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SUMMARY

In this paper, we present the design and implementation of a new approach for anomaly detection and classification
over high speed networks. The proposed approach is based first of all on a data reduction phase through flow
sampling by focusing mainly on short lived flows. The second step is then a random aggregation of some
descriptors such as a number of SYN packets per flow in two different data structures called Count Min Sketch and
Multi-Layer Reversible Sketch. A sequential change point detection algorithm continuously monitors the sketch
cell values. An alarm is raised if a significant change is identified in cell values. With an appropriate definition
of the combination of IP header fields that should be used to identify one flow, we are able not only to detect the
anomaly but also to classify the anomaly as DoS, DDoS or flash crowd, network scanning and port scanning. We
validate our framework for anomaly detection on various real world traffic traces and demonstrate the accuracy
of our approach on these real-life case studies. Our analysis results from online implementation of our algorithm
over measurements gathered by a DAG sniffing card are very attractive in terms of accuracy and response time.
The proposed approach is very effective in detecting and classifying anomalies, and in providing information by
extracting the culprit flows with a high level of accuracy. Copyright c© 2010 John Wiley & Sons, Ltd.

KEY WORDS: Intrusion Detection System, Network anomaly detection, Change Point Detection, Multi-chart
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1. INTRODUCTION

The daily available patches and updates for servers, and thefiltering of malicious packets, offer a
significant protection from known vulnerability attacks. Atalented attacker can still bypass these
defenses by detecting and exploiting new vulnerabilities in the latest software releases. This is a subtle
attack that requires a lot of skills and efforts on the part ofthe attacker, and it is not very common.
There are much easier ways to deny service and to silence any web service. While an experienced
attacker may use botnets of tens of thousands of compromisedhosts with one of the popular DDoS
bots (Agobot, SDBot, RBot, SpyBot, etc.), an inexperiencedattacker may rent compromised machines
from available web sites. The intentions behind these attacks often differ, and range from revenge,
vandalism, political reasons up to money extortion.
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In DoS attacks, the target machine (or network) spends all ofits critical resources (such as
bandwidth, CPU time, memory, etc.) on handling the attack traffic and cannot provide service for
legitimate clients. With DDoS, security threats for computer network availability have increased
significantly. Recent DDoS attacks in August 2009 were performed against Twitter, Google and
Facebook. Twitter was driven offline for 3 hours by the attacks, and there was degraded service (slow
down) for the users of Facebook. This time the reason was political and directed against an individual
who blogged about the independence of a breakaway region of Georgia. Attackers wanted to silence
this blogger and they did. Flooding can easily lead to the disruption of critical infrastructure services
and degrades the QoS in ISP networks. Legitimate traffic cannot find resources, and gets dropped
because of the high attack volume. Therefore, an effective detection of anomalies requires the ability
to separate the malicious traffic from legitimate traffic, that is to say that some additional information
is necessary, for example some information about the victimservers, the attackers and the type of
ongoing attack (DoS, scanning, etc.). This information is needed in order to take the appropriate
countermeasures and protect the access for normal users.

Intrusion detection systems (IDS) classify network trafficbased on some classification rules. They
are divided into two categories: misuse based and anomaly based IDS. A misuse based IDS is based
on signatures, and looks into the packets for a matching of the predefined attack signatures (e.g.
Snort [45], Bro [43]). It raises an alert when a suspicious activity has been identified. Like an antivirus,
misuse based systems require a regular update of their signatures database to detect recent attacks.
Although these methods are very efficient in detecting knownattacks, they cannot analyze the content
of encrypted data. Moreover a zero day attack (security holewithout available fix/signature) does not
have an available signature, and consequently cannot be detected. On the other hand, anomaly based
IDS identify deviations from normal traffic patterns as anomalies. These methods try to detect changes
in some traffic descriptors at the flow level (e.g the number ofhalf open connections, requests, etc.)
based on some measurements of the same parameters in some past intervals. Any inconsistent deviation
in the value of these parameters is considered as an anomaly.The main advantage of anomaly detection
based approaches is their independence from any prior knowledge of intrusion signatures, so that such
systems may be able to detect new types of attacks. Their drawback is that they need a learning phase
without attacks, and that they are not able to detect attacksthat do not change the traffic pattern.

The meaning of anomaly is sometimes misunderstood, since anomaly does not necessarily mean
malicious, and on the other hand a malicious behavior may notprovoke any visible anomaly in the
traffic. For example, both DDoS and flash crowds trigger an abnormal increase in the number of
SYN towards one destination, but DDoS are malicious attacksaiming at shutting down the victim
server, whereas a flash crowd is caused by legitimate users requests. We consider the problem of
anomaly detection over high speed links, such as SYN flooding, network & host reconnaissance, and
worm propagation leading to significant changes in some measurable network characteristics when
compared to the normal behavior. These attacks send a large number of malicious requests towards the
victim server/network. As the majority of attacks today areperformed using TCP [41] by exploiting
its handshake procedure it is primordial to detect these attacks (e.g. SYN flooding attacks) at an early
stage of their occurrence, and especially before exceedingthe limit of half-open connections of the
victim server. It is expected that an early detection will provide sufficient time for defense reaction,
such as filtering, pushback and traceback.

