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Abstract 

This paper details the architecture and describes the preliminary experimentation with our 

proposed framework for anomaly detection in medical wireless body area networks for 

ubiquitous patient and healthcare monitoring. Our architecture integrates novel data mining 

and machine learning algorithms with modern sensor fusion techniques. Knowing wireless 

sensor networks are prone to failures resulting from their limitations (i.e. limited energy 

resources and computational power), using this framework, we can distinguish between 

irregular variations in the physiological parameters of the monitored patient and faulty 

sensor data, to ensure reliable operations and real time global monitoring from smart 

devices. Sensor nodes are used to measure characteristics of the patient and the sensed data 

is stored on the local processing unit. Authorized users may access this patient data remotely 

as long as they maintain connectivity with their application enabled smart device. 

Anomalous or faulty measurement data resulting from damaged sensor nodes or caused by 

malicious external parties may lead to misdiagnosis or even death for patients. Our 

application uses a Support Vector Machine to classify abnormal instances in the incoming 

sensor data. If found, we apply a periodically rebuilt, regressive prediction model to the 

abnormal instance and determine if the patient is entering a critical state or if a sensor is 



 
 

reporting faulty readings. Using real patient data in our experiments, the results validate the 

robustness of our proposed framework. We further discuss our experimental analysis with 

the proposed approach which shows that it is quickly able to identify sensor anomalies and 

compared with several other algorithms, it maintains a higher true positive and lower false 

negative rate.  
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1. Introduction 

With the continual growth in expected duration of the average human lifetime (Kumar & 

Lee, 2012), the rise in population and number of elderly persons has led to inflated 

healthcare costs and shortage of professionals able to provide the care and treatment 

necessary to satisfy this increase in demand.  

Today, healthcare professionals and caregivers are very interested in remote monitoring of 

elderly people and patient vital signs, as well as their surrounding environment. These 

requirements have sparked enormous interest in the utilization of Wireless Sensor Networks 

(WSNs).  

Scientists and researchers have developed networks of wireless sensors, known as Wireless 

Body Area Networks (WBANs), which are composed of a set of small miniaturized sensors 

with wireless transmission capabilities, and may be externally attached or implanted. These 

devices are used to continuously gather physiological signals from patients or elderly people 

at home or in hospitals, and transmit collected data to a Local Processing Unit (LPU). 

The LPU (e.g., smart phone, tablet, etc.) has superior processing power, batteries with 

increased energy resources and greater transmission range and bandwidth than the 

individual WBAN nodes. LPUs must be robust and able to process received measurements 

in real time, raise medical alarms for caregivers upon sensing the deteriorating health state of 

patients to quickly react by taking appropriate actions (Otto, Milenkovi, Sanders, & Jovanov, 



 
 

2005). Data may also be transmitted by the LPU to remote databases (DB) for storage and 

long term analysis. 

WBANs have several advantages such as enabling doctors to monitor specific attributes of 

patients regardless of location, improving diagnosis accuracy and efficiency, and reducing 

the overall cost of health care by permitting doctors to constantly monitor patient health.  

WBAN may also improve the chances of discovering diseases which further reduces risk and 

impacts the lifespan of individuals on a global scale. In this paper, we look to increase the 

usefulness of WBAN systems used in the healthcare industry by creating an application 

which is capable of "intelligently" discerning between patient health irregularities and sensor 

node failure. 

There exist many medical WBAN systems which are publicly available for purchase 

including MICAz, MICA2, Tmote Sky, TelosB, IRIS, Imote2, and Shimmer. These types of 

WBANs are used to monitor and collect various physiological parameters of individuals 

such as Heart Rate (HR), pulse, oxygen saturation (SpO2), Respiration Rate (RR), Body 

Temperature (BT), ElectroCardioGram (ECG), ElectroMyoGram (EMG), Blood Pressure (BP), 

Blood Glucose Levels (BGL), Galvanic Skin Response (GSR), etc.  

The ECG sensor, for example, is connected to three electrodes each of which is attached to 

the patients’ chest for real time monitoring of the heart. Another type of sensor, the pulse 

oximeter, using infrared light and a photo sensor, simply clips to a patients finger and 

measures the pulse and blood oxygenation ratio (SpO2). While it may seem simplistic, the 

SpO2 sensor may detect asphyxia, insufficient oxygen (hypoxia), pneumonia and other blood 

oxygen related anomalies. The average human SpO2 ratio naturally exceeds 95%, but when 

this ratio drops below 90%, the pulse oximeter will trigger an alarm due to possible lung 

problems or respiratory failure. Prior to the assistance of these types of WBAN sensors, 

healthcare providers were reliant on big, expensive machines which were in short supply 

and required that the patient be observed directly while situated at the location of the 

machine. 

The use of WBANs has been extended to monitor patients diagnosed with chronic illnesses 

and cognitive disorders such as Parkinson's, Diabetes, Alzheimer's, Asthma, and Epilepsy. 

