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SUMMARY

In this paper, we present the design and implementation efveapproach for anomaly detection and classification
over high speed networks. The proposed approach is basedffai on a data reduction phase through flow
sampling by focusing mainly on short lived flows. The secotep ds then a random aggregation of some
descriptors such as a number of SYN packets per flow in twerdifft data structures called Count Min Sketch and
Multi-Layer Reversible Sketch. A sequential change poetedtion algorithm continuously monitors the sketch
cell values. An alarm is raised if a significant change is idfied in cell values. With an appropriate definition
of the combination of IP header fields that should be usedewtity one flow, we are able not only to detect the
anomaly but also to classify the anomaly as DoS, DDoS or fleshid; network scanning and port scanning. We
validate our framework for anomaly detection on variousd vearld traffic traces and demonstrate the accuracy
of our approach on these real-life case studies. Our asalgsults from online implementation of our algorithm
over measurements gathered by a DAG sniffing card are vegctte in terms of accuracy and response time.
The proposed approach is very effective in detecting amssifiang anomalies, and in providing information by
extracting the culprit flows with a high level of accuracy. pgaght © 2010 John Wiley & Sons, Ltd.

KEY WORDS: Intrusion Detection System, Network anomaly detectiohai@e Point Detection, Multi-chart
Cumulative Sum, DoS, Sketch

1. INTRODUCTION

The daily available patches and updates for servers, anélltdréng of malicious packets, offer a
significant protection from known vulnerability attacks.tAlented attacker can still bypass these
defenses by detecting and exploiting new vulnerabilitiehie latest software releases. This is a subtle
attack that requires a lot of skills and efforts on the parthef attacker, and it is not very common.
There are much easier ways to deny service and to silence abyservice. While an experienced
attacker may use botnets of tens of thousands of comprorhiz&td with one of the popular DDoS
bots (Agobot, SDBot, RBot, SpyBot, etc.), an inexperierattgicker may rent compromised machines
from available web sites. The intentions behind these lettaften differ, and range from revenge,
vandalism, political reasons up to money extortion.
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In DoS attacks, the target machine (or network) spends alktsotritical resources (such as
bandwidth, CPU time, memory, etc.) on handling the attaaKitr and cannot provide service for
legitimate clients. With DDoS, security threats for congubetwork availability have increased
significantly. Recent DDoS attacks in August 2009 were peréal against Twitter, Google and
Facebook. Twitter was driven offline for 3 hours by the atta@ad there was degraded service (slow
down) for the users of Facebook. This time the reason watigadland directed against an individual
who blogged about the independence of a breakaway regiorofgiz. Attackers wanted to silence
this blogger and they did. Flooding can easily lead to theugison of critical infrastructure services
and degrades the QoS in ISP networks. Legitimate traffic aafind resources, and gets dropped
because of the high attack volume. Therefore, an effectteation of anomalies requires the ability
to separate the malicious traffic from legitimate traffi@ttts to say that some additional information
is necessary, for example some information about the visemvers, the attackers and the type of
ongoing attack (DoS, scanning, etc.). This information égded in order to take the appropriate
countermeasures and protect the access for normal users.

Intrusion detection systems (IDS) classify network trafffesed on some classification rules. They
are divided into two categories: misuse based and anomabdbl®S. A misuse based IDS is based
on signatures, and looks into the packets for a matching efpttedefined attack signatures (e.g.
Snort (45], Bro [43)). It raises an alert when a suspicious activity has beemtifiled. Like an antivirus,
misuse based systems require a regular update of theirtsigsadatabase to detect recent attacks.
Although these methods are very efficient in detecting knattacks, they cannot analyze the content
of encrypted data. Moreover a zero day attack (security Waleout available fix/signature) does not
have an available signature, and consequently cannot betddt On the other hand, anomaly based
IDS identify deviations from normal traffic patterns as amdigs. These methods try to detect changes
in some traffic descriptors at the flow level (e.g the numbemnaif open connections, requests, etc.)
based on some measurements of the same parameters in sbineepeals. Any inconsistent deviation
in the value of these parameters is considered as an andrhalynain advantage of anomaly detection
based approaches is their independence from any prior kdgelof intrusion signatures, so that such
systems may be able to detect new types of attacks. Theibadews that they need a learning phase
without attacks, and that they are not able to detect attthaktsio not change the traffic pattern.

The meaning of anomaly is sometimes misunderstood, sinomaly does not necessarily mean
malicious, and on the other hand a malicious behavior mayprmioke any visible anomaly in the
traffic. For example, both DDoS and flash crowds trigger anoabal increase in the number of
SYN towards one destination, but DDoS are malicious attaihsng at shutting down the victim
server, whereas a flash crowd is caused by legitimate usguests. We consider the problem of
anomaly detection over high speed links, such as SYN flogdiatyork & host reconnaissance, and
worm propagation leading to significant changes in some urebke network characteristics when
compared to the normal behavior. These attacks send a langlear of malicious requests towards the
victim server/network. As the majority of attacks today pegformed using TCP4[1] by exploiting
its handshake procedure it is primordial to detect theseldt(e.g. SYN flooding attacks) at an early
stage of their occurrence, and especially before excedadmd¢jmit of half-open connections of the
victim server. It is expected that an early detection withyade sufficient time for defense reaction,
such as filtering, pushback and traceback.

In this paper we design a scalable and efficient frameworkriomalies detection and classification
over high speed links. The proposed framework considerariliee detection of some abrupt changes
in time series related to some aggregated numbers of SYNafi&lgsis is performed at the flow level,
as flow level monitoring permits a considerable compressidhe information. A flow (as defined by
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Netflow or IPFIX [17]) is a set of unidirectional packets sharing the same val&etaple in their IP
headers: Source IP (SIP), Destination IP (DIP), Source (361}, Destination Port (DP), and Protocol
(P). To detect anomalies over high speed links, our first isteép reduce the amount of input data
through flow sampling, in order to focus mainly on maliciousa. Indeed, most of the time the
network traffic is normal and the operation of analyzing l# tollected data is extremely resource
consuming: it consumes for example bandwidth for reportsmaission to Network Operation Center
(NOC), and CPU time for processing the data in order to ifemind extract suspect flows. In this
paper we describe a Network based Intrusion Detection 8y@t¢DS) and not a Host Based Intrusion
Detection System (HIDS). A record is built for each flow at si@@ment points. Some of these records
are exported to NOC. The procedure of selection of the rexdgral stochastic sampling procedure. The
aim of the sampling procedure is to focus mainly on shorédiflows, to reduce the bandwidth used
for exporting the records , and to reduce the CPU load indbgedcords processing at NOC.

The data reduction phase is based on the observation thatlisied flows are the source of many
attacks (DDoS, PortScan, NetScan, worm spreading, etatin@our experiments and analysis of real
IP traces, we indeed checked for example that many non spBai® attacks carry different source port
(SP) values in their TCP segment headers so that each paieriages a small flow that is observed in
the monitoring process. In real life, IP address spoofingaiema security issue for the attacker, who
does not want to loose the control of bots, or be caught afteridentification.

The proposed sampling procedure reduces the large amouaivadata, and aims to improve the
detection of anomalies and to reduce the false alarms bysifiogwon short-lived flows. However,
even after flow level filtering, maintaining information feach active flow in the selected subset
is a cost prohibitive approach over a high speed link. The argrand CPU requirements induced
by the large state space of traffic flow identifiers (e.g. IPrasises) are not adequate for a real time
analysis. Itis not surprising that many existing anomabgdgon algorithms have been applied on time
series of some aggregated counters (e.g. # SYN packetseimeasurement poingB, 54, 49, 57.
Aggregating the counters over all the flows does not permitace back the culprit flows and thus
limits considerably the possibility of countermeasures tidis does not reveal any information about
attacker/victim for mitigation the interest of deployingch monitoring infrastructure is rather limited.
Moreover the application of change point detection algong to the aggregated traffic tends to be
inaccurate in finding attacks without generating too maisefalarms since many attacks induce only
small variations with respect to the whole traffic volume.t@&contrary our goal is to identify network
anomalies such as DoS or scans in near real-time mannerpaxtract the culprit flows for further
mitigation.

