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Abstract—Wireless Sensor Networks are vulnerable to a
plethora of different fault types and external attacks after their
deployment. We focus on sensor networks used in healthcare
applications for vital sign collection from remotely monitored
patients. These types of personal area networks must be robust

and resilient to sensor failures as their capabilities encompass
highly critical systems. Our objective is to propose an anomaly
detection algorithm for medical wireless sensor networks. Our
proposed approach firstly classifies instances of sensed patient
attributes as normal and abnormal. Once we detect an abnormal
instance, we use regression prediction to discern between a faulty
sensor reading and a patient entering into a critical state. Our
experimental results on real patient datasets show that our
proposed approach is able to quickly detect patient anomalies
and sensor faults with high detection accuracy while maintaining
a low false alarm ratio.

Index Terms—Wireless Sensor Networks, Sensor Faults, Per-
sonal Area Networks, healthcare and remote patient monitoring,
sensor management and regression tool framework

I. INTRODUCTION

With current medical procedures and the healthy lifestyles

of many, the average lifetime expectancy is ever increasing [1].

Doctors are able to better diagnose and treat patients while

the ability of individuals to cope and recover from illnesses

is staggering. Technological advances incorporated with vast

and accurate knowledge of the human anatomy have allowed

healthcare professionals the ability to handle almost any sce-

nario they encounter in individuals at hospitals and emergency

treatment facilities [1], [2]. As the average individual lifetime

expectancy has increased, this has also directly impacted

our planets population and as such, a shortage of qualified

healthcare professionals to treat the sick and needy has become

an issue.

Scientists and researchers have developed numerous solu-

tions to this problem, one of which allows patients to be

remotely monitored utilizing networks of wireless sensors

which relay, in real time, patient information to doctors and

healthcare providers. Advances in sensor technologies and

high throughput networks continue to refine the accuracy and

increase the integrity and public trust of these systems. As a

direct result, more individuals elect to utilize these systems

as they allow greater freedom and mobility while maintaining
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the quality of care equivalent to direct medical interaction and

attention found previously only in hospitals, clinics, and other

specialized care facilities.

In medical applications, implementations of specialized

Wireless Sensor Networks (WSN), known as personal area

networks (PAN) and wireless body area networks (WBAN),

are comprised of numerous small devices attached to or

implanted in the body of a patient. In current days, many

existing medical wireless devices are used to collect various

patient metrics and vital signs, such as Heart Rate (HR), pulse,

oxygen saturation (SpO2), Respiration Rate (RR), Body Tem-

perature (BT), ElectroCardioGram (ECG), ElectroMyoGram

(EMG), Blood Pressure (BP), Blood Glucose Levels (BGL)

and Galvanic Skin Response (GSR).

These networked sensors accumulate and transmit collected

data to a central device (i.e. base station, PDA, smart phone)

for processing and storage, which then may be used for alarms

upon detection of anomalies and clinical deterioration [2].

The use of PANs and WBANs has been extended to mon-

itor individuals having chronic illnesses (i.e. cardiovascular,

Alzheimer’s, Parkinson’s, Diabetes, Epilepsy) where these

networks have enhanced the quality of life by providing

mobility, while continuously collecting and relaying critical

physiological data to their associated healthcare providers,

e.g. long-term monitoring of patient recovery from surgical

procedure after leaving the hospital.

These types of Personal Area Networks (PAN), while

extremely useful, are not without problems such as faulty

measurements, hardware failure, and security issues. These

networked small, lightweight wireless sensing devices also

have additional drawbacks such as reduced computational

power and limited capacity and energy resources. Sensor

measurements from these networks are prone to a variety

of other types of anomalies including environmental noise,

constant faults resulting from bad sensor connections, energy

depletion, badly placed sensors, malicious attacks through data

injection, modification or replay attacks which may cascade

and directly affect the collection point leading to unexpected

results, faulty diagnosis, and a reduction in public trust of these

systems.

A non-invasive device called pulse oximeter, measures the

amount of infrared light reflected by the photo-sensor, to
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measure SpO2 and pulse. This device provides information

about cardiovascular system (asphyxia, hypoxia or insufficient

oxygen and pneumonia). Normal SpO2 ratio is larger than

95%. When this ratio is lower than 90%, an emergency alarm

must be triggered due to lung problems or respiratory failure.

