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Abstract 

Wireless sensor networks are subject to different types of faults and interferences after their 

deployment. Abnormal values reported by sensors should be separated from faulty or 

injected measurements to ensure reliable monitoring operation. The aim of this paper is to 

propose a lightweight approach for the detection and suppression of faulty measurements in 

medical wireless sensor networks. The proposed approach is based on the combination of 

statistical model and machine learning algorithm. We begin by collecting physiological data 

and then we cluster the data collected during the first few minutes using the Gaussian 

mixture decomposition. We use the resulted labeled data as the input for the Ant Colony 

algorithm to derive classification rules in the central base station. Afterward, the derived 

rules are transmitted and installed in each associated sensor to detect abnormal values in 

distributed manner, and notify anomalies to the base station. Finally, we exploit the spatial 

and temporal correlations between monitored attributes to differentiate between faulty 

sensor readings and clinical emergency. We evaluate our approach with real and synthetic 

patient datasets. Our experimental results demonstrate that our proposed approach achieves 

a high rate of detection accuracy for clinical emergency with reduced false alarm rate when 

compared to robust Mahalanobis distance. 
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1. Introduction 

The Medical Wireless Sensor Networks (WSNs) or Wireless Body Area Networks (WBANs) 

are a set of wearable or implantable biomedical sensors with wireless transmission 

capabilities, used to collect vital signs (pulse, heart rate, blood pressure, oxygen saturation, 

body temperature, glucose level, galvanic skin ratio, electrocardiogram, electromyogram, 

etc.) from the monitored patients (Crosby, Ghosh, Murimi, & Chin, 2012), and to transmit 

collected data toward a central device (smartphone or tablet) (Movassaghi, Abolhasan, 

Lipman, Smith, & Jamalipour, 2014). 

These sensors measure and transmit physiological data in real time, and allow remote and 

continuous health monitoring (in-home or in-work) over an extended period of time (Otto, 

Milenkovi, Sanders, & Jovanov, 2005). These sensors minimize the need of caregivers and 

allow monitored patient to continue living independent life. Their usage leads to the 

modernization of the way in which healthcare services are deployed and delivered. WSNs 

may also resolve the shortage of nursing for assisting elderly people in-home. Several clinical 

situations could be prevented or better monitored using WBANs, where the collected data in 

real-time can be used to follow the evolving state of remotely monitored patient, to early 

detect clinical emergency situation and to quickly react by taking the appropriate actions to 

save the life of the monitored patient (Ko, et al., 2010). 

WBANs provide a mobile healthcare system used for remote and in-home monitoring, 

where the physiological data collected by sensors are transmitted to Local Processing Unit 

(LPU), which has more processing power, battery and transmission capabilities than sensors. 

The LPU must process collected measurements in real time, and raise an alarm for healthcare 

center (or family, neighbor, etc.) when it detects clinical emergency, in order to let them react 

by taking the necessary actions.  

Therefore, pervasive healthcare services require the development of real-time applications 

for the detection of emergency situations, such as the detection of myocardial ischemia 

which precedes the heart attack (or infarction). The early detection prevents serious 

complications and damage of the heart by therapies using anticoagulants or Percutaneous 

Coronary Intervention (PCI) that reestablish the normal flow of blood in the obstructed 

coronary artery. 



 
 

WBANs reduce healthcare cost and improve the usage of occupied beds in hospital by 

enabling the monitoring of chronicle and long term diseases outside institutions. They also 

enhance the life of monitored patients by allowing them to move freely and to achieve their 

daily life activities while being monitored. However, the use of WBANs is susceptible to 

several problems which range from reliability to security threats after deployment.  

Sensors are subject to hardware and software faults, which are due to various reasons such 

as damaged device, calibration, battery exhaustion, or dislocation. Furthermore, with the 

small size of sensors and their underlying constrained resources, such as limited processing 

power, small memory and restricted transmission range, their transmitted data are extremely 

vulnerable to radio interference, environmental noise, function fault, breakdown, faulty 

measurements from badly attached sensor and malicious behavior. Consequently, the 

collected measurements are affected by noise and errors and have low quality and reliability.  

The transmission of faulty measurements consumes energy of constrained sensors, and they 

might trigger a false alarm. Faulty measurements reduce the reliability and the accuracy of 

diagnosis results, and they affect the credibility of such monitoring system and prevent its 

deployment, where reliability is extremely important to ensure accuracy in the medical 

domain (Sahoo, 2012). 

The use of WSNs in medical field has stringent requirements in terms of reliability and 

security. Security issues in WSNs should consider not only technical issues, but also social 

issues which might break the privacy of patient life. For example, the collected 

measurements might be accessed by an attacker which may (i) modify data, (ii) inject false 

data or (iii) replay previously registered data to threat patient's life. As the LPU must process 

the measurements in real-time to detect clinical deterioration, faulty measurements or 

maliciously injected data must be detected and isolated to increase the reliability of such 

monitoring system and to reduce false alarms.  

