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Abstract: This paper describes the use of stochastic process algebra to model and to evaluate the 

performance of a two class DiffServ router. This specification is done by means a set of powerful 

operators of Extended Markovian Process Algebra (EMPA) language, and then studied from the 

functional and the performance point of view. 
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1. Introduction 
 

Network devices can be described using classical process 

algebra which provides a means for constructing an 

abstract model of the device in question [Bernardo, 

1998a]. This model is used only to establish the correct 

functional behaviour by deriving qualitative properties 

such as freedom from deadlock or livelock [Benzekri, 

2002]. Performance evaluation of the model was in a 

separate phase, after the fully design and implementation 

of the model. Consequently, if the performance is 

detected to be poor, the model will be redesigned with 

negative consequences for both design cost and time lost, 

where the need of integrating the performance analysis 

into the design process.  

Stochastic Process Algebra (SPA) has been developed for 

this purpose. It is a formal specification technique which 

extends classical process algebras via the inclusion of 

timing information by using random variables in the 

generated models, in order to express the durations of an 

activity [Benzekri, 2002; Brinksma and Hermanns, 2001]. 

Once the model has been defined and parameterized, it 

can be used to investigate numerically the performance 

parameters.  

Designing DiffServ [Nichols and Blake, 1998] routers 

using SPA is a complicated task because there are many 

factors to be considered such as penalty policy of 

malicious traffic inside a class. This policy may fluctuate 

from delaying to dropping packets from this flow. In 

contrast, formal specification can be a valuable aid to 

routers designers as it allows a range of options for 

configuration to be explored in a precise setting, such as 

policy requirements which may be clarified during the 

performance evaluation of a router model, because it 

becomes evident what information about the state of the        
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model is required to ensure that it operates effectively. 

For example, it would be possible for the designer to 

demonstrate that under any constraints, a minimum 

threshold for throughput and delay may be satisfied for 

such class of traffic. 

This paper is organized as follows. In section 2 we recall 

the syntax and semantics of Extended Markovian Process 

Algebra EMPA, and we illustrate the difference with 

other existing SPA languages. In section 3 we recall the 

principle of the DiffServ technology. In section 4 we give 

the specification of a DiffServ router. In section 5 we 

analyze the performance of this model by using EMPA 

algebraic reward method and the CTMC diagram derived 

from model specification. Finally, conclusions work is 

presented. 

 

2. Stochastic Process Algebra 
 

Stochastic Process Algebras are formal descriptions 

techniques used to describe the functionality of concurrent 

and distributed systems and to analyze their related 

performance [Benzekri, 2002; Brinksma and Hermanns, 

2001]. Several SPA languages have been appeared in the 

literature, these include PEPA [Hillston, 1996], TIPP 

[Herzog, 1993], EMPA [Bernardo, 1998b]. These 

languages have been introduced as an extension to 

classical process algebras like CCS [Milner, 1989] and 

CSP [Hoare, 1985]. They are abstract languages 

constructed from a small set of powerful operators where 

it is possible to construct algebraic models whose key 

features are: compositionality (which allows the designer 

to build a complex model from smaller ones by means of 

languages operators, and to study the behaviour of each 

component separately), and abstraction (which allows the 

internal details of a system description to be hidden from 

an external observer at analysis time). In these languages, 

systems are modeled as a collection of entities, called 



agents or processes, which execute actions. These actions 

are the building blocks of these languages and they are 

used to describe sequential behaviours which may run 

concurrently by synchronizations or by communications 

between them.  

These languages propose the same approach to 

performance modeling: a random variable is associated 

with each action, representing its duration. This random 

variable is assumed to be exponentially distributed and 

this leads to a clear relationship between the process 

algebra model and a Continuous Time Markov Chains 

(CTMC). Via this underlying CTMC derived from the 

model semantic description [Benzekri, 2002], different 

types of analysis may be performed, like steady-state and 

transient probability distribution. This analysis is done 

through the compilation of the infinitesimal generator 

matrix of the Markov diagram.  

