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Abstract—In this paper, we propose an Anomaly Detection
(AD) approach for medical Wireless Sensor Networks (WSNs).
This approach is able to detect abnormal changes and to
cope with unreliable or maliciously injected measurements in
the network, without prior knowledge of anomalous events or
normal data pattern. The main objective is to reduce the false
alarms triggered by abnormal measurements. In our proposed
framework, each sensor applies the Exponentially Weighted
Moving Average (EWMA) for one-step forecasting. To reduce
the energy consumed by periodic data transmission to the Local
Processing Unit (LPU), the sensor transmits only when the data
point (measured, expected) falls outside the dynamically updated
ellipsoidal region enclosing the normal data. The LPU exploits
correlation and uses chi-square distance for spatial analysis
before raising a medical alarm. We evaluate our approach on
real medical data set. Experimental results through computer
simulation demonstrate that our proposed approach can achieve
a good detection accuracy with low false alarm rate (less than
4%).

Index Terms—Wireless Body Area Networks, Security, Intru-
sion Detection, Healthcare monitoring

I. INTRODUCTION

Wireless Sensor Networks are used in healthcare monitoring

to collect physiological data from patients. They are composed

from a set of sensors with wireless transmission capabilities,

used to collect vital signs from monitored patient or from

elderly people. Collected data by sensors are transmitted to

a LPU (e.g., SmartPhone, Tablet, etc.) for preprocessing, and

for raising a medical alarm for caregivers when detecting

abnormal changes in gathered vital signs. This allows real time

monitoring and early detection of clinical deterioration [1], [2].

These small devices will improve the life quality of patients

having long term disease by allowing in-home and remote

monitoring. Wearable and in-body medical sensors are avail-

able in the market (Shimmer [3], etc.), and existing devices are

able to collect many vital signs, e.g., body Temperature (T◦),

Heart Rate (HR), Blood Pressure (BP), Blood Glucose Level

(BGL), blood oxygenation (SpO2), Pulse, ElectroCardioGram

(ECG), ElectroMyoGram (EMG), etc.

There are many application areas for these devices in real

time monitoring, such as kinematic & rehabilitation assess-

ment, remote patient monitoring, environmental & exposure

to radiation, elderly care, glucose monitoring and insulin

injection, nerve disorders such as Epilepsy, Parkinson and

Alzheimer monitoring.

The use of WSNs will reduce the healthcare costs (such as

overcapacity, sojourn time, number of nurses, etc.), and allow

in-home and remote monitoring. However, these tiny devices

with their limited resources are susceptible to environmen-

tal noise, interference, disrupted connectivity, short hardware

fault, inconsistent measurements, malicious attacks through

the injection of bogus and false data in the network [4] which

may lead to unreliable measurements [5]. These inconsistent

measurements heavily affect the result in the central device

(LPU or SmartPhone), and lead to inaccurate diagnosis results

and unreliable monitoring systems.

Medical applications have strict requirements for reliability,

security and privacy [2]. The sensor measurements should be

accurate to avoid false alarms and miss detections. Anomalous

data (also called outliers) from badly attached or malicious

sensors must be identified and isolated to ensure reliable

operation. Authors in [1] show that the medical WSNs will

be rejected by healthcare professionals and patients if results

are not reliable.

In general, anomaly detection algorithms in sensor measure-

ments can be classified into two approaches: parametric and

non-parametric. In the parametric approach, the data distribu-

tion is supposed to be known a priori, but this assumption is

unrealistic in medical applications, where many physiological

parameters are highly dynamic and do not have a matching

statistical distribution. The non-parametric approach does not

require any prior knowledge on the data distribution, and

uses distance or density-based methods to detect deviations in

data pattern on the fly. This approach needs little or no prior

knowledge to build an initial model, and data from a sliding

window are used to dynamically update the initial model. Our

detection scheme adopts the anomaly based approach.

In this paper, we propose a hybrid scheme to accurately

identify abnormal measurements in the data gathered by med-

ical WSNs. We consider a scenario where many sensors are

attached to the patient, in order to monitor several physiologi-

cal parameters, and they transmit only the suspicious abnormal

data to the LPU for further processing. The LPU exploits the

spatial correlation between attributes to raise medical alarms

to caregivers only when the patient health degrades. We seek

to detect and to remove outliers in order to reduce false alarms

triggered by malicious or inconsistent sensor readings which

significantly deviate from the normal data pattern.
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As the wireless transmission consumes a lot of sensor’s

energy with respect to computation, our second objective is

to reduce energy consumption by wireless transmission and

to prolong the lifetime of the sensors. Most of the time,

the sensor measurements are normal and anomalies are rare.