Intrusion Detection Systems (IDS) are classified into two categories: misuse and anomaly 

detection. Misuse detection techniques are signature-based for detecting malicious traffic, 

and these signatures are not currently available for medical WSNs. In fact, most of malicious 

activities are the results of some assumptions and unknown signature attacks would be 

serious problem for WSNs. Anomaly Detection (AD) techniques measure the deviations 

between actual and pre-established normal model. Afterward, AD flags measurements that 

deviate from normal profile as anomalies. Although various IDS for wired and ad hoc 



 
 

networks are mature enough today, they cannot be applied directly in WSNs because of the 

vast difference in sensor’s resources, such as limited memory, small processing power, low 

transmission range, etc. 

Several anomaly detection approaches have been proposed as solutions for these challenging 

problems which could severely affect the diagnosis results and pose a life-threating risk. 

Despite the increasing interest in health monitoring, existing approaches for the detection of 

clinical deterioration using WBANs still suffer from the high number of false alarms. It is 

important to design a reliable detection algorithm that is able to differentiate between two 

types of changes in sensors' readings: (i) an emergency situation which causes changes in 

many physiological measurements, and (ii) faulty or injected measurements by malicious 

users. Abnormal data from these two types will deviate from the normal data profile and 

will trigger false alarms for healthcare professional. To reduce the high rate of false alarms 

caused by faulty measurements, it is important to provide a mechanism able to detect any 

abnormal deviations, and to distinguish between an emergency situation and sensor fault. 

In this paper, we propose a solution to detect and insolate faulty measurements, and to 

enhance the reliability of healthcare monitoring using WBANs. Our proposed approach is 

based on machine learning algorithm and statistical model to detect abnormal data. First, we 

use Gaussian Mixture Model (GMM) decomposition to learn the statistical regularities of 

collected measurements. Then based on obtained labeled data, the Ant Colony (AC) is used 

to discover the set of classification rules for normal class. The derived rules by AC are the 

normal range for each monitored physiological attribute, and will be used to detect all 

abnormal measurements that deviate from the regular data.  

To minimize the communication overhead by the transmission of abnormal data, the LPU 

transmits the derived rules to sensors. Each sensor applies the associated rule and transmits 

alarms to LPU only when data lie outside the range defined by the AC rule. Therefore, there 

is a reduction in data transmission and energy consumption in the network compared to 

centralised approach, where the whole collected measurements must be transmitted to the 

LPU, and anomaly detection is impractical with the overwhelming amount of collected data. 

In our distributed case, the LPU still has a global overview of abnormal data through 

received alarms and can exploit correlation between monitored attributes to take a detection 

decision and to reduce the number of false alarms.   



 
 

The remaining of this paper is organized as follows. Section 2 reviews related work for fault 

detection and isolation in WSNs. Section 3 reviews Gaussian Mixture Model and Ant Colony 

classification algorithms used in our proposed approach. Section 4 presents our proposed 

approach. In section 5, we present our results from experimental evaluation over real and 

synthetic physiological datasets. Finally, section 6 concludes this paper with a discussion of 

the results and plans for future work. 

2. RELATED WORK 

The remote healthcare monitoring using WBANs has recently gained momentum as 

powerful architecture for improving the quality of life for patients and for reducing the 

healthcare costs.  

One of the proposed monitoring systems is CodeBlue (Malan, Fulford-jones, Welsh, & 

Moulton, 2004; Havard Sensor Networks Lab, 2013), which is able to monitor the Heart Rate 

(HR), Pulse, SpO2 and ElectroCardioGram (ECG). It transmits the collected data to the 

healthcare professionals for further analysis, through the use of base station (LPU). Other 

medical monitoring systems are: MEDiSN (Ko, et al., 2010), LifeGuard (Montgomery, et al., 

2004), AlarmNet (Wood, et al., 2006), Medical MoteCare (Navarro, Lawrence, & Lim, 2009), 

Vital Jacket (Cunha, et al., 2010). Some comprehensive survey studies of medical applications 

using WSNs are available in (Alemdar & Ersoy, 2010; Grgic, Žagar, & Križanovic, 2012).  

Various other monitoring systems using WBANs have been proposed for the detection of 

specific event, such as: epileptic seizure detection (Cuppens, Lagae, Ceulemans, Huffel, & 

Vanrumste, 2010), fall detection (Lee, Kim, Son, & Lee, 2007), myocardial ischemia (Romero, 

Ringborn, Laguna, Pahlm, & Pueyo, 2011), myocardial infarction (Bradley, et al., 2012; Sun, 

Lu, Yang, & Li, 2012), kinematics (Toffola, Patel, Ozsecen, Ramachandran, & Bonato, 2012), 

Sleep Apnea (Bsoul, Minn, & Tamil, 2011), etc. 

However, the measured and collected data by sensors are often unreliable and inaccurate 

(Zhang, Meratnia, & Havinga, 2010; Wang, Fang, Xing, & Chen, 2011; Zhang, et al., 2012). 

