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Abstract—Anomaly detection in high speed networks is well
known to be a challenging problem. It requires generally the
analysis of a huge amount of data with high accuracy and
low complexity. In this paper, we propose an anomaly detection
mechanism against flooding attacks in high speed networks. The
proposed mechanism is based on Jensen-Shannon divergence
metric over sketch data structure. This sketch is used to reduce
the required memory, while monitoring the traffic, by maintain-
ing them into a predefined fixed size of hash tables. This sketch is
also used to develop a probabilistic model. The Jensen-Shannon
divergence is used for detecting deviations between previously
established and current distributions of network traffic. We have
implemented our approach and evaluated it using real Internet
traffic traces, obtained from MAWI trans-Pacific wide transit
link between USA and Japan. Our results show that the proposed
approach is scalable and efficient in detecting anomalies without
maintaining per-flow state information.

I. INTRODUCTION

Security threats for computer network have increased signif-

icantly, which include viruses, worm-based attacks, Distributed

Denial of Service (DDoS), etc. DDoS through TCP SYN

flooding is able to make silent any web site, especially with the

use of BOTNETs (roBOT NETworks) containing large number

of slave machines (zombies). Therefore, flooding attack needs

to be accurately detected in order to cope with ongoing attack

as soon as possible.

Two existing approaches for intrusion detection system:

misuse detection and anomaly detection. The misuse detection

is based on signature database to detect attacks, by matching

data level applications to predefined rules for malicious ac-

tivities, and it is ineffective with unknown signature attacks

(zero day attacks). Anomaly detection approaches are based

on building statistical profile for normal traffic behavior during

a training phase, and raise an alarm when observing abrupt

changes in network traffic. Anomalies are defined as heavy

deviation from the regular traffic pattern. Anomaly based

approaches have the ability to detect zero-day attacks that

induce traffic variations. Our approach to detect flooding is

based on anomaly detection, since flooding attacks will change

some statistical parameters describing traffic variation.

Recently, many web sites suffered from SYN flooding attack

that aims to exhaust server resources and to deny access for

legitimate users, e.g. twitter has been driven offline due to

DDoS in 2009, and the list of victim web servers is very

long (CNN, Yahoo, Amazon, ebay, DoubleClick, PayPal, etc.).

With the distributed nature of this coordinated attacks, and

its impact on the performance of the routers, the detection

and reaction mechanisms must be pushed to the core network

(Backbone), or near the sources of attack. However, with the

growing complexity in analyzing huge amount of data traffic

in backbone network, the analysis of each traffic flows is

unscalable and computationally expensive. On the other hand,

the aggregation the whole backbone traffic in one flow result

in one time series with large values, and unnoticed deviations

by flooding attack.

Sketch (or random aggregation counters) has been proposed

and used in [1], [2] for more grained detection than aggregat-

ing the whole traffic in one time series. To detect anomaly

using Sketch, time series forecasting methods (ARIMA, Holt-

winters, residual number of SYN, Heavy Hitter, etc.) have

been applied [2]. In general, when deviation in a time interval

is larger than an adaptive threshold that depends on past values,

an alarm is raised.

In this paper, we propose a sequential analysis technique to

identify anomalies in network traffic. We use Jensen-Shannon

Divergence (JSD [3]) over Sketch data structure. JSD measures

the difference between 2 set of probability values, and detects

the deviation between these sets in normal and under flooding

conditions.

The Sketch data structure is an array of hash table, where

each bucket contains a counter for monitored parameter (num-

ber of: packets, SYN, Bytes, etc.) resulted from randomly ag-

gregating traffic with the same hash value of their destination

IP address (DIP). The basic idea behind Sketch is to reduce

the required amount of memory through random aggregation

of flows rather than tracking per flow state information. In

our framework, Sketch is also used to establish a probabilistic

model by exploiting the counters of hash table. As the time

is divided into discrete interval, the divergence (JSD) between

previously established probabilistic model for normal traffic

and the current model in the current interval is used to detect

anomaly.

The rest of this paper is organized as follow. Section II

briefly reviews related work. Section III presents the Sketch

data structure and the Jensen-Shannon divergence. Section IV

describes our approach for anomaly detection. Section V

presents experimental results of the proposed approach. Fi-

nally, in Section VI we present the conclusion remarks.
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II. RELATED WORKS

Several approaches have been proposed for network

anomaly detection, and they are based on different tech-

niques, such as Haar-wavelet analysis [4], [5], entropy based

method [6], [7], sequential change point detection methods

with the CUmulative SUM (CUSUM) algorithm [8], [9],

[10], adaptive threshold analysis [11], Exponentially Weighted

Moving Average (EWMA) [12], Holt-Winters seasonal fore-

casting based methods [13], [2], data reduction techniques with

sketches [1], [14], SNMP MIB statistical data analysis [15],

Principal Component Analysis (PCA) [16], [17], etc.