In this paper, we will use the Extended Markovian 

Process Algebra (EMPA) language [Bernardo, 1998b] 

which is supported by a tool called TwoTowers. EMPA is 

inspired and developed on the basis of PEPA 

(Performance Evaluation Process Algebra [Hillston, 

1996]) and TIPP (TImed Processes and Performability 

evaluation) languages [Herzog, 1993]. It extends these 

languages by including three different kinds of actions: 

exponentially timed actions, passive actions and 

prioritized weighted immediate actions. In addition to this 

reason, EMPA allows one to specify performance 

measures with the algebraic specifications of the system 

through atomic rewards attached to states and transitions 

of the Markov chains (MC for short). This leads to an 

automatic derivation of performance measures and may 

avoid a full scan of the CTMC diagram. The syntax of 

EMPA can be summarized by the following expression:  

P = 0│<a,λ>.P│<a,∞L,W>.P│<a,*>.P│P/L│P[φ]│ 

P + P│P ||s P│A 

Since the deadlock term "0", the prefix operator 

"<a,λ>._", the functional abstraction operator "_/L", the 

functional relabeling operator "_[φ]", the alternative 

choice operator "_+_", the cooperation operator "_||s_" 

and the constant operator are the same operators used in 

classical process algebras. Due to lack of space, the reader 

is referred to [Bernardo, 1998b] for an extensive 

presentation of EMPA syntax and semantics. 

 In EMPA, every activity is represented by <a,λ> which 

means the execution of action "a" after exponential 

distributed delay with rate "λ" (denoted by F(t)=1-e
-λt

). An 

immediate action is represented with rate λ = ∞ or 

"<a,∞L,W>", where L is used to express the priority level 

and W is used for the probability weight. In some cases, 

the rate of an action is outside the control of this 

component, such actions are carried out jointly with 

another component in order to model activities waiting for 

synchronization, so this component is playing a passive 

role and is recorded by the distinguished symbol "*".  

The choice in the alternative composition operator "_+_" 

is governed by the race policy, where the action with least 

duration will be executed. In this situation, immediate 

actions take precedence over exponentially distributed 

actions and over other immediate actions having small 

priority level with respect to their levels. If two immediate 

actions have the same priority level, they will be executed 

according to the probability associated with each one. 

The main difference between EMPA and other stochastic 

process algebras languages (PEPA and TIPP) is related to 

synchronization of stochastic actions of two concurrent 

components in the model [Brinksma and Hermanns, 

2001]. For illustrating this difference, we take the 

following behaviour expression: 

(a,λ).B || a || (a,µ).C = (a, λ*µ).(B || a || C) 

And we will show the solution adopted by these 

languages for finding the function "*" (cooperation law) 

that makes the equality in the previous equation hold. 

In PEPA, the function "*" corresponds to the minimum of 

the related rates, in order to express that synchronization 

between these components is determined by the rate of the 

slowest one. In contrast TIPP adopts another solution, 

where "*" is interpreted as the ordinary multiplication, but 

the operational intuition behind the choice of 

multiplication for this function is not at all obvious and no 

useful stochastic interpretation of this solution other than 

algebraic simplicity. EMPA deals with synchronization by 

adopting the client/server (or master/slave) model, where 

the server determines the rate of service and the client 

plays a passive role with this respect like in CCS and 

CSP. This synchronization discipline imposes that action 

(a,λ) can be synchronized with action (a,µ), if and only if 

min(λ,µ) is unspecified and the rate of the resulting action 

is given by max(λ,µ), or in other words, in 

synchronization at most one action must be active and all 

the other involved actions must be passive. 

 

3. The DiffServ Router 
  

Differentiated services (DiffServ) [Nichols and Blake 

1998] is a set of technologies which allow network 

service providers to offer services with different kinds of 

network quality of service (QoS) to different customers 

and their traffic streams, depending to a contract (Service 

Level Agreement or SLA) between them.  