WBANs have proven to be great assets to both patients and healthcare providers in that they 

have reduced the costs associated with healthcare by solving problems such as overcapacity 



 
 

in hospitals, excessive waiting or sojourn times and the required number of nurses and 

doctors on call. WBANs also allow greater mobility for monitored individuals while 

constantly gathering and transmitting critical physiological data to their associated 

healthcare providers which may be useful for situations that require the long-term 

monitoring of a patients’ recovery after leaving the hospital or assessing the impact of a 

patients’ rehabilitation. 

While WBANs have numerous advantages, their disadvantages range from poor reliability 

to the high susceptibility of security attacks after deployment. For us to exploit the strengths 

while reducing the probability of any weaknesses occurring, we must first look at what these 

weaknesses are in more detail so that we may find some means of mitigation. WBAN sensor 

nodes are prone to both hardware and software issues such as impaired components, sensor 

calibration, battery exhaustion or dislocation.  

The sensor readings are themselves both unreliable and inaccurate (Ko, et al., 2010; Wang, 

Fang, Xing, & Chen, 2011; Zhang, et al., 2012), resulting from constrained hardware 

resources including reduced processing power, limited memory and energy resources, and 

transmission range. Individual sensor data gathering and transmission is also prone to 

several types of irregularities such as interference, noise, sensor misplacement, sweating 

patients, exhausted energy resources and external hacks and malevolent attacks such as data 

injection, modification or replay attacks that indirectly affect the LPU. This may lead to 

unexpected results, faulty alarms and diagnosis, and a reduction in public trust of these 

systems. 

As a result, high false alarm rate and faulty measurements directly influence the public 

credibility of WBANs especially where dependability is exceedingly important as in the 

medical domain (Sahoo, 2012). If, for example, a pulse oximeter sensor is incorrectly attached 

or external fluorescent light radiates to the infrared sensor, erroneous measurements may 

result. In (Chipara, Lu, Bailey, & Roman, 2010), the authors found that the first source of 

unreliability in medical WSNs were the sensing components as opposed to some other 

problems (i.e. network failure, data transfer).  

Nodes transmitting erroneous data have a negative impact on the accuracy of the gathered 

data which may have an effect on the patients’ diagnosis. This may, in turn, lead to life 

threatening situations where emergency personnel receive false alarms based on node faults 

for a code blue. As a result, it becomes an extremely important task to detect erroneous 



 
 

measurements at the node level and differentiate between patient anomalies and node faults 

to minimize false alarms. Both patient anomalies and node faults produce abnormal 

measurements and require that each should be detected with the highest accuracy possible. 

We may only achieve this using an anomaly detection mechanism to recognise and extract 

abnormal patterns and correlations in the data and to differentiate between sick individuals 

and faulty sensors. 

Anomaly based systems (Jurdak, Wang, Obst, & Valencia, 2011) typically look for irregular 

patterns in the data received from sensors as opposed to signature based intrusion detection 

systems where signatures are required to detect attacks. Signatures are neither available nor 

easy to write for healthcare monitoring applications. However, anomalies are defined as 

deviations from a dynamically updated normal model from the sensed data. Therefore an 

anomaly based detection approach is more adequate for WBANs given the absence of attack 

signatures. It is also important to note that anomaly based systems face challenges related to 

the training phase as it is difficult to find normal data in order to establish an appropriate 

normal profile. 

Several anomaly-based detection techniques for sensor fault identification and isolation have 

been proposed and applied (Liu, Cheng, & Chen, 2007; Jurdak, Wang, Obst, & Valencia, 

2011; Miao, Liu, He, Liu, & Papadias, 2011; Chen & Juang, 2012). These distributed 

techniques identify anomalies at the node level to prevent transmission of irregular values 

and reduce energy consumption. Using these distributed methods typically requires 

additional resources not found in most sensor node hardware. As a result, their accuracy is 

lower than centralized approaches which utilize a global representation for spatial-temporal 

analysis. To ensure reliable operation and accurate diagnosis, correlations between physical 

parameters, which exist in time and space, must be exploited in order to detect and extract 

irregular measurements. Usually, there is no spatial or temporal correlation among 

monitored attributes for faulty measurements. 

Our primary focus in this paper is the detection of anomalous measurements in medical 

WBANs. We propose a novel machine learning based approach to detect abnormal values. 

First we use Support Vector Machine (SVM) (Bishop, 2006) to detect abnormal records, and 

when detected, we apply linear regression (Witten, Frank, & Hall, 2011) to pinpoint 

abnormal sensor measurements in an abnormal record. However, physiological attributes 

are heavily correlated, and changes occur typically in at least two or more parameters, e.g. in 



 
 

Atrial Fibrillation (AF) & Asthma, the heart rate and respiration ratio increase 

simultaneously.  

