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Abstract—Cardiovascular diseases are the leading cause of
death in the world, and Myocardial Infarction (MI) is the most
serious one among those diseases. Patient monitoring for an early
detection of MI is important to alert medical assistance and
increase the vital prognostic of patients. With the development
of wearable sensor devices having wireless transmission capa-
bilities, there is a need to develop real-time applications that
are able to accurately detect MI non-invasively. In this paper,
we propose a new approach for early detection of MI using
wireless body area networks. The proposed approach analyzes
the patient electrocardiogram (ECG) in real time and extracts
from each ECG cycle the ST elevation which is a significant
indicator of an upcoming MI. We use the sequential change point
detection algorithm CUmulative SUM (CUSUM) to early detect
any deviation in ST elevation time series, and to raise an alarm
for healthcare professionals. The experimental results on the ECG
of real patients show that our proposed approach can detect MI
with low delay and high accuracy.

Index Terms—Wireless Body Area Networks, Mycardial Infarc-
tion, ECG, ST elevation, Anomaly detection, CUSUM

I. INTRODUCTION

Cardiovascular diseases are the leading causes of death
worldwide, and Myocardial Infarction (MI), commonly known
as heart attack, is the most serious one. Only a quarter of
patients are able to recognize the symptoms of MI immediately.
According to specialists, emergency aid is most effective if it
is given over the next 4 hours after MI. In fact, it is during this
period that we can prevent serious complications and damage
of heart by early detection of MI in order to alert doctors in
real time, especially for patients with high risk.

Recent technological advances in wireless networks, sensors
integration and miniaturization allow fundamentally modern-
izing and changing the way healthcare services are deployed
and delivered. Specific Wireless Sensor Networks (WSNs) for
medical applications, known as Wireless Body Area Networks
(WBAN), or Personal Area Networks (PAN) have been devel-
oped and deployed.

These networks consist of several sensors operating on or
inside the human body, and transmit collected data to a gateway
device that acts as a base station (e.g. smart phone, tablet,
PDA, etc.) for real time processing, in order to send medical
information and alarms to healthcare providers if an anomaly
is detected. An example of a WBAN architecture is shown in
figure 1. Many types of sensor devices are already available
in the market, and they can capture various vital metrics like

Heart Rate (HR), Respiration Rate (RR), Temperature (T), Oxy-
gen Saturation (SpO2), Blood Pressure (BP), ElectroMyoGram
(EMG) and ElectroCardioGram (ECG), etc.

Internet

Remote Monitoring Center 

WBAN

Fig. 1. An example of Wireless Body Area Network

Using WBAN in order to detect MI is an important issue,
especially with expected benefits in term of life saving and
cost reduction. According to the third global definition of
Myocardial Infarction [1], ECG is an integral part of the
diagnostic process of MI and should be acquired and interpreted
correctly within 10 minutes after first symptoms.

The Electrocardiogram (ECG) is a waveform that represents
the propagation of electric potentials through the heart muscle
with respect to time. The propagation of these potentials results
in the quasi-periodic contraction of the heart muscle. Each part
of the cardiogram refers to a depolarization or a re-polarization
of some region in the heart. The cardiogram consists of five
major waves, also known as deflections in the cardiology
literature, the P , Q, R, S, and T waves. Figure 2(a) illustrates
the basic features and intervals of a one-cycle ECG waveform.

The ECG provides a non-invasive method for investigating
heart function. Standard ECG measurements utilize 12 leads
or views of the electrical activity of the heart (as shown in
figure 3). However, ECG measurements using wireless sensors
are generally for ambulatory applications and will typically
utilize a subset of these leads. Several ECG sensors were
proposed and designed by researchers like in [2]–[4]. There
are also a plenty of devices in the market that propose portable
ECG monitoring, called Holter ECG which can capture ECG
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Fig. 2. Normal ECG and ST elevation ECG

Fig. 3. A Standard 12-lead ECG measurement

during a long period (24h or 48h) like CardioDay proposed by
getemed [5].

Myocardial Infarction is an acute ischemic heart disease
characterized by a necrosis (death) of a portion of the heart
muscle because of deprivation from oxygen. MI causes a
serious disturbance of the cardiovascular system that leads to
a direct threat for life.

MI is typically characterized by an elevation in the ST
segment of ECG (as shown in figure 2(b)) which is normally
iso-electric for healthy subjects (described in figure 2(a)). ST
segment elevation is generally one of the first symptom of MI
and is usually accompanied by chest pain. But in order to be
more specific to MI (or suspicious of MI), the ST elevation
must be significant in amplitude (up to 0.2 mV) and prolonged
in time (several minutes) as indicated in [1].