In response to the scalability limitations of maintainimmgree information such as SIP, DIP, SP, DP
or some combination of these fields for each active flow, aniefft data structure based én- ary
hash tables (Figl), called sketch16, 32, 37], was proposed and used to handle large state spaces,
with a small amount of memory requirement and a constant atettipnal (update/query) complexity.
A sketch is a multi-stage Bloom filter based on random aggdi@umof counters in shared cells, where
flows identifiers (denoted by keys) are hashed to index intetafscells in different stages usirig
different hash functions, usually chosen to reduce coltigffects, to uniformly distribute keys, and
to reduce correlations between the hash functions. To welsin the context of network anomalies
detection, IP flows are typically classified by some combdmedf fields in their packet header, such as
destination IP address (DIP), or source and destinationitiPess (SIP—DIP), destination port (DP),
etc. This flow identifier is a key used to update each of the tesles by a value which is a reward
associated with the key, for example a number of SYN packetsur paper the selection of which
combination of the IP header fields will define a flow is decigesuch a manner that it is possible to
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recognize some particular types of anomalies, such as DB8SSDflash crowds, alpha flows, worms,
network scans or port scans. Authors i#ti][have shown that a random aggregation of flow related
counters in a sketch does not significantly disrupt flow \temes. Moreover they introduced the Count-
Min Sketch (CMS) algorithmZ1], which returns an approximate value of the counter of argkey,

i.e. the accumulated value for a key. In our proposed arctoite we will use a multi-stage Bloom filter
or sketch structure similar to the one used in the CMS allgrit

The proposed framework is based on detection of changeswinthe cells of the CMS data
structure, which aggregates multiple data streams frotn sipged links in the stretched database. To
detect significant changes in the sketch cell values, wehesdlulti-chart Non-Parametric CUSUM
algorithm (MNP-CUSUM b1, 31]) over the time series inside all cells of the sketch. Eactetseries
is an accumulated number of SYN packets for all flows indekibtg a particular cell. The time series
are monitored by a MNP-CUSUM algorithm which goal is to idBnthat a change has occurred in
one of the cells, and also in which cell it has occurred. MNPSTM was selected because of its
optimality properties in terms of false alarm rates, delaysl false localization probabilities.

With an appropriate definition of which IP header fields defiridlow’ an anomaly (DoS, DDoS,
port or network scanning, etc.) results in an abrupt ineredghe times series in some cells of the
CMS data structure. This abrupt change is detected and thandex values are identified by the
MNP-CUSUM algorithms. In order to permit the mitigation dktongoing anomaly some identifier
of the culprit flows is necessary. Therefore, an additionaltM_ayer Reversible Sketch (MLRS) is
introduced and used in parallel to the CMS structure fovgafe efficient sketch inversion, in order to
extract bad flows after the detection of the anomalies.

The functional operation of the system is the following: weqeed to filter flow-record data by
focusing on small flows only, and we update the counters ofdwapact sketches (MLRS and CMS)
for discrete time interval’. Afterward, MNP-CUSUM algorithm is used to check the presenf
buckets which value deviates significantly from normal vidra After the detection of anomalies by
the CUSUM algorithm, we recover the key associated to cetlsmaised alarm by CUSUM in MLRS,
through exploiting the cell index to recover responsibleviadentifier, and we achieve verification
through count-min query of alarm value for suspect key over@MS sketch.

The main contribution of our approach is to combine skijfdlifferent components into a complete
framework for Intrusion Detection Systems (IDS). The pregubIDS has many attractive properties:
scalability, small delay as well as low False Alarm Rate (FA&d a rich and accurate output
information (attack type and instant, IP addresses androribers, etc.). The complete framework
inherits from the good properties of its main componentkéadhe reversibility of the MLRS permits
retrieving useful information about the ongoing attacks, MNP-CUSUM makes it possible to detect
the anomalies with a low delay and a low FAR, the CMS is designerder to avoid that collisions
generate false alarms. The performance of the completeefvank is extensively assessed on several
real-life traffic traces including online experimentasomith well-known attack types and instants.

The remainder of this paper is organized as follows. Se@ipresents some related works about
anomaly detection. In Sectid}) we briefly review two important building blocks in our algbm :
the CMS data structure and the MNP-CUSUM anomaly detectigorithm. Sectior4 describes our
complete framework for anomaly detection and classificatieer high speed networks. In Sectign
we present the analysis results from the application of tbpgsed framework over real Internet traces,
and we discuss its effectiveness in terms of true detedidse alarm rate and accuracy of the output.
Finally, Sectior6 presents concluding remarks.
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2. RELATED WORKS

Many important contributions have been proposed to underranomalies in network traffic. We
can cite for example Haar-wavelet analysi9|[ entropy based method€]] , sequential change
point detection methods with the CUSUM algorithdB[ 54, 51], adaptive threshold analysi& 7],
exponentially weighted moving average method (EWMAY][ Holt-Winters seasonal forecasting
based methodsl]], data reduction techniques with sketch&g,[37], SNMP MIB Support Vector
Machine (SVM) analysisq8], Principal Component Analysis (PCA}$, 28], etc.

When early approaches for anomaly detection were focuseth®rdefinition of models able
to represent the traffic pattern, other advanced works ggtgethe whole stream of packets in
one time series, and apply a change point detection algorith detect the instant of anomaly
occurrence49, 54]. The latter have a good performance in terms of spatial amghoral complexities,
but present the drawback of aggregating all the traffic inftove especially over high speed networks,
where low intensity attacks cannot be detected with such thade Furthermore, discovering the
time instant of an attack occurrence without any additionfdrmation about the malicious source
or victim is not enough to react against the attack. Usutilly,amount of traffic is huge, and manual
search/extraction of the malicious flows is a difficult opiena Therefore, to increase the accuracy
of these methods, and to uncover the victim or attacker aasbify the detected anomalies, several
approaches have been proposed in the litera®ireq9, 24, 47]. However, the applicability of such
on-line approaches for packet processing requires FPGivegunt [47].

Schwelleret al. in [47, 48] propose the use of random aggregation counters for morefaieed
detection. To discover the victim of flooding, they proposaethod based on Galois FiefdF'(2!)
for mangling and for simplifying sketch inversion. The pospd method is hardware efficient, and has
been implemented in FPGA. Bet al. in [13] propose an extension to the previous method through
sequential hashing to reduce the complexity of previoutchkiaversion methods. Ferg al. in [24]
propose a method based on XOR operator and linear algebskdtuh inversion. In this paper, we will
briefly show another method for reversing sketch throughugeof an additional 2D table and RC4
stream ciphers.

All these proposed approaches have been used either td thetdeavy hitter flows (most frequent
flows) or to detect an abrupt deviation between two discragrvals via a simple comparison. Many
different methods have been used in order to uncover anesnaliraffic flows. In-house methods do
not have optimality properties and suffer from many shortitwys such as false alarms, instabilities,
sensitivity to the training period, etc44]. In this paper we will use the multi-chart non parametric
CUSUM algorithm p1] over sketch in order to uncover changes. Indeed the ogtymaloperty of
CUSUM algorithms is translated in practice into less falsgras and smaller detection delays than
in-house methods.

