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Abstract—Electroencephalogram (EEG) is the electrical signal
of brain which contains valuable information about its activities.
In this paper, we propose a new approach for the early detection
of epileptic seizure in EEG. The proposed approach is based
on Discrete Wavelet Transform (DWT) and Ant Colony (AC)
Classifier. We started by applying DWT to decompose the EEG
signal into its sub-bands to extract the energy ratio from wavelet
coefficients. Beside we extract some statistical features from the
original signal, and we use the extracted features as the input for
the AC algorithm to derive classification rules, which are used
to detect epileptic seizures in the EEG of the monitored patient.
Our experimental results on real dataset show that our proposed
approach achieves a high level of detection accuracy.

Index Terms—Anomaly Detection, Epileptic Seizure, Ant
Colony Classifier

I. INTRODUCTION

Epilepsy is the most common neurological diseases which

affects more than 40 million persons in the world. It can be

caused by number of unrelated conditions, such as damage re-

sulting from high fever, stroke, toxicity, electrolyte-imbalances

which disturb the nervous system, etc. Epilepsy is a chronic

nerve disorders characterized by recurrent seizures that can

vary from a brief lapse of attention or muscle jerks, to severe

and prolonged convulsions [1].

Epileptic seizures can be categorized as partial or general.

Partial seizures are usually produced from a localized area in

the brain, and may spread to other areas. Partial seizure is

divided into simple and complex depending on the patient’s

response during a seizure [2]. Generalized epileptic seizure

involves the entire brain and produces bilateral motor symp-

toms generally accompanied with loss of consciousness. Both

types of epileptic seizures can occur at all ages. Generalized

epileptic seizures can be subdivided into absence (petit mal or

little illness) and tonic-clonic [3] (grand mal seizures).

The nature of seizures, timing, severity and the situations

in which they occur can cause social difficulties for patient.

Discrimination or rejection may also be a problem for a

person with seizures. Furthermore, family and friends tend to

be overprotective or impose unnecessary restrictions that can

lead to isolation and social problems. Fearing is a negative

response, where many try to keep their epilepsy a secret from

others. People with active epilepsy cannot drive and keeping

their jobs can be more difficult for them.

Epilepsy can be treated in many cases and the most im-

portant treatment today is pharmacological. The patient takes

anticonvulsant drugs on a daily basis, trying to achieve a

steady-state concentration in the blood, which are chosen to

provide the most effective seizure control. Surgical interven-

tion is an alternative for carefully selected cases that are

refractory to medical therapy. However, in almost 25% of

the total number of patients diagnosed with epilepsy, seizures

cannot be controlled by any available therapy. Furthermore,

side effects from both pharmacological and surgical treatments

have been reported in [4].

Monitoring brain activity through the ElectroEncephalo-

Gram (EEG) has an important role in the diagnosis of neuro-

logical diseases, especially for the early detection of epileptic

seizure activity. Clinical or in hospital wired EEG system

records functional and physiological changes within the brain

over a short period of time, usually 20− 40 minutes. Data are

recorded from multiple electrodes placed at various positions

on the scalp of a patient. Elliptical seizure creates clear

abnormalities in the EEG, and the early detection of seizure

requires continuous and remote monitoring.

With the rapid development of Wireless Sensor Networks

(WSNs), many EEG sensors and wireless EEG headset are

available today in the market. Usually, invisible electrodes are

placed in the head scalp and are connected to a transceiver,

which transmits the acquired EEG signal to a Local Processing

Unit (LPU), such as SmartPhone. These days, headset or

sensors are placed in hidden and comfortable way at the

head and allow monitored patient to continue their daily life

activities without disruption. The LPU transmits the gathered

data by sensors to healthcare providers without any processing,

and our objective is to automatically detect epileptic seizure

using the gathered data in the LPU.

Two categories of abnormal activities could be found in

EEG recordings of patients suffering from epilepsy: inter-

ictal which consists of abnormal signals recorded between

epileptic seizures and ictal which is defined as the activity

recorded during an epileptic seizure. The EEG signature of an

inter-ictal activity is occasional transient waveforms, as either

isolated spikes, spike trains, sharp waves or spike-waves. EEG

signature of an epileptic seizure (ictal period) is composed

of a continuous discharge of polymorphic waveforms with

variable amplitude and frequency, continuous spikes observed
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over a duration longer than the average duration of inter-ictal

abnormalities [5].