The objective of this paper is to propose an efficient method
to detect the deviation in "ST segment" time series based on
prolonged ECG recording or real time capture of ECG using
WBAN technology.

The rest of this paper is organized as follows. Section II sur-
veys related work. Section III briefly reviews related techniques
and presents our approach for early detection of MI. Section IV
presents our experimental results. Finally, Section V concludes
the paper.

II. RELATED WORK

Various ECG monitoring systems were proposed in the
literature. MEDiSN [6] is a WSN for monitoring patients phys-
iological data including ECG, in hospitals and during disaster

events. MEDiSN comprises Physiological Monitors (PMs) and
Relay Points (RPs) that self-organize into a multi-hop wireless
backbone for carrying physiological data. RECAD [7] is a real-
time continuous arrhythmias detection system based on WSNs
technology. It uses Ambulatory Wireless ECG Sensor (AWES)
to provide all time cardiac monitoring services.

Many ECG monitoring devices are available on the mar-
ket, like CardioNet [8], a Mobile Cardiac Outpatient Teleme-
try™ (MCOT™) which offers a real time monitoring of ECG
and wireless transmission of collected data to the monitoring
center. Another example, Medtonic Reveal TX [9] which is a
subcutaneous arrhythmia detection device.

In order to detect ECG anomalies, classification algorithms
are generally proposed and used. The purpose of these algo-
rithms is to classify measurements into 2 classes : normal or
abnormal. In particular for MI classification, several methods
were explored. In [10], Pei-Chann Chang et al. proposed a
classification method of MI based on Hidden Markov Model
(HMM) and Gaussian Mixture Models (GMM). Their accuracy
was 82.5% with specificity of 79.82% and sensitivity 85.71%.
Muhammad Arif et al. [11] used K-Nearest Neighbor (KNN)
classifier and got an accuracy of 98.3%, sensitivity of 97%
and specificity of 99.6%. In [12], Akshay Dhawan et al.
used Multilayer Support Vector Machine (SVM) and Genetic
Algorithm (GA) to detect MI. They obtained a sensitivity of
86.82% and a specificity of 91.05%. E. S. Jayachandran et
al. [13] obtained an accuracy of 95% using Discrete Wavelet
Transform (DWT).

Yang et al. in [14] transformed linearly a 12-lead ECG sig-
nals into 3-lead vector-cardiogram using Dower transformation,
and then radial basis neural networks are used for classification.
The detection accuracy of MI cases was 97% and accuracy
of normal cases was 75%. In [15], Henrik Haraldssona et al.
decomposed 12-lead ECG using hermite Basis functions and
the resulting coefficients were used as inputs to a Bayesian
ANN Classifier that were trained to detect MI. The accuracy
obtained for MI cases was 94% and 93.3% for patients without
MI. Zheng et al. [16] used SVM, Naïve Bayes (NB) and
Random Forecast (RF) methods. Accuracies obtained for these
classifiers were 81.9% for NB, 82.8% for SVM and 84.5% for
RF.

These algorithms are generally quite complex and are not
adequate for an implementation on a WBAN whose main re-
strictions are limitation in terms of reduced processing capacity,
limited storage and power. The main contribution of this paper
is the proposition of:

• A Real-time method for early detection of MI
• Autonomy of patients and remote capture of ECG using

WBAN
• A low power consumption algorithm adapted to WBAN

using CUSUM Method

III. PROPOSED APPROACH

Our proposed system is composed of 3 modules :
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• ECG sensors that can capture ECG and transmit it wire-
lessly like those proposed in [2]–[4]

• A Cell phone playing the role of a gateway that will
receive the digitized ECG wirelessly, pre-processes it,
extracts ECG features (P , Q, R, S, T ) and analyzes the
extracted features to detect reliable ST elevation in order
to send an alert to healthcare professionals along with the
ECG captured and the position of the patient

• A remote healthcare professionals (hospital or medical
center) that will receive alerts and patients data in real time
and take appropriate decisions about the patient condition
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Fig. 4. ECG signal processing and features extraction

We consider a real deployment scenario where sensors send
ECG measurements to a smart phone in real time. The main
steps performed by our system consist of : pre-processing
the received signal, extraction ECG features and detection of
significant ST elevation that indicates a potential MI.