Therefore, in-sensor processing is required to detect abrupt

temporal deviations, and to transmit only suspect measure-

ments to the LPU for further analysis of spatial correlations in

order to distinguish between faulty measurements and illness

indicators.

The proposed approach achieves distributed lightweight

computing to prolong the lifetime of sensors, where each

sensor performs local detection by forecasting the current

value using EWMA, and by transmitting only data points

(measured, estimated) located outside the dynamically updated

normal region (ellipse) to the LPU.

The LPU has a global view on the gathered data and can

exploit the spatial correlation between monitored attributes

to distinguish between clinical emergency and faulty mea-

surements, and therefore reduces false alarms by discarding

received faulty measurements. It applies chi-square distance

to measure the deviation between the forecasted and observed

values before raising a medical alarm. We have applied our

AD approach on real physiological data sets with anomalies.

Our experimental results through computer simulation show

the effectiveness of our proposed approach for an accurate

detection with a low false alarm rate.

The rest of this paper is organized as follows. Section II

reviews the related work. Section III describes the proposed

approach for the anomaly detection system. In Section IV,

experimental results are presented to demonstrate the effec-

tiveness of the propose approach. Finally, Section V concludes

the paper.

II. RELATED WORKS

Several architectures for medical WSNs have been proposed

and deployed to monitor patients and to raise alarm in case

of medical emergencies, such as MEDiSN [6], CodeBlue [7],

LifeGuard [8], AlarmNet [9], Vital Jacket [10], etc. A survey

of medical applications using WSNs is available in [11].

Sensor nodes could easily be compromised and can inject

falsified values. The collected data by WSNs have low quality

and reliability [12] due to their limited resources and their

vulnerabilities. Therefore, anomaly based intrusion detection

systems are used to build a normal data model, and detect

unusual deviations. Several anomaly detection approaches for

WSNs have been proposed to detect abnormal deviation in

collected data, and have been analyzed in terms of their

detection accuracy and false alarm ratio [13]. Machine learning

algorithms for classification and clustering techniques have

been applied, such as K-means, k-Nearest Neighbor (KNN),

Artificial Neural Networks (ANN), Support Vector Machine

(SVM [14]), Self-Organizing Map (SOM), Wavelets [15], etc.

SVM provides the optimum solution with relatively large

computational complexity for calculating the hyperplane. Un-

fortunately, all the previous schemes are centralized on the

LPU and not adequate with the constrained resources of

sensors. We refer to [4], [16] for further details and discussions

of AD in WSNs.

Authors in [17] propose a score based approach for anomaly

detection in WSNs. This approach is based on Hampel filter

and Kernel Density Estimator (KDE) to identify outliers,

but it does not take into account the correlation between

attributes. Therefore, to increase the detection accuracy, the

spatio-temporal dependencies must be exploited to distinguish

between errors and medical emergencies, where measurements

tend to be correlated in time and space, and errors are usually

uncorrelated from other attributes.

Recently, authors in [12] note that only limited research

makes explicit use of spatial and temporal correlation for

outlier detection. Most existing AD approaches [18], [19]

assume redundant deployment and use majority voting scheme

to differentiate between malicious and emergency events,

which is an unrealistic scenario in healthcare monitoring.

Unlike existing techniques, our work addresses distributed

(or in-network) AD to reduce the data transmission and the

underlying energy consumption, and relies on centralized

correlation analysis to distinguish between faulty measure-

ments and clinical emergency. Uncorrelated measurements are

discard to reduce false alarms .

III. PROPOSED APPROACH

We consider a general medical deployment scenario, where

N wireless motes (S1, . . . , SN ) are placed on the patient

body (as shown in figure 1), and they are used to collect

vital signs and to transmit collected data to the SmartPhone

attached to the patient for further processing. Let Xj =
{x1,j , x2,j , . . . , xp,j} denote the measured values by sensor

j. Usually, sensor measurements are transmitted to the Smart-

Phone every discrete time interval T . However, the energy

consumed by transmission ranges from 103 to 104 times the

energy used by computation [20]. Also transmitting normal

measurements that occur in the most of time is useless.

Therefore to save energy, each sensor must transmit only

values that deviate from other.