They are affected by interference, error, noise, missing values, inconsistent readings, 

maliciously injected, etc. Several approaches for the detection of faulty measurements have 

been proposed in the literature. Authors in (Zhang, Meratnia, & Havinga, 2010; Xie, Han, 



 
 

Tian, & Parvin, 2011) provide surveys for outlier detection techniques in WSNs, and compare 

existing techniques.  

Authors in (Jurdak, Wang, Obst, & Valencia, 2011) define the common types of anomalies in 

WSNs, and classify them into three types: network anomalies, sensor anomalies and data 

anomalies. Their detection can be achieved by building a model to represent normal data, 

and any heavy deviation from the established normal profile will be considered as anomaly. 

Usually, normal measurements follow the same distribution and abnormal values (outliers) 

are generated by other distribution or require changes in statistical parameters. 

Authors in (Abduvaliyev, Pathan, Zhou, Roman, & Wong, 2013) survey recently proposed 

approaches on IDS in WSNs, and include the significant advancements in this area. They 

present a classification of IDS into 3 categories based on their detection techniques: misuse 

detection, anomaly detection and specification-based detection. They also present a 

comparison between existing approaches in terms of energy efficiency, accuracy and 

memory requirements. They note the importance of the tradeoff between resources 

consumption (energy and memory) and detection accuracy, where the required 

computational power by some approaches to achieve good detection accuracy, are not 

available in the sensors. 

Authors in (Curiac & Volosencu, 2012) propose an algorithm to detect faulty measurements 

on the LPU of WSNs. They use five different classifiers, each of which classifies the sensed 

data as normal or abnormal. All individual decisions will be aggregated using a weighted 

majority algorithm to obtain the final decision.  

Authors in (Siripanadorn, Hattagam, & Teaumroong, 2010) use an unsupervised approach 

(data mining or clustering) for anomaly detection in WSNs. Their proposed approach is 

based on Self-Organizing Map (SOM) and Discrete Wavelet Transform (DWT). The DWT is 

used to reduce the size of input data for SOM clustering. Experimental results over synthetic 

traces show that this method is able to detect anomalies accurately, but the required 

processing and storage cost caused by SOM and Wavelet may prevent its usage for real time 

detection with the constrained resources in WSNs. 

Author in (Zhu, 2011) uses machine learning approach (or supervised classification) to 

automatically detect anomalies in the Blood Glucose Level (BGL) of monitored patients. The 

normal daily measurements of the patient are used to train the Hidden Markov Model 



 
 

(HMM) by estimating the transition and output probabilities. In test phase, if the likelihood 

of measured value is lower than output in HMM, it is considered as an anomaly. However, 

experimental results are conducted by simulations, and the author doesn't evaluate the 

complexity and the feasibility of parameter estimations in a real world scenario.  

Authors in (Chuah & Fu, 2007) proposed an Adaptive Window-based Discord Discovery 

(AWDD) scheme, which is based on time series analysis to detect abnormal heartbeat. Their 

algorithm is accomplished in two passes with adaptive window size. They compared two 

subsequences of different lengths, and they use Euclidean Distance to measure the 

divergence between one of the subsequences and its nearest non-self-match. They consider 

as anomalies the subsequence with the largest distance.  

Authors in (Chang, Terzis, & Bonnet, 2009) also use machine learning model (Neural 

Networks) for anomaly detection in WSNs. They build a distributed algorithm for fault and 

event detection. Their proposed approach is based on two stages: (i) training phase where 

nodes are trained by Echo State Networks (ESN) to build a model for normal data, (ii) 

detection phase where measurements that significantly deviate from their predicted values 

by ESN are considered as anomalies.  

Authors in (Zhang, Ren, Gao, Yan, & Li, 2009) propose a distributed fault detection scheme 

for WSNs. They identify faulty sensor based on the similarity test of neighboring nodes and 

dissemination of the decision made at each node. Each sensor has NT table which contains 

certain information about its neighbors, such as node ID, similarity coefficient and current 

state. The sensor will be considered as faulty when its current state in NT table is faulty, or if 

the similarity coefficient is less than threshold.  

Author in (Jiang, 2009) proposes another distributed scheme to divide sensors into 2 types: 

normal and faulty. However, distributed detection schemes assume that neighbor nodes are 

measuring the same attributes. Each sensor monitors its one hop neighbors and uses local 

comparisons between measured and received data, and some thresholds are used to detect 

faulty measurements and to prevent their transmission. However, it is impractical to use 

redundant sensors in healthcare monitoring. Furthermore, distributed detection techniques 

require resources that are not available in medical sensors, and their accuracy is lower than 

centralized approaches, which have a global view on collected data from multiple sensors.  