We are not the only ones who detect anomalies in traffic wittBOWM based approaches. Indeed
the CUSUM algorithm has been used in order to detect a vasfatifferent security problems (mainly
DoS/DDoS and worms) from traffic inspection. For examplendvat al. [54, 53, 55| detect SYN
flooding and DDoS attacks. Wareg al. in [54] aggregate the whole traffic in one flow, and use a
non parametric version of CUSUM for detecting TCP SYN flogdifihey consider different metrics
such as number of SYN, FIN and SYN/ACK in CUSUM for detectingpfling attacks. Sirigt al.
in [49] evaluate and compare two anomaly detection algorithmagtade threshold and CUSUM) for
the detection of TCP SYN flooding. The result of the comparistwows that CUSUM is more efficient
for detecting low intensity attacks than adaptive threghbim et al. [38] implement SYN flooding
detection methods on a programmable network processcet He[26] focus on available bandwith
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estimation and DDoS detection. As the vulnerabilities afeldss communication protocols are the
vectors of many attacks today, some papers use in theirtdgtenechanism the CUSUM algorithm :
Leeet al. [35 detect DoS attacks on 3G wireless networks ; ¥aml. (2009) 6] detect Bluetooth
worm propagation with CUSUM and GLR. CUSUM has also been tseseveral authors in order
to detect worm propagation : Bet al. (2005) P] focus on worm outbreaks and SYN flooding, Bt
al. [14] detect scan-based worms in darknets. Darknets traffic &éas studied by different authors :
Ahmedet al. [4, 5] detect nested anomalies in darknet traffic with a slidirgdew mechanism and
CUSUM. Tartakovsket al. (2007) have introduced the now celebrated multi-chart CM$B81] and
initially applied it to the monitoring of production netwa (packet size analysis). The same author
(Tartakovskyet al., 2006, bQ]) has compared the performance of decentralized disetbehange
detection methods. Kangt al. study botnet detection with entropy based multi-chart CWS29].

As attacks against encrypted protocols such as SSH and Sffle signature-based IDS, statistical
approaches such as CUSUM are particularly useful in tha c&sdlullahet al. (2007) 23] detect
attacks against ciphered protocols with CUSUM.

As the main problem is the huge amount of data to process, nesearchers have tried to reduce
the size of collected data before processing, through pditiezing and sampling. The most famous
example is NetFlow 18] in CISCO 10S, which can be configured with uniform packet pang.
Packet sampling has been widely studied, some works hagstigated how packet sampling impacts
the precision of anomaly detection algorithr§,[40], and others propose various sampling techniques
to improve accuracy in anomaly detection.

As many packet sampling methods change the characterésttares of traffic flows, it is easy
to miss flows with a small number of packets, and to incoryeesitimate the flow size, especially
during the identification of mice and elephant flows. In gahef the flow is built from sampled
packets, the precision of the anomaly detection systemndispen the sampling rate. Kawahara
al. [30] show that packet sampling degrades the results of anonection algorithms. Hohet
al. [27] compared packet sampling with flow sampling and found that fsampling outperforms
packet sampling in recovering flow size distributions. Maial. [40] present the impact of random
packet sampling and random flow sampling on anomaly deteddesults revealed that both degrade
anomaly detection. However, random flow-sampling outperforandom packet sampling, because
packet sampling introduces a bias that degrades the dmtexffectiveness and increases the number
of false alarms.

Recently, Androulidakil al. in [7, 6] designed and analyzed selective flow sampling in order to
improve the accuracy of anomaly detection algorithms. Tihegstigate the impact of sampling on
the performance of non parametric CUSUM and entropy basexhaly detection, and they prove that
selective flow sampling achieves "magnification” of the aaties. This sampling method has inspired
the sampling algorithm used in this paper.

The approach presented in this paper uses sampling to réldei@mount of data and to discard
unpredictable variations of legitimate traffic. Afterwaitluses the sequential MNP-CUSUM over
sketch for anomaly detection thus allowing us to detect ghamwith a small delay and a low false alarm
rate. A new software efficient approach for sketch invergimaugh encryption and index exploitation
is proposed to provide information about victim/attacker.appropriate definition of which IP header
fields define a flow makes it possible to classify the anoméljesategories (DoS, DDoS, network or
port scanning, etc.).

After the seminal papers by Cormode and Muthukrishd@n40, 21] a few methods which combine
the use of sketches and time series analysis methods havebkkshed B4, 46, 22, 15]. Lakhinaet
al. in [34] improve the performance of their Principal Component Ase (PCA) based system by

Copyright(© 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmg010;00:1-24



ANOMALY-BASED INTRUSION DETECTION SYSTEMS : THEORY AND PRATICE 7

inserting the use of sketch structures. Analysis of PCA wddtlperformance in the discovery of traffic
anomalies have revealed that these approaches are somptiomne to false alarms and misdetections
[44]. Indeed PCA methods are data-driven and require a paatigdbng anomaly free training phase
in order to calibrate the decomposition basis. This leadgigk of incorporating some of the anomalies
of the training dataset into the decomposition basis. Sontkoas combine the use of sketch and
a multiresolution (or multiscale) analysis based on wasele order to undermine traffic anomalies
[22, 15]. Wavelet analysis is used to detect discontinuities dinfar patterns) in traffic data. One of
the advantages of wavelet analysis is that it does not needréng phase with anomaly free traffic.
Dewaeleet al. analyze a 6 years long traffic trace on a trans-Pacific baekbok (MAWI dataset).
They discover a large number of irregular patterns; somelaego known anomalies but the method
also reveals a large number of unexpected flows, be theiralgitimate or not remaining still an open
issue. Example of "anomalous” flows can be elephant flows (Piffaffic, FTP or SSH connections), or
destination IP addresses receiving small number of paticetsa large number of source IP addresses
(P2P traffic). The key used in order to index the cells in thetatk data structure in2p, 15| is a
destination IP address (DIP) or a source IP address (SIP}6]rthe authors also detect changes in
high-dimensional traffic data. They use a non parametringbaetection test based on the U statistics.
Two different dimension reduction techniques are usedREmk which is based on record filtering and
HashRank which is based on random aggregation.

Our method combines sketch data structures (CMS and rbleskietch) and the MNP-CUSUM
to discover in real-time significant changes in the numbelS¥N packets associated to some
"flows”. Flows are associated to some particular fields inlthand TCP headers : source IP address
(SIP), destination IP address (DIP), source port (SP),ird&in port (DP) or a combination of
those fields. There are a number of advantages to using oaritalp compared to other published
algorithms. MNP-CUSUM algorithm is particularly simpledanomputationally efficient compared
to decomposition methods such as PCA or wavelet analysiseder CUSUM is sequential by
nature which makes it adapted to on-line treatments. Thienajity properties of the CUSUM have
been theoretically established (low false alarm rate, lelay) and this translates into practice into
fewer raised false alarms than decomposition based metiddecognize that MNP-CUSUM is less
sensitive to subtle irregularities in traffic than wavelased analysis and thus reveals less "anomalies”
in traffic than P2]. Using a non-parametric version of the CUSUM algorithm {NBSUM) makes the
algorithm robust against non stationarities in traffic. ey very important feature of our algorithm
is that it reveals precise information about the ongoingcktt Many methods raise alarms but then
a manual inspection of the traffic is often necessary in otdeanalyze the traffic and to classify
the anomaly (DoS, scan, false alarm, etc.) Our algorithroraates the classification step by using
appropriate combination of TCP/IP header fields as keysdexrtells in the sketch data structures.
Our algorithm moreover pinpoints malicious flows as it im#s a sketch reversion step in order to
recover the value of the keys from the index of anomalous cell

In this section, we briefly sur§eyTM59ﬁc'r:eﬂﬁ% 8MWHH?CMS) data structure and Multi-

chart Non-Parametric CUSUM (MNP-CUSUM) used in our framewo
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3.1. Count-Min Sketch

Cormode and Muthukrishna]] introduced another kind of multi-stage Bloom filter call€dunt
Min Sketch (CMS). The advantage of the proposed algorithtmgsovide an estimate of the associated
counter with a key in the stretched data structure (CMS)SLets; s5 . . . s, be the set of input stream,
where each item; = (k;, ;) is identified by a key:; € U, drawn from a fixed universe of itenis.

v; € Ris the reward associated with each key. For example,with #SY N andx; = DIP, the goal
will be to count the number of SYN packets corresponding &odiiferent destination IP addresses.
The sketch data structure is made upidfash tables. The arrival of an item with keyincrements
its associated counter in th&" hash table by; (Cj,n,(ri)+ = vi), as shown in Figuré. The update
procedure is realized by different hash functions, chosen from the set of 2-univdraah functions
hj(k:) = {((ajri + b;) mod Py) mod w'}, to uniformly distributes; over hash tables and to reduce
collisions. The parametédfy is a prime number larger than the maximum number in the uséyer
where Mersenne prime numbers of the fozm- 1 are generally chosen for fast implementatiop.
andb; are random integers smaller th&}y, with a; # 0. To highlight the use of 2-universal hash
function in the context of IP addresB{ = 2! — 1) let us takes; equal tol.2.3.4, with random values
of a; = 2 andb; = 3, and a sketch width/' = 256, the result of hash function §(1.2.3.4) = 4. This
means that the associate bucket in the first line of the skettie number 4.