With the huge amounts of EEG recordings data, the early

detection of ictal phase in automatic manner is required for

early intervention by taking the appropriate actions. However,

the complex nature of EEG signal and the similarity between

epileptic seizure features and some of the background noise

such as (eye blinks, stress, sleep deprivation, muscle activity,

etc.) make challenging the automatic solutions to detect epilep-

tic seizures in an efficient manner [3]. Existing approaches

suffer from high ratio of false alarms.

In this paper, we propose a new scheme for the early and ef-

ficient detection of epileptic seizures in Electroencephalogram

(EEG) signal. Our proposed approach is based on extracting

and analyzing features from EEG signal, instead of directly

analyzing the signal itself. We first extract statistical features

from EEG signal and we decompose the signal into four

decomposition levels to extract the Energy ratio of wavelet

coefficients. We apply machine learning algorithm on the ex-

tracted features to distinguish between normal brain activities

and epileptic seizures on the LPU. The LPU raises alarm for

healthcare professionals upon detection of seizure.

We use DWT to decompose the EEG signal into its sub-

bands, and we extract the energy ratio from wavelet coeffi-

cients as one feature. Afterward, we extract some statistical

features from the original EEG signal, and we use all those

features as input for Ant Colony (AC) classifier to derive the

set of classification rules, which will be used to detect epileptic

seizure in EEG.

The remaining of this paper is organized as follows. Sec-

tion II reviews related work for detection of epilepsy in EEG.

Section III briefly reviews related techniques used in our pro-

posed approach. Section IV presents our proposed approach. In

section V, we present our results from experimental evaluation.

Section VI concludes this paper.

II. RELATED WORK

Authors in [3] classify the EEG signal of patients suffering

from epilepsy in two categories of abnormal activity: the first

category is inter-ictal and the second is ictal. They found that

the entire process of all suggested signal processing’s methods

which conducted to detect epilepsy seizures can be generally

subdivided into two main stages: (i) feature extraction and

(ii) classification. Once a set of features has been obtained

to characterize a section of EEG, a classification algorithm is

used to decide whether this section of EEG is associated with

an epileptic seizure or not.

Authors in [6] proposed an approach for EEG signal classi-

fication based on feature extraction using Wavelet Transform

(WT) and classification scheme using Neural Network (NN).

Their proposed approach able to distinguish between normal

and epileptic EEG signal over a reasonable duration of 24

seconds. They notice that the selection of suitable wavelet

and the choice of decomposition level are have a large impact

on the detection accuracy. As the EEG signal does not have

any useful frequency component above 30 Hz, they use 4

decomposition level for the detection of abnormal activities

in EEG.

Authors in [7] briefly present the commonly used classifi-

cation algorithms to design Brain Computer Interface (BCI)

system based on EEG such as: linear classifiers, Neural Net-

works, Nonlinear Bayesian classifiers and Nearest Neighbor

classifiers. They also provide guidelines to help reader chose

a classifier adapted to a given context.

Authors in [3] compared several methods for time-frequency

analysis of EEGs to calculate the Power Spectrum Density

(PSD) of each segment. They extracted some features and use

artificial NN to identify existing anomalies in EEG signal.

Authors in [8] proposed a method for the detection of

epileptic seizure based on multichannel EEG signals (unipolar

and bipolar). First, 16-channel scalp EEG data were collected

from 3 patients with epilepsy. Then approximate Entropy was

applied on the data to extract different kinds of dynamic EEG

rhythms. After that, they extract some features from all channel

(standard deviation and energy). Finally, they classified data

using Support Vector Machine (SVM) with different kernels

to test the classification accuracy.

The authors in [9] provide PyEEG, an open source platform

based on Python module for EEG feature extraction which can

also be used to analyze other physiological signals that can

be treated as a time series. Authors in [10] propose a hybrid

technique based on DWT with approximate entropy (IApE)

to measure irregularities in EEG signal. These irregularities

measures are used as input for Artificial Neural Network

(ANN) classifier for early detection of epileptic seizure.