Authors in (Jurdak, Wang, Obst, & Valencia, 2011) classify the anomaly detection approaches 

in WSNs into 3 categories: centralized, distributed and hybrid. They found that a hybrid 



 
 

approach that locally detects problems and then triggers more involved analysis in the 

centralized collection point is most suitable for anomaly detection. In this paper, we will use 

a hybrid approach to reduce the energy consumption and to enhance the detection accuracy 

of monitoring results. For further information of existing technologies, several 

comprehensive surveys on anomaly detection in WSNs are available in (Chandola, Banerjee, 

& Kumar, 2009; Xie, Han, Tian, & Parvin, 2011; Abduvaliyev, Pathan, Zhou, Roman, & 

Wong, 2013).  

A common problem in majority of existing anomaly detection approaches is the ignorance of 

both spatial and temporal correlation between monitored physiological attributes. Mostly 

they focus on temporal correlation without considering spatial relationship among attributes. 

In this paper, we provide a distributed approach for reliable vital sign collection in medical 

WSNs. The aim is to reduce false alarms triggered by faulty or maliciously injected 

measurements. We use GMM decomposition to cluster the collected data in the first few 

minutes, and the resulted labeled data are used by the AC to derive classification rules. The 

LPU transmits the rules to sensors, which apply associated rule on each sensed data to 

classify measurements into 2 classes: normal or abnormal. Sensors communicate only 

abnormal data to LPU in order to reduce energy consumption by communication overhead. 

As the LPU has a global view on abnormal data, it exploits the correlation between 

monitored attributes to make a detection decision, and to reduce false alarms triggered by 

faulty measurements. 

3. Background 

In this section, we briefly survey the Gaussian Mixture Models (GMM) and Ant Colony 

Optimization (ACO) classifier used in our proposed approach. For detailed information 

about these algorithms, reader may refer to the papers (Martens, et al., 2007; Theodoridis, 

Pikrakis, Koutroumbas, & Cavouras, 2010). 

A. Gaussian Mixture Model (GMM)  

Gaussian Mixture Model (GMM) is used to model unknown probability density function by 

a weighted sum of 𝐽 Gaussian distributions in the form: 
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Where 𝑝(𝑌𝑡𝑚
/𝑖) models the 𝑖𝑡ℎ cluster specified by its mean mi and its covariance matrix 𝑖, 

Pi is the probability that data vector 𝑌tm
 is generated by the component 𝑖. To cluster the data 

into 2 (𝐽 = 2 ) classes (normal & abnormal), we use the iterative generalized mixture 

decomposition algorithm (Theodoridis, Pikrakis, Koutroumbas, & Cavouras, 2010) which 

adjusts the parameters mi, 𝑖  and Pi with respect to an initial estimate, and terminates when 

no significant change in these values between two successive iterations. It returns the 

posteriori probability that the vector  𝑌tm
 stems from the distribution associated with the 𝑖𝑡ℎ 

cluster (cpk) . To obtain a hard clustering, we use the maximum value of the cluster 

probability Class = max(cpk).  

B. Ant Colony Classifier 

Ant Colony Optimisation (ACO) is a meta-heuristic algorithm inspired from the behaviour 

of ants to find the shortest path toward the food. ACO has been applied to build a 

classification rules in machine learning domain, where it uses a set of labeled training data to 

infer the classification rules. 

Ant Colony (AC) classifier is inspired from the collective behavior of the real ants which 

communicate together in an indirect manner by depositing a substance called pheromone 

(Martens, et al., 2007). In fact, Ants go out from their colony looking for food (as shown in 

Figure 1), with their colony as start point and their destination (the food) as their stop point. 

Start (Nest)

Destination

(Food)

Ant 1Ant 2

Path1 Path2 

Destination

(Food)

Destination

(Food)

Start (Nest) Start (Nest)

Obstacle Obstacle Obstacle

 

Figure 1. Ants behaviour 



 
 

Initially, the ants start searching for the food in a random manner, and they might face some 

obstacles and barriers which make them take a decision to search for alternative paths. 

Furthermore there will be a disparity between the lengths of paths. So the goal of ants is not 

limited to reach the destination (food), but to reach the destination using the shortest path. In 

Figure 1, Ant 1 and Ant 2 start from the nest and depose pheromone on the paths while 

searching the food. Ant 1 reaches destination (food) earlier than Ant 2 and thus it goes back 

to start point. This causes reinforcement of the amount of pheromone in path 1 (shortest 

path), which attracts other ants to pass through this path. The path will be used by other ants 

which in turn drop some amount of pheromone. After some amount of time, all ants 

converge to path 1 as the shortest path between Nest and Food. 

In machine learning, AC is applied over labeled training to discover the classification rules, 

such that each path discovered by the artificial ants represents one candidate classification 

rule. These rules are of the form: if ″rule antecedent″ then ″rule consequent″. The condition ″rule 

antecedent″ stands for a conjunction of terms (𝑌1 & 𝑌2 … 𝑌𝑛), where each term is a condition (𝑌𝑖, 

operator, value). For clarification, an example of a term when monitoring the HR of a patient, 

the term is: (𝐻𝑅 <  60). The ″rule consequent″ is the discovered class where their attributes 

satisfy all the terms in the "antecedent rule". An example of the rule: 

   ( 60) ( 100)if HR and HR

then

class normal

else

class abnormal

 





         

In AC, artificial ants are used to explore the environment, which is represented by a directed 

acyclic graph 𝐺 with a vertex group for each attribute. To build the graph 𝐺, we apply the 

following procedure over 3 physiological data (HR, Pulse and SpO2): 

1. All ants begin in the start vertex and walk through their environment to the stop 

vertex. 