������

Fig. 1. Vital signs monitoring in real time

To achieve this purpose, each sensor is designed to process

its measurements in a distributed manner using a lightweight
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method adequate with its constrained resources. In our ap-

proach, each sensor j uses the EWMA to predict the current

value (x̂i,j) as:

x̂i,j = x̂i−1,j + α (xi−1,j − x̂i−1,j)

= (1− α) x̂i−1,j + αxi−1,j (1)

The forecast of an observation at time instant i depends on

the (i− 1)th observation and its forecasted value. The choice

of the weight α (0 ≤ α ≤ 1) is a key factor to determine

the convergence speed. A large value of α induces a quick

updating to the change in the monitored attributes, and a small

value induces less dependency on the recent measurement.

As physiological parameters (e.g., T◦, HR, PULSE, SpO2,

Respiration, etc.) change slowly between two consecutive

intervals, we use a value of α = 0.1 to reduce the response

rate of the current estimate to a change in the measurement.

After forecasting the current value, each sensor compares

the forecasted (x̂i,j) with the measured value (xi,j) to detect

deviation from normal profile, and transmit only the abnor-

mal measurement to the SmartPhone. Normal data points

(xi,j , x̂i,j ) must be near the line y = x (as shown in fig-

ure 2(a)), and abnormal data points have significant deviations

between measured and estimated values (far from the line

y = x).
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(a) Ellipse enclosing normal data

%& '( ()

* * *+, - , - , -. / /0 1 0 2

345678 9:;<=>? @ AB BC D

(b) Ellipse enclosing residual data

Fig. 2. Ecnclosing data with an ellipse.

We distinguish 4 patterns for abnormal values: (1) x̂i,j >

xi,j + ξ, where ξ represents an accepted estimation error (2)

x̂i,j < xi,j+ξ, (3) xi,j∧x̂i,j < valmin, (4) xi,j∧x̂i,j > valmax

(valmin & valmax are the lower and upper bound for the

monitored attribute). The 4 regions are depicted in figure 2(a),

where x-axis refers to the measured values, and y-axis refers

to the estimated values. When referring to HR, normal values

are inside the interval [60− 120] beats per minute (bpm).

The estimated error varies ξ with respect to measured and

estimated values, where it must be small near the lower and

upper bound. Many researchers have investigated the minimum

ellipse englobing the whole data, e.g., Minimum Volume

Ellipsoid (MVE [21]), Orthogonalized Gnanadesikan-kettering

(OGK [22]), Minimum Covariance Determinant (MCD [23]),

Fast-MACD [23] and Deterministic MCD (DetMCD [23]), etc.

However, the computational complexity of existing opti-

mization methods prevents its use on the sensor. Therefore, to

reduce the computational complexity, we look for the ellipse

E enclosing the data points (xi,j , f(xi,j , x̂i,j)), where f is the

residual function defined by f(xi,j , x̂i,j) = xi,j − x̂i,j . When

using the residual, the center (xc, yc) of the ellipse E (eq. 2)

will be located on the x-axis (yc = 0 as shown in figure 2(b))

and thus reducing the calculation complexity associated with

the rotated ellipse (θ = 45◦).

(x− xc)
2

a2
+

(y − yc)
2

b2
= 1 (2)

To find the major axis of the ellipse in figure 2(b), we use

the Box-and-Whisker plot or boxplot. It is based on lower

quartile (Q1 is the 25th percentile) and the upper quartile (Q3

is the 75th percentile) of Xj to detect abnormal values. Normal

measurements must satisfy the following condition:

Q1 − 1.5× (Q3 −Q1) ≤ xi,j ≤ Q3 +1.5× (Q3 −Q1) (3)

We denote by IQR the Interquartile range (IQR = Q3−Q1).

As the normal measurements must fall inside the interval [Q1−
1.5 × IQR,Q3 + 1.5 × IQR] defined in eq. 3, the width of

the interval is equal to the length (LE) of major axis of the

ellipse (2× a) :

LE =
Q3 + 1.5IQR−Q1 + 1.5IQR

2
= 2IQR = 2a

(4)

The length of the minor axis is calculated in the same manner

over the residual time series (IQR∆ = 2b) resulted from the

difference between the measured values Xj and the forecasted

values X̂j (∆i,j = xi,j − x̂i,j ). The x-coordinate xc of the

ellipse center is in the middle of the interval and the y-

coordinate (yc) is zero:

xc = Q1 − 1.5IQR+
LE

2

=
Q1 +Q3

2
yc = 0

(5)

When the difference ∆i,j is outside the dynamically updated

ellipse (eq. 6), the value is considered as abnormal and

transmitted to the LPU. As normal data may change, the

parameters of the ellipse (major & minor axis) are updated

every T conditioned by maximum change ratio of 10%, i.e.,

the major and minor axis of the ellipse can not increase (or

decrease) more than 10% of their previous values in two

consecutive interval.