An improperly attached device or an external fluorescent

light may cause inaccurate reading. In [3], the authors found

that the sensing components were the first source of unreli-

ability in medical WSNs, not networking issues. Abnormal

values may be resulted from many reasons in WSNs, such

as hardware faults, corrupted sensors, energy depletion, cal-

ibration, electromagnetic interference, disrupted connectivity,

compromised sensors, data injection, patient with sweating,

detached sensor, heart attacks or health degradation, etc.

Faulty measurements from sensors negatively influence the

measured results and lead to diagnosis errors. Furthermore,

they may threaten the life of a patient after alerting emer-

gency personnel for code blue. Therefore, an important task

is to detect abnormal measurements that deviate from other

observations, and to distinguish between sensor faults and

emergency situation to reduce false alarms.

Over time, these networks accumulate vast amounts of

historical data about an individual. Due to the enormity of

information, it often becomes difficult to observe and extract

sensor metric correlations and to distinguish between a patient

entering a critical state and faulty hardware. Therefore, an

anomaly detection mechanism is required to identify abnormal

patterns and to detect faulty data.

In contrast to signature based intrusion detection systems,

where signatures are required to detect attacks, anomaly based

systems [4] look for unexpected patterns in data measurements

received from sensors. The abnormal pattern is a deviation

from a dynamically updated normal model for sensed data, and

is more adequate for WSNs given the lack of attack signatures.

It is also important to note that anomaly based systems face

challenges related to the training phase as it is difficult to find

normal data to establish an appropriate normal profile.

In this paper, we focus on anomaly detection in medical

wireless sensor readings, and we propose a new approach

based on machine learning algorithms to detect abnormal

values. First we use J48 [5] decision tree algorithm to de-

tect abnormal records, and when detected, we apply linear

regression [6] to pinpoint abnormal sensor measurements in an

abnormal record. However, physiological attributes are heavily

correlated, and changes occur typically in at least two or more

parameters, e.g. in Atrial Fibrillation (AF) & Asthma disease,

the heart rate and respiration ratio increase simultaneously.

Our proposed solution is intended to provide reliability in

medical WSNs used for continuous patient monitoring, where

we detect anomalies in a patient’s health, and differentiate

between the individual entering a critical health state and faulty

readings (or sensor hardware). We seek to reduce the false

alarm rate triggered by inconsistent sensors readings.

The rest of this paper is organized as follows. In section II,

we review related work on anomaly detection and machine

learning algorithms used in medical WSN. Section III de-

scribes briefly linear regression and decision tree algorithm

(J48) used in our detection system. The proposed approach is

explained in section IV. In section V, we present our results

from experimental evaluation, where we conduct performance

analysis of the proposed solution over medical dataset. Finally,

we conclude the paper in section VI.

II. RELATED WORK

WSNs are becoming a major center of interest as they

provide many viable solutions to avoid unnecessary casu-

alties in many fields such as military, civil protection or

medicine. Various vital sign monitoring systems have been

proposed, developed and deployed, such as MEDiSN [7] &

CodeBlue [8], [9] for monitoring HR, ECG, SpO2 and pulse,

LifeGuard [10] for ECG, respiration, pulse oximeter & BP,

AlarmNet [11] & Medical MoteCare [12] for physiological

(pulse & SpO2) & environmental parameters (temperature

& light), Vital Jacket [13] for ECG & HR. A survey of

medical applications using WSNs is available in [14], [15].

Many approaches for anomaly detection in WSNs have been

proposed to detect abnormal deviation in collected data, and to

remove faulty sensor measurements. Authors in [16] propose

an algorithm for the identification of faulty sensors using

the minimum and the maximum values of the monitored

parameters. Any received measurement outside the [min-max]

interval is considered an outlier or inconsistent data. In medical

applications, we can not assume that all patients will have the

same attribute interval ranges as the min-max values depend

on sex, age, weight, height, health condition, etc.

Authors in [17] propose a hierarchical (cluster based) algo-

rithm to detect outliers from compromised or malicious sen-

sors. The proposed method is based on transmission frequency,

and KNN distance between received values from different

sensors. However, it is impractical in medical applications to

put redundant sensors for monitoring the same parameters.

A simple prediction and fault detection method for WSNs

was proposed in [18]. The proposed algorithm is based on

the detection of deviation between reference and the measured

time series. The proposed approach uses a predefined threshold

and has been evaluated on 3 types of faults: short time, long

time and constant fault.