ECG Signal received from sensors is digitized but some steps
are necessary in order to extract ECG parameters. The diagram
in figure 4 details these steps. First, Wavelet decomposition
is used in order to clean and denoise the original signal.
The process of wavelet decomposition consists of taking the
samples at a much lower frequency than the original signal,
in order to reduce noise and preserve the QRS complex of
the ECG, this technique is detailed in [17]. Then we carry
out a baseline wandering removal, which is generally caused
by patient movements, dirty or loose sensors and a variety of
other reasons. The baseline wandering consists of changes in
iso-electric line position and causes an artefactual data when
measuring ECG. The removal is achieved by subtracting the
first sample, which is generally the reference point, from the
rest of signal. Finally, we extract the main ECG features by
first detecting the R peaks and their positions in the signal,
then we can extract the other peaks (P , Q, S, T ) respectively
and their onsets and offsets based on the R peaks. ST segment
amplitude can be calculated from S-offset and T -Onset.

The result of the 2 steps described above is a time series of
ST segment amplitudes per cycle of ECG. We consider only
positive amplitudes of ST in our system, because ST elevation

is more specific to MI than a ST depression [1]. As described
in section I, the diagnostic of MI is complex and we can’t
consider any ST elevation as a sign of MI, this is why we
use a change detection algorithm in order to detect new and
significant ST elevation changes in ECG. Moreover, we define
a window size and a minimum number of deviations that need
to be detected within this window before raising an alarm, the
aim is to ensure that the detected deviations are sufficiently
prolonged to avoid false alarms.

Our proposed algorithm is based on Cumulative Sum
(CUSUM) algorithm, which is a sequential analysis statistical
tool that is particularly suited for the identification of deviations
with the lowest delay.

To detect change point in the sequence of observations
ST = (ST1, ST2, . . . , STn), the CUSUM algorithm uses the
log-likelihood ratio of the observation STi:

Sn =
n∑
i=1

si where si = log
pθ1 (STi)

pθ0 (STi)
(1)

Where pθ (STi) is the probability density function (PDF) of ST
with parameter θ. CUSUM uses hypothesis testing and assumes
that data follows a PDF with parameter θ0 before the change
occurrence (hypothesis H0), and with parameter θ1 after the
change (hypothesis H1).

H0 : θ = θ0 and H1 : θ = θ1 (2)

In fact, the log likelihood ratio si is more likely to be negative
in hypothesis H0 (normal patient state) and positive after the
change H1 (sick or abnormal). To detect change, the relevant
information lies in the difference between the value of the log-
likelihood ratio and its minimum value:

gn = Sn −mn and mn = min
1≤j≤n

(Sj) (3)

A threshold h is used to reject hypothesis H0 (if gn ≥ h)
and to raise an alarm. The value of the threshold must be
chosen subject to low false alarm probability. If ST is normally
distributed with variance σ2 in both hypothesis, and with mean
µ0 in H0, and µ1 in H1, gn becomes:

gn =

[
gn−1 +

µ1 − µ0

σ2

(
STn −

µ1 + µ0

2

)]+
(4)

µ1 cannot be known before the change, and we approximate
its value by µ1 = α× µ0. Equation 4 becomes:

gn =

[
gn−1 +

µ0(α− 1)

σ2

(
STn −

µ0(α+ 1)

2

)]+
(5)

Where {y}+ = max (0, y). Our CUSUM detection method
is described in algorithm 1, where we consider the sequence
ST = (ST1, ST2, . . . , STn) as the extracted ST elevation
values, and we use a threshold h ≥ 2. In order to reduce
false alarms, we introduce two new parameters to CUSUM
algorithm:

• A sliding windows w (as shown in figure 5) that contains
the last values of ST elevation to calculate the number of
deviations
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• The parameter k that indicates the minimum number of
deviations (Ai = 1 in figure 5) that must be detected in
the sliding window w before raising an alarm

w

Window

0 0A   1wA 

Fig. 5. Sliding window containing the number of deviations

Algorithm 1 ST elevation detection algorithm
Set the windows size w;
G=0;
Calculate the initial value of variance σ2;
Calculate the initial value of mean µ;
for i = 1→n do

Save the value of actual G in tmp;
Calculate the new value of G;
if (G ≥ h) then

The detected deviation is stored (Ai = 1);
Calculate the sum of Ai in the sliding window;
if (sum(Ai ≥ k) then