The authors in [11] proposed an algorithm based on DWT

and SVM. First, they decompose the signal into its sub-

bands, and for each sub-band, the energy and covariance

were extracted and used as input for the SVM classifier to

discriminate between seizure and non-epileptic seizure.

In this paper, we propose a new approach for the early

detection of epileptic seizures in EEG signal. Our proposed

approach is based on machine learning algorithm and nu-

merical analysis to detect epileptic seizures. First, we use

DWT to decompose the EEG signal into four sub-bands, then

we extract the energy percentage of wavelet coefficients and

some statistical features from the original signal. Then we use

extracted features as input for Ant Colony (AC) which will

discover the set of classification rules used to detect epileptic

seizure in EEG signal.

III. BACKGROUND

In this section, we briefly survey the Discrete Wavelet Trans-

form (DWT) and Ant Colony Optimization (ACO) classifier

used in our proposed approach. For detailed information about

these algorithms, reader may refer to [12]–[14].

A. Discrete Wavelet Transform

DWT converts a signal into a series of small waves through

multi-stage decomposition. It is used to find the instant at

which an abrupt change takes place. The basic idea behind

the wavelet analysis consists of decomposing the signal S

IEEE ICC 2014 - Selected Areas in Communications Symposium

3530



into a set of wavelet coefficients, where the signal can be

reconstructed as a linear combination of the wavelet functions

weighted by the wavelet coefficients.

The wavelet transformation analyzes the signal at different

frequency bands, with different resolutions by decomposing

the signal into approximation and detail coefficients [15]. The

approximation coefficients are then further decomposed using

the same wavelet decomposition step. This is achieved by

successive highpass and lowpass filtering of the time domain

signal using the following equations:

HP (S) = A1j =
∑

k

S(k)h(2j − k) (1)

LP (S) = D1j =
∑

k

S(k)g(2j − k) (2)

The procedure of multi-resolution decomposition of a signal S

is schematically shown in figure 1. Each stage of this scheme

consists of two digital filters and two down-samplers by 2

(squeezes the signal to half of its size). The first filter, HP

is the High Pass filter and the second, LP is Low Pass filter.

The outputs of HP and LP filters in the first stage HP are

the details coefficients D1 and the approximation coefficients

A1 respectively. The first approximation coefficients A1 are

further decomposed and this process is continued up to the

desired decomposition level as shown in figure 1.
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Fig. 1. Four level wavelet decomposition

The number of decomposition levels and the selection

of suitable wavelet is important for the analysis accuracy

of DWT. In this work, we choose the widely used DWT,

Daubechies of order 4 (Daub4) and the EEG signals were

decomposed into four levels. This four-level wavelet decom-

position process will produce a total of five groups of wavelet

coefficients, each corresponds to the frequency band of brain

electrical activity: D1 (43.4− 86.8 Hz), D2 (21.7− 43.4 Hz),

D3 (10.8− 21.7 Hz), D4 (5.4 − 10.8 Hz), and A4 (0 − 5.4
Hz), which correlate with the EEG spectrum that falls within

four frequency bands of: delta (1 − 4 Hz), theta (4 − 8 Hz),

alpha (8− 13 Hz) and beta (13− 22 Hz) [16].

The energy of the details and approximations signals at

different resolution levels is calculated as follows:

EDi =
N∑

j=1

|Dij |
2 i = 1, 2, . . . , l (3)

EAi =
N∑

j=1

|Aij |
2 i = 1, 2, . . . , l (4)

where l is decomposition level, and N is the number of detail

or approximation coefficients in each level. EDi is the energy

of the detail at decomposition level i and EAl is the energy

of the approximate at the last decomposition level l.

B. Ant Colony Classifier

Ant Colony (AC) classifier is a machine learning algorithm,

inspired from the collective behavior of the real ants which

communicate together in an indirect manner by depositing a

substance called pheromone [12]. In fact, ants go out from

their colony looking for food (as shown in figure 2), with

their colony as start point and their destination (the food)

as their stop point. Initially, the ants start searching for the

food in a random manner, and they might face some obstacles

and barriers which make them take a decision to search for

alternative paths. Furthermore there will be a disparity between

the lengths of paths. So the goal of ants is not limited to

reach the destination (food), but to reach the destination using

the shortest path. Let denote the shortest path between Nest

and Food by S, after some amount of time the amount of

pheromone in path S will be reinforced, which attracts other

ants to pass through path S, which caused that all ants converge

to path S as the shortest path between Nest and Food.
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Fig. 2. Ants behaviour