2. A vertex group (Class in Figure 2) contains only one vertex (i.e., normal class in our 

study) that is used to extract a rule for normal data. The abnormal class will be the 

result of negating the final established rule for the normal class (the else clause). 

3. Vertex groups (𝑉1 , 𝑉2, … , 𝑉𝑛) represent 𝑛 attributes (e.g., HR, Pulse and SpO2), where 

𝑉𝑖 contains the data measurements in normal class from the 𝑖𝑡ℎ attribute. 



 
 

4. To derive an interval for normal data, such as the case for normal 𝐻𝑅 ∈  [60 − 100], 

the vertex groups (HR, Pulse and SpO2) are duplicated in (HR', Pulse' and SpO2'). 

The first vertex group is used to derive the lower bound, and the duplicated vertex 

group is used to derive the upper bound for each attribute. 

5. To avoid conflict in rule construction (e.g. 𝐻𝑅 ≥  90 and 𝐻𝑅 ≤ 80), the edge between 

two vertices in the same attribute must be removed if the first vertex has a higher 

value than the second one. 
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Figure 2. Rule construction using Ant Colony 

After building the graph using only the records in normal class as training data, the 

classification is done by two nested loop as given in algorithm 1. AC starts by the outer loop 

where a classification rule will be discovered in each iteration. The pheromone level in all 

paths will be initialized to 𝑀𝐴𝑋  in order to assign equal probabilities for an ant to choose 

between edges. This loop will be repeated until satisfying the early stopping condition, that 

is to say, that loop will be repeated until the number of uncovered cases is smaller than the 

threshold predefined by a user. 

In the interior loop, an ant begins from the start vertex with an empty rule and walks 

through the environment to the stop vertex. Incrementally, it constructs the candidate rule 

by adding one term at a time. The probability of path selection among vertices is based on 

the pheromone and heuristic values. The pheromone level is an indication of the number of 

ants passing through this path, and the heuristic level gives each vertex an importance in the 

problem domain, the higher the heuristic value the higher probability for the edge to be 

chosen. For more information about AC classifier, reader may refer to (Martens, et al., 2007). 

 



 
 

 

4. Proposed approach 

We consider a real deployment scenario where many sensors are attached to the body of the 

monitored patient as shown in Figure 3. These sensors collect several physiological 

parameters (HR, Pulse, Blood Pressure, Respiration rate, SpO2, etc.) and transmit the 

collected data to the LPU (smart phone) for real time processing. The LPU may send the 

collected data to remote monitoring center for storage, and it processes data in real-time, in 

order to detect heavy deviations in monitored parameters, and to raise medical alarm for 

healthcare professionals upon detecting an emergency situation. 
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Figure 3. WSN in medical deployment scenario 

Algorithm 1. Ant Colony algorithm 

1: TrainingSet = {all training cases} 

2: DiscoveredRulesList=[];    

3: while (Not early Stopping) do 

4:          Initialize all path to pheromone level 𝑀𝐴𝑋  

5:          while (Not converged) do     

6:   Let ants run from start to end; 

7:   Update the pheromone of all trails; 

8:   An ant incrementally constructs a classification rule; 

9:    Prune the just-constructed rule; 

10:   end while 

11:  Choose the best rule out of all constructed rules; 

12:  Add the chosen rule to DiscoveredRuleList; 

13:  TrainingSet = TrainingSet - {cases correctly covered by the chosen rule}; 

14: end while 



 
 

Let 𝑌 = (𝑦𝑖,𝑗)  denotes the set of collected measurements by 𝑛  sensors during the last 𝑚 

minutes, where 𝑖 represents the time instant, and 𝑗 represents the sensor identifier (id). We 

denote by 𝑌𝑘 =  {𝑦1,𝑘, 𝑦2,𝑘, … , 𝑦𝑚,𝑘} the time series associated with the 𝑘𝑡ℎ sensor, and by 𝑌𝑡𝑖
 

the record at time instant 𝑡𝑖. 𝑌𝑡𝑖
 is a line and 𝑌𝑘 is a column in the data matrix 𝑌 given by the 

following equation :  
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We seek to detect abnormal values on the portable device (LPU), and to discriminate 

between faulty measurements and patient health degradation, in order to reduce the false 

alarms resulted from faulty measurements. Our proposed approach to detect abnormal 

values is based on two phases: training and classification. In training phase, the first few 

minutes into 2 categories (normal & abnormal) using generalized mixture decomposition 

algorithm (Theodoridis, Pikrakis, Koutroumbas, & Cavouras, 2010). In classification phase, 

we applied Ant Colony (AC) classifier over labeled data to generate the classification rules as 

given in algorithm 2.   