Our solution will increase the reliability of medical WBANs used for monitoring patients. Its 

primary task is to detect and extract anomalies in the WBAN data and, once found, 

differentiate between irregular patient vital signs and defective sensor measurements. 

Additionally, we seek to minimize false alarms triggered by anomalous sensors data. 

The rest of this paper is organized as follows. In section 2, we review related work on 

anomaly detection and machine learning algorithms used in medical WSN. Section 3 briefly 

reviews SVM and linear regression used in our detection system. The proposed approach is 

presented in section 4. In section 5, we present our results from experimental evaluation, 

where we conduct a performance analysis of the proposed solution with real patient data. 

Finally, section 6 concludes the paper with a discussion of the results and plans for future 

work. 

2. RELATED WORK 

With the population of mankind ever increasing, medical facility vacancies are difficult to 

find, frustratingly lengthy waiting lines clogging emergency rooms, and the demand for 

doctors and staff seems to never be satisfied. These shortages result in the inability for many 

individuals to receive the care they needed. Due in part to the excessive congestion caused 

by many outpatients requiring minimal attention in these facilities and the evolution of WSN 

and smart devices, a new market was created for remote patient monitoring using small, 

wearable sensor systems. Researchers and scientists have worked hard to satisfy this 

demand, creating many novel systems which may alleviate, to some degree, the 

overcrowding issues for medical staff and healthcare facilities. 

Novel architectures for monitoring patients, both in house and remotely, have been 

designed, developed and deployed in real world environments. One such system, MEDiSN 

(Ko, et al., 2010), CodeBlue (Malan, Fulford-jones, Welsh, & Moulton, 2004; Havard Sensor 

Networks Lab, 2013), LifeGuard (Montgomery, et al., 2004), AlarmNet (Wood, et al., 2006), 

Medical MoteCare (Navarro, Lawrence, & Lim, 2009), Vital Jacket (Cunha, et al., 2010). Some 

comprehensive survey studies of medical applications using WSNs are available in (Alemdar 

& Ersoy, 2010; Grgic, Žagar, & Križanovic, 2012). All of these systems are plagued with 



 
 

similar problems such as limited energy, faulty sensor hardware, and wireless transmission 

failure. As these networks often are responsible for monitoring a patients’ livelihood, many 

researchers have created methods of autonomous fault detection for WSN and WBAN.  

Authors in (Zhang, Meratnia, & Havinga, 2010) present a comprehensive analysis of modern 

fault and outlier detection techniques for WSNs. They present a comparative guideline 

detailing the steps necessary to appropriately select the best technique suitable for the 

characteristics of the data set. Several types of irregular readings have been captured and 

extracted from medical WSN data including single spikes, long duration spikes resulting 

from noisy environments, and continuously anomalous line fluctuations. To simplify the 

classification of WSN sensor fault types, the authors in (Sharma, Golubchik, & Govindan, 

2010) categorize faulty measurements into short faults, faults resulting from noise and 

constant faults. 

WSNs are plagued by a variety of issues that may endanger their functionality which stem 

from lack of quality and poor reliability (Zhang, Meratnia, & Havinga, 2010; Ying-xin, Xiang-

guang, & Jun, 2011; Zhang, et al., 2012). Some of the more prevalent issues include hardware 

and software errors and faults, interference, widely variable environment dependent noise, 

dropped and lost packets, inconsistencies, and damaged sensors. New anomaly detection 

schemes for WSNs have been proposed which locate, extract, and classify atypical deviations 

in collected data to reduce false alarms generated as a result of faulty sensor measurements.  

Authors in (Banerjee, Xie, & Agrawal, 2008) propose an algorithm to identify faulty sensors 

using the minimum and the maximum boundaries of the monitored parameters. 

Measurements which exceed the threshold of these boundaries are classified as inconsistent 

or outliers. Furthermore, medical WBAN systems may not assume all patients have the same 

attribute boundary intervals, as the min-max threshold values are dependent on an 

individuals’ physiological characteristics including sex, age, weight, height, stress, and 

health condition. 

Investigation and further study of machine learning algorithms for supervised classification 

and data mining algorithms for clustering has led to additional inspiration for our research 

team. Machine learning algorithms including Naïve Bayes (NB) (Yang, Dinh, & Chen, 2010), 

Bayesian Network (BN) (Farruggia, Giuseppe, & Ortolani, 2011), decision tree (C4.5) (Cheng, 

Xu, Pei, & Liu, 2010), Neural Networks (NN) (Bishop, 2006), K-Nearst Neighbor (KNN) 

(Bishop, 2006), Self-Organizing Map (SOM) (Siripanadorn, Hattagam, & Teaumroong, 2010) 



 
 

and Support Vector Machine (SVM) (Bishop, 2006) generate a variety of mathematical 

models based on correlational statistics from a training data set which are then applied to 

classify test instances as either normal or abnormal. 