Malicious activity usually provokes an abrupt change in

the statistical values of the parameters describing the traffic,

such as the NetScan produced by worms outbreak, that send

a large number of SYN from the same source IP, to scan

the network before propagation phase. In [18], [19], a non-

parametric version of CUSUM is used to detect deviations in

the number of connection requests sent by given source to

different destinations. In [20], the CUSUM algorithm is used

to detect SYN flooding over one time series resulted from

aggregation the whole traffic in one flow. In [8] a comparison

between CUSUM and adaptive threshold for the detection of

SYN flooding is presented.

When early approaches for network anomaly detection were

focused on the definition of models able to represent the traffic

pattern [20], [10], other advanced work aggregates the whole

stream of packets in one time series, and applies a change

point detection algorithm to detect the instant of anomaly

occurrence [8], [9]. The latter have a good performance in

terms of spatial and temporal complexities, but present the

drawback of aggregating all traffic in one flow, especially

in backbone network, where low intensity attacks cannot be

detected, i.e. flooding attack with intensity 106 packet/s does

not produce a noticeable deviation when the total number of

packet is greater than 109. Furthermore, these methods use

static threshold for detecting anomalies, which is not adequate

with traffic variations, and may induce false alarm and miss

detection. In this paper, we overcome these problems through

the use of Sketch and dynamic threshold.

Sketch data structure uses the random aggregation for more

grained detection than aggregating whole traffic in one time

series. It has been used to summarize monitored traffic in a

fixed memory, and to provide scalable input for time series

analysis. Many type of counters have been used for detecting

change in different traffic features, such as the number of:

SYN, packets, flows, bytes, etc. For example, the number of

SYN per destination IP address can be used to detect SYN

flooding, since distributed attacks are directed toward unique

victim.

The proposed method extends all these previous works,

through the use of JSD over sketch, sliding window and

dynamic threshold for anomaly detection. The method can be

adjusted to detect any type of flooding (UDP, ICMP, SYN,

ACK, etc.). Due to space restriction, we will present the

method for SYN flooding attack detection. However, the same

procedure can be applied to detect flooding through UDP and

ICMP by adding 2 additional counters in each cell of sketch.

Under SYN flooding attack, the distribution of number of

SYN toward a specific IP address will deviate from previously

learned distribution under normal traffic condition. However,

with the difficulty of finding a distribution probability that fits

to traffic characteristics (self similarity, heavy-tailed, and long

range dependence, etc.), we will use the divergence to detect

deviations between the probability values resulted from the

shared counters of Sketch in different time interval.

The use of sliding window during training phase is pro-

posed to absorb normal traffic variations between two discrete

interval. It improves the efficiency of the detection algorithm

by reducing the false alarm rate.

III. BACKGROUND

In this section, we briefly survey the Sketch data structure

and Jensen-Shannon divergence used in our framework.

A. Sketch

Sketch is a multi-stage Bloom filter used to randomly

aggregate large set of data into a fixed small memory. Let S =
s1, s2, . . . , sn denotes the set of input stream, where each

item si = (κi, νi) is identified by a key κi ∈ U , drawn

from a fixed universe of items U . νi ∈ R is the value

associated with each key. In our model, we use κi = DIP
and νi = #SY N , as our goal is to count the number of

SYN received by destination. The sketch data structure is

made up of d hash arrays. The arrival of a packet with

key κi increments its associated counter in the jth hash table

by νi (Cj,hj(κi)+ = νi), as shown in algorithm 1 and in

Figure 1. The update procedure is realized by d different hash

functions, chosen from the set of 2-universal hash functions

hj(κi) = {((ajκi + bj) mod PU ) mod w}, to uniformly

distribute κi over hash tables and to reduce collisions. The

parameter PU is a prime number larger than the maximum

number in the universe, where Mersenne prime numbers of

the form 2i − 1 are generally chosen for fast implementation.

aj and bj are random integers smaller than PU , with aj 6= 0.

Using d hash functions, the probability that two keys are

aggregated in the same bucket over the d hash table is (1/w)d.

Algorithm 1 Sketches Update procedure

1: for all TCP SYN segment received during T do

2: for i = 0 to d− 1 do

3: j = univ hashi(DIP );
4: C[i][j].counter+ = νi;
5: end for

6: end for

As the size of DIP (IPv4) is 32 bits, the hash functions

reduce the dimension of monitored space (232) to a fixed

size w (e.g. w = 210 = 1024), through the random ag-

gregation of multiple IP addresses in the same bucket when

the value resulted from hashing the addresses are the same

(h(IP1) = h(IP2) = j). The counter in each bucket is used
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to derive a probability as the ratio of counter value to the sum

of whole counters in one hash table (eq. 5). Jensen-Shannon

divergence is used to detect change in distributions defined by

two sketches resulted from two discrete intervals.
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Fig. 1. Sketch data structure.