(xi,j − xc)
2

IQR2
+

(∆i,j)
2

IQR2
∆

> 1 (6)

The collected data are processed in real time on the LPU to

detect anomaly and to raise alarms for caregiver only when

patient health degrades (respiratory failure, cardiac arrest, etc.).

Faulty measurements must be detected and isolated in order

to reduce false alarms and prevent fault diagnosis.

Received values by the LPU may result from faulty mea-

surements or clinical deterioration. Physiological parameters
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are correlated, and clinical deterioration induces changes in

many parameters at the same time instant. The faulty mea-

surements are usually not correlated with other attributes, and

the probability that more than k sensors’ measurements are

faulty in the same time instant decreases when the number

of received measurements by the LPU increases. Therefore,

to distinguish faulty measurements from clinical deterioration,

the LPU exploits this correlation and discards received data

when k < th, where th is a threshold to trigger further

processing (th = 2 in our experiments).

When more than k suspect measurements are received by

the LPU, it applies the chi-square distance to detect abnormal

deviations:

χ2

i =

N
∑

j=1

(xi,j − x̂i,j)
2

x̂i,j

(7)

chi-square distance χ2
i must be low (near zero) for normal

measurements. However, χ2
i will increase when the forecasted

and measured values diverge in many attributes, and a large

value of χ2 implies abnormal measurements. Therefore, to

identify clinical deterioration, we use the kernel Density

Estimator (KDE), as a nonparametric method to estimate

the Probability Density Function (PDF) of χ2 . Let χ2 =
{χ2

1, χ
2
2, . . . , χ

2
n} be the last n values of χ2 having a common

pdf f̂(x). The KDE estimates f̂(x) as:

f̂(x) =
1

nh

n
∑

i=1

K

(

x− χ2
i

h

)

(8)

Where K(.) is the kernel function and h is the bandwidth. We

use the Gaussian kernel given by:

K(x− χ2

i ) =
1√
2π

e−0.5(x−χ2

i )
2

(9)

And the optimal bandwidth:

hopt ≈
1.06σ

n5
and σ2 =

1

n− 1

n
∑

i=1

(χ2

i − µ)
2

(10)

Where µ and σ are the mean and the standard deviation of the

vector χ2. To make the method robust to outliers, we replace

the mean µ by the median Q2 (µ = Q2), and σ by the Median

Absolute Deviation (MAD) given by:

Q2 = median(χ2)

MAD = 1.4826×median{|χ2 −Q2|}
(11)

In hypothesis testing, the KDE is used to estimate the probabil-

ity of new observation, and when p-value (probability value) is

less than threshold θ (θ = 0.05), the null hypothesis is rejected

and the chi-square value is considered as abnormal. Then a

medical alarm is raised for the healthcare professionals. The

sliding window of last n observations of χ2 (shown in figure 3)

moves one slot by removing the oldest value and adding the

new one, and the new window is used as training data for

estimating the PDF. However, the data in sliding window have

zero or near zero values for chi-square in normal condition,

and we use gaussian distribution with µ = 0 & σ = c1

(N(0, c1)) as the minimal threshold for chi-square distance.

c1 is a predefined constant greater than 1.

E FGHIJK L MNOP

Q Q Q
R QS S S TU U UV

WXYZ[\

Fig. 3. Sliding window used for establishing normal profile

The alarm decision function is given by eq. 12, where a large

value of χ2
i is synonym of large deviation between attributes.

Ai =

{

1 if p
(

χ2
i

)

≤ 0.05
0 Otherwise

(12)

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments on the proposed

approach for online anomaly detection in real medical data

through computer simulation. We further compare and eval-

uate the performance of our proposed approach with robust

Mahalanobis Distance (MD).

A. Simulation Setup

We use real medical dataset from the Physionet

database [24], which contains ∼ 45000 records, and each

record contains 4 attributes (HR, Pulse, RESP, SpO2). We

assume no prior knowledge about existing anomaly or faulty

measurements in our approach that is applied on this dataset.

We use a sliding window of 10 minutes (T = 10) to update the

ellipse. This allows to reduce computational operations on the

sensor (1 time every 10 minutes) and the underlying energy

consumption. On the LPU, we set other parameters w = 10
and α = 0.1.

The variations of HR (in beat per minute - bpm) are

shown in figure 4, where we can visually identify abnormal

measurement, a spike having a zero value. The heart rate

can be extracted form ECG as the number of R-R intervals

in one minute. The variations of the PULSE are presented

in figure 5. Both figures exhibit the same variations (with

abnormal values) as HR and PULSE represents the same

physiological parameter measured using two different sensors.