 Several regression algorithms have been used in medical WBANs to build a model 

generated from time series data such as AutoRegression (Curiac & Volosencu, 2012), Least 

Square Error (Li, 2010), Non-seasonal Holt-Winters (Li, 2010). The authors in (Xiaozhen, 

Hong, & Tong, 2011) apply linear regression for missing data prediction and the 

experimental results validate their success, claiming low prediction errors. Another such 

project which applies logistic regression modelling (Huang, Jiang, Zhang, & Gao, 2010) 

evaluates the reliability of large scale industrial WSNs utilizing a static threshold. In (Cheng, 

Xu, Pei, & Liu, 2010) based on the J48 (decision tree) algorithm, the authors propose a large 

scale WSN diagnostic methodology which merges local classifier models into a single 

network spanning tree, responsible for the accuracy of the method and representative of the 

whole network.  

To monitor an individuals’ physical activity, the authors in (Yang, Dinh, & Chen, 2010) use 

SunSpOT sensors attached to the thighs. Naïve Bayes is used to calculate values from the 

data to determine body position (i.e. sitting, standing, lying down, and walking). In a similar 

project which uses logistic regression (Choi, Ahmed, & Gutierrez-Osuna, 2012), a system is 

described which claims to use heart rate variability measurements to differentiate mental 

stress states from relaxation states.  

In recent years SVM classification has become a more popular selection partially due to its 

simplistic numerical comparison for data classification and is often found to be the optimum 

solution for specific context. Several modern SVM based approaches have been proposed 

(Zhang, Meratnia, & Havinga, 2009; Rajasegarar, Leckie, Bezdek, & Palaniswami, 2010; Xu, 

Hu, Wang, & Zhang, 2012) for anomaly detection in WSNs. Furthermore, many non-linear 

versions (kernel based) of SVM have been investigated to find the optimum hyperplane that 

encompasses the majority of normal data in training phase. Once established, any data point 

landing outside the hyperplane boundary is classified as abnormal. 

Often a major challenge in machine learning is that accurate model generation requires a 

training data set which has the classes labelled for each instance. The training data frequently 

requires close attention by researchers which must conduct extensive experiments to 

determine applicable pre-processing and balancing algorithms. We refer to (Bishop, 2006) for 



 
 

more details about these classification methods. Many attempts to resolve these challenges in 

training data set for machine learning led to methods of unsupervised learning or data 

mining.  

Data mining algorithms group similar instances from the data into a single cluster and label 

smaller size clusters containing less than a given percentage of the total values, as abnormal. 

Some of the most popular and widely applied data mining algorithms include (Bishop, 2006)   

K-means, hierarchical clustering, Fuzzy C-means and GMM (Theodoridis, Pikrakis, 

Koutroumbas, & Cavouras, 2010). One challenge facing these clustering methods is that they 

assume anomalous data, which typically occurs much less frequently, is easily distinguished 

from normal data. We refer to (Abduvaliyev, Pathan, Zhou, Roman, & Wong, 2013) for 

comprehensive classification of various detection techniques.  

In (Zhang, et al., 2010) a novel Outlier Detection and Countermeasure Scheme (ODCS) based 

on k-means, K-Nearest Neighbours (K-NN), static threshold and transmission frequency. K-

NN is unsuitable for WSNs as it is computationally expensive and requires large amounts of 

memory space to store the training data as opposed to classification methods which discard 

the training data after building the model. Authors in (Xie, Hu, Han, & Chen, 2012) proposed 

a KNN-based anomaly detection method based on hyper-grid which has lower 

computational complexity than K-NN for WSNs. An unsupervised approach for anomaly 

detection in WSNs, (Siripanadorn, Hattagam, & Teaumroong, 2010) combines multiple 

models such as Discrete Wavelet Transform (DWT) and Self-Organizing Map (SOM). In this 

case, the DWT is used to reduce the size of input data for SOM clustering. 

The authors in (Liu, Cheng, & Chen, 2007) proposed a distance based method to identify 

insider malicious sensors while assuming neighbour nodes are monitoring the same 

attributes. Each sensor monitors its one hop neighbours and measures the Mahalanobis 

distance between the calculated and actual values received in multivariate instances to detect 

anomalies. They discovered that it is not practical in medical WBAN applications to exploit 

promiscuous mode and increase network node redundancy which monitor the same 

parameters. 

Authors in (Yim & Choi, 2010) propose a voting based approach to detect abnormal network 

events. In (Miao, Liu, He, Liu, & Papadias, 2011), the authors propose a failure detection 

approach for WSNs which exploits metric correlations to detect abnormal sensors and to 

uncover failed nodes. A simple prediction and fault detection method for WSNs was 



 
 

proposed in (Yao, Sharma, Golubchik, & Govindan, 2010) and has been evaluated on short, 

long, and constant fault classes. The proposed algorithm is based on the detection of 

deviations between reference and the collected measurements. The reference time series is 

built using the linear Segmented Sequence Analysis (SSA) and when the remainder between 

the reference and measured values is greater than a threshold, an alarm is triggered.  

