
Functional Modelling and Performance Evaluation for Two Class

Diffserv Router using Stochastic Process Algebra

Osman Salem Abdelmalek Benzekri

Institut de recherche en informatique de Toulouse,

Université Paul Sabatier,

118 Route de Narbonne - 31062 Toulouse Cedex 04 - France

Téléphone: +33 05 61 55 60 86 - Télécopie: +33 05 61 52 14 58

E-mail: {osman ,benzekri}@irit.fr

Abstract: This paper describes the use of stochastic process algebra to model and to evaluate the

performance of a two class DiffServ router. This specification is done by means a set of powerful

operators of Extended Markovian Process Algebra (EMPA) language, and then studied from the

functional and the performance point of view.

Keywords: Stochastic Process Algebra; Markov Models; Performance Evaluation; DiffServ.

1. Introduction

Network devices can be described using classical process

algebra which provides a means for constructing an

abstract model of the device in question [Bernardo,

1998a]. This model is used only to establish the correct

functional behaviour by deriving qualitative properties

such as freedom from deadlock or livelock [Benzekri,

2002]. Performance evaluation of the model was in a

separate phase, after the fully design and implementation

of the model. Consequently, if the performance is

detected to be poor, the model will be redesigned with

negative consequences for both design cost and time lost,

where the need of integrating the performance analysis

into the design process.

Stochastic Process Algebra (SPA) has been developed for

this purpose. It is a formal specification technique which

extends classical process algebras via the inclusion of

timing information by using random variables in the

generated models, in order to express the durations of an

activity [Benzekri, 2002; Brinksma and Hermanns, 2001].

Once the model has been defined and parameterized, it

can be used to investigate numerically the performance

parameters.

Designing DiffServ [Nichols and Blake, 1998] routers

using SPA is a complicated task because there are many

factors to be considered such as penalty policy of

malicious traffic inside a class. This policy may fluctuate

from delaying to dropping packets from this flow. In

contrast, formal specification can be a valuable aid to

routers designers as it allows a range of options for

configuration to be explored in a precise setting, such as

policy requirements which may be clarified during the

performance evaluation of a router model, because it

becomes evident what information about the state of the
.

model is required to ensure that it operates effectively.

For example, it would be possible for the designer to

demonstrate that under any constraints, a minimum

threshold for throughput and delay may be satisfied for

such class of traffic.

This paper is organized as follows. In section 2 we recall

the syntax and semantics of Extended Markovian Process

Algebra EMPA, and we illustrate the difference with

other existing SPA languages. In section 3 we recall the

principle of the DiffServ technology. In section 4 we give

the specification of a DiffServ router. In section 5 we

analyze the performance of this model by using EMPA

algebraic reward method and the CTMC diagram derived

from model specification. Finally, conclusions work is

presented.

2. Stochastic Process Algebra

Stochastic Process Algebras are formal descriptions

techniques used to describe the functionality of concurrent

and distributed systems and to analyze their related

performance [Benzekri, 2002; Brinksma and Hermanns,

2001]. Several SPA languages have been appeared in the

literature, these include PEPA [Hillston, 1996], TIPP

[Herzog, 1993], EMPA [Bernardo, 1998b]. These

languages have been introduced as an extension to

classical process algebras like CCS [Milner, 1989] and

CSP [Hoare, 1985]. They are abstract languages

constructed from a small set of powerful operators where

it is possible to construct algebraic models whose key

features are: compositionality (which allows the designer

to build a complex model from smaller ones by means of

languages operators, and to study the behaviour of each

component separately), and abstraction (which allows the

internal details of a system description to be hidden from

an external observer at analysis time). In these languages,

systems are modeled as a collection of entities, called

agents or processes, which execute actions. These actions

are the building blocks of these languages and they are

used to describe sequential behaviours which may run

concurrently by synchronizations or by communications

between them.

These languages propose the same approach to

performance modeling: a random variable is associated

with each action, representing its duration. This random

variable is assumed to be exponentially distributed and

this leads to a clear relationship between the process

algebra model and a Continuous Time Markov Chains

(CTMC). Via this underlying CTMC derived from the

model semantic description [Benzekri, 2002], different

types of analysis may be performed, like steady-state and

transient probability distribution. This analysis is done

through the compilation of the infinitesimal generator

matrix of the Markov diagram.

