chosen for fast implementation.

The Count-Min point query returns an estimate of the accumulated value for
a given key, as the minimum of d counter (x(k;) = ogﬂi?d{c[j”hj(“i)]})'

Ongoing IP packets into an ISP can be classified as series of (k;, v;), where &;
can be the destination IP address (DIP), or any other fields in packet header,
and the value v; can be the number of SYN request. CMS query can estimate if
a given DIP (key) is under SYN flooding attack by verifying the value of §;(k;).

In CMS we use d = [In(1/9)] pairwise independent universal hash functions,
where each one receives x; as parameter and return a random integer in the
range w = [0,e/e]. € is the error rate with probability less than §. Thus, it
maintains modest storage requirements of O (In(1/delta) x (1/¢)) count cells.

3.2 Multi-channel Cumulative Sum Algorithm

In contrast to the most widely used techniques with sketch for anomalies de-
tection (heavy hitter), sketch can be used with various sophisticated sequential
detection procedures [10, 20, 24] to uncover anomalies. In this paper, we will fo-
cus on multi-channel CUSUM algorithm, due to its low computational overhead
and modest storage requirements.

In this section, we briefly review the sequential parametric multi-channel
CUSUM algorithm used to detect change point in traffic in [20]. CUSUM relies on
two phases: training and detection. In training phase, it establishes and updates
a dynamic behavior profiles for normal flows. In detection phase, it uses log
likelihood ratio to detect any kind of abrupt deviation from well established
profile. In this context, CUSUM define anomaly as any unusual event that does
not fit the normal behavioral profile. Hence, it is indicative of unpredictable
or unreliable events, that threat to the network. In multi-channel version of
CUSUM, the algorithm is applied over many channels, and once an anomaly is
detected in any channel, an alarm is raised.
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Let {X{;T, 1 <i<d,1<j<w} be the value of each bucket during the nt"
time interval. Observations X7\" ar e i.i.d with a pdf fij,(2) for n < t, (be-
fore attack occurrence) and with another pdf fij -, (z) for n > t, (after attack),
where t, is the instant of attack detection. M-CUSUM test statistical hypothe-
ses H;; (eq.( 1)) to detect abrupt change in bucket with index (i, j) at the time
epoch n = t,:

Hij,O : F)/ij =7 versus Hij,l : F)/ij =71 (1)

Where 7y and 7; are respectively the pdf parameters before and after change
occurrence. The detection of anomaly is based on log likelihood ratio for an
observation Xi"jT test between the two hypotheses:

r(XT
o g 2 ( Zﬁ:rl%) @)
pT(Xij 170)
If we assume Gaussian distribution f;; a0 (X7T) = N(pijo,0%;0) for the hypoth-

esis Hyj0 and fij 4, (X%T) = N(,ul-jyl, i, 1) for H;; 1, the log likelihood ratio take
the following form:

- X”T_ ii0)? XnT_ ii1)2
nT _ Uz],0+( NJ,O) _( M],l) (3)

0ij,1 2013 0 201] 1

The cumulative sum function is a summation of the log likelihood ratio:

Sil = Z sh (4)

S"T will increase when s"T > 0, and decreases for SZT < 0. When the value
of SZT become greater than threshold h, a decision can be taken about the
hypotheses (H;; o for normal condition and H;; 1 for attack condition). Therefore,
the relevant information for detecting change lies in the difference between the
value of the log-likelihood ratio and its current minimum value [20]. Hence the

stopping time for the M-CUSUM algorithm is given by:

tg =te(h) =min{n >1: G%T > h} (5)
Where:
nT nT nT nT __ nT
Gl =S —miy  and mj; = 1I<I}1<I}i S (6)
1<j<w

The statistic function G%T obeys the recursion:

— XnT|71) !
arT — =0T prXy m) AGY. —0 7
ij { ij +In (XnT|’YO) ij (7)
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Where {y}* = max (0,). We consider that X ian follows a Gaussian distribution
with known variance ofj that remains unchanged after attack, and pg and uq
are the mean before and after the attack, with a value of y; = a.pug, by following
the same analysis and assumptions in [20], where authors have conclude to more
false alarm and more miss detection when replacing the Gaussian distribution
assumption in CUSUM by its non-parametric version. With the assumption of