Raise an alarm ;
G=0 ;

else
G=tmp;

end if
else if (G <= 0) then
G=0;

end if
Calculate µ using STi values with Ai = 0 ;
Remove the first element in the window;
Shift whole values by one case to the left;
Insert the new STi value in the last case;

end for

IV. EXPERIMENTAL RESULTS

In order to evaluate our proposed approach for the early
detection of MI, we use the EDB medical database from
the Physionet [18]. This database consists of 90 annotated
ambulatory ECG recordings from 79 subjects. These subjects
have various heart anomalies (vessel disease, hypertension,
coronary artery disease, ventricular dyskinesia, and myocardial
infarction). Each data trace is two hours in duration and con-
tains two signals (2-lead ECG), each sampled at 250 samples
per second with 12-bit resolution over a nominal 20 millivolt
input range. The sample values were rescaled after digitization
with reference to calibration signals in the original analog
recordings, in order to obtain a uniform scale of 200 ADC
units per millivolt for all signals.

Figures 6(a) shows the original ECG signal of a patient with
MI for a period of 4 seconds before filtering & denoising to
illustrate ST elevation, Although the signal is not denoised yet

we can visually see that the ST segment is elevated relatively
to the PR segment which indicates the iso-electric level.

Figure 6(b) shows the result of wavelet decomposition and
baseline wonder removing. The frequency bands of the original
signal were separated in four levels. The second level decompo-
sition of the signal was considered as the ideal ECG signal for
the features extraction because it is the least noisy. Figure 6(c)
is the final result of filtering and base line correction.

Figure 7 shows the variation of ST elevation amplitudes
extracted for a complete ECG record (2 hours) of a patient with
MI. Figure 8 shows the raised alarms by the modified version
of CUSUM algorithm, when the threshold h ≥ 2, the windows
size w = 100 samples and the minimum deviations k = 3.
In this case, 41 deviations were detected but only 5 alarms are
raised for 3310 ST elevation extracted from the MI ECG. If we
change the threshold h = 1, the number of deviations increases
to 96 and the number of alarms to 9. Also, if we decrease the
minimum changes k to 1 for a threshold h = 2, the number
of alarms doubles to 10. Furthermore, the size of the windows
w is also an important parameter, if the size of w is too large,
we may miss important new ST elevation episodes, and if it is
too small, we increase the sensitivity of the algorithm to new
changes and then increase false alarms. The choice of the right
values of parameters h, k and w is then a tradeoff between
false alarms and miss detection.

To evaluate the performance of our proposed ST detection
algorithm, we apply our algorithm on a subset of 50 records
of the EDB Physionet database which contains MI ECG and
other cardiac abnormalities ECG. Each record is 2 hours
corresponding approximately to 7200 heart beats per record.
We use the Receiver Operating Characteristic (ROC) curve in
order to represent the fraction of True Positive Rate (TPR)
vs. the False Positive Rate (FPR) with various values of the
threshold h. The ROC curve is presented in figure 9.

Detection Rate =
TP

TP + FN
(6)

False alarm rate =
FP

FP + TN
(7)

Where TP , FP , TN , FN are respectively, the number of true
positives, false positives, true negatives and false negatives. The
results obtained show that the optimal rates of DR and FAR
are DR=73% and FAR=5% respectively.

V. CONCLUSION

In this paper, we proposed a new approach for early de-
tection of Myocardial Infarction (MI) in real time manner.
The proposed approach is based on the detection of deviations
in ST segment elevation in the ECG. We combined Wavelet
decomposition and Cumulative Sum Method (CUSUM) for a
low power detection system adapted to WBAN. The Wavelet
decomposition technique is first used to denoise and filter the
original ECG signal and extract the values of ST segments,
then the CUSUM algorithm is applied on these extracted values
to detect significant deviations of ST elevation in order to
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(a) MI ECG signal from the edb database (b) MI ECG signal after Wavelet Decomposition (c) ECG after filtering and base line correction

Fig. 6. ECG signal pre-processing

Fig. 7. Extracted ST Elevation amplitudes Fig. 8. Raised alarms by CUSUM algorithm Fig. 9. Receiver Operating Characteristic

raise alarms. To reduce the probability of false alarms, we
adapted the CUSUM algorithm by introducing a sliding window
with fixed size, to hold the number of deviations that must
be detected before raising an alarm. Finally, we applied our
proposed approach on a real medical database (the Physionet
EDB database) using MI and other cardiac problems ECG.
Our experimental results show that our proposed approach can
achieve a detection rate of 73% with a false alarm rate of 5%.
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