Rule-based, estimation-based, time series analysis and learning-based methods are four 

methods for fault detection discussed in (Sharma, Golubchik, & Govindan, 2010). They 

conduct experiments which investigate various fixed and dynamic thresholds for linear least 

squares estimation, Auto Regressive Integrated Moving Average (ARIMA), Hidden Markov 

Model (HMM), etc. No superior class of detection methods was found to be suitable for 

every type of anomalous event as the accuracy is dependent on both the size and quality of 

the data. Rule-based methods require precise calibration and tuning threshold parameters, 

learning methods require training phases, estimation methods are unable to classify faults, 

and time series analysis has the highest rate of false positives. 

Healthcare applications for patient monitoring require strict reliability on gathered data. 

Usually, many physiological attributes are monitored in the same time, such as heart rate, 

blood pressure, respirations, pulse and oxygenation. Alarms set for each attribute are 

triggered whenever the associated value falls outside a predefined interval. There are 

however correlations which exist between physiological parameters and the spatio-temporal 

correlations amongst monitored physiological attributes which may be exploited to detect 

anomalies and distinguish between faulty sensor measurements and medical emergencies. 

Faulty sensor readings tend to show irregular, random values unrelated to other attributes in 

the instance. Once detected, the instances containing the irregularities may be discarded to 

reduce false alarms, clean the data, and increase the reliability and the accuracy of the 

monitoring system. 

In this paper, we seek to enhance fault detection for current medical WBAN systems. We use 

SVM and linear regression algorithms to detect abnormal records and to pinpoint abnormal 

sensors readings in the LPU. SVM is utilized to reduce the temporal complexity and for 

binary record classification into either normal or abnormal. If a record is classified as 

abnormal, the linear regression is used to predict values for the current attributes which may 

also uncover irregular attributes. Our system can detect anomalies in the data of a patient 



 
 

and prior to triggering an alarm, will uniquely distinguish between human physiological 

abnormalities and sensor node failure utilizing both the spatial and temporal parameters.  

3. Background 

In figure 1, we consider a patient wearing   medical WBAN sensor nodes              to 

observe specific physiological parameters where the nodes collect and transmit these 

observations to a smartphone or LPU. The data is gathered by the smartphone where it 

analysed in real time and is able to send prompt alert notifications to healthcare providers. 

Further authenticated local and remote data storage may be enabled through and 

transmitted by the LPU or smartphone. Due to greater resources on board modern smart 

devices, the LPU analyses and mines the data for irregularities using lightweight machine 

learning algorithms. It also maintains high accuracy when distinguishing between sensor 

errors and patient health irregularities and generating the appropriate alarm.  
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Figure 1. WSN for collecting vital signs and alerting caregivers 

Physiological parameter measurements are collected which we declare as the data matrix 

    (   )  where   represents the temporal growth and   represents a sensor metric. All 

gathered values for all parameters are stored as a single record incrementally at time instant 

  we represent with                   .    is the line   in the data matrix   given in 

equation (1). We also denote by A              the set of monitored attributes, where    is 

the column   in the matrix  . 
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To provide instantaneous online anomaly recognition we process in real time, the collected 

data on the smart device. These measurements are likely to be of low quality and unreliable 

due to the sensor hardware constraints and resources as well as the physiological condition 

of the individual (i.e. bodily sweat, sensor detachment) and the environmental conditions 

(i.e. sensor damage, fading, disrupted communication). The WBAN monitor is reliant on the 

received data to maintain its accuracy and robustness, where erroneous instances are 

identified and it may trigger false alarm notifications when necessary to alert authorized 

medical personnel. To boost the analysis accuracy and reduce false alarms or misdiagnosis, 

abnormal instances must be found, analysed, and isolated. 

To detect abnormal values, we use Support Vector Machine (SVM) to detect outliers and 

classify each instance (received attributes at time  ) as normal or abnormal. Upon finding an 

anomaly, we apply a linear regression model to predict values for each attribute in the 

abnormal instance. When the variance exceeds a predefined threshold, between the 

predicted and actual value, we analyse data correlations to differentiate faulty sensors from 

irregular or degrading patient health. We discuss briefly the algorithms used in our 

approach, SVM and linear regression, in the remaining paragraphs of this section. For more 

in depth information about the algorithms, please refer to (Witten, Frank, & Hall, 2011). 

A. Support Vector Machine  

Support Vector Machine (SVM) (Bishop, 2006) is a widely used supervised machine learning 

method for binary classification which uses the training data to build a model for 

classification. The SVM then uses this model to classify, using attribute data, each instance in 

the test set. 