01 hK) w1 01~ 4 o w-l
0 0
‘v (1.2.3.45)
— : —
Streaming
d-1 data
h(k,) h,(1.2.3.4)
(a) Sketch structure. (b) Update withw; = 1.2.3.4 & v; = 5.

Figure 1. Sketch data structure.

The Count-Min point query returns an estimate of the couioteat given keyx; as the minimum of
the correspondingd counter values §;(x;) = Ogyind{C[j] [hj(Ki)]}-
1<

The definition of the accuracy of the result of a CMS query isbabilistic. The distance between
the estimated and true values of the count should be lowertipaecisiors with an error probability at
mostd : P(d(s, s) < €) > 1—4. With this constraint, the parameteénumber of pairwise independent
universal hash functions) and (number of hash values) should be chosen as follaivs :[In(1/6)]
andw’ = [e/e] wheree is the base of the Neperian logarithm. Thus, it maintains esbdtorage
requirements ofn(1/6) x (1/¢) count cells.

Flow records from collected data traces, can be classiftedsiries of x;, v;), wherex,; can be the
concatenation of DIP and DX/ P|DP), or any other combination from flow record identifiers, and
the valuey; can be, for example, the number of SYN requests. The CMS quargheck for example
if a givenDIP|DP is under SYN flooding attack by verifying the valuef(x;). But it is unable to
identify which DI P|D P is under attack.

3.2. MNP-CUSUM

To uncover anomalies we use the multi-chart non parametd8WM algorithm (MNP-CUSUM,
[51]). The CUSUM algorithm is a sequential change point detectnethod. Suppose that a flow
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of data is monitored sequentiallyyi, y2,ys, . ... The goal of a sequential change point detection
algorithm is to detect with a delay as small as possible agham the distribution of the datg.
Suppose that the pre-change and post-change distribwtierianown and that they are characterized
by probability density functions (p.d.ffy, (yx) andfs, (yx). The alarm time in the parametric version
of the CUSUM algorithm is defined @s = min{k > 1: g, > h} whereh is a threshold angy, is

the test statistics which can be computed sequentiglly = 0, gr = max(0, gx_1 + log ?Zz 8:;)
1

The rational behind the CUSUM algorithm is that before thande the quantitiog % is on the
average negative, whereas after the change it is on thegevpsitive : as a consequence, the test
statisticsg,, remains aroun@ before the change, and it increases linearly with a pos#iope after
the change, until it reaches the threshiblthen the alarm is raised. This is illustrated on Fig2irén

this case a change in the mean of a Gaussian time seriessedefg. is the cumulated log-likelihood

ratio which is defined aso = 0, 5, = 1 +log 724 ;. = log 243 is the log-likelihood ratio.

One can observe from this figure th#t has a negative slope before the change point and a positive
slope after the change has occurred.

-200
0

Figure 2. Intuitive derivation of the CUSUM.

The CUSUM algorithm is asymptotically optimal in the cla&S, of tests with average time
between false alarms bounded hyMore precisely, it reaches the Lorden bound which statas th
among the clas¥, the average detection delay is at best proportion&g¢y) asy — oo with a
proportionality factor that depends on the Kullback-Leitdivergence between pre-change and post-
change distributions.

Now suppose that we have to monitor several channels or isgjogttly : for exampley (i) will be
the number of SYN packets during a time interkebr a subset of all DIP adresses (e.g. those who
collide in the same cell numbeéof a given hash table). Until the unknown change ttimeach random
value follows a distributioryy, ;(yx(¢)) and afterty a change occurs in the distributigi ; (yx (7)) of
one channel only, say channel numberhe goal is to identify with a small delay that the change has
occurred and also in which channel it has occurred. The roh#it parametric CUSUMB[L], simply
called LR-CUSUM, is defined ag, = min;<;<n t,(i) wheret,(:) = min {k > 1: g(i) > h;}. h;
is a threshold adapted to the chanh@onstant in our case) ang (i) is a CUSUM test statistics for

channel numbei : go(i) = 0, gx (i) = max(0, gr—1(i) + log %) The alarm is raised when
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one of the test statistieg. () reaches the threshold and the change is declared in the charingéhe
LR-CUSUM is asymptotically optimal in the sense that (i) theerage detection delay for a change
of typei is asymptotically linear witth (whenh — oo) with a slope that is related to the entropy of
the pre-change distribution, and (ii)/if = log(N~) then the mean time before false alarms is greater
than~ and the worst case of the average detection delay is asyiogpiinear withlog(vy) (when

v — 00).

Due to large variations in traffic patterns, to non statidies, and to lack of consensus on network
traffic characteristics, we cannot assume that the mowiteaeiables follow a specific distribution.
Therefore, we use the non-parametric version of the mhliHcCUSUM, as it only requires a very
loose information on the distribution of the traffic timeissrbefore and after the change. In the non-

parametric multi-chart CUSUM (MNP-CUSUM) the log-liketibd ratiolog% is replaced
with some functionZ;(yx(¢)) which is chosen in such a way that its average Vv&UE; (v (7))) is
negative before the change and positive after the changex@nple, in our simulations we chose
L;(yx (7)) = yx (i) — (us +coy), wherew,; ando; represent the pre-change mean and standard deviation
respectively. With this definition the non parametric CUSi$Mensitive to a change in the mean value
of the time series, supposing thatis the average value before change, and supposing thatehagsy
value of the time series after the change is greater thanco;.

Network traffic is naturally variable. Without any anomabhttacks, flashcrowds, etc.) the traffic
is subject to natural variations due, for example, to dayiheffects. These variations occur on a
significantly longer time scale than anomalies which cam the identified as abrupt changes in
traffic patterns. In this paper, we will use CUSUM algorithondetect short term anomalies, and
the detection of longer-term anomalies (several minutebaurs) is not addressed in this paper.
Because of natural variability the parameters of traffi¢riigtion in normal operation, for example
1; and o;, slowly vary along the time. In order to follow the slow trendf traffic parameters
on the long term the meam; and variances? before change are estimated recursively using the
EWMA (Exponentially Weighted Moving Average) 2;(k) = ajii(k — 1) + (1 — a)yx(i) and
6%(k) = a6?(k—1)+(1—a)(yx (i) — f1:(k))?. The estimation of mean and variance using the EWMA
can deal with seasonal variations (working hours, nighy, afaveek, etc.), by slowly updating these
statistical parameterg(,62). It is worth noting that the algorithm is not much sensitivehe value of
the weighting parameter that should be taken close tg a typical value isx = 0.9.

4. PROPOSED APPROACH

To detect network anomalies over high speed networks, thelfigical step is data reduction and
aggregation of the huge amount of collected flow recordss Btep is useful for several reasons,
including saving the bandwidth used for report transmissaod reducing the memory requirementand
the processing complexity of analyzing collected data. @eexve this through flow level sampling, by
selecting small size flows (size is the number of packetsdriltw), as done in7, 6].