Authors in [19] explore four classes of methods for fault de-

tection: rule-based, estimation-based, time series analysis, and

learning based methods. They investigate fixed and dynamic

threshold, linear least squares estimation, Auto Regressive

Integrated Moving Average (ARIMA), Hidden Markov Model

(HMM), etc. The authors found no best class of detection

methods suitable for every type of anomaly.

Data mining techniques and machine learning algorithms

have also used in WSNs to detect anomalies in multidi-

mensional data. For example, Naı̈ve Bayes [20], Bayesian

network [21], Support Vector Machine (SVM [22]), Self-

Organizing Map (SOM [23]) which is based on neural net-

works.

Authors in [24] propose the use of logistic regression

modeling with a static threshold to evaluate the reliability of
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a WSN in the industrial field with a large number of sensors,

and without updating the training model to be able to identify

the cause of a potential loss of reliability. On the same scale

of large sensor networks, authors in [5] propose a diagnosis

method based on the enhanced C4.5 (J48 or decision tree

algorithm) which merges the local classifiers into a large

spanning tree to answer for the whole network accuracy.

Another type of WSN deployment is presented in [20], which

shows how to monitor the physical activity of a person using

Sun SpOT sensors attached to the thighs. Authors use naı̈ve

Bayes based machine learning algorithm to determine if the

person is sitting, standing, lying or walking. However, they

do not take in consideration that the values can be corrupted

due to faulty hardware. Similarly, the authors in [25] present

a system capable of discerning between mental stress states

from relaxation states using logistic regression based on the

heart rate variability.

In this paper, we will use decision tree (J48) and linear

regression algorithms to detect abnormal record and to pin-

point abnormal sensors reading. J48 is used to classify records

and to reduce temporal complexity, and linear regression is

used to predict current values. As physiological parameters

are correlated, if only one monitored attribute deviates from

estimated value, we classify the reading as faulty and perform

data cleaning, and in the other cases, we trigger an alarm for

patients entering into a critical state.

III. BACKGROUND

We consider medical wireless motes attached to patient in

order to monitor many physiological parameters, as depicted in

figure 1. These sensors transmit the collected data to the base

station (smart phone) for real time analysis and for alerting

healthcare professionals when required. The base station may

also transmit collected data for remote/local DB for storage.

The base station has higher computation power, memory

storage and larger transmission range than sensors. Collected

data is analyzed at the base station before transmission to

detect anomaly and raise alarms when a patient enters a critical

state.

SpO2

Smart 

phone

ECG
DataBase

Healthcare professionals

RESP

BGL

P
U
L
S
E

Fig. 1. WSN for collecting vital signs & raising alarms.

The collected measurements for physiological parameters

are represented by data matrix X = (Xij) where i is the time

instance, j represents the monitored parameter. We denote by

Xk = (X1k, X2k, . . . , Xtk) the time series associated with

each parameter. Xk is a column in the data matrix X given

in equation 1.

X1 X2 X3 · · · Xn

X =

t1
t2
...

tm











x11 x12 x13 · · · x1n

x21 x22 x23 · · · x2n

...
...

...
. . .

...

xm1 xm2 xm3 · · · xmn











(1)

To detect abnormal values, we use decision tree algorithm

(J48) to classify records (or line) as normal or abnormal.

When an abnormal record is detected, the linear regression

algorithm is used to predict current measurements for each

parameter, and when the difference between predicted and

current value is larger than threshold, a correlation analysis

is conducted to differentiate between faulty sensor and patient

health degradation.

In the rest of this section, we briefly review decision tree

(J48) and linear regression algorithms used in our approach.

For detailed information about these algorithms, please refer

to [6].

A. Decision tree J48

J48 [5] is a decision tree algorithm used in classification,

where attributes are represented by nonterminal nodes, and

terminal nodes represent decision outcome. In our model, the

tree nodes are the monitored physiological attributes and the

leaf nodes are the class (normal & abnormal). To build the

tree nodes from root to leafs, the Gain Ratio (GR) of each

attribute is calculated as:

GR(X,Xk) =
IG(X,Xk)

SI(X,Xk)
(2)

The Information Gain IG(X,Xk) in equation 2 of an attribute

is given by:

IG(X,Xk) = H(X)−
∑

xik∈X

|xik|

|X |
H(xik) (3)

Where H(X) is the entropy of the association between a

training record and the nominal class (normal or abnormal),

and xik are the values taken by the attribute Xk. As the

information gain does not take into account the division

of information between the two classes, it is necessary to

calculate the splitting of the information for each xik:

SI(X, xik) = −

n
∑

c=1

|xik|

|X |
log

2

|xik|

|X |
(4)

Where n is the number of classes, and SI(X, xik) is the en-

tropy of the apparition of the xik within each class. Therefore,

by calculating the gain ratio for each attributes, we will be able

to hierarchically distribute those attributes into the tree nodes.