The main concept behind linear SVMs is to maximize the distance between two parallel 

boundaries or hyperplanes which are defined by support vectors: 
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The objective is to construct a separating hyperplane which achieves maximum separation 

between the 2 classes: 
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When generating the model for classification, SVM looks for the maximum margin 

hyperplane which divides the training data into two categories. Given the training data set 



 
 

              , with their associated class             (-1 for abnormal & 1 for normal or 

healthy patient), for          , the hyperplane is the solution of the following optimization 

problem: 
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The margin width (or distance) is equal to         as shown in figure 2. The margin errors,   , 

are used to prevent over fitting problems, and are positive for points inside the margin, or 

outside the margin on the wrong side of the classifier, and 0 for points in the correct side of 

the classifier.   is a user-defined constant. SVM uses the coordinates of the nearest training 

data points in both classes in order to create the largest possible separation between border 

values in each class. Those specific data points are called the support vectors and they have 

to satisfy: 
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Where   is the normal vector to the hyperplane, and    is the bias of the hyperplane 

function. The normal vector   is calculated using the values in the training data set: 
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Where    are the Lagrange multipliers of the optimization task, and they are different than 

zero only for points outside the margin and inside the correct side of the classifier. The 

classification of    is based on the sign of      : 
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Figure 2. Linear SVM and data separation 



 
 

B. Linear Regression 

The linear regression (Bishop, 2006; Witten, Frank, & Hall, 2011) is a statistical modeling 

method used to predict the current value of monitored attribute. For a given attribute   , it 

exploits spatial correlation to predict the current value   ̂  ), as linear combination of 

measured values for other attributes        . The model of the predicted attribute value is 

given by: 

 0 1 1 2 2
ˆ
ij i i n inx a a x a x a x       (8) 

Where    are the coefficients of the regressors (weights). These coefficients are obtained 

during the training phase as the result of division of the covariance of    and    attributes, on 

the variance of   : 

 

  ( , )

( ) ( )

ki i kj j
i j k

ki i

k

i

k

x A x A
Cov A A

a
Var A x A

 

 





  (9) 

Once the model is computed from training data, it is used to predict the value of each 

attribute ( ̂  ) at instance  . Afterward, we compare the predicted value ( ̂  ) with the actual 

value     ) to find if it fits within a small margin error and to classify    as normal or 

abnormal. 

4. Proposed approach 

We consider a general scenario for remote patient monitoring, as shown in figure 1, where 

many wireless motes with a restricted resources are used to collect data, and a portable 

collection device (e.g. smart phone) with higher resources and higher transmission 

capabilities than motes, is used to analyze collected data, and to raise alarms for emergency 

team when abnormal patterns are detected. We seek to detect abnormal values in order to 

reduce false alarms resulted from faulty measurements, while differentiating faults from 

patient health degradation.   

The proposed approach is based on decision tree and linear regression. It builds a decision 

tree and looks for linear coefficients from normal vital signs that fall inside restricted interval 

range of monitored attributes. In the rest of this paper, we focus only on the following vital 

signs:    [      ]    [      ]       [      ]                  [     ]        

   [      ]  Attributes values that fall outside these (restricted) normal intervals are 



 
 

considered abnormal. HR and pulse reflect the same attribute from different sensors, where 

pulse is obtained from the pulse oximeter and HR is measured as the number of interbeat 

intervals (R-R) in ECG signal.  

The proposed approach is based on two phases: training and detection. In the training phase, 

we build the classification models for SVM and linear regression methods, and in the testing 

phase, inputs are classified as abnormal if they deviate from established model. The linear 

SVM is used in our approach to classify each received record as normal or abnormal. The 

SVM is used due to its accuracy and low complexity, where the classification requires only 

the sign of       in equation (7).  

Abnormal instances detected by SVM will only activate the forecasting procedure using the 

linear regression, where we recursively assume that an attribute       is missing, and the 

coefficients of linear regression are used to estimate the current value for this attribute ( ̂  ) 

with respect to the others (         as given in equation (10) for heart rate estimation: 

 0 1 2 5i i i iHR C C Pulse C RESP C BP       (10) 

If the Euclidean distance between current       and estimated    ̂   values is larger than the 

predefined threshold (10% of estimated value) for only one attribute, the measurement is 

considered faulty and replaced by estimated value with linear regression. Equation (11) 

shows the residual threshold used to detect abnormal measurement: 

 ˆ ˆ0.1*i ik ik ike x x x     (11) 

However, if at least   readings are higher than the threshold, we trigger a medical alarm for 

response caregiver emergency team to react, e.g. heavy changes in the HR and reduced rate 

of SpO2 are symptoms of patient health degradation and requires immediate medical 

intervention. We assume that the probability of many attributes (    in our experiments) 

being faulty is very low. The pseudo-code for our proposed algorithm is given in algorithm 

1.  