Flows with a small number of packets are the source of mangnaties. In DDoS/DoS, the attacker
uses a spoofed IP address with each packet to evade detébtiotification, filtering and tracing back.
Even when using botnets, the disclosure of zombies is ndtdrirterest of the attacker. Firstly, the
identification of the attacker may be more easily disceraad,secondly he wants to keep his remote
control of the zombie for future use. Therefore, spoofeds®lP addresses are used by bots in each
packet when launching DDoS.

Copyright(© 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmg010;00:1-24



ANOMALY-BASED INTRUSION DETECTION SYSTEMS : THEORY AND PRATICE 11

In the case of NetScan, worms usually scan networks to im@etvulnerable hosts as quickly as
possible (e.g. Code Red, Slammer). Network scan also alovedtacker to identify an active host for
security assessment, where all exploitations are alwacepled by a reconnaissance phase. In security
assessment, the malicious user scans port for enumerativiges to identify vulnerable applications.
Each packet in all these attacks results in a new flow.

To select all small flows with size < B, we choose a sampling rate inversely proportional to the
number of packets in the flow (= 1/z) if (x > B) and no samplingf (x < B). B is a threshold
for the number of packets. This is a slight modification oésgle sampling){ = B/n.x) suggested
in [7]. Despite the sampling, the reduction gain ratio was apprately 5% over the used traces.
Manual inspection of these IP traces with P2P traffic, shdvasthe majority of TCP flows have less
than 3 packets/flow. In fact, the dominant number of recordssanall flows. Therefore, to achieve
a reduction ratio of more thak%, we use the random sampling technique to reduce the number of
records with small numbers of packets, as shown irleq.

- 1)

rand[l,k]==171:0 ifz<B
rand[l,z] ==171 : 0 Otherwise

If ¢ = 1then the flow is kept otherwise it is discarded. This meartsitiessampling rate ig(= 1/k) if

(x < B)and @ = 1/z)if (x > B). In our simulations we took = 2 andB = 3. At monitoring points
each flow generates a record. Once the flow has expired (é#cause of flow termination or because
of timeout expiration) the numberof packets in the flow determines the value of the probahility).
The record is then exported to the central NOC with probghiliz).

It is worth noting that per flow record collection is perfordna monitoring points and that records
processing for anomalies detection and malicious flowstifileation is performed at the central NOC.
Monitoring points can be for example routers in the infrasture of the ISP. In this paper, we assume
the monitoring infrastructure (monitoring points, and ttehcollector) has always enough computing
resources to monitor and analyze the attack, while the eop8an of communication resources are
mitigated by sampling. The sampling procedure is benefgiale it reduces the number of exported
flows which results in bandwidth usage reduction for flow exgpand in CPU usage reduction at NOC.
Under attack situations, load shedding mechanisms, suphoaesed in §], might be considered as
extensions, but these are left out of scope of the currerik.wor

When designing a traffic monitoring system (IDS, applicatiecognition system, etc.) it is
important to consider how easy it can be for an adversary adethe detector. One could imagine
that the attacker would try to evade the detector by gemgyatitificially large flows. This strategy
would not succeed in the context of SYN flooding attacks fansaeasons that we are going to
explain. Let us assume that the attacker sends a SYN pac#tega@s on transmitting data without
acknowledging the SYN-ACK packet. Then the server will safRST packet and the TCP connection
will be closed without having generated a "large flow”. Intfabe attacker cancels the SYN flooding
attack by generating packets in the same flow without sen8MJACK. On the other hand if the
attacker sends several SYN packets in the same TCP conméutise packets will be considered as
duplicate SYN packets by the server and this will not result iDoS attack. It is important to note,
that small flow sampling is applicable for TCP SYN flooding é&¥N scanning attacks, and can not
be applied to detect other attacks based on UDP or ICMP.

After data reduction, the anomaly detection phase use®namaggregation, to avoid aggregating the
whole set of records into one, and to reduce the required meimper-record treatment. The proposed
approach is based on two data structures: Count-Min Skétets) and Multi-Layer reversible Sketch
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(MLRS) as shown in Figur®. The theoretical background on the CMS data structure arldeoMNP-
CUSUM algorithm that operates over this structure is sunmadiin sectior8. The shared counters are
continuously updated from the input data streamis a key that identifies a flow (e.g. SIP—DIP) and
v; is a reward associated to that flow ; in our casis a number of SYN packets for this particular flow
during a fixed duration periodl (e.g.7 = 1 min.) The cells in the sketch are continuously updated that
is to say that for each new SYN packet theorresponding cells in the CMS sketch are incremented
by 1. d instances of the multi-channel non parametric CUSUM (MNPSOM) algorithm run in the
background in order to monitor each row of the sketch. Theigitm detect a significant change in one
of the cells of each row. At the end of each periBthe MNP-CUSUM statisticgy (i, j) are updated

as follows :gx (i, ) = max(0, gr—1(4, j) + Awm; j — (f1; + cd45)). Ax; ; is the difference between the
value of the cell4, 7) in two consecutive intervals or, equivalently, the increinaf cell (4, j) during
that interval /i;; andc}fj are the sample mean and sample variance of the time seriel mioccements

Az j(k),k = 1,2,...; they are computed as an exponential moving average as iexydained in
section3. In our implementation, each cell in the 2D table becomesta staucture, containing the
current and previous value of the number of SYN, the sampkevag and variancérfj and the value

of MNP-CUSUM statisticgyx (¢, 7). Once the statisticgy (i, j) exceeds the thresholdfor one of the
cells, say cellj, then the MNP-CUSUM that monitors roinraises an alarm. When we have at least
one alarm in all rows of the sketch, then a global alarm iserhis

As we want to uncover culprit flows, e.g. the flows respondibtehe CUSUM raised alarms, one
solution for verification could be to keep the key valuesdes file/database, and to re-hash these data
to find the key that maps to cells with raised alarms. This @doce is heavy in terms of storage space
and update speed as it requires storing all keys for veiificat

In fact, due to random aggregation and collision occurremdth hash functions, reversing sketch
is a difficult operation. However, some interesting workgehbeen proposed ir, 13, 24] to reverse
hashing, in order to identify keys associated with cellsitigvaised alarms. The first approactv]
is based on modular hashing and mangling via Galois Fgi{2™) operators, which is complex and
more efficient for hardware implementation, as it was dorte WPGA equipment in47]. The second
approachl3] is an extension of the previous method. The third approadhi$ based on nonsingular
matrix onGF ({0, 1}", @, .), and requires more memory and update cost than the previet®ch

Our approach to reverse sketch is based on the idea of @rplaiell index to store keys. An
additional 2D table, so-called Multi-Layer Reversible 8ke(MLRS), also containing shared counters
is used (as shown by the first table in Fig@eThe key is implicitly stored in this 2D table. Firstly,
the key in binary is divided intbequal parts, where each part is used as index of the sharatecau
each line of the MLRS. The width of each line in the MLRS talslgiven byw = 27, and the number
of linesisl = [N/P]. N is the number of bits used to represent the largest numbkeioniverse of
key, andP is the number of bits in each part of the key. The update praeeaf the CMS and MLRS
is summarized by Algorithm.

? . o
1 = v, I

Figure 3. Multi-Layer Reversible Sket®tiLRSand Count-Min SketclcMS
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Algorithm 1 Sketches Update procedure
1: Ckey = Encrypt_RC4(key);

2. fori=0tod—1do

3 j = univ-hash;(Ckey);

4. CMSJi][j].counter+ = v;

5: end for

6: fori=0tol —1do

7. MLRS[i][Ckey & (2F — 1)].counter+ = v;
8 Ckey >>= P,

9: end for

A MNP-CUSUM runs in the background for each row of the MLRSusture, as it is the case for
the CMS structure. At the end of each inter¥alwe release a hierarchical search in each layer of the
MLRS for cells with alarm raised by the MNP-CUSUM. We must &éat least one cell in each layer
with a CUSUM raised alarm. Otherwise, no needs to continaeckéng in other layers or to look in
the result of the CMS.