In this paper we design a scalable and efficient framework foranomalies detection and classification
over high speed links. The proposed framework considers theonline detection of some abrupt changes
in time series related to some aggregated numbers of SYN. Theanalysis is performed at the flow level,
as flow level monitoring permits a considerable compressionof the information. A flow (as defined by
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Netflow or IPFIX [17]) is a set of unidirectional packets sharing the same value of 5-tuple in their IP
headers: Source IP (SIP), Destination IP (DIP), Source Port(SP), Destination Port (DP), and Protocol
(P). To detect anomalies over high speed links, our first stepis to reduce the amount of input data
through flow sampling, in order to focus mainly on malicious flows. Indeed, most of the time the
network traffic is normal and the operation of analyzing all the collected data is extremely resource
consuming: it consumes for example bandwidth for report transmission to Network Operation Center
(NOC), and CPU time for processing the data in order to identify and extract suspect flows. In this
paper we describe a Network based Intrusion Detection System (NIDS) and not a Host Based Intrusion
Detection System (HIDS). A record is built for each flow at measurement points. Some of these records
are exported to NOC. The procedure of selection of the records is a stochastic sampling procedure. The
aim of the sampling procedure is to focus mainly on short-lived flows, to reduce the bandwidth used
for exporting the records , and to reduce the CPU load inducedby records processing at NOC.

The data reduction phase is based on the observation that short-lived flows are the source of many
attacks (DDoS, PortScan, NetScan, worm spreading, etc.). During our experiments and analysis of real
IP traces, we indeed checked for example that many non spoofed DoS attacks carry different source port
(SP) values in their TCP segment headers so that each packet generates a small flow that is observed in
the monitoring process. In real life, IP address spoofing remains a security issue for the attacker, who
does not want to loose the control of bots, or be caught after bots identification.

The proposed sampling procedure reduces the large amount ofraw data, and aims to improve the
detection of anomalies and to reduce the false alarms by focusing on short-lived flows. However,
even after flow level filtering, maintaining information foreach active flow in the selected subset
is a cost prohibitive approach over a high speed link. The memory and CPU requirements induced
by the large state space of traffic flow identifiers (e.g. IP addresses) are not adequate for a real time
analysis. It is not surprising that many existing anomaly detection algorithms have been applied on time
series of some aggregated counters (e.g. # SYN packets) in one measurement point [53, 54, 49, 57].
Aggregating the counters over all the flows does not permit totrace back the culprit flows and thus
limits considerably the possibility of countermeasures. As this does not reveal any information about
attacker/victim for mitigation the interest of deploying such monitoring infrastructure is rather limited.
Moreover the application of change point detection algorithms to the aggregated traffic tends to be
inaccurate in finding attacks without generating too many false alarms since many attacks induce only
small variations with respect to the whole traffic volume. Onthe contrary our goal is to identify network
anomalies such as DoS or scans in near real-time manner, and to extract the culprit flows for further
mitigation.

In response to the scalability limitations of maintaining some information such as SIP, DIP, SP, DP
or some combination of these fields for each active flow, an efficient data structure based onk − ary
hash tables (Fig.1), called sketch [16, 32, 37], was proposed and used to handle large state spaces,
with a small amount of memory requirement and a constant computational (update/query) complexity.
A sketch is a multi-stage Bloom filter based on random aggregations of counters in shared cells, where
flows identifiers (denoted by keys) are hashed to index into a set of cells in different stages usingk
different hash functions, usually chosen to reduce collision effects, to uniformly distribute keys, and
to reduce correlations between the hash functions. To use sketch in the context of network anomalies
detection, IP flows are typically classified by some combination of fields in their packet header, such as
destination IP address (DIP), or source and destination IP address (SIP—DIP), destination port (DP),
etc. This flow identifier is a key used to update each of the hashtables by a value which is a reward
associated with the key, for example a number of SYN packets.In our paper the selection of which
combination of the IP header fields will define a flow is decidedin such a manner that it is possible to
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recognize some particular types of anomalies, such as DoS, DDoS, flash crowds, alpha flows, worms,
network scans or port scans. Authors in [21] have shown that a random aggregation of flow related
counters in a sketch does not significantly disrupt flow variations. Moreover they introduced the Count-
Min Sketch (CMS) algorithm [21], which returns an approximate value of the counter of a given key,
i.e. the accumulated value for a key. In our proposed architecture we will use a multi-stage Bloom filter
or sketch structure similar to the one used in the CMS algorithm.