DiffServ work by dividing traffic into many classes by 

marking a field in the IP packet header, called the 

Differentiated Services Code Point (DSCP) field. Its value 

depends on the customer profile and the traffic 

requirement. Network elements serve these classes with 

different priorities with respect to the DSCP field content. 

Applications requiring low loss, low latency, low jitter 

and assured bandwidth service generally send data as 

expedited forwarding (EF) class packets.  This class is 

used for loss and delay sensitive applications such as 

voice over IP (VoIP). Assured forwarding (AF) class 



offers a lower priority service from the previous one (EF), 

and itself is subdivided into four subclasses and each of 

these four classes is also divided into three subclasses 

(gold, silver, bronze) [Nichols and Blake 1998]. Generally 

AF carries best effort TCP data, such as HTTP and FTP 

traffic applications.  

Like we have seen that a DiffServ router has a large 

number of classes defined, but the most essential use of 

DiffServ is to provide support for the two most common 

applications: voice and video traffic with high priority 

level, and best effort data (TCP) with low priority level. 

This is why in the rest of this paper, we will be concerned 

only with the modelling of such a two classes router and 

we will denote these classes by H (high priority level) and 

L (low priority level), instead of modeling all classes in 

order to prevent a huge number of state and the state 

space explosion problem when analyzing the model by 

existing tools. 

The DiffServ router is composed from a classifier and a 

traffic conditioner like appears in figure.1. Traffic 

conditioners may contain meters, markers, droppers and 

shapers. We must notice that some of these blocks may be 

aggregated in another block or may be omitted. For 

example, in the case where no traffic profile is in effect, 

packets may only pass through a classifier and a marker, 

and in the case of core routers, marker may be omitted 

because packets were coded at the ingress router. Readers 

interested about the DiffServ technology can refer to 

[Nichols and Blake, 1998; Blake, 1998].  
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Figure 1. Logical view of a DiffServ router 

 

4. The Specification 
 

We take advantage from the compositional feature of SPA 

in order to model the DiffServ router which appears in 

figure 2. This feature allows us to deal with five entities: 

classifier, marker, meter, dropper and priority queueing. 
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Figure 2. An ingress DiffServ router 

 

In this specification, we suppose that the customer has a 

service level specification (SLS) which specifies 2 service 

levels, to be identified to the provider by DSCP High and 

DSCP Low. Each components of this DiffServ router 

model [Bernet and Blake, 2002] can be specified as 

follows:  

Classifier: It takes a single traffic stream as input and 

generates N logically separated traffic streams as output. 

Classifier can be specified by a filter which has one input 

and N outputs. Figure 3 show a classifier that separates 

input traffic into one of two output streams based on 

matching filters: 

 

 

 

 

 
 

 

 
 

 
 

 

Figure 3. Classifier 

 

The specification of this agent using EMPA is: 

Classifier  =  <packet_arrival,λ>.<check_pckt_header,θ>. 

         <classify,∞11>.(<send_messageH,λ1>.Classifier 

   +    <send_messageL,λ2>.Classifier); 

Marker: The marker sets the DS field of each packet 

received from the classifier to a particular code-point 

(e.g., DSCP). It can be represented logically by a box with 

one input one output like appear in figure 4.  
 

 

 

 
 

 

 

 

Figure 4. Marker 

 

In our model, two markers are needed, one for the high 

priority level traffic and the other for the low priority 

level traffic. Their specification is the following: 

Marker_H  =  <send_messageH,*>.<mark_DSCPH,α>. 

         <send_to_meterH,∞11>.Marker_H; 

Marker_L  =  <send_messageL,*>.<mark_DSCPL,α>. 