In the simple case, when we have one alarm in each layer, yheakebe recovered by concatenating
the index of théd cells in MLRS. We cannot be sure of the suspect key beforécation, since because
of collisions with other key prefixes, the correspondingrdeu value can become large without any
attack going on. The suspect key is verified through hashidgverifying if an alarm was raised for
the corresponding cells of the CMS.

In the case okey = DI P, even with different widths for the decomposition procex(8bit, 10bit,
12bit, etc.), many cells in different layers will be subjéatcollision occurrence (same prefix, etc.),
and in some cases, we will end up with a larger set of keys tilyvirough CMSthan the original
key list since all possible combinations must be considdxedertheless, it is important to note that
even if the set of suspect keys is larger than the departwggibrequires smaller memory and has a
fast update time with respect to maintaining a databaseffilee original key list.

To resolve this problem and reduce collision in MLRS, we usergption with stream cipher RC4
(Ron’s Code 25]) algorithm rather than Galois FieldF'(2™). In cryptography RC4 is the most
popular stream cipher. It is used in popular protocols siclSaL or WEP. RC4 is remarkable for
its simplicity and speed in software. The used C impleméniadf the RC4 code is available frorf][
The RC4 algorithm is ideal for software implementation, fagsequires only byte manipulations
and its implementation is based on a few lines of code. It lenlproven to be powerful in our
experimentations for mangling and destroying any corieabetween keys having some portion in
common (prefixes). The Hamming distance between cipehesgsdl ik large even if there is some
correlation between the original ones.

Encryptionis a bijective function, which transforms cléatt key into cipher text, denoted laykey,
whereCkey = Eg(key) andkey = Dg(Ckey). S is the shared key, and the functi@H) must be
chosen in a way to destroy any correlation between cleas teith for example the same prefix. This
principle is shown in Tablé for the key built from the concatenation of DIP with DP, wittetuse of
RCA4.

Any bijective function able to destroy correlation betwdeys, and return a completely random
set of keys, can be used. Afterwardkey is divided intol parts and used as an index in MLRS. To
recover the key from cells with raised alarms in MLRS, we nuastcatenate the raised alarm indexes
in each layer to gef'key, and useDg(Ckey) to recover the suspect keyfrom MLRS. This key is
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DIP:DP Encrypted
192.168.100.101:80) 6E96A9468CF5
192.168.100.102:8Q) DD08C66271E4
192.168.100.103:8() 2FOF5EB19313
192.168.100.104:8() 3FE7204B0435

Table I. Encryption oDIP—DPby RC4.

used for verification through CMS to ensure that all assediaglls in thel hash tables have raised
alarms. The hierarchical search procedure, as well ascagidn and sketch inversion are summarized
in Algorithm 2, for a universe of siz&", and a width of2” for MLRS, P = N/2 andl = 2. A
boolean alarm variable is used to indicate if the MNP-CUSUybgthm has raised an alarm for the
considered cell.

Algorithm 2 Hierarchical search and verification

1: fori=0t02F —1do
if (MLRS|0][¢].Alarm) then

N

3: for j =0to2” — 1do

4 if (M LRS[1][j].Alarm) then

5: Ckey = (j << P) | ;

6: Alarm = ems_alarm_query(CM S, Ckey);
7: if (Alarm) then

8: key = decrypt_RC4(Ckey);
o: output(key)

10: end if

11: end if

12: end for

13:  endif

14: end for

The proposed framework can be applied to detect differgrasyf attacks, e.g. TCP SYN flooding,
UDP packet storms, TCP/UDP PortScan, NetScan, Smurf, eteetftheless, in this paper, we will
only focus on TCP traffic and especially on the number of cotioe requests (SYN).The proposed
method does not only perform anomaly detection, that is ydsaaise an alarm when an anomaly is
detected. Itis also able to able to identify malicious flolr®tigh the use of associated key values, and
to classify the anomaly by using different key definitions.

To classify anomaly, we extract from each flow record thregskgey;, = DIP|DP, key, =
SIP|DIP, keys = SIP|DP) through the concatenation of the binary value of two fietdsfeach
entry. These keys are used to update three instances ofippegad approach with the observed number
of SYN packets with the corresponding key value for eachrdiectime interval (say every minute).
We denote byF; the framework instance associated witky;. The classification algorithm can be
described as follows :

Step 1. We seek to detect victims of DoS/DDoS SYN flooding. We updag¢ecounters of; with
the key; during predefined” time intervals, and we output the ligt of all victim serversDI P|DP.
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Step 2. The keys is used to update a second instariée Outputs of this step are maliciodd P,
which try to scan the ports of a given! P, if the latter is not a victim of DDoS/DoS. In contrast, if
DIPisin list L (i.e. victim of flooding), we store a list of suspect (LoS) vgecelements areS( P,
DIP, DP), becauseI P are suspects of contribution in DDoS/DoS through a staticcaddress.

Step 3. Thekeys is used to update a third instanEg, where output keys arg/ P trying to perform
a NetScan activity, if thé&'7 P does not belong to the list LoS. Otherwise, it is the sourd@@bS/DoS
flooding.

The preceding three steps are used in our implementaticartpidentify three types of anomalies
(DDoS/DoS victim, NetScan and PortScan), and provide Wgsflormation about victim or attacker.
The identification of scanning attacks is based on sourcesadés generating too many connection
requests at different ports/hosts. The PortScan and Net®esae chosen for their association with
malicious attacks and worms. PortScan is often used bykattsdor vulnerability assessment of
running applications at victim host. NetScan are usuallygsmed by worms in their spreading phase
(random scan in code Red, linear in Blaster, bias in code RatlNimda, etc.) to gain access to new
machines and infect them. Our proposed approach is abledotddl these kinds of scan activities.

5. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of using MNFSOM over a Multi-Layer Reversible
Sketch (MLRS) and a Count Min Sketch (CMS) structures in #tection and classification of attacks
(SYN flooding attack, NetScan and PortScan). We have impi@deMNP-CUSUM over sketch in
C by extending the code of CMS available frofj.[We have tested the proposed algorithm over
MAWI traces available fromZ], and other IP traces used in the OSCAR project funded byrdrech
National Research Agency. The so-called OTIP and ADSL sragere collected and provided to the
OSCAR consortium by France Telecom (FT). The ADSL trace vedlected on a geographical and
technical subdivision of an ADSL network. The OTIP trace &2GB trace made of Netflow records
from CISCO routers in a FT backbone network. These traces usrd as a benchmark and have been
widely analyzed in the project. We also use one of the tracksated during online experiments, which
were carried out to test the detection performance of therittgns designed during the project. The
topology of the measurement overlay deployed during the &FS@roject is displayed on Figure

Each partner is equipped with a DAG card which sniffes allith#fic between a laboratory network
and a central router in the partner institution. Flow lewegparts are collected at the sniffing point
by each partner and sent to a central Network Operation €&4@C) by UDP sockets. Different
algorithms run at the NOC in order to detect anomalies in gggegated reports. Figudedescribes a
centralized detection architecture. Semi-decentrabzelitectures with anomaly detection algorithms
running at the different monitoring points have also beeplémented in OSCAR.

In order to reduce the spatial and temporal complexity opttoposed algorithms, OSCAR partners
decided to enhance the capture process of high speed smiffidg Endace DAG card), by adding a
small C program to transform captured packets over one mintt OSCARFIX flows.