In machine learning, AC is applied over labeled training to

discover the classification rules, such that each path discovered

by the artificial ants represents one candidate classification

rule. These rules are of the form: if "rule antecedent" then

"rule consequent". The condition "rule antecedent" stands for

a conjunction of terms (Y1 & Y2 & . . . & Yn), where each

term is a condition (Yi, operator, value). For clarification, an

example of a term when extracting the energy ratio from
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details coefficients of a decomposed EEG signal , the term

is: (EG < 1.6). The "rule consequent" is the discovered class

where their attributes satisfy all the terms in the "antecedent

rule". In our proposed approach we use the extracted features

of signal as input for ant colony classifier to define the rules

of normal EEG features. An example of rules:

if (LBj < Yj < UBj)
then

class = normal

else

class = abnormal

Where Yj represents the jth extracted feature from windows

j. If an extracted feature of a patient fall outside the defined

interval by ant colony classifier then an alarm associated with

epileptic seizure is triggered to take the appropriate actions.

For detailed information about Ant colony classifier reader

may refer to [17].

IV. PROPOSED APPROACH

We consider a real deployment scenario where many elec-

trodes are attached to the scalp of the monitored patient. Each

of them collects EEG reading from different area as shown

in figure 3. In the other side, these electrodes are connected

to a transceiver (wireless mote) which in turn transfer the

measurements to the LPU for real time processing. The LPU

sends the collected data to the monitoring center for storage or

for further analysis (long term analysis). The LPU processes

the gathered data before their transmission, in order to detect

epileptic seizure in monitored EEG signal, and raise a medical

alarm for healthcare professionals upon detection of seizure.
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Fig. 3. WSN in medical deployment scenario

We seek to detect abnormal values on the portable device

(LPU) and to reduce false alarms by distinguishing between

normal EEG and abnormal EEG with epileptic seizure. Our

proposed approach to detect abnormal values is based on

the following 3 stages: (i) signal decomposition, (ii) features

extraction and (iii) features classification. First, the signal is

decomposed using DWT into four levels which will produce

four levels of details coefficients (D1 − D4) and one final

approximation coefficient A4.

In the second stage two groups of features will be extracted

(i) from the original signal (MAX, MIN, STD and MEAN) and

(ii) the energy ratio of details and approximation coefficients.

Finally, we use extracted features as input for Ant Colony

classifier in order to derive the classification rules for normal

and abnormal EEG. The complete procedure is presented in

the block diagram in figure 4 and described in algorithm 1.

@ABCDEAF GHBFFIJIKBCILM NOMC GLHLMPQ

RIFKEACA SBTAHAC UEBMFJLEV NRSUQ

WWX YIZMBH

UP[A LJ WWX FIZMBH

@ABCDEAF W\CEBKCILM

Fig. 4. EEG signal processing and features extraction

Algorithm 1 Epileptic seizure detection

1: i = 0
2: Set the window size w;

3: for i ≤ length of signal - w do

4: Calculate statistical features of the sliding window

5: Decompose the signal into 4 levels

6: Calculate energy ratio

7: end for

8: Derive Classification rules by Ant Colony

9: j = 0
10: for j ≤ n do

11: Calculate the Lower Bound (LBj)

12: Calculate the Upper bound (UBj)

13: end for

14: if (((LB1 ≤ yj,1 ≤ UB1) & . . . &(LBn ≤ yj,n ≤ UBn))
then

15: Class = normal EEG

16: else

17: Class = Epeliptic EEG

18: end if

The rules generated by AC are applied on signal’s extracted

features to detect epileptic seizure. The proposed algorithm

raises an alarm for healthcare professionals when at least

K extracted features are outside the dynamically established

interval [LBi, UBi] by AC classifier.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the

proposed approach for epileptic seizure detection from EEG

signal. Afterward, we conduct performance analysis experi-

ments to analyze the impact of window size on the detection

accuracy and false alarm ratio. In our experiments, we use

a publicly available benchmark dataset [18]. This dataset is

divided into five sets labeled set A until E. Each subset consists
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Fig. 5. Normal EEG
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Fig. 6. STD of normal EEG
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Fig. 7. Min & Max of normal EEG
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Fig. 8. EEG with Epileptic seizure
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Fig. 9. STD of abnormal EEG
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Fig. 10. MIN & MAX of abnormal EEG

of 100 segments of 23.6 sec duration, with each segment

being a time series with 4097 data points and each sampled at

173.61 Hz. Each of the five sets was recorded under different

circumstances.