In this paper, we will use the Extended Markovian

Process Algebra (EMPA) language [Bernardo, 1998b]

which is supported by a tool called TwoTowers. EMPA is

inspired and developed on the basis of PEPA

(Performance Evaluation Process Algebra [Hillston,

1996]) and TIPP (TImed Processes and Performability

evaluation) languages [Herzog, 1993]. It extends these

languages by including three different kinds of actions:

exponentially timed actions, passive actions and

prioritized weighted immediate actions. In addition to this

reason, EMPA allows one to specify performance

measures with the algebraic specifications of the system

through atomic rewards attached to states and transitions

of the Markov chains (MC for short). This leads to an

automatic derivation of performance measures and may

avoid a full scan of the CTMC diagram. The syntax of

EMPA can be summarized by the following expression:

P = 0│<a,λ>.P│<a,∞L,W>.P│<a,*>.P│P/L│P[φ]│

P + P│P ||s P│A

Since the deadlock term "0", the prefix operator

"<a,λ>._", the functional abstraction operator "_/L", the

functional relabeling operator "_[φ]", the alternative

choice operator "_+_", the cooperation operator "_||s_"

and the constant operator are the same operators used in

classical process algebras. Due to lack of space, the reader

is referred to [Bernardo, 1998b] for an extensive

presentation of EMPA syntax and semantics.

 In EMPA, every activity is represented by <a,λ> which

means the execution of action "a" after exponential

distributed delay with rate "λ" (denoted by F(t)=1-e
-λt

). An

immediate action is represented with rate λ = ∞ or

"<a,∞L,W>", where L is used to express the priority level

and W is used for the probability weight. In some cases,

the rate of an action is outside the control of this

component, such actions are carried out jointly with

another component in order to model activities waiting for

synchronization, so this component is playing a passive

role and is recorded by the distinguished symbol "*".

The choice in the alternative composition operator "_+_"

is governed by the race policy, where the action with least

duration will be executed. In this situation, immediate

actions take precedence over exponentially distributed

actions and over other immediate actions having small

priority level with respect to their levels. If two immediate

actions have the same priority level, they will be executed

according to the probability associated with each one.

The main difference between EMPA and other stochastic

process algebras languages (PEPA and TIPP) is related to

synchronization of stochastic actions of two concurrent

components in the model [Brinksma and Hermanns,

2001]. For illustrating this difference, we take the

following behaviour expression:

(a,λ).B || a || (a,µ).C = (a, λ*µ).(B || a || C)

And we will show the solution adopted by these

languages for finding the function "*" (cooperation law)

that makes the equality in the previous equation hold.

In PEPA, the function "*" corresponds to the minimum of

the related rates, in order to express that synchronization

between these components is determined by the rate of the

slowest one. In contrast TIPP adopts another solution,

where "*" is interpreted as the ordinary multiplication, but

the operational intuition behind the choice of

multiplication for this function is not at all obvious and no

useful stochastic interpretation of this solution other than

algebraic simplicity. EMPA deals with synchronization by

adopting the client/server (or master/slave) model, where

the server determines the rate of service and the client

plays a passive role with this respect like in CCS and

CSP. This synchronization discipline imposes that action

(a,λ) can be synchronized with action (a,µ), if and only if

min(λ,µ) is unspecified and the rate of the resulting action

is given by max(λ,µ), or in other words, in

synchronization at most one action must be active and all

the other involved actions must be passive.

3. The DiffServ Router

Differentiated services (DiffServ) [Nichols and Blake

1998] is a set of technologies which allow network

service providers to offer services with different kinds of

network quality of service (QoS) to different customers

and their traffic streams, depending to a contract (Service

Level Agreement or SLA) between them.

DiffServ work by dividing traffic into many classes by

marking a field in the IP packet header, called the

Differentiated Services Code Point (DSCP) field. Its value

depends on the customer profile and the traffic

requirement. Network elements serve these classes with

different priorities with respect to the DSCP field content.