Therefore, we keep approximately the same definition of flevthe one used by Netflowl§] in
Cisco routers or standardized by the IETF in the IPFIX prot¢t7]. An OSCARFIX flow is defined
as a unidirectional stream of packets that share the samteifiless (source IP, destination IP, protocol,
source port, destination port). When a flow is consideredrashied (through flow aging or TCP
connection termination) a flow record is exported. The OSEBRRflow record contains a variety
of information such as the source and destination IP, samndalestination ports. Instead of including
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Partner DAG DAG  Partney,

Figure 4. Topology of the measurement overlay

the binary XOR of all TCP flags of the flow in the record as it is tase in Netflow, OSCARFIX flow
records include the number of SYN, SYNACK, RST & FIN packetgtie flow. In OSCARFIX we

took a timeout value of 1 minute. A new flow record is generatét the first new packets crossing
the DAG sniffing card. To simplify implementation, even iktow doesn't finish in the current time
interval (1 min), subsequent packets are considered aadialpto a new flow in the following minute.

Although the time measurement interval has an impact ongtection precision, an agreement at 1
minute of data collection has been adopted by all the prpj@dhers. In fact, a small interval enhances
the detection delay at the cost of potentially increasirgy False Alarm Rate (FAR). On the other
hand, a large interval increases the detection delay. Onateivas considered as a good tradeoff by
the OSCAR consortium. Online implementation over Endac&@ard has been realized, and many
experiments have been conducted online for accuracy asa@yar results are encouraging in terms
of accuracy and response time. All the experiments have pedarmed using a Ubuntu box with an
Intel core 2 DUO (E4500) witR.2 Ghz, 3 GB of RAM and 750 GB SATA disks.

In this paper, we will present the analysis results obtamest 3 traces. The first trace is made up
of two hours of OSCARFIX flow records collected during onlgeriments in the framework of the
OSCAR project. The second set of measurements is made upA@&h download trace ; it contains
unidirectional packet traces collected during 3 hours oaaygaphical and technical subdivision of an
ADSL access network. The OTIP trace contains 3 days of litiineal traces collected with NetFlow
on some routers of a backbone network. The main objectivasiipg the last traces (ADSL & OTIP)
is to check the scalability of our algorithms that is to sagitlability to analyze traffic at a high data
rate in real time. Each report (1 minute) must be analyzelimihe next minute of data collection. The
last experiment has been conducted with the aim of analybhgerformance of the algorithms ; we
conducted an off-line experiment on a synthetic trace tdysthe influence of the various parameters
on the detection and false alarm rates.

The parameters we considered for the MNP-CUSUM algorithmeulge following ones: threshold
valueh = 7 in the MNP-CUSUM algorithms, weighting facter = 0.9 in the EWMA algorithms
(estimation of the sample mean and variance), standardtitaviscaling factoe = 0.5 in the update
procedure of the MNP-CUSUM algorithms. Sketches paramébeMLRS wereP = 12 (I = 4) for
keys with 48bits, and® = 14 (I = 5) for keys with 64bits. CMS parameters wete: = 4096 and the
number of hash functions= 4 chosen from the set of 2-universal hash functions, and \wihuse of
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tabulation p2]. The used configuration parameters of the sampling alyonivere:B = 3 andk = 2.
Experiment 1. In the first experiment, we validate and tune the model usingrdine experiment
trace. This online experiment has been conducted using®dédmachines, and with the collaboration
of some French research laboratories (project partneng)déta trace corresponds to traffic collected

at NOC in Figured, and each minute is the concatenation of OSCARFIX repoflsated, using DAG
cards with GPS-synchronized timestamp, over the expetaheatwork of each partner. These reports
are exported to NOC over UDP sockets. Reports contain muckgbaund traffic (HTTP, SSH, etc.)
with mainly P2P traffic. During this experiment, well knowtteecks type/instant have been generated
by FT to test the detection efficiency of the proposed algorg. Figure$(a), 5(b) & 5(c) display the
variation of the total number of: flows, packets, and SYN befnd after sampling. We can obviously
conclude from Figur&(c)to the efficiency of the sampling algorithm in reducing legdate variations
and the amount of traffic to process. After the applicatioawfproposed approach over this trace, we
identify 4 victims of SYN flooding attacks, and 4 hosts scagrthe network for an SSH server. The
number of malicious SYN received by the four different vicservers are shown in Figuséd), where

we can observe 4 attacks of different intensity. The numbe&YN received by victims (10.0.0.1-
4:18019) are obtained by filtering the trace to extract flowords with the identified I P.D P using

our approach. We demonstrate the ability to detect low Bitgmttacks. In this trace, we also identify
NetScan against SSH server. The number of SYN sent by scaaredisplayed in Figurg(e), where
even for a small intensity, the attack has been detecteddamdified. The total number of SYN as well
as raised alarms are shown in Figli(@#). It is important to note that we had 0 false positives and 0
false negatives reflecting the efficiency of our proposed@agh. The response time for the analysis
of the 2 hour trace is less than one minute.

As we are collecting unsampled flow-records, we evaluatenpact of the used sampling technique
on the precision of the anomaly detection algorithm. To caraghe results, we count the number of
raised alarms before and after sampling. We have one additiaised alarm after sampling during the
last flooding attack. This is due to the ability of the samgliachnique used to magnify suspect flows.

Furthermore, to obtain a comparison, we apply single chamme parametric CUSUM over the
raw sequence which results from the aggregation of all flows dne time series. The result is very
interesting and deserves to be noted. First, all NetScankattwere not detected due to aggregation,
because low intensity traffic fluctuations are not obsere®tcond, we had 3 false alarms even when
tuning the parametersandc. Either the last 2 flooding attacks were missed after turongye had a
larger number of false alarms. On the other hand, only ose falarm was obtained by applying single
channel CUSUM over the sampled traffic, where many legitntigviations have been smoothed or
discarded by the proposed sampling technique.

Experiment 2. Since the performance observed over the previous 2 houcs tan not be
generalized without further analysis, we consider 3 hodrsiradirectional packet level capture
(pcap) with anonymized IP addresses over an ADSL infrasiracand we transform this trace into
OSCARFIXflow records. We carry out the same analysis and manual \a&iifit as in the first
experiment. In fact, we conduct the same analysis over dpgoa download ADSL traces, but due
to space limitations, we omit to comment on the results overdownload trace since they are very
similar to those over the upload trace.

Figures6(a), 6(b) & 6(c) present the total number of flows, packets, and SYN beforeadied
sampling. One SYN flooding attack and one PortScan have deatified by our approach. Figuséd)
shows the number of SYN received by the identified victim eerof distributed SYN flooding
(DIP1.DP1 = 97.65.192.238 : 35415), and figure6(e) displays the number of SYN generated for
PortScan bySTP2 = 240.178.148.21 to scan the ports oD/ P2 = 97.68.23.88. After filtering, we
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Figure 5. Analysis results for the online experiment.

get only one additional alarm for SYN flooding at its end. As timly available information about this
trace is P2P contents with some attacks, this trace mayioartteer undetected anomalies and we can
not conclude to O false negatives, but we can conclude tcs@ fadsitive. The identified SYN flooding
additional alarm has been manually verified during our aislyand also detected by other partners.
The PortScan is verified manually by flow-records extractiod verification. Figur&(f) shows the
time series of the total number of SYN for sampled flows, ard #ised alarms. The response time for
the analysis of the 3 hours ADSL trace is less than 5 minutes.

Experiment 3. This trace is exported from CISCO routers (with Netflow v5atoentral collector
(NOC), whose role is to store the received records in a dadhle after anonymizing IP addresses. It
contains 3 days of flow records-(896.10° flows) and has a size ef 6.9GB.

Figures7(a), 7(b) and7(c) show the variation of the total number of flows, packets antll B&fore
and after sampling during the 3 days. After the applicatibow proposed framework over traces to
uncover attacks, we compare our results with other partressits. We conclude to one misdetection
after comparison and manual verification. Afterward, wdanthe number of connection requests
received by each identified victim at the specific port as shimwfigure 7(d) for manual verification.
The number of SYN received by victim (attack missed by ourrapph) is presented in figui&T).
The manual verification of missed attack shows a TCP floodiniifferent ports, and this explains its
misdetection. Furthermore, the detection of flooding ded#nt ports can be achieved by monitoring
the DIP instead of DI P.DP. Also, we notice the presence of one NetScarblhy? = 224.87.77.70
with DP = 65506 (figure 7(e)). Manual verification ofOTIP trace proves the NetScan by the given
S1P atraised alarm instants. It is worth noting that respomse for analyzing the whole 3 dagsTIP
trace is about a few minutes for the 3 days trace over a Pertu@hz with 3 GB of RAM memory.