 

To achieve this task, the generated rules by AC are applied on each received value to detect 

abnormal measurements and to assign one class to the whole record (normal and abnormal). 

Algorithm 2. Classification using Ant Colony algorithm 

1: 𝑖 = 0 

2: 𝒇𝒐𝒓 (𝑖 = 1;  𝑖 ≤ 𝑛; 𝑖 + +) 

3:  𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 (𝐿𝐵𝑖) 

4:          𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 (𝑈𝐵𝑖) 

5: 𝒆𝒏𝒅 𝒇𝒐𝒓 

6: 𝒊𝒇  ((𝐿𝐵1 ≤  𝑦𝑖,1  ≤  𝑈𝐵1) & …  & (𝐿𝐵𝑛  ≤  𝑦𝑖,𝑛  ≤  𝑈𝐵𝑛)) 

7: 𝒕𝒉𝒆𝒏 
8:  𝐶𝑙𝑎𝑠𝑠 =  𝑛𝑜𝑟𝑚𝑎𝑙   

9:  𝒆𝒍𝒔𝒆   

10:   𝐶𝑙𝑎𝑠𝑠 =  𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 

11: 𝒆𝒏𝒅 𝒊𝒇 



 
 

The rule is a logical conjunction of many conditions, and abnormal class is assigned if at least 

one attribute is outside the derived range. As this approach is centralized, all the sensor 

measurements must be communicated to LPU in order to apply the anomaly detection 

algorithm.  

To reduce energy consumption by the transmission of normal measurements and extend the 

lifetime of the wireless sensors, it will be more efficient to perform in-network detection of 

abnormal measurements and to transmit only alarms associated with abnormal 

measurements to the LPU for further processing and correlation analysis. However, the 

GMM and rules extraction using ACO require resources not available in the sensors. These 

algorithms run on the LPU, which transmits the discovered rules for sensors in order to 

achieved distributed anomaly detection. As a rule takes the form of ″𝑖𝑓  (𝐿𝐵𝑛  ≤  𝑦𝑖,𝑛  ≤

 𝑈𝐵𝑛) 𝑡ℎ𝑒𝑛 𝐶𝑙𝑎𝑠𝑠 = 𝑛𝑜𝑟𝑚𝑎𝑙″, it can easily be installed and applied in the sensor. 

Instead of transmitting collected data to the LPU, the sensor applies the received rule and 

transmits only alarms when detecting a measurement outside the range. If the sensed value 

by Si lies outside the range [LBi, UBi] determined by AC rule for this attribute, then the sensor 

transmits an alarm for the LPU. LPU maintains a sliding window for raised alarms by each 

sensor and a final decision window as shown in Figure 4. 
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Figure 4. LPU processing for medical alarm 

The slot value in the associated sliding window is set to 1 to indicate abnormal value for this 

attribute. As the LPU has a global vision of whole detected anomalies (or raised alarms), it 

can update the alarm decision window. The alarm flags in whole windows are added to get 

final decision window. The raised medical alarm is based on the values in decision window, 

and it is not triggered by each alarm transmitted by individual sensor. 

As physiological parameters are heavily correlated, the change is usually reflected in many 

measurements. Therefore, to discriminate between clinical emergency and faulty 

measurements, we use a sliding window of length T timeslots, where each slot contains the 



 
 

sum of raised alarms by sensors (as shown in Figure 5). If at least 𝑝 of 𝑇 values, or more 

specifically, when the percentage of slots with values ≥ k is larger than 𝑅% (𝑁𝑏(𝑠𝑙𝑜𝑡 ≥ 𝑘) ≥

𝑅%) in decision window (k = 2 in Figure 5), a medical alarm is triggered for healthcare 

professionals. In fact, physiological change persists over considerable slots while faulty 

measurements are transient. Furthermore, a long term anomaly does not necessary mean 

clinical emergency and this is why a correlation between 𝑘 attributes in sliding window is 

considered instead of change point-based techniques. The organisation chart showing the 

main blocks used in our distributed approach is shown in Figure 6. The pseudo code of the 

distributed approach for clinical emergency detection is given in algorithm 3. Faulty and 

transient variations are detected and isolated to reduce false alarms. 

T w slot 

(slot 2) %Nb R 

2 2 2 1 0 2

2 2 1 0 2 0

(slot 2) %Nb R 
 

Figure 5. Sliding window 

5. Experimental results 

In this section, we present the experimental results of the proposed approach for anomaly 

detection in medical WSNs. Afterward, we conduct performance analysis experiments to 

Algorithm 3. Distributed anomaly detection  

1: Initialization 

2:  LPU extracts the classification rules 

3:  LPU transmits rules to sensors 

4: end initialization 

5: each sensor (𝑆𝑖) applies the rules to detect local abnormal values 

6: each sensor sends only locally raised alarm to the LPU 

7: LPU updates the decision window  

8: 𝒊𝒇 (𝑁𝑏(𝑠𝑙𝑜𝑡 ≥ 2) ≥ 𝑅%) 