Gaussian distribution, eq. (7) takes the following form:

Jr
nT (n—1)T | Hij,1 — Hij,0 nT M1+ Hig0 0

K o3 2

After the substitution of ;51 by pij1 = a.pij0, €q. (8) becomes:

+
- — 1)pij 1) i
Q?_{Ggln+xa Qum(xg,xa+>um)} NG =0 )

o 2

The detection of anomaly is given by testing the value of M-CUSUM func-

tion GZ—T (i GZ—T > h then alarm is raised). The values of p;;0 and ofj can be

estimated in a self learning phase and updated dynamically using EWMA (Ex-
ponential Weighted Moving Average) formulas given in eq. (10) and eq. (11):

n n—1)T n

it = B+ - g g (10)

o3, (nT) = oy (n = 1)T) + (1 = B)(X1" — pi)? (11)

In fact, with the large fluctuations and variations in traffic characteristics

(heavy tailed distributions for packets length, memory-less inter-arrival, self-

similarity and long-range dependence, etc.), and with the lack of consensus about

distributions of traffic characteristic parameters, one may wonder about the

efficiency of Gaussian distribution assumption for CUSUM. The M-CUSUM [10]

function in non parametric version is updated using the following formula:
_ +
G%T = {Gz(;l vT + Cij (XZT — 5,0 — Eij,uijyl)} A\ G?] =0 (12)

However, the problem is in choosing the parameters (c;j, €i;, and ;1) that
control the sensitivity of attack detection, which is not a straightforward task,
and left to user. ¢;; a positive weight which is set to 1 in [24]. Parameter ¢;;
is a tuning parameter chosen from [0, 1] due to the average delay detection [10]
which must be a positive number:

h

ADD, (t,) =
to(fa) (1 = &ij)pij1 — Hij,0

>0= e <1— ijo/tija (13)

In fact, we can get the Gaussian parametric version of CUSUM (given in
eq. (9)) from the non-parametric version by substituting parameters ;; and ¢;;
in eq. (12) by:

] B Hij, 1 — Hij,0
Ciq — ———— a,nd Eij = 14
Y o3 ! 2pij,1 04
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Fig.2. MLRS and CMS sketch

Therefore, parametric version of CUSUM is not more than special case of
non-parametric version, and choosing normal distribution becomes parameters
adjustment choice for CUSUM detection algorithm.

A detection procedure should have a low false alarm rate FAR and small
delay for attack detection. In [22], it was proven that CUSUM is asymptoti-
cally optimal. It minimizes the average delay detection ADDy, (t,) for a given
false alarm rate FAR, i.e FAR(t,) < FAR. The FAR increases by decreasing
the speed of detection, and a trade-off between low FAR and minimum delay
detection is required. The threshold value should be chosen from the condition
Eypto(h) = 1/F AR to minimize delay detection given a FAR. It is worth noting
that value of threshold h controls the sensitivity of the attack detection, hence
large value of h decreases the F'AR, but true attacks may also completely missed.
We refer to [10,20-22] for a complete reference about CUSUM parameters and
implementation details.

4 Proposed approach

Our proposed framework is based on 2 data summary architecture: a Multi-Layer
Reversible Sketch (MLRS) and a Count-Min Sketch (CMS) as shown in Fig. 2.
Operations of the proposed framework are performed by two steps. Firstly, it
continuously updates the two sketches (MLRS and CMS) counters from input
data stream (k;,v;) for a fixed time interval T'. Secondly, it applies M-CUSUM
in the background at each bucket to detect anomalies. Afterward we identify
and output keys that mapped to buckets with a raised alarm by CUSUM.