Both sets A and B were recorded from healthy subjects,

with set A recorded with their eyes open whereas set B

with their eyes closed. On the other hand, sets C until E

were obtained from epileptic patients. Set C and D were

recorded during seizure free period, where set C was recorded

from the hippocampal formation of the opposite hemisphere

of the brain, whereas set D was obtained from within the

epileptogenic zone. The last data set, set E, contains ictal

data that were recorded when the patients were experiencing

seizure. In other words, the first four sets of data, sets A until

D, are normal EEG signals, while set E represents epileptic

EEG signals. Figures 5 and 8 show the variation for normal

and abnormal EEG respectively.

The proposed method was applied on both dataset of EEG

(normal and abnormal). To reduce the volume of data, the data

segment of 4097 values was partitioned using a sliding window

of length = 32. First, we extract window’s statistical features

(MAX, MIN, STD and MEAN) then we apply the DWT at

each window to derive the details coefficients (D1 − D4)

and Approximation A4 coefficient. We tested different types

of wavelets family and Daubechies (daubb4) gives maximum

efficiency. After that we extract the energy ratio from each

signal coefficients and we used both the energy ratio and

the statistical features as input for ant colony classifier in

order to conduct the classification. Figures 6 and 7 show the

variation of extracted mean, minimum and maximum values

for normal EEG, and figures 9 and 10 show the variation

of STD, Maximum and Minimum values for abnormal EEG

signal.

In the classification phase, we used a dataset containing

56837 records (extracted features) as input for Ant Colony

Classifier. This input dataset were divided into 3 subsets. The

first subset is used as training data to train the classifier and to

derive the classification rules. In our experiment we used 2225

samples as training set. The second subset is the validation set,

in our experiment the validation set contains 1292 samples.

The last subset is the testing set, we used a testing subset

with 52962 samples.

The classification rules obtained by Ant Colony classifier

define the range of normal EEG using its extracted features.

Any features fall outside the range of normal EEG signal will

be considered as abnormal. Table I shows the range of normal

EEG.

TABLE I
RANGE OF NORMAL EEG

Extracted Features Lower Bound Upper Bound

Energy ratio 0 0.4

STD 0 130

MAX −100 230

MIN −260 150

MEAN −200 200

Figure 12 shows the 3 raised alarms by our proposed ap-

proach. We obtained three alarms resulted from the deviations

in both MAX, Mean, STD, energy ratio & MIN. In fact, a

visual inspection in the variation of EEG signal in figures 8
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confirms the utility of these alarms.

To evaluate the performance of our proposed approach, we

used a dataset of a patient suffering from epileptic seizure to

dervice the Receiver Operating Characteristic (ROC) curve.

We analyzed the impact of the window size on the true

detection and false alarm ratio. The ROC curve presented in

figure 13 shows the relationship between the detection rate

(equation 5) and the false alarm rate (equation 6).

Detection Rate =
TP

TP + FN
(5)

Where TP is the number of True Positives, and FP is the

number of False Positives. The False Positive Rate (FPR) is

defined as:

False alarm rate =
FP

FP + TN
(6)

A good detection mechanism must achieve a high detection

ratio with the lowest false alarm rate. Figure 13 shows that

our proposed approach can achieve a DR = 100% with a

FAR = 9%.

VI. CONCLUSION

In this paper, we proposed a new framework to detect

epileptic seizure in medical WSNs. The proposed approach

is based on Discrete Wavelet Transform and Ant Colony

classifier. First we decompose EEG signal into 4 levels using

DWT and we extract some features from the original signal, as

well as the energy ratio of the coefficients. In the second step,

we used extracted features as input to Ant Colony classifier

to derive the classification rules. The rules are used to detect

epileptic seizure. We applied our proposed approach on real

medical dataset. Our experimental results prove the effective-

ness of our approach which can achieve a high detection ratio

with low false classification ratio.
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