         <send_to_meterL,∞11>.Marker_L; 

Meter: It is used to monitor the traffic stream and sends 

malicious packets to the dropper agent, in order to prevent 

high level traffic from monopolizing the network 

resource. Figure 5 illustrates a simple meter with two 

levels of conformance. It will measure the rate of each 

traffic to determine its conformance. So, if the packet is 

judged conformed, then it will be sent to the priority 

queueing system in order to be served (forwarded to next 

hop), else the packet will be sent to the dropper. This 

agent can be specified by the following: 

Meter0_H= <send_to_meterH,*>.<start_timer,∞11>. 

         <arrH,λH>.Meter1_H; 

Meter1_H= <send_to_meterH,*>.<get_current_time,∞11>. 

         <compute_elapsed_time,∞11>.(<time_elapsed,∞11>. 

         <average_conform,∞11>.<reset_timer,∞11>.           

         <arrH,λH>.Meter1_H  

   +    <time_not_elapsed,∞11>.<avrg_not_conform,∞11>. 

         <send_to_dropperH,γ>.Dropper_H  

   +    <timeout,η>. Meter0_H ); 
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Meter0_L  = <send_to_meterL,*>.<start_timer,∞11>. 

         <arrL,λL>.Meter1_L; 

Meter1_L= <send_to_meterL,* >.<get_current_time,∞11>. 

         <compute_elapsed_time,∞11>.(<time_elapsed,∞11>. 

         <average_conform,∞11>.<reset_timer, ∞11>. 

         <arrL,λL>.Meter1_L  

   +    <time_not_elapsed,∞11>.<avrg_not_conform,∞11>. 

         <send_to_dropperL,γ>.Dropper_L  

   +    <timeout,η>.Meter0_L ); 

 

 

 

 
 

 

Figure 4. Meter 

 

Dropper: The dropper discards some or all malicious 

packets in a traffic stream according to the service 

provider policy. The dropper can be implemented as a 

special case of shaper by setting the buffer size to zero. It 

can be represented logically by a box with one input one 

output and its specification is the following: 

Dropper_H = <send_to_dropper,*>.<discard,∞11>. 

           Meter1_H 

Dropper_L = <send_to_dropper,*>.<discard,∞11>. 

           Meter1_L 

Priority queueing: The final agent is the queue where 

packets wait before being served (forwarded to next hop). 

We have taken a preemptive queue (e.g., arriving of high 

priority packet will interrupt the service of low priority 

packet already in service phase) with priority inter-arrival 

policy in the sense that if the queue is full and a high 

priority packet arrives, it will drop a low priority packet 

(if the queue contains at least one) in order to accept the 

high priority packet, but if it contains only a high priority 

packet, the arrival packet will be lost (dropped). The 

specification of this queue (M/M/1/N) [Thomas and 

Hillston, 1997] is the following:  

Queue0,0 = <arrH,*>. Queue1,0 + <arrL,*>. Queue0,1;  

Queuei,0 = <arrH,*>. Queuei+1,0 + <arrL,*>. Queuei,1             

                   + <deliverH,*>. Queuei-1,0;                               (if 0<i<N-1) 

Queue0,j = <arrH,*>. Queue1,j + <arrL,*>. Queue0,j+1    

                     + <deliverL,*>. Queue0,j-1;                            (if 0<j<N-1) 

Queuei,j = <arrH,*>. Queuei+1,j + <arrL,*>. Queuei,j+1               

                    + <deliverH,*>.Queuei-1,j 

             + <deliverL,*>.Queuei,j-1;      (if i,j>0 and i+j<N-1) 

QueueN-1,0 = <deliverH,*>. QueueN-2,0; 

Queue0,N-1 = <deliverL,*>.Queue0,N-2 

                 + <arrH,*>.<looseL,∞2,1>.Queue1,N-2; 

Queuei,j = <deliverH,*>.Queuei-1,j +  <deliverL,*>.Queuei,j-1  

             + <arrH,*>.<looseL,∞2,1>.Queuei+1,j-1; 

                                                                        (if i,j>0 and i+j = N-1) 

Pre_Server = <deliverH,∞2,1>.<serve,µ>.Pre_Server             

                  + <deliverL,∞1,1>.ServePLLow; 