B. Jensen-Shannon Divergence

JSD [3] is used to measure the divergence between two sets

of probability values. JSD is a smoothed version of Kullback-

Leibler [3] divergence. For 2 discrete probability distributions

P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn), with pi ≥ 0,

qi ≥ 0 and
n
∑

i=1

pi =
n
∑

i=1

qi = 1. The JSD divergence between

P and Q is given by:

JSD(P,Q) =
1

2
KL(P,M) +

1

2
KL(Q,M) (1)

Where KL(P,Q) is the Kullback-Leibler distance between

distributions P and Q:

KL(P,Q) =
n
∑

i=1

pi log
pi
qi

(2)

and M is the mean distribution of P and Q:

M =
P +Q

2
and mi =

pi + qi
2

(3)

JSD is the average of the KullBack-Leibler distances to the

average distribution M . JSD can be expressed in the form:

JSD =
1

2

[

n
∑

i=1

pi log

(

pi
mi

)

+

n
∑

i=1

qi log

(

qi
mi

)

]

(4)

JSD = 0 iff P and Q are identical (pi = qi), and JSD > 0
when P 6= Q. It is a symmetric and bounded metric (0 ≤
JSD ≤ log(2)) for orthogonal distributions (pi.qi = 0). As

we aim to detect anomaly through the detection of deviations

from normal traffic profile, the JSD determines the divergence

between 2 probability distributions P and Q, which denote

the distributions before and after the attack. JSD between P
and Q must be near zero under normal traffic, with a large

deviation (one spike) when distributions change occurs.

IV. PROPOSED APPROACH

Our proposed approach to detect flooding attack over back-

bone networks (or high speed network), is based on the Sketch

data structure and the Jensen-Shannon divergence. Firstly, the

shared counters of the Sketch are continuously updated from

the input data stream during a fixed time period T (e.g. T = 1
min). The key κi is the DIP address of packets and the reward

νi = 1 for SYN segment and zero for other traffic. At the end

of each interval T , the probability pi,j is calculated as the ratio

of each counter to the sum of all counters during this interval:

pi,j = Ci,j .counter/

w−1
∑

j=0

Ci,j .counter (5)

Thus result in d distributions (P0, P1, . . . , Pd−1), where the

Pi is the set of probability (pi,0, pi,1, . . . , pi,w−1) resulted

from the hash table i. The JSD between the current (Qi) and

a reference probability (Pi) measures is calculated for each

line in the sketch. Deviation induces spike in JSDi,k values,

and when more than L values of JSDi,k exceed a dynamic

threshold, an alarm is raised.

To build a reference statistical model for the normal profile,

we use the first few minutes as training phase, and a sliding

window of fixed size of N.T to update and calibrate the normal

profile. To detect flooding attack, we use the probability set

from previous window as reference distribution Pi, and the

probability from current interval as Qi distribution (as shown

in figure 2). A large window size increases accuracy and the

mean detection delay, and a tradeoff between accuracy and

delay detection is required, as some attacks may be completely

missed with large value of N , due to slow adaptation to traffic

variations .

Sketch data structure holds the sliding window in each

bucket of the 2D array. Each cell Ci,j becomes a data structure,

that contains: an array of fixed size for the past counters in

each time slot in the sliding window (W [N ]), two counters

for current and sum of past values, and 2 float variables for

holding the associated probabilities.

At the end of each interval k.T , d values of JSDi,k will be

calculated (one per line). During malicious activity, JSDi,k

incurs abrupt change, and when more than L value of JSDi,k

exceed a dynamic threshold, we halt the updating procedure

of sliding window until the end of attacks, to prevent the

poisoning of statistical parameters in normal profile. If L
values of JSDi,k exceeds the threshold for more than τ
consecutive time slot, we trigger an alarm. This technique is

used to avoid false alarm due to traffic variability (e.g. flash

crowd), and the fact that DDoS attack last for more than 1 time

slot to overload a server. When the attack stops, the divergence

value will drift back near to zero, and the window continue

to slide from the current time slot. Sliding window absorbs

the normal variation of traffic, and performs better than two

consecutive intervals.

In normal operation without anomaly, the first value of

the array representing the sliding window will be dropped,

other elements in the window are shifted one position

(C[i][j].W [k]← C[i][j].W [k+1]), and the current counter are

pushed to the end of the window array. Afterward, probabilities

pi,j are updated for each bucket.