Applications requiring low loss, low latency, low jitter

and assured bandwidth service generally send data as

expedited forwarding (EF) class packets. This class is

used for loss and delay sensitive applications such as

voice over IP (VoIP). Assured forwarding (AF) class

offers a lower priority service from the previous one (EF),

and itself is subdivided into four subclasses and each of

these four classes is also divided into three subclasses

(gold, silver, bronze) [Nichols and Blake 1998]. Generally

AF carries best effort TCP data, such as HTTP and FTP

traffic applications.

Like we have seen that a DiffServ router has a large

number of classes defined, but the most essential use of

DiffServ is to provide support for the two most common

applications: voice and video traffic with high priority

level, and best effort data (TCP) with low priority level.

This is why in the rest of this paper, we will be concerned

only with the modelling of such a two classes router and

we will denote these classes by H (high priority level) and

L (low priority level), instead of modeling all classes in

order to prevent a huge number of state and the state

space explosion problem when analyzing the model by

existing tools.

The DiffServ router is composed from a classifier and a

traffic conditioner like appears in figure.1. Traffic

conditioners may contain meters, markers, droppers and

shapers. We must notice that some of these blocks may be

aggregated in another block or may be omitted. For

example, in the case where no traffic profile is in effect,

packets may only pass through a classifier and a marker,

and in the case of core routers, marker may be omitted

because packets were coded at the ingress router. Readers

interested about the DiffServ technology can refer to

[Nichols and Blake, 1998; Blake, 1998].

Classifier Marker
Shaper/

Dropper

Meter

Figure 1. Logical view of a DiffServ router

4. The Specification

We take advantage from the compositional feature of SPA

in order to model the DiffServ router which appears in

figure 2. This feature allows us to deal with five entities:

classifier, marker, meter, dropper and priority queueing.

Classifier

Marker_H

Marker_L

Meter_H

Meter_L

Priority

queueing

system

Dropper_H

Dropper_L

Figure 2. An ingress DiffServ router

In this specification, we suppose that the customer has a

service level specification (SLS) which specifies 2 service

levels, to be identified to the provider by DSCP High and

DSCP Low. Each components of this DiffServ router

model [Bernet and Blake, 2002] can be specified as

follows:

Classifier: It takes a single traffic stream as input and

generates N logically separated traffic streams as output.

Classifier can be specified by a filter which has one input

and N outputs. Figure 3 show a classifier that separates

input traffic into one of two output streams based on

matching filters:

Figure 3. Classifier

The specification of this agent using EMPA is:

Classifier = <packet_arrival,λ>.<check_pckt_header,θ>.

 <classify,∞11>.(<send_messageH,λ1>.Classifier

 + <send_messageL,λ2>.Classifier);

Marker: The marker sets the DS field of each packet

received from the classifier to a particular code-point

(e.g., DSCP). It can be represented logically by a box with

one input one output like appear in figure 4.

Figure 4. Marker

In our model, two markers are needed, one for the high

priority level traffic and the other for the low priority

level traffic. Their specification is the following:

Marker_H = <send_messageH,*>.<mark_DSCPH,α>.

 <send_to_meterH,∞11>.Marker_H;

Marker_L = <send_messageL,*>.<mark_DSCPL,α>.

 <send_to_meterL,∞11>.Marker_L;

Meter: It is used to monitor the traffic stream and sends

malicious packets to the dropper agent, in order to prevent

high level traffic from monopolizing the network

resource. Figure 5 illustrates a simple meter with two

levels of conformance. It will measure the rate of each

traffic to determine its conformance. So, if the packet is

judged conformed, then it will be sent to the priority

queueing system in order to be served (forwarded to next

hop), else the packet will be sent to the dropper. This

agent can be specified by the following:

Meter0_H= <send_to_meterH,*>.<start_timer,∞11>.

 <arrH,λH>.Meter1_H;

Meter1_H= <send_to_meterH,*>.<get_current_time,∞11>.

 <compute_elapsed_time,∞11>.(<time_elapsed,∞11>.

 <average_conform,∞11>.<reset_timer,∞11>.

 <arrH,λH>.Meter1_H

 + <time_not_elapsed,∞11>.<avrg_not_conform,∞11>.