The SVM is used to reduce the computation complexity, and to prevent the estimation of 

each attribute for each instance on the base station. SVM is based on sign comparison for 

classification, and the combination of both approach for fault detection and classification is 

used. Sliding window is not used in our experiments to reduce the complexity. When the 

model is specified with the training data, updating or rebuilding the model requires 



 
 

additional complexity (temporal & spatial) and reduce the accuracy of the classification 

model. Most of the time, the gathered measurements are normal, and updating the 

classification model using skewed data (normal data only for training) leads to erroneous 

classification.  

5. Experimental results 

In this section, we present the performance analysis results of the proposed approach for 

anomaly detection in medical WSN. Afterward, we conduct analysis to study the impact of 

decision threshold on true positive and false alarm ratio. We used real medical data set from 

the Physionet database (Physionet, 2013), which contains 7 attributes (ABPmean, ABPsys, 

ABPdias, HR, PULSE, RESP and SpO2). We only focus on 5 attributes in each record: 

ABPmean, HR, PULSE, RESP and SpO2.  

The variations of Heart Rate (in beats per minute — bpm) are shown in figure 3(a). We take 

notice of 4 abnormal measurements (spikes) where 2 between them falling down to zero. 

Other variations associated with a clinical change of the monitored patient can be clearly 

distinguished in figure 3(a). The variation of Blood Pressure (in millimeters of mercury — 

mmHg), Pulse (in bpm), respiration rate (in respirations per minutes — rpm), and 

oxygenation ratio (in percentage) are presented in figures 3(b), 3(c), 3(d) and 3(c) 

respectively. 

Algorithm 1. Detection Algorithm 

1: for each received record    during   do 

2:     Classify    using SVM 

3:     if                       then 

4:          for each     do 

5:                ̂   ∑   
 
            

6:                    (       ̂          ̂  )       

7:          end for 

8:          if         then 

9:               Raise alarm for healthcare 

10:        end if 

11:     end if 

12: end for 



 
 

  

(a) Heart rate (b) Blood pressure 

  
(c) PULSE (d) Respiration rate 

  
(e) Oxygenation ratio (f) Variations of the 5 parameters 

 
 

Figure 3. Heart Rate, blood pressure, pulse, respiration rate and oxygenation ratio 

In fact, HR and Pulse measure the same physiological parameter using two different devices, 

and usually they must present the same variations. However, when comparing figures 3(a) 

and 3(c), they exhibit some differences especially for spikes at different time instant. The 

difference results from abnormal values reported by the sensor. 
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 To prove the correlation between monitored attributes, we show the variation curves of the 

5 parameters in figure 3(f), where we can notice that clinical emergency induces changes in 

many parameters at the same time instant. However, there is no spatial correlation among 

monitored attributes for faulty measurements. It is important to note that some curves in 

Figure 3(f) are shifted to clarify the shape of their variations. We can visually distinguish 

zones of clinical change, where many attributes change at the same time instant. 

As physiological parameters vary by individual and they are dependent on many physical 

characteristics (sex, age, weight, activity, etc.), the use of a static interval for anomaly 

detection is heavily reliant on additional dynamic parameters (environmental, ages, 

activities, etc.) which are difficult to set dynamically. 

Figures 4(a) and 4(b) respectively show the predicted and error values for HR using linear 

regression. The measured values of HR (actual) are presented in figure 3(a). The error 

represents the difference between actual and predicted values of HR. To test the efficiency of  

  

(a) Predicted HR (b) Error 

  
(c) Predicted HR (d) Error 

Figure 4. Linear and additive regression classifiers 
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 the used algorithms, we compare the results (predicted and error) with different classifiers 

using the WEKA (Hall, et al., 2009; WEKA, 2013) toolkit: Decision Stump, Decision Table, 

Additive Regression and K-NN for      

 Figures 4(c) and 4(d) show similar results (predicted and error respectively) using additive 

regression tree, where the prediction error is higher than linear regression. Figures 5(a) and 

5(b) show the results of the decision stump classifier. Figures 5(c) and 5(d) show the results 

of the decision stump classifier. The results using KNN, which has a slower runtime due to 

the greater computational complexity, are shown in figures 6(a) and 6(b) to have a lower 

error rate in comparison to additive regression, decision stump and decision table. 

Figure 7(c) shows the mean absolute error for each of these classifiers, where decision table 

achieves the prediction with the highest mean error rate, followed in descending order by 

decision stump, additive regression, K-NN and linear Regression. A slight difference, in 

terms of the mean prediction error, between K-NN and additive regression is presented in 

  
(a) Predicted HR (b) Error 

  
(c) Predicted HR (d) Error 

Figure 5. Decision stump and decision table  

1 2 3 4 5 6

x 10
4

0

50

100

150

Time

b
p
m

1 2 3 4 5 6

x 10
4

-40

-20

0

20

40

60

80

100

Time

 

1 2 3 4 5 6

x 10
4

0

50

100

150

Time

b
p
m

1 2 3 4 5 6

x 10
4

-40

-20

0

20

40

60

80

100

Time

 



 
 

figure 7(c). During the experiment, we discover that the result of additive regression 

sometimes is better than K-NN when using other data set. That is to say, the accuracy of the 

prediction algorithm depends also on the data in training phase. Linear regression had the 

lowest error percentage and the best overall performance out of the four classifiers, which is 

also why we use this classifier in the rest of this paper. 