9: 𝒕𝒉𝒆𝒏 

8:  𝑅𝑎𝑖𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑓𝑜𝑟 ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙𝑠   

9: 𝒆𝒏𝒅 𝒊𝒇 



 
 

analyze the impact of window size on the detection accuracy and false alarm ratio. In our 

experiments, we use real medical dataset from MIMIC II Database, available in Physionet 

(Physionet, 1999; Goldberger, et al., 2000). The original patient record contains 131249 lines 

for monitoring duration of 37.5h, and each line contains 14 attributes: time, ABPmean, 

ABPsys, ABPdias, C.O., HR, PAPmean, PAPsys, PAPdias, PULSE, RESP, SpO2 and Tblood. 

The dataset is annotated with alarm instant for each abnormal attributes.  

Training phase ?

Gaussian Mixture Model (GMM)

Sensors’ 

Traffic 

Alarm

Extraction of classification rules (ACO)

Update Decision window

(slot ) %Nb k R 

Classification using rules

No

Yes

Yes

No

 

Figure 6. Architecture of the proposed approach for medical anomaly detection 

We use the WFDB software package provided by Physionet to convert the binary data into 

ASCII, and we extract part of the dataset (~8,24h) where we focus only on 7 attributes 

(ABPmean, HR, PAPmean, PULSE, RESP, SpO2 and Tblood). We develop a program to read 

the measurements from the file and to transmit the data wirelessly to a Samsung galaxy 3 

tablets with Android as operating system.  



 
 

The variations of blood pressure (in mmHg), artery pressure (mmHg), heart rate (beats per 

minute – bpm), pulse (bpm), respiration rate ((breath per minute – bpm), SpO2 (%) and 

temperature (°C) are shown in Figures 7(a), 7(b), 7(c), 7(d), 7(e) and 7(f) respectively. 

  

(a) Blood pressure (a) Artery pressure 

  

(c) Heart rate (d) PULSE 

  

(e) Respiration rate (f) Oxygenation ratio and Temperature 

Figure 7. Blood pressure, Artery pressure, Heart rate, Pulse, Respiration, SpO2 and T° 
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HR and Pulse measure the same physiological parameter using two different devices, and 

usually they must present the same variations. However, when comparing Figures 7(c) and 

7(d), they exhibit some differences (some spikes) at different time instants. The difference 

results from abnormal values measured by the sensors. 

As physiological parameters are not the same for whole people and are dependent on many 

parameters (sex, age, weight, activity, etc.), we started by clustering the collected data in the 

first few minutes using generalized mixture model, in order to derive dynamic interval for 

normal values of the monitored attributes. To enhance the accuracy of the clustering 

algorithm, we inject faulty record in the training data using values from outside the known 

normal interval of monitored attributes.   

After data clustering, the data in normal cluster will be used by the AC to derive rules, which 

define the interval containing the normal values of each physiological attribute of the 

monitored patient. These rules will be applied in real time on each measured value by sensor 

for binary classification (normal & abnormal).  

The variations of whole monitored physiological parameters are shown in Figure 8(a). The 

measurements that fall outside the established interval by AC will raise an alarm to the LPU. 

The red vertical lines in Figure 8(b) show the raised alarms for abnormal values in whole 

attributes to the LPU. Most of raised alarms in previous figure are false and they are 

triggered by benign deviation or faulty measurements. To reduce false alarms, and to 

differentiate between faulty sensor measurements and emergency situations, we exploit the 

correlation between physiological parameters and the filling ratio of sliding window. We 

consider clinical deterioration only if the changes occur in at least 𝑘 attributes for 𝑤 slots, 

where 𝑘 = 2 in our experiments. 

Figure 8(c) shows three areas of raised alarms to healthcare by our proposed approach. We 

obtained three alarms resulted from the deviations of many physiological parameters, 

instead of ten alarms when considering each attribute separately (e.g. deviations in HR, or in 

Pulse, or in SpO2, etc.). In fact, a visual inspection in the variation of monitored attributes in 

figure 8(a) confirms the utility of these alarms.  

The number of correlated attributes and the filling ratio of decision window for triggering an 

alarm are a tradeoff between false alarms and miss detection. In fact, a small number of 



 
 

attributes leads to a large number of false alarms, and a large number may lead to miss 

detection and thus may threat the life of monitored patient.  

Figure 8(d) shows the raised medical alarm when increasing the size of decision window 

(𝑇 = 𝑤 × 𝑠𝑙𝑜𝑡) from 2 minutes to 5 minutes (with 𝑘 = 2). In fact, increasing value of 𝑤 

reduces the false alarms and decreases the detection accuracy of clinical emergency. A 

window size 𝑤 equal to two minutes provides better detection, and it was chosen as a 

tradeoff between false alarms and detection accuracy.  