 <send_to_dropperH,γ>.Dropper_H

 + <timeout,η>. Meter0_H);

Classifier

 Match filter_H  Output_1

 Match filter_L  Output_2

 Unclassified

 traffic

Classified

traffic

Marker

Unmarked

traffic

Marked
traffic

Conformaning pkt

Nonconforming pkt

 Meter

Unmetered traffic Metered traffic

Meter0_L = <send_to_meterL,*>.<start_timer,∞11>.

 <arrL,λL>.Meter1_L;

Meter1_L= <send_to_meterL,* >.<get_current_time,∞11>.

 <compute_elapsed_time,∞11>.(<time_elapsed,∞11>.

 <average_conform,∞11>.<reset_timer, ∞11>.

 <arrL,λL>.Meter1_L

 + <time_not_elapsed,∞11>.<avrg_not_conform,∞11>.

 <send_to_dropperL,γ>.Dropper_L

 + <timeout,η>.Meter0_L);

Figure 4. Meter

Dropper: The dropper discards some or all malicious

packets in a traffic stream according to the service

provider policy. The dropper can be implemented as a

special case of shaper by setting the buffer size to zero. It

can be represented logically by a box with one input one

output and its specification is the following:

Dropper_H = <send_to_dropper,*>.<discard,∞11>.

 Meter1_H

Dropper_L = <send_to_dropper,*>.<discard,∞11>.

 Meter1_L

Priority queueing: The final agent is the queue where

packets wait before being served (forwarded to next hop).

We have taken a preemptive queue (e.g., arriving of high

priority packet will interrupt the service of low priority

packet already in service phase) with priority inter-arrival

policy in the sense that if the queue is full and a high

priority packet arrives, it will drop a low priority packet

(if the queue contains at least one) in order to accept the

high priority packet, but if it contains only a high priority

packet, the arrival packet will be lost (dropped). The

specification of this queue (M/M/1/N) [Thomas and

Hillston, 1997] is the following:

Queue0,0 = <arrH,*>. Queue1,0 + <arrL,*>. Queue0,1;

Queuei,0 = <arrH,*>. Queuei+1,0 + <arrL,*>. Queuei,1

 + <deliverH,*>. Queuei-1,0; (if 0<i<N-1)

Queue0,j = <arrH,*>. Queue1,j + <arrL,*>. Queue0,j+1

 + <deliverL,*>. Queue0,j-1; (if 0<j<N-1)

Queuei,j = <arrH,*>. Queuei+1,j + <arrL,*>. Queuei,j+1

 + <deliverH,*>.Queuei-1,j

 + <deliverL,*>.Queuei,j-1; (if i,j>0 and i+j<N-1)

QueueN-1,0 = <deliverH,*>. QueueN-2,0;

Queue0,N-1 = <deliverL,*>.Queue0,N-2

 + <arrH,*>.<looseL,∞2,1>.Queue1,N-2;

Queuei,j = <deliverH,*>.Queuei-1,j + <deliverL,*>.Queuei,j-1

 + <arrH,*>.<looseL,∞2,1>.Queuei+1,j-1;

 (if i,j>0 and i+j = N-1)

Pre_Server = <deliverH,∞2,1>.<serve,µ>.Pre_Server

 + <deliverL,∞1,1>.ServePLLow;

ServePLLow = <serve,µ>.Pre_Server

 + <deliverH, ∞2,1>.<serve,µ>. ServePLLow;

In order to obtain the complete DiffServ router

specification, the individual agents described above need

to be composed like in the following expression:

DiffServ = Classifier ||T Markers ||S Meters ||M Droppers

 ||Arr Queue00 ||Del Pre_emp_Server

Markers = Marker_L || Marker_H

Meters = Meter0_H || Meter0_L

Droppers = Dropper_L || Dropper_H

T = {send_msgH, send_msgL};

S = {send_to_meterH, send_to_meterL};

M = {send_to_dropperH, send_to_dropperL};

Arr = {arrH, arrL};

Del = {deliverH, deliverL};

When the model is loaded in TwoTowers [Bernardo,

1998b], its descriptions are syntactically and semantically

analyzed using a parser for detecting errors, then

TwoTowers will find all possible states and transitions or

in another expression the labelled transition diagram.