In this paper, we seek to detect victim servers of TCP SYN flooding, as
it was widely shown in the literature that more than 90% of the DoS at-
tacks use TCP [15], and TCP SYN flooding dominates in available attacking
tools. Ongoing packets are classified by DIP as key for flow identifier, and
only packets with bit SYN set to 1 in TCP flag are considered. We associate
with the key k; the DIP, and with v; the value of bit SYN in packet header
((ksyv;) = (DIP,SYN)). We can also monitor another kind of flooding with
TCP (ACK, RST, FIN, etc.) or with other protocol (flooding UDP, SMURF,
etc.) by changing the associated reward v;, but we will restrict our analysis to
TCP SYN flooding in this paper.

However, M-CUSUM only raises alarm in buckets after the detection of
abrupt change, and due to random aggregations and collisions occurrences, re-
versing sketch is a difficult operation to uncover responsible flow of anomaly.
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There is only two existing approaches in the literature. The first [12] is based on
intuitive idea by storing all keys in 7" time interval, and achieve verification by
hashing for the second time the set of stored keys at the end of each interval.
This strategy is inefficient in term of storage space and update speed for the list
of keys.

The second approach [6,19] is based on modular hashing and mangling via
Galois Field GF(2™) operators, which is complex and more efficient for hardware
implementation, as it was done in [19].

Our idea to reverse sketch is based on exploiting index in an additional multi-
layer reversible sketch (Fig. 2), where indexes are used to store keys. In fact, the
MLRS is used in the same way of CMS sketch, where the arrival of each key
increments its counter. However, each key has | counter (one by layer), where
we split the key of N bit into I x wq bit, with wg = 2P, and [ = [N/P]. P is
the number of bits used to split the key, and wq is used as layer width in MLRS.
The update procedure is summarized in algorithm 1.

Algorithm 1 Sketch Update procedure

: Mkey = crypt_optimsed_-RC4(key);

:fori=0tod—1do
j = universal_hash;(Mkey);
CMS[i][j].counter + = v;;

end for

:for j=0tol—1do
M LRS[j][Mkey& (2" — 1)].counter + = v;;
Mkey >>= P,

end for

© XD T Wy

If we seek to search for victim DIP (or keys that map to buckets with raised
alarm by M-CUSUM), we can release hierarchical search procedure in MLRS. If
we don’t find at least one bucket with raised alarm in each of the i" (i <1 —1)
first layers of MLR.S, there is no need to continue searching in other deep layers or
through the second CMS sketch. Malicious flows must have one alarmed bucket
in each layer.

We will begin by the simple case, where we assume that there is at most
one bucket with CUSUM raised alarm in each layer as shown in Fig. 2. To
recover key, we concatenate the [ index in MLRS and we get the value of suspect
key (e.g. DIP). We can not be sure of suspect before verification, where due
to collision with other IP prefix, their value becomes large. The suspect key
is verified through hashing and verification (by count-min query of CUSUM
function) in the CMS for confirmation.

In general, even with a different value of width (e.g. 2!2 or 214) for the MLRS,
many buckets in different layers will be subject to collision occurrence, and in
some case, we will be found with a bigger set of keys to verify through CMS
than the original one. Nevertheless, it is important to notify that even if the set
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of suspect key is larger than departure one, it requires a small memory and fast
update time with respect to original list.

To resolve this problem and reduce collision in MLRS, we use the idea of
IP-mangling technique presented in [19], but with an optimized version of RC4
(Ron’s Code [7]) ciphering algorithm rather than Galois Field GF(2"). The
optimized RC4 code is available from [8].

IP mangling is a reversible procedure, which randomizes the input data in an
attempt to destroy correlation between keys, to disperse adjacent keys uniformly
at all available buckets. Mangled key is denoted by Mkey in this paper. This
technique is a bijective function that maps keys in a universe U to U. Each
key k; is mapped to y; = f(k;), with the function f chosen in a way to destroy
any correlation between keys, as show in table 1. Any bijective function able to
destroy correlation between keys, and return a completely random set of keys,
can be used. Afterward, we use f~!(y;) to recover suspect key r; from MLRS.