ServePLLow = <serve,µ>.Pre_Server  

                     +  <deliverH, ∞2,1>.<serve,µ>. ServePLLow; 

In order to obtain the complete DiffServ router 

specification, the individual agents described above need 

to be composed like in the following expression: 

DiffServ = Classifier ||T Markers ||S Meters ||M Droppers                

               ||Arr Queue00 ||Del Pre_emp_Server 

Markers = Marker_L || Marker_H 

Meters =  Meter0_H || Meter0_L 

Droppers = Dropper_L || Dropper_H 

T = {send_msgH, send_msgL}; 

S = {send_to_meterH, send_to_meterL}; 

M  = {send_to_dropperH, send_to_dropperL}; 

Arr = {arrH, arrL}; 

Del = {deliverH, deliverL}; 

When the model is loaded in TwoTowers [Bernardo, 

1998b], its descriptions are syntactically and semantically 

analyzed using a parser for detecting errors, then 

TwoTowers will find all possible states and transitions or 

in another expression the labelled transition diagram.  

 

5. Performance Analysis 
 

TwoTowers will give us the steady state and the transient 

state distribution probability vector. So given the CTMC 

diagram and the value of the probability distribution in 

steady and transient states, we can evaluate the 

performance of the system by using queueing system 

theory. For example, the throughput which is given by the 

service rate multiplied by the stationary probability of 

being in a state where service action can be provided is 

given by the following formula: 

T = 



N

2i
i.  

The utilization rate was defined to be the percentage of 

time the router spent in doing useful work by the fraction 

of time, and which is the sum of the stationary 

probabilities of states where there is at least one packet in 

the system. It is given by the following formula: 

U=



N

2i
i ).1( = 




N

2i
i   

The vector distribution probability πi for all states is given 

by TwoTowers and the utilisation rate can be calculated 

by a simple addition. 

The Markovian analyzer implemented in TwoTowers 

allow an automatic derivation of performance model and 

may allow us to avoid the full scan to the CTMC diagram, 

which will be exceedingly expensive, especially if we 

have a large number of states. The performance aspects of 

a system model in EMPA, can be taken into account in 

the early stages of its design (with algebra description), 

where performance measures can be specified by 

attaching a yield reward yi to every state i, which 

expresses the rate at which reward is accumulated at state 

i, and by attaching a bonus reward bi,j to every transition 

from state i to state j, which expresses the instantaneous 



 
 

 

 
 

 
 

 
 

 

Mean system size 

    Mean packet arrival rate 

gain due to the execution of the transition from state i to 

state j. Readers interested about yield and bonus rewards 

can refer to [Bernardo, 1997]. Actions with reward will be 

specified in EMPA according to the following syntax: 

A= <a,r,y,b>.A 

Given yield and bonus rewards, the corresponding 

stationary performance measure can be computed in 

EMPA according to the following formula: 


 


N

1i

N

1j
ijiij

N

1i
ii q..b.y  

Many performance measures can be obtained using this 

formula, for example: if we want to compute the 

throughput, we must replace every action of the form 

<serve,µ> with <serve,µ,µ,0> (e.g., yi=µ and bij=0) for 

obtaining the following equation: 


 


N

1i

N

1j
ijiij

N

1i
ii q..b.y = 




N

2i
i.  

EMPA will take into account all states that provide the 

action "serve" and will assign a reward to them. The first 

state is where no packet in the router and this is why it can 

not provide the action "serve". 

As a performance measure, we have computed the 

throughput and the router utilization by using the reward 

technique of EMPA. This is done by replacing every 

action <serve,µ> by <serve,µ ,µ,0> in our semantic 

model for obtaining the throughput, and by replacing 

every action <serve,µ> by <serve,µ,1,0> in order to 

obtain the utilization rate. In contrast, the algebra based 

method (reward technique) fails to determine the mean 

number and the mean waiting time of packets for each 

class due to the additivity assumption of transition labeled 

with "serve" action, and values for these performance 

aspects were calculated by a manual full scan to the 

transformed specification (CTMC diagram) and by using 

the probability distribution vector given by TwoTowers.   