B. Linear regression

Linear regression is a statistical method which models a

dependent variable yik using a vector of independent variables

xik called regressors. The model itself is represented by:

yik = C0 + C1xi1 + C2xi2 + · · ·+ Cnxin (5)
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Where yik is the dependent variable in instance i, xik are

the regressors and Cn are the coefficients of the regressors

(weights). These coefficients are calculated in the training

phase as the covariance of Xk and Yk is divided by the

variance of Xk.

Ck =
Cov(Xk, Yk)

V ar(Xk)
=

∑
(

xik − X̄k

) (

yik − Ȳk

)

∑

(xik − X̄k)
(6)

The linear regression is used to predict the value of yik by

using other attributes in the same instance xij|j 6=k , and to

compare the predicted (yik) with the actual value of xik to

find if it fits within a small margin of error.

IV. PROPOSED APPROACH

We consider a general scenario for remote patient monitor-

ing, as shown in figure 1, where many wireless motes with

a restricted resources are used to collect data, and a portable

collection device (e.g. smart phone) with higher resources and

higher transmission capabilities than motes, is used to analyze

collected data, and to raise alarms for emergency team when

abnormal patterns are detected. We seek to detect abnormal

values, in order to reduce false alarms resulted from faulty

measurements, while differentiating faults from patient health

degradation.

The proposed approach is based on decision tree and linear

regression. It builds a decision tree and looks for linear coeffi-

cients from normal vital signs that fall inside restricted interval

range of monitored attributes. In the rest of this paper, we

focus only on the following vital signs: HR ∈ [80−120], pulse

∈ [80− 120], respiration rate ∈ [12− 30], SpO2 ∈ [90− 100],
T◦ ∈ [36.5 − 37.5]. Attributes values that fall outside these

(restricted) normal intervals are considered abnormal. HR and

pulse reflect the same attribute from different sensors, where

pulse is obtained from the pulse oximeter and HR is measured

as the number of interbeat intervals (R-R) in ECG signal.

Algorithm 1 Detection Algorithm

1: for each received record Ri during T do

2: Classify Ri using J48;

3: if Class(Ri) == 'ABNORMAL' then

4: for each xik do

5: x̂ik =
∑n

j=1,j 6=k Cjxij

6: ctr+ = (|xik − x̂ik| ≥ 0.1 ∗ x̂ik) ? 1 : 0
7: end for

8: if ctr ≥ 2 then

9: Raise alarm for healthcare;

10: end if

11: end if

12: end for

Equation 7 shows the residual threshold used to detect

abnormal measurement:

ei = |xik − x̂ik| ≥ 0.1 ∗ x̂ik (7)

The proposed approach is based on two phases: training and

detection. In the training phase, machine learning methods

generate a model to classify data, and in the testing phase,

inputs are classified as abnormal if they deviate from estab-

lished model. The J48 decision tree model (built using training

data within restricted intervals) is used in our approach to

classify each received record as normal or abnormal. In our

experiments, the decision tree was the most efficient classi-

fication algorithm. The tree model is a set of rules (if-then)

which is inexpensive to build, robust, and fast in processing

as it is based on numerical comparisons for classification.

Furthermore, abnormal instances detected by J48 will only

trigger the forecasting with linear regression, and this is why

we use restricted small intervals for monitored attributes in the

training phase.

If a record is classified as abnormal by J48, we recursively

assume that an attribute (xik) is missing, and the coefficients

of linear regression are used to estimate the current value for

this attribute (x̂ik) with respect to the others (xij|j 6=k), as given

in equation 8 for heart rate estimation:

ˆHRi = C0 + C1Pulsei + C2RESPi + · · ·+ C5Ti (8)

If the Euclidian distance between current (HRi) and estimated

( ˆHRi) values is larger than the predefined threshold (10% of

estimated value) for only one attribute, the measurement is

considered faulty and replaced by estimated value with linear

regression. However, if at least two readings are higher than

the threshold, we trigger an alarm for response caregiver emer-

gency team to react, e.g. heavy changes in the HR & reduced

rate of SpO2 are symptoms of patient health degradation and

requires immediate medical intervention. We assume that the

probability of many attributes (2 in our experiments) being

faulty is very low.