5. Performance Analysis

TwoTowers will give us the steady state and the transient

state distribution probability vector. So given the CTMC

diagram and the value of the probability distribution in

steady and transient states, we can evaluate the

performance of the system by using queueing system

theory. For example, the throughput which is given by the

service rate multiplied by the stationary probability of

being in a state where service action can be provided is

given by the following formula:

T = 



N

2i
i.

The utilization rate was defined to be the percentage of

time the router spent in doing useful work by the fraction

of time, and which is the sum of the stationary

probabilities of states where there is at least one packet in

the system. It is given by the following formula:

U=



N

2i
i).1(= 




N

2i
i

The vector distribution probability πi for all states is given

by TwoTowers and the utilisation rate can be calculated

by a simple addition.

The Markovian analyzer implemented in TwoTowers

allow an automatic derivation of performance model and

may allow us to avoid the full scan to the CTMC diagram,

which will be exceedingly expensive, especially if we

have a large number of states. The performance aspects of

a system model in EMPA, can be taken into account in

the early stages of its design (with algebra description),

where performance measures can be specified by

attaching a yield reward yi to every state i, which

expresses the rate at which reward is accumulated at state

i, and by attaching a bonus reward bi,j to every transition

from state i to state j, which expresses the instantaneous

Mean system size

 Mean packet arrival rate

gain due to the execution of the transition from state i to

state j. Readers interested about yield and bonus rewards

can refer to [Bernardo, 1997]. Actions with reward will be

specified in EMPA according to the following syntax:

A= <a,r,y,b>.A

Given yield and bonus rewards, the corresponding

stationary performance measure can be computed in

EMPA according to the following formula:


 


N

1i

N

1j
ijiij

N

1i
ii q..b.y

Many performance measures can be obtained using this

formula, for example: if we want to compute the

throughput, we must replace every action of the form

<serve,µ> with <serve,µ,µ,0> (e.g., yi=µ and bij=0) for

obtaining the following equation:


 


N

1i

N

1j
ijiij

N

1i
ii q..b.y = 




N

2i
i.

EMPA will take into account all states that provide the

action "serve" and will assign a reward to them. The first

state is where no packet in the router and this is why it can

not provide the action "serve".

As a performance measure, we have computed the

throughput and the router utilization by using the reward

technique of EMPA. This is done by replacing every

action <serve,µ> by <serve,µ ,µ,0> in our semantic

model for obtaining the throughput, and by replacing

every action <serve,µ> by <serve,µ,1,0> in order to

obtain the utilization rate. In contrast, the algebra based

method (reward technique) fails to determine the mean

number and the mean waiting time of packets for each

class due to the additivity assumption of transition labeled

with "serve" action, and values for these performance

aspects were calculated by a manual full scan to the

transformed specification (CTMC diagram) and by using

the probability distribution vector given by TwoTowers.

The mean number of packet in the system can be obtained

by using the following formula:

The mean number of packet = 



N

2i
i.i

And the mean packet delay (MPD) for each class is found

by using Little’s law:

 MPD =

Mean packet arrival rate = i

N

1i
i.



Where λi take the value of λH for packet with high priority

and λL for packet with low priority.

The throughput was 2.38 packet/s, the utilisation rate was

33.34% and the mean waiting time was 1.12s for a packet

in class high and 2.48s for packet in class low. These

unacceptable results lead us to a set of experiment in

order to detect the effect of each component at its

performance. We begin by examine the effect of changing

the rate (speed) of the marker at the system performance.

Figure 5.a shows that the throughput increases by

increasing marker speed but reaches a threshold afterwere

there is no effect of increasing its speed at the system

performance, and this effect can be explained by the

limited speed of the classifier. However the utilisation rate

of the marker decreases significantly by the fact of

speeding the marker, because packets will spend a less

time before being forwarded to next stage. The mean

packets waiting time decreases slightly when we decrease

the rate of this component because packets spend less

time in this component.

Figure 5. Effect of speeding up the marker

We have experimented the effect of speeding up the meter

(increasing its rate) at the performance model. Like

expected the throughput and the utilisation rate of the

model increase and reach quickly a maximum threshold

value (curves variation are similar to that in Figure 5).