The mean number of packet in the system can be obtained 

by using the following formula: 

The mean number of packet = 



N

2i
i.i  

And the mean packet delay (MPD) for each class is found 

by using Little’s law: 

 

               MPD = 

 

Mean packet arrival rate = i

N

1i
i.



 

Where λi take the value of λH for packet with high priority 

and λL for packet with low priority. 

The throughput was 2.38 packet/s, the utilisation rate was 

33.34% and the mean waiting time was 1.12s for a packet 

in class high and 2.48s for packet in class low. These 

unacceptable results lead us to a set of experiment in 

order to detect the effect of each component at its 

performance. We begin by examine the effect of changing 

the rate (speed) of the marker at the system performance.  

Figure 5.a shows that the throughput increases by 

increasing marker speed but reaches a threshold afterwere 

there is no effect of increasing its speed at the system 

performance, and this effect can be explained by the 

limited speed of the classifier. However the utilisation rate 

of the marker decreases significantly by the fact of 

speeding the marker, because packets will spend a less 

time before being forwarded to next stage. The mean 

packets waiting time decreases slightly when we decrease 

the rate of this component because packets spend less 

time in this component. 
 

  
  

  
  

Figure 5. Effect of speeding up the marker 

 

We have experimented the effect of speeding up the meter 

(increasing its rate) at the performance model. Like 

expected the throughput and the utilisation rate of the 

model increase and reach quickly a maximum threshold 

value (curves variation are similar to that in Figure 5). 

The same experiment was repeated for the classifier and 

the queueing server. We have found that there was little 

profit from speeding up any of these components apart at 

the model performance.  

The result of these experiments motivate us to another set 

of experiments in order to investigate the effect of 

speeding up many components at the system performance, 

because every time we have increased the rate of a 

component we have found: the throughput of the system 

increases, the utilisation rate fluctuate, and the mean 

packet delay decreases for each class but still inside a 

specific margin.  

Figure 6 shows the result obtained by speeding up the 

marker and the queueing server, it can be seen from this 

figure that the increase of throughput is not at the expense 

of utilisation rate like we have seen when speeding up one 

component alone.   



We discover from these experiments that we can use 

relatively a slow classifier with no big influence at the 

system throughput in contrast like it have been thought. 

This result can be interpreted by the time that packets 

spend in other components especially in the server 

queueing.  
 

   

 
 

Figure 5. Effect of speeding up the marker and the server 

 

These experiments lead us to discover some interesting 

information about which component limited the 

throughput and other performance aspect. It demonstrates 

that we can use a relatively slow server router (a server 

queue able to find the next hop) which is the most 

expensive component, with no significant difference in 

the throughput in contrast to that it has been thought 

originally. 

 

6. Conclusions  
 

The main aim of this work was to present a simple 

DiffServ router model and to analyze its functional and 

performance properties using stochastic process algebra. 

In order to achieve that, we begin by an algebraic 

description of this router using stochastic process algebra 

then we use EMPA tool (TwoTowers) for analyzing and 

detecting a missbehavioural functional error such as 

freedom from deadlock. After qualitative verification, a 

set of experiment has been done in order to detect the 

effect of each component at the performance of this 

model. Fortunately, the reward-based method in EMPA 

provides an automatic derivation for some performance 

aspect in our model (like throughput, utilisation rate...), 

but unfortunately not all. Therefore, a full scan to the 

CTMC diagram derived from the EMPA supported tool is 

necessary. 

The coexistence of three kinds of actions in EMPA and 

especially the prioritized weighted action was a great 

characteristic because these actions are not taken in 

account in the performance semantic model (CTMC 

diagram) and this aids us to include only actions which 

are important for determining performance aspects. 
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