The J48 is used to reduce the computation complexity, and

to prevent the estimation of each attribute for each instance

on the base station. J48 is based on few comparisons for

classification, and the combination of both approach for fault

detection and classification is used. Sliding window is not used

in our experiments to reduce the complexity. When the model

is well specified with the training data, updating or rebuilding

the model requires additional complexity (temporal & spatial)

without large impact on the performance.

V. EXPERIMENTAL RESULTS

In this section, we present the performance analysis results

of the proposed approach for anomaly detection in medical

WSN. Afterward, we conduct analysis to study the impact of

decision threshold on true positive and false alarm ratio. We

used real medical dataset from the Physionet database [26],

which contains 30392 records, and each record contains 12

attributes (ABPmean, ABPsys, ABPdias, C.O., HR, PAPmean,

PAPsys, PAPdias, PULSE, RESP, SpO2, T◦). We only focus

on 5 attributes: HR, PULSE, RESP, SpO2 & T◦. The variations

of Heart Rate (in beat per minute - bpm), Pulse and Respiration

rate are presented in figure 2. Figure 3 shows the variations of

SpO2 (oxygenation ratio) and the body temperature (constant

value: 37◦C).
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Fig. 2. Heart rate, pulse & respiration rate
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Fig. 3. Oxygenation ratio & body Temperature
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Fig. 4. Linear regression classifier
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Fig. 5. Additive regression classifier
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Fig. 6. KNN classifier (k=3)
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Fig. 7. Decision table classifier

Figure 4 shows the actual, predicted and difference between

actual and predicted values (error) for HR with linear regres-

sion. To test the efficiency of the used algorithms, we compare

the results (actual, predicted & error) with different classifiers

though the use of WEKA [27] tool: Decision Table, Additive

Regression & KNN for K = 3.

Figure 5 shows the results with additive regression tree,

where the error is higher than linear regression. Figure 6 shows

the results for KNN which is more computationally expensive

and has an error higher than additive regression. Figure 7

shows the results of the decision table classifier, which had the

worst results of all these classifiers. Figure 8 shows the mean

absolute error for each of these classifiers, where decision

table achieves the prediction with the highest mean error rate,

followed in descending order by KNN, additive and linear

Regression. Linear regression had the lowest error percentage

and the best overall performance out of the three classifiers,

which is why we use this classifier in the rest of this paper.

Figure 9 shows the raised alarms by our proposed approach.

The first alarm is raised when reported values for pulse and

SpO2 are abnormal in the same instant (both attributes are

measured by the same sensor). The second alarm is triggered

by the abnormal values of the HR attribute. These abnormal

values are visible in figures 4 & 5 when corresponding

attributes suddenly fluctuate or decrease to zero.

To evaluate the performance of the proposed approach, we

used the ROC (Receiver Operating Characteristic) to show the

relationship between the true positive rate (Eq. 9) and the false

positive rate (Eq. 10).

TPR =
TP

TP + FN
(9)

Where TP is the number of true positives, and FP is the

number of false positives. The false positive rate (FPR) is

defined as :

FPR =
FP

FP + TN
(10)

The ROC curve is used for accuracy analysis when varying the

value of the decision threshold. In general, a good detection

algorithm must achieve a high detection ratio with the lowest

false alarm rate. Figure 10 shows the ROC for the proposed

approach where the first nominal classifier is J48, Logistic

regression, Naı̈veBayes & Decision Table respectively. The

J48 classifier achieves the best performance with TPR=100%

and FPR=7.4%. These results demonstrate that our proposed

approach can achieve very good accuracy for detecting motes

anomalies.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a new framework which in-

tegrates decision tree and linear regression for anomaly de-

tection in medical WSNs. The proposed approach achieves

both spatial and temporal analysis for anomaly detection. We

have evaluated our approach on real medical data set with

many (real and synthetic) anomalies. Our experimental results

demonstrated the ability of the proposed approach to achieve

low false alarm rate with a high detection accuracy.
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We are currently investigating the performance of the pro-

posed approach on real medical wireless sensor traffic using

Shimmer platinum development kit [28].
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