To detect deviations in the time series of JŜDi,k, we define

a dynamic bound of µk−1 +ασk−1. Significant deviation can

be detected using the following equation:

JSDi,k > µk−1 + ασk−1 (6)
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Fig. 2. Sliding window used for establishing normal profile.

where JSDi,k is the value of JSD in the current interval

k.T for line i, and µk & σk are the mean and the standard

deviation respectively of JŜDi,k time series. JŜDi,k is the

time series that contains only the value of JSDi,k that does

not satisfy equation 6. µk and σk are updated dynamically

using the Exponentially Weighted Moving Average (EWMA):

µk = βµk−1 + (1− β)JŜDk−1 (7)

σ2
k = βσ2

k−1 + (1− β)(JŜDi,k − µk)
2 (8)

The threshold is updated dynamically by adjusting the value of

µk and σk as shown in equations 7 & 8. α is a parameter used

for calibrating the sensitivity of the detection algorithm to vari-

ations, and to reduce the false alarm rate. Under normal traffic,

divergence JSDi,k fall inside the bound of µk−1 + 2σk−1.

When JSDi,k exceeds the dynamically updated threshold over

L lines, an alarm is triggered. The decision function for alarms

is given in equation 9. Another interesting approaches for

estimating and adjusting dynamic threshold were proposed

in [21], [22] for SIP INVITE flooding detection.

d(alarmi) =

{

1 if JSDi,k > µk−1 + ασk−1

0 Otherwise
(9)

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of JSD over

Sketch for the detection of TCP SYN flooding attack. We

use the real Internet MAWI [23] trans-Pacific traces, from

15/04/2010 07:30 to 12:45 as few hours in the life of the

Internet, to test the efficiency of the proposed approach. IP

addresses in the traces are scrambled by a modified version

of tcpdpriv [23] tool, but correlation between addresses are

conserved. We have analyzed this 5.5 hours of wide area

network traces using the proposed approach, with a key of the

sketch (κi = DIP ), and a reward (νi = 1) for SYN request

only, and zero otherwise. Afterward, we inject real DDoS

attacks with different intensity inside this trace to simulate

distributed SYN flooding attacks.

For the used sketch, we set the width and number of hash

functions to: w = 1024 and d = 5. The other parameters are

set to: N = 5, L = 4, α = 3, β = 0.7, T = 1. Finally, it is

important to note that the processing of 5.5 hours of traces,

takes a few minutes.

A. MAWI Traces

In order to proceed with test, we inject 8 real DDoS TCP

SYN flooding attacks with different intensity in MAWI public

traces (tcpdump files). These attacks are inserted each 30

minutes (at time t = 31, 71, 111, 151, etc.) and last for 10

minutes. The variations of the total number of packets before

and after attacks are given in figure 3(a) & 3(b) respectively,

with a time slot of 1 minute. Attacks are not visible when

inspecting the variation of total number of packets due to

aggregation with high number of packets. Also, the injected

DDoS SYN flooding attacks don’t induce a variation in

the total number of TCP segments as shown in figure 4(a)

& 4(b) respectively. In fact, the number of TCP segments is

around 106 and attacks (shown in figure 6(a)) are of order

104 (insignificant variations). In figure 5(a), we present the

variation of total number of SYN, where we can observe large

deviations in the number of these requests. In spite of these

heavy deviations, after inspection, we found these variations

are legitimate, where SYN requests are not directed towards

a specific destination (not the result of DDoS or flash crowd).

Therefore, the analysis of the aggregation of whole SYN

segments leads to false alarms, whereas the grained analysis

with our proposed framework (1024 time series in each hash

table) doesn’t produces any alarm by JSD because the SYN

request are directed to different destination IP addresses.
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(b) After SYN flooding attacks.

Fig. 3. Total number of packets before and after attacks.
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Fig. 4. Total number of TCP segments.

The variation of the number of SYN after the injection of 8

DDoS SYN flooding attacks with different intensity is given

in figure 5(b), and the injected attacks are given in figure 6(a).

Figure 6(b) shows the variation of JSD as well as the estimated

threshold for the JSD. We get two spikes for each attack, the

first is at the beginning of the attack and the second at the
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Fig. 5. Number of SYN.
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Fig. 6. SYN flooding attacks and JSD.

end. When the current value of JSD is larger than dynamic

threshold, an alarm is triggered.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we propose a new sequential approach based

on Sketch and Jensen-Shannon divergence for anomaly detec-

tion over high speed links. To evaluate the performance of

the proposed approach, we conduct experiments over public

traces. We proved that our approach is effective through

implementation and testing on real traces with distributed

SYN flooding attacks. The proposed framework is scalable

and efficient for the detection of flooding attacks as proves

the result of the conducted experiments.

Ongoing work will concern the extension of the proposed

approach to automatically identify and pinpoint the malicious

flows and the victim IP address. Furthermore, we want to

investigate the performance of detection method using another

divergence.

Most of the time, the Internet traffic is normal, and the

reduction of exchanged monitoring data between Network

Operation Center (NOC) and monitoring points is one of our

interest for future work.
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