The previous plots over real IP traces demonstrate thatuthar of anomalous source/destination
adress pairs (6 abnormal behaviors) is so small with regpebe whole number of collected records
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Figure 6. Analysis results for ADSL download trace.
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Figure 7. Analysis results for the OTIP trace.

in the trace, that providing only an attack instant withautfier information is not enough to uncover
culprit flows. Our proposed approach identifies the bad flomsleelps understanding the malicious
activities behind these flows.
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Figure 8. Comparison between CUSUM over raw data & CUSUM eketch.

Experiment 4. This experiment is conducted in order to study the accurdcth® proposed
framework and to test its sensitivity with respect to theapageters of the detection algorithm. We
begin our evaluation by a comparison between CUSUM over @a dnd CUSUM over sketch. By
raw data we mean that the input of the CUSUM algorithm is thetseries of aggregated number of
SYN. We use an IP trace of 2 hours, with 6 known anomaliesimgidype (4 DDoS and 2 NetScan
attacks) as shown in figur@&@) The 2 scan attacks are represented by filled curves in fig{ae
The alarms raised by single channel NP-CUSUM over raw daalaown in figure3(b), where we
can observe false alarms due to variations in the aggregatetier of SYN, and misdetection of low
intensity attacks, which evade the detector after aggi@yaft the whole traffic into one time series.
The 2 NetScan attacks are not detected when aggregatindtble waffic in one time-series, because
the change is smoothed by the aggregation of the number of .flemrthermore, to detect DDoS with
small intensity attacks, a low threshold value for CUSUMeiguired. However, low threshold value in
CUSUM algorithm incurs high false alarm rate with the deatecof only 4 over the 6 existing attacks.
Figure8(c) shows the alarms raised by the MNP-CUSUM over sketch. A fireingd analysis results
from using many channels in order to monitor the traffic. T¢tlearly reduces the number of false
alarms, and increases the hit ratio of low intensity attacks

The efficiency of an anomaly detection algorithm is usuadigatibed by two values: the power of the
test (or detection rate) and the false alarm rate (FAR). lncoutext false alarms are legitimate flows
that are classified as malicious, whereas the power of théstdse proportion of malicious flows that
are effectively detected as malicious. There is an inhdradeoff between power and FAR. Indeed,
in an attempt to detect malicious flows with a higher probghilne could be tempted to decrease the
detection threshold but this would automatically resuli imgher FAR. The ROC (Receiver Operating
Characteristics) curve is usually used to depict such &tfitbetween power and FAR.

In our analysis we conduct off-line and many times the sanpements with different values of
detection threshold in order to test the impact of the threshal@ver the power of the test and over
the FAR. We also test the impact of thé&l RS sketch widthP, considering different values a?.
Because of the lack of public and well documented traces withh known attacks, we use tH@TIP
trace (the largest trace with9G B of data) as background traffic in which we manually delete the
previous anomalies, and instead insert 100 SYN floodinglettaf different intensities in different
times. Firstly, we apply CUSUM algorithm over this trace lmygeegating whole flows in one time
series. Afterward, we apply our implementation over the esaérace while changing the value of the
parameteré and P.

Power and FAR values are easily established because we knadvance the IP address of the

Copyright(© 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmg010;00:1-24



ANOMALY-BASED INTRUSION DETECTION SYSTEMS : THEORY AND PRATICE 21

1

100

100

T T
True positive
False detection =-==--- ]

T T
True positive
False detection ===---- |

80 80 1Y 08

60 |- 60 | 06

Detection rate
Detection rate
Detection ratio

40 a0+ 0.4

i 20 F

20 - 02 P=12 ——

L Tty L R . L 0 I
0 5 10 15 20 0 5 10 15 20 0 0.2 0.4 0.6 0.8 1

Threshold (h) Threshold (h) False positive rate

(a) P = 12. (b) P = 14. © Prp = f(Pra).

Figure 9.Prp = f(h), Pra = f(h), ROC curve for CUSUM and MNP-CUSUM over sketdh & 12,P = 14).

victim servers, the number of existing attacks, and thaitaints. The power or true positive rafty p

is the number of detected attacks divided by the total nurabekisting ones (100). The false alarm
rate Pr 4 is the percentage of raised alarms that did not corresporeht@ttacks. Figuré shows the
variations of the power and the FAR as functions of the deted¢hreshold Prp = f(h) (figure9(a)),
andPr4 = f(h) (figure9(b)) as well as the ROC curve (figugéc)) for two values of theILRSwidth

(P = 12 andP = 14). As it was expected th&'AR as well as the power decrease as the threshold
increases. Hence, a tradeoff between false alarm rate dadtida rate must be found to control the
sensitivity of the test and prevent false alarms. From thidysit seems that a good choice of operating
pointis to select ~ 7 for P = 12 (andh ~ 5 for P = 14) since for these values the detection rate is
high while keeping a low FAR. We also notice that a large gketicith value upgrades the performance
as displayed by ROC curves on figur€). As a matter of comparison Figuggc) displays the ROC
curve summarizing the performance of a single channel CU&ldjdrithm over the raw traffic data for
the same dataset. We notice that low intensity attacks drdatected after aggregation of the whole
traffic into one time series. False alarms continue to raigs evith large threshold value whereas
the algorithm is still unable to detect any existing attacksus is due to the high variability in the
aggregated traffic pattern.

6. CONCLUSION

In this paper, we propose a new framework that integratesi-stage sketch and multi-chart CUSUM
for anomaly detection over high speed links. The proposatdéwork is able to automatically pinpoint
the IP flows responsible for anomaly, through exploitingtiegrix index in an additional multi-layer
reversible sketch. The proposed approach consists of gtages: data reduction, anomaly detection
and classification. The contributions are: data reductibemcollecting flow records for bandwidth
saving and analysis complexity reduction, software efficigketch inversion method, making up
overall an efficient algorithm to uncover hidden anomalmethe overall traffic.

It is obvious that worm signatures are unknown in their oeglirphase, and as some polymorphic
worms (change their signatures to evade detection) usgmian with different keys and different
encryption algorithms for every instance, it becomes alehge for a signature based IDS to detect
them. However, worms spreading phase tend to have a largeerohdestinations (NetScan) to infect
all vulnerable systems, and thus can be identified by ourgseapproach.

We proved that our approach is effective through implententaand testing on real traces with
DDoS & Scan attacks. The sampling technique used discardg deviations generated by legitimate
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flows, and thus reduces the false alarm rate. False posédection is the most important factor in
measuring the performance of any detection system. Thefusdeetth and MNP-CUSUM increases
the accuracy and reduces the detection delay with resptiet tygregation of all the traffic in one time
series. We have shown the ability to detect hidden anomatywémall traffic, and to reduce the false
positives. Furthermore, online experiments have provereffectiveness of the proposed approach as
well as the early detection of attacks.

The proposed method is easily decentralized due to therlpregerty of sketch values. Ongoing
work will concern the decentralized version of the propoapdroach, and the reduction of the size
of exchanged sketch information between different moirigpnodes in different layers. Decentralized
anomaly detection is indeed a very important issue sinceyratiacks are deployed over the Internet
and it is necessary for the different monitoring points tonage to exchange information. These
monitoring points can be located for example in peering {sdietween Autonomous Systems (AS)
or in different AS. The exchange of information between ABeas new challenges concerning for
example end-user privacy related questions, or trustinetsgeen the different organizations.
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