In [19], the function f(k;) = a ® k; @ b is used for mangling, where ® is the
multiplication operation defined on GF(2"), & is the bit-wise XOR operator,
and a and b are two random number uniformly chosen from the universe U. The
reverse of a mangled key is obtained from f~1(y;) = a=! ® (y; ® b) by precom-
puting the value of a~!. In the other hand, the authors of [19] explain clearly
that the direct calculation of a ® x is very expensive, as it requires multiplying
two polynomials (of degree n — 1) modulo an irreducible polynomial (of degree
n). Therefore, they use tabulation and many additional precomputing tables to
reduce complexity. In fact, Galois field is based on bit by bit operations which
is hardware compliant, and requires additional memory for fast calculation of
polynomial product. In contrast, the optimized RC4 bloc cipher algorithm is
ideal for software implementation, as it requires only byte manipulations and its
implementation is based on few lines of code. It has been proven to be powerful
in our experimentations for mangling and destroying any correlation between
adjacent keys, in terms of random Hamming distance between adjacent keys, as
shown binary values in table 1.

Table 1. Mangling DIP by optimized RC4

DIP || Mangled key
192.168.92.40 10010100101001011110100010011011
192.168.92.41 10101011011001000011001000100110
192.168.92.42 10010110111011000010010010101110
192.168.92.43 00100000001101001000000001101101

In Fig. 3, we show the distribution of collision when using direct mapping and
mangling to update multi-layer sketch with P = 8 for a universe size of 32-bit
(k; = DIP). Data traces from 1 minute real bidirectional Internet traffic of 1776
flows (here flows are classified by DIP). In fact, used mangling technique allows
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to uniformly distributing key over buckets, and prevent collision over IP with
same prefix. It is worth noting, that we proved by experiments that the number
of collision reduce significantly by increasing the width of multi-layer sketch.

At the end of each time interval T, and after updating counters of MLRS
and CMS continuously in online manner, M-CUSUM anomaly detection algo-
rithm run in the background, to update CUSUM function in each bucket, and
to raise alarm in bucket where the value of function GZ-T exceeds the threshold.
Afterward, we scan MLRS for identification of all possible sequence of [ bucket
(one per layer) with triggered alarm and we realize verification through count-
min query over the CMS, to ensure that the corresponding buckets with the d
universal hash functions have a triggered alarm by CUSUM. However, we don’t
store the set of suspect keys, but once we have a suspect, we realize verification
through the CMS before integrating it in alert message.

The hierarchical search procedure for alarmed bucket in MLRS, and the
verification through CMS sketch are given in algorithm 2, for a universe of size
2" and a width of 2 for MLRS, P = n/3 and | = 3. Boolean alarm variable is
used to indicate the state of CUSUM function.

5 Experiments results

In this section, we present performance analysis results of juxtaposing M-CUSUM
detection algorithm over reversible sketch, for detecting victims of TCP SYN
flooding attacks. We have implemented M-CUSUM over sketch in C using the
code of CMS available from [14]. We applied the proposed algorithm over many
public traces (LBL-TCP-3, Abilene, Auckland, etc.) available from [16], and
other traces used in OSCAR RNRT French Research project (OTIP, ADSL).
Online implementation over Endace DAG 3.6ET is realized, and many experi-
ments have been conducted for accuracy analysis. Our results are encouraging
in terms of accuracy and response time.
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Algorithm 2 Hierarchical search and verification
1: for i =0 to 2 — 1 do

2:  if (M LRSI[0][i].Alarm) then

3: for j=0to2F —1do

4: if (M LRS[1][j].Alarm) then

5: for k=0to 2¥ — 1 do

6: if (M LRS[2][K].Alarm) then

T Mkey = (k<< 2xP) | (j << P) |4
8: Alarm = ecms_query(CMS, Mkey);
9: if (Alarm) then

10: DIP = decrypt_ ORC4(Mkey);
11: output(DIP)

12: end if

13: end if

14: end for

15: end if

16: end for

17:  end if

18: end for

In this paper, we present the result of our experiments over the set of traces
used in OSCAR project, and extensively studied in this project. We are inter-
ested in detecting victim of DoS/DDoS SYN Flooding in these traces. Afterward,
we conduct performance analysis to study the influence of parameters at true
positive and false detection.