The same experiment was repeated for the classifier and

the queueing server. We have found that there was little

profit from speeding up any of these components apart at

the model performance.

The result of these experiments motivate us to another set

of experiments in order to investigate the effect of

speeding up many components at the system performance,

because every time we have increased the rate of a

component we have found: the throughput of the system

increases, the utilisation rate fluctuate, and the mean

packet delay decreases for each class but still inside a

specific margin.

Figure 6 shows the result obtained by speeding up the

marker and the queueing server, it can be seen from this

figure that the increase of throughput is not at the expense

of utilisation rate like we have seen when speeding up one

component alone.

We discover from these experiments that we can use

relatively a slow classifier with no big influence at the

system throughput in contrast like it have been thought.

This result can be interpreted by the time that packets

spend in other components especially in the server

queueing.

Figure 5. Effect of speeding up the marker and the server

These experiments lead us to discover some interesting

information about which component limited the

throughput and other performance aspect. It demonstrates

that we can use a relatively slow server router (a server

queue able to find the next hop) which is the most

expensive component, with no significant difference in

the throughput in contrast to that it has been thought

originally.

6. Conclusions

The main aim of this work was to present a simple

DiffServ router model and to analyze its functional and

performance properties using stochastic process algebra.

In order to achieve that, we begin by an algebraic

description of this router using stochastic process algebra

then we use EMPA tool (TwoTowers) for analyzing and

detecting a missbehavioural functional error such as

freedom from deadlock. After qualitative verification, a

set of experiment has been done in order to detect the

effect of each component at the performance of this

model. Fortunately, the reward-based method in EMPA

provides an automatic derivation for some performance

aspect in our model (like throughput, utilisation rate...),

but unfortunately not all. Therefore, a full scan to the

CTMC diagram derived from the EMPA supported tool is

necessary.

The coexistence of three kinds of actions in EMPA and

especially the prioritized weighted action was a great

characteristic because these actions are not taken in

account in the performance semantic model (CTMC

diagram) and this aids us to include only actions which

are important for determining performance aspects.

References

Blake S. 1998, "An Architecture for Differentiated

Services", RFC 2475.

Benzekri A. 2002, "Qualitative and Quantitative

Evaluation using Process Algebra", The 17th

International Symposium on Computer and

Information Sciences, Orlando, Florida USA,

Pp415-418.

Bernardo M. 1997, "An Algebra Based Method to

Associate Rewards with EMPA Terms", in Proc. of

the 24th Int. Coll. on Automata, Languages and

Programming (ICALP), P.Degano, Lecture Notes

in Computer Science, Bologna, Pp358-368.

Bernardo M. 1998a, "A Formal Approach to the

Integration of Performance Aspects in the

Modeling and Analysis of Concurrent Systems".

International Journal of Information and

Computation, Pp83-154.

Bernardo M. and Gorrieri R. 1998b, "A Tutorial on

EMPA: A Theory of Concurrent Processes with

Nondeterminism, Priorities, Probabilities and

Time", Theoretical Computer Science, Pp1-54.

Brinksma Ed and Hermanns Holger 2001, "Process

Algebra and Markov Chains", Lecture on Formal

Methods and Performance Analysis, Nijmegen,

Pp183–231.

Bernet Y. and Blake S. 2002, A. Smith: "An Informal

Management Model for DiffServ Routers", RFC

3290.

Herzog U. 1993, "TIPP: A Language for Timed

Processes and Performance Evaluation",

Proceedings of the First International Workshop

on Process Algebra and Performance Modelling,

University of Edinburgh, UK.

Hillston J. 1996, "A Compositional Approach to

Performance Modelling", Cambridge University

Press.

Milner R. 1989, "Communication and Concurrency",

Prentice-Hall.

HOARE C.A.R 1985, "Communicating Sequential

Processes", Prentice-Hall.

Nichols K. and Blake S. 1998, "Definition of the

Differentiated Services Field (DS Field) in the IPv4

and IPv6 Headers", RFC 2474.

Thomas N. and Hillston J. 1997, "Using Markovian

Process Algebra to Specify Interactions in

Queueing Systems", Technical Report, University

of Edinburgh, Pp151-164.