We compare our proposed scheme with the one proposed in (Liu, Cheng, & Chen, 2007), 

where Mahalanobis Distance (MD) is used to detect anomaly in gathered data by wireless 

sensors. The reason of using this approach in our comparison is that MD also calculates the 

distance between measurements by taking into account the correlation between monitored 

attributes: 

  

(a) Variation of 7 physiological parameters (b) Raised alarms by sensors 

  

(c) Raised alarms with k=2 & w =60 (d)  Raised alarms with k=2 & w =300  

Figure 8. Physiological parameters and raised alarms 
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    1T

t t tMD X X       (3) 

Where µ is the mean vector (1 ×  𝑛) and   is the covariance matrix (𝑛 ×  𝑛) of monitored 𝑛 

attributes.  is calculated by a robust estimation method (Orthogonalized Gnanadesikan-

Kettenring -- OGK) which removes outliers during the estimation of covariance matrix by 

looking for a subset of training data without anomalies (µ̂, ̂). Many robust estimation 

methods for covariance matrix of multivariate data have been proposed and used to remove 

outliers, e.g., Minimum Volume Ellipsoid (MVE), Minimum Covariance Matrix (MCD), Fast-

MCD and deterministic MCD.  

However, these robust estimation methods and the MD require additional memory and 

computation complexity (the inversion of covariance matrix ) when comparing to ACO 

rules. Furthermore, the robust estimations for µ̂ and ̂ require resources not available on the 

LPU, nor in the sensor.  

𝑀𝐷𝑡
2 follows chi-square distribution 𝑛,0.975

2  with 𝑛 degrees of freedom and 97.5% quantile is 

used as the static threshold for anomaly detection by 𝑀𝐷𝑡
2 (0.025 significance level for cut-off 

value). An alarm is triggered when the value of 𝑀𝐷𝑡
2 is greater than the threshold (𝑛,0.975

2 ). 

The results of applying robust MD over the used physiological dataset are shown in Figure 

9(a) with the threshold √7,0.975
2 = 4.0016 (horizontal red line). When comparing figures 8(c) 

and 9(a), we notice that both methods have good detection accuracy. However, robust MD 

triggers 4 additional false alarms when compared to our results in figure 8(c).  

  

(a) Robust MD and threshold (b) ROC 

Figure 9. Performance analysis 
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To evaluate the performance of our proposed approach, we inject abnormal values at 

different time instants on different number of attributes, and we use the Receiver Operating 

Characteristic (ROC) curve to analyze the impact of the Window Size for Training Data 

(WSTD), as well as the impact of Decision Window (DW) size on the true detection and false 

alarm ratio. The ROC curve presented in Figure 9(b) shows the relationship between the 

detection rate (equation 4) and the false positive rate (equation 5) for both cases. The 

Detection Ratio (DR) is computed as the percentage ratio between the true positives and 

anomalous measurements. 

 
TP

DR
TP FN




  (4) 

Where TP is the number of True Positives, FN is the number of False Negatives, FP is the 

number of False Positives and TN is the number of true Negatives. The False Alarm Rate 

(FAR) is defined as the percentage ratio between the false positives and the actual normal 

measurements: 

 
FP

FAR
FP TN




  (5) 

A good detection mechanism must achieve a high detection ratio with the lowest false alarm 

rate. Figure 9(b) shows that our proposed approach can achieve a DR=100% with a FAR=9%. 

The performance of robust MD (Liu, Cheng, & Chen, 2007) was analysed over the same 

medical dataset and the result is presented in figure 9(b), where MD achieves a DR = 100% 

with a FAR = 16%. The performance of our proposed approach outperforms the robust MD 

and provides better result. Hence, our proposed approach is efficient in achieving low false 

alarm rate and high detection accuracy.  

6. Conclusion and Perspectives   

In this paper, we proposed a new distributed approach for reliable vital sign collection in 

medical WSNs with low communication overhead and energy consumption cost. The 

proposed approach aims to detect abnormal changes in monitored physiological parameters 

and to reduce false alarms triggered by faulty measurements. It is based on Gaussian 

Mixture decomposition and Ant Colony Classifier. The Gaussian decomposition is used to 

cluster the data. Based on the labeled data, the Ant Colony Classifier derives the 

classification rules for normal data in the LPU, and deduces the rules for abnormal values.  



 
 

Derived rules are transmitted to sensors, which install the associated rule and transmit only 

alarms associated with abnormal measurements to reduce communication cost on the sensor 

and computational complexity on the LPU.  

As abnormal records may result from clinical emergency or faulty measurements, we exploit 

the temporal and spatial correlation between the monitored physiological attributes to 

distinguish between faulty measurements and clinical emergency, in order to reduce the 

underlying false alarms. We applied our proposed approach and we evaluate the 

performance on real medical dataset with annotations. Our experimental results proved the 

effectiveness of our approach which can achieve a detection ratio of 100% with 9% of false 

alarms. 

In the future work we intend to periodically adjust the parameters of the proposed model 

(𝑘 𝑎𝑛𝑑 𝑤) based on knowledge from previous time windows. Another direction is to enhance 

the model by focusing on the detection of specific diseases. 
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