The parameters we considered for the M-CUSUM algorithm were: thresh-
old h =5, a =15, 8 = 0.9 as in [20]. For sketch parameters: P = 8 unless
otherwise noted, wy = 256, I = 4, d = 4 hashing functions from the set of
2-universal hash function, and with the use of tabulation [23].

First, we present our analysis result over anonymized OTIP traces: 3 days
of bidirectional traces collected by France Telecom ISP with Netflow format (~
6.9GB) and contains ~ 896.10° flows.

Fig. 4(a) and Fig. 4(b) show the variation of the number of packets during
a time interval T' = 1min, as well as the variation of number of SYN during
the 3 days. We have applied our proposed framework over traces to uncover
attacks, and we isolate the number of connection request received by each of
identified victim as shown in Fig. 4(c). The separation of received SYN by each
destination is realized for additional information about the false alarm rate, and
have been used for manual verification. The raised alarms by M-CUSUM for
detected victims and their IP addresses are presented in Fig. 4(d). It is worth
noting that response time for analyzing the whole 3 days OTIP trace is less than
2 minutes over a Pentium 1.72 Ghz with 1 GB of RAM memory.

Our second experiment considers two unidirectional anonymized traces ADSL

(up and down) during during 3 hours of capture in pcap format (contains ~
825.10° packets). We realize the same analysis study and manual verification as
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Fig. 4. Analysis results for OTIP trace

in the first experiment. First, we show the result obtained over upload traffic,
and afterward we present the analysis result for the down traffic.

Fig. 5(a) and Fig. 5(b) show the variation of the total number of packets
and the number of SYN during a time interval of 1min. Fig. 5(c) and Fig. 5(d)
show the number of SYN received by the only existing victim in this trace (with
~ 841.10° packets), and the raised alarms by M-CUSUM. Similarly, Fig. 6(a)
and Fig. 6(b) show the variation of the total number of packets and the number
of SYN during a time interval of 1 min. Fig. 6(c) and Fig. 6(d) show the number
of SYN of two detected victims and the raised alarms by CUSUM. However, deep
manual investigations show that the DI P address (97.68.23.88) is not victim of
SYN flooding, but of PortScan attack.

In the third set of our experiments, we conduct performance analysis study
via Receiver Operational Characteristics (ROC) curve, to study the accuracy of
the proposed framework. Our analysis verify the false positive and true positive
probability, with the variation of the value of threshold h and the MLRS sketch
width. However, due to the lack of public well documented traces with well known
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Fig. 5. Analysis results for ADSL up trace.

attacks, we use the overall attacks uncovered by other research laboratory that
have analyzed OTIP traces, as a complete set of existing one. Therefore, true
positive and false positive probabilities are easily verified because we know in
advance the IP address of victim servers, and the number of existing attacks.
Prp is the number of detected attacks divided by the total number of existing
ones. Ppp is the percentage of raised alarm that did not correspond to real
attack.

Fig. 7 illustrates the relation between true positive and false positive, as
well as Prp = f(h) and Ppp = f(h), where F'P decreases as the threshold
value increases, and true attacks may also completely missed. Hence, a tradeoff
between false alarm and true positive detection is required to control sensitivity
and prevent miss detection. We also notice that large sketch width decreases the
false positive and increase the detection rate.
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Fig. 6. Analysis results for ADSL down trace

6 Conclusion

In this paper, we propose a new framework that integrates sketch and CUSUM
for online anomalies detection at high speed link. Proposed framework is able to
automatically pinpoint the malicious IP flows responsible of anomaly, through
exploiting bucket index in an additional multi-layer sketch.

We proved the effectiveness of the proposed approach through implementa-
tion and testing at real traces with DoS/DDoS via SYN flooding. Results of
our experimentations have proved the capacity of early detection even for low
intensity of DoS/DDoS attacks.

The proposed method is easily decentralized due to linear property of sketch
with respect to addition operator. Ongoing work will be converged toward the
hierarchical distribution of the proposed approach, and the reduction of the size
of exchanged sketch information between different monitoring nodes in different
layers.
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