We can visually identify the zone of variations in both figures

without being able to identify the reason behind these varia-

tions.

Figure 6 shows the variations of the respiration rate for the

monitored patient, with two spikes falling down to zero, and

figure 7 shows the variation of the blood oxygen saturation

level (SpO2) or the percentage of oxygen in the blood. The

value of this parameter must usually fall inside the interval

[95− 100] in normal situation. However, measured values of

SpO2 in figure 7 reach 80% for extended period of time and

thus point to severe clinical deterioration (asphyxia).

The traditional AD methods look for deviation on the LPU

and assume that whole gathered data by sensors are transmitted

to the LPU for processing. As a first check for AD, we apply

the chi-square distance (with forecasting) in our proposed
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Fig. 5. Pulse
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Fig. 6. Respiration rate
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Fig. 7. Oxygenation ratio (SpO2)
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Fig. 8. Chi-square distance & threshold
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Fig. 9. Mahalanobis distance & threshold

scheme to detect abnormal deviations. Figure 8 shows the

variations of chi-square and the associated threshold, where

p-value of 5% is associated with a confidence level of 95%

and a z-score 1.96. The four variations are clearly identified

with their occurrence instants and durations.

B. Comparison with Robust MD

We compare our proposed scheme with the one proposed

in [18], where the Mahalanobis Distance (MD) is used as

a method for AD in gathered data by wireless sensors. MD

calculates the distance between measurements by taking into

account the correlation between monitored attributes:

MDi =

√

(Xi − µ)TΣ−1 (Xi − µ) (13)

Where µ is the mean vector (1×N ) and Σ is the covariance

matrix (N × N ) of these N attributes calculated by a robust

estimation method (OGK) which removes outliers from the

Σ estimation by looking for a subset of training data without

anomalies. However, MD requires additional complexity (the

inversion of Σ) when comparing to chi-square, and the robust

estimations for µ̂ and Σ̂ require resources not available on the

sensor.

MD2
i follows chi-square distribution χ2

N,0.975 with N de-

grees of freedom and 97.5% quantile is used as the threshold

for anomaly detection by MD2 (0.025 significance level for

cut-off value). An alarm is triggered when the value of MDi

is greater than the threshold (χ2
N,0.975). The application results

of robust MD over the physiological data are shown in figure 9

with the threshold
√

χ2
4,0.975 = 3.3382 (horizontal line).

When comparing figures 8 and 9, we notice that both cases

have similar performance.

C. Performance Analysis when Using Enclosing Ellipse

The forecasting procedure and enclosing ellipse for AD are

used to reduce the amount of transmitted data and to save

energy. Sensors transmit only measurements falling outside

the ellipse and the resulted chi-square variations are presented

in figure 10. The false alarms associated with the faulty

measurements in HR or in respiration rate have been discarded

through correlation analysis. Only one medical alarm is raised

for healthcare professionals (as shown in figure 11), and it

is resulted from simultaneous changes in many physiological

parameters at the same time instant. Curves in figure 11 are

shifted to clarify the shape of their variations. We notice that

the proposed scheme increases the detection accuracy and

reduces the false alarm rate when compared to robust MD.

To evaluate the performance of the proposed approach, we

synthetically inject 100 anomalies at different time instants in

the different attributes in the used dataset. We used the ROC

curve to show the impact of decision threshold (0-10%) on

the true positive rate (equation 14) and the false negative rate

(equation 15).

TPR =
TP

TP + FN
(14)

Where TP is the number of true positives, and FP is the

number of false positives. The false positive rate (FPR) is
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Fig. 12. Receiver Operating Characteristic (ROC)

defined as :

FPR =
FP

FP + TN
(15)

Figure 12 shows the ROC for the proposed approach where

the detection probability reaches 100% for a FAR of 4%. We

also analyze in the same figure (figure 12) the impact of T

and w parameters at the performance of our proposed scheme,

and we show that our approach outperforms the robust MD

scheme proposed in [18].

V. CONCLUSION

In this paper, we proposed an unsupervised approach for

anomaly detection in medical WSNs. The proposed approach

does not require a labeled training data nor threshold tun-

ing. It is based on distributed forecasting using EWMA,

and the transmission to the LPU of data points with large

difference between forecasted and measured values. The LPU

discards uncorrelated values and applies chi-square distance

and KDE before raising a medical alarm. It is suitable for

online detection and isolation for faulty or maliciously injected

measurements with low computational complexity and storage

requirement. We have evaluated the proposed approach using

real medical data sets. Our experimental results show the

effectiveness of our proposed approach in reducing the number

of false alarms for medical emergency.
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