Figure 6(c) shows the raised alarms by the application using SVM. In our previous work 

(Salem, Guerassimov, Mehaoua, Marcus, & Furht, 2013), our approach applied J48 on real 

patient data. To compare the performance of both classifiers, the alarms triggered by J48 are 

shown in figure 6(d). These results confirm that SVM slightly outperforms J48 in terms of 

detection accuracy, but J48 build the classification model (decision tree) faster than SVM.   

We used the Receiver Operating Characteristic (ROC) in the performance evaluation of the 

proposed approach to show the relationship between the true positive rate (equation (12)) 

and the false positive rate (equation (13)). 

  
(a) Predicted HR (b) Error 

  
(c)  Raised alarms by SVM (d)  Raised alarms by J48  

Figure 6. K-NN classifiers and Raised alarms by SVM and J48 
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TP

TPR
TP FN




  (12) 

Where    represents the number of true positives, and    is the number of false positives. 

The false positive rate (   ) is defined as: 

 
FP

FPR
FP TN




  (13) 

ROC curves are used for accuracy analysis where it represents, graphically, the true positive 

rate versus the false positive rate when varying the value of the decision threshold. In 

general, a good detection algorithm must achieve a high detection ratio with the lowest false 

alarm rate.  

  

(a) Raised medical alarms by SVM and linear 

regression 

(b) Raised medical alarms by J48 and linear 

regression 

  

(c) Mean error rate with different classifiers (d) Receiver Operating Characteristic (ROC) 

Figure 7. Performance analysis 
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Figure 7(a) shows the raised medical alarms by the proposed approach. The raised alarms 

are triggered by heavy changes in at least   attributes. We can clearly notice in figure 7(a) 

that faulty measurements (spikes), without correlated changes between physiological 

parameters (BP, HR, Pulse, SpO2 and RESP), don’t trigger medical alarms. Figure 7(b) shows 

the raised alarms while replacing SVM by J48 in the proposed approach. The results are 

similar, and the raised alarms occur at the same time instants. We can notice some 

differences between figures 7(a) and 7(b), where we get two additional alarms by J48 in 

figure 7(b) (before 3.104 and 4.104 respectively). 

Figure 7(d) shows the ROC for the proposed approach where the first nominal classifier is 

SVM, followed by J48, Logistic regression, Naïve Bayes and Decision Table respectively. 

SVM and J48 classifiers were the two most accurate algorithms which achieved the best 

performances with TPR=100% and FPR=6.5% and FPR=7.4% respectively. The ROC for SVM 

and J48 is very similar having only minor difference. However, they achieve better 

performance compared to the other classifiers. The ROC validates that our claim that the 

proposed approach achieves high accuracy for detecting mote anomalies. 

6. Conclusion and Perspectives   

Medical WBAN is a new emerging technology in the field of healthcare, providing vital care 

and access to patients, elderly, and infants. It allows continuously monitoring patients 

without restrictions in the movements and keeping the healthcare professional informed of 

any evolution of patients’ condition.  

These types of monitoring systems are tasked with providing humanity an outstanding 

instrument for patient observation and autonomous diagnostic, alarm, and emergency 

services. They also provide simple, remote patient data management and allow greater 

freedom for healthcare professionals which may, as a result, better serve clients from 

practically any location where network connectivity exists. 

We described our architecture conceptually and detailed the results from preliminary 

experimentation conducted with our applications’ analysis of real patient data. Furthermore, 

we discussed the issues and justified the need for medical WBANs for ubiquitous patient 

monitoring and authenticated remote patient data access for healthcare professionals. 



 
 

 The application, after mining the incoming data incrementally, applies machine learning 

algorithms to generated models based on algorithmically located correlations in the data. It is 

also able to distinguish between irregular patient attributes and faulty sensor data to 

maintain robustness and high accuracy. Considering the limitations associated with WSN 

technology and the spontaneity of our environment, we have constructed a reliable 

application for real time global patient monitoring from modern smart devices. The 

experimental results confirm the applications’ high detection accuracy, low false alarm ratio 

and its’ ability to quickly identify and differentiate between sensor faults and irregularities in 

a patients’ health.  

In the future, knowing that most collected sensor measurements are normal, we look to 

reduce the amount of exchanged data between the wireless sensors and the sink node, by 

transmitting only abnormal values on the sensor motes to reduce energy consumption by 

wireless transmissions. 
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