The proposed framework is based on detection of change points in the cells of the CMS data
structure, which aggregates multiple data streams from high speed links in the stretched database. To
detect significant changes in the sketch cell values, we use the Multi-chart Non-Parametric CUSUM
algorithm (MNP-CUSUM [51, 31]) over the time series inside all cells of the sketch. Each time series
is an accumulated number of SYN packets for all flows indexinginto a particular cell. The time series
are monitored by a MNP-CUSUM algorithm which goal is to identify that a change has occurred in
one of the cells, and also in which cell it has occurred. MNP-CUSUM was selected because of its
optimality properties in terms of false alarm rates, delays, and false localization probabilities.

With an appropriate definition of which IP header fields definea “flow’ an anomaly (DoS, DDoS,
port or network scanning, etc.) results in an abrupt increase of the times series in some cells of the
CMS data structure. This abrupt change is detected and the cell index values are identified by the
MNP-CUSUM algorithms. In order to permit the mitigation of the ongoing anomaly some identifier
of the culprit flows is necessary. Therefore, an additional Multi-Layer Reversible Sketch (MLRS) is
introduced and used in parallel to the CMS structure for software efficient sketch inversion, in order to
extract bad flows after the detection of the anomalies.

The functional operation of the system is the following: we proceed to filter flow-record data by
focusing on small flows only, and we update the counters of twocompact sketches (MLRS and CMS)
for discrete time intervalT . Afterward, MNP-CUSUM algorithm is used to check the presence of
buckets which value deviates significantly from normal behavior. After the detection of anomalies by
the CUSUM algorithm, we recover the key associated to cells with raised alarm by CUSUM in MLRS,
through exploiting the cell index to recover responsible flows identifier, and we achieve verification
through count-min query of alarm value for suspect key over the CMS sketch.

The main contribution of our approach is to combine skilfully different components into a complete
framework for Intrusion Detection Systems (IDS). The proposed IDS has many attractive properties:
scalability, small delay as well as low False Alarm Rate (FAR), and a rich and accurate output
information (attack type and instant, IP addresses and portnumbers, etc.). The complete framework
inherits from the good properties of its main component blocks : the reversibility of the MLRS permits
retrieving useful information about the ongoing attacks, the MNP-CUSUM makes it possible to detect
the anomalies with a low delay and a low FAR, the CMS is designed in order to avoid that collisions
generate false alarms. The performance of the complete framework is extensively assessed on several
real-life traffic traces including online experimentations with well-known attack types and instants.

The remainder of this paper is organized as follows. Section2 presents some related works about
anomaly detection. In Section3, we briefly review two important building blocks in our algorithm :
the CMS data structure and the MNP-CUSUM anomaly detection algorithm. Section4 describes our
complete framework for anomaly detection and classification over high speed networks. In Section5,
we present the analysis results from the application of the proposed framework over real Internet traces,
and we discuss its effectiveness in terms of true detection,false alarm rate and accuracy of the output.
Finally, Section6 presents concluding remarks.
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2. RELATED WORKS

Many important contributions have been proposed to undermine anomalies in network traffic. We
can cite for example Haar-wavelet analysis [39], entropy based methods [42] , sequential change
point detection methods with the CUSUM algorithm [49, 54, 51], adaptive threshold analysis [12],
exponentially weighted moving average method (EWMA) [57], Holt-Winters seasonal forecasting
based methods [11], data reduction techniques with sketches [32, 37], SNMP MIB Support Vector
Machine (SVM) analysis [58], Principal Component Analysis (PCA) [33, 28], etc.

When early approaches for anomaly detection were focused onthe definition of models able
to represent the traffic pattern, other advanced works aggregate the whole stream of packets in
one time series, and apply a change point detection algorithm to detect the instant of anomaly
occurrence [49, 54]. The latter have a good performance in terms of spatial and temporal complexities,
but present the drawback of aggregating all the traffic in oneflow, especially over high speed networks,
where low intensity attacks cannot be detected with such a method. Furthermore, discovering the
time instant of an attack occurrence without any additionalinformation about the malicious source
or victim is not enough to react against the attack. Usually,the amount of traffic is huge, and manual
search/extraction of the malicious flows is a difficult operation. Therefore, to increase the accuracy
of these methods, and to uncover the victim or attacker and classify the detected anomalies, several
approaches have been proposed in the literature [37, 59, 24, 47]. However, the applicability of such
on-line approaches for packet processing requires FPGA equipment [47].

Schwelleret al. in [47, 48] propose the use of random aggregation counters for more finegrained
detection. To discover the victim of flooding, they propose amethod based on Galois FieldGF (2l)
for mangling and for simplifying sketch inversion. The proposed method is hardware efficient, and has
been implemented in FPGA. Buet al. in [13] propose an extension to the previous method through
sequential hashing to reduce the complexity of previous sketch inversion methods. Fenget al. in [24]
propose a method based on XOR operator and linear algebra forsketch inversion. In this paper, we will
briefly show another method for reversing sketch through theuse of an additional 2D table and RC4
stream ciphers.

All these proposed approaches have been used either to detect the heavy hitter flows (most frequent
flows) or to detect an abrupt deviation between two discrete intervals via a simple comparison. Many
different methods have been used in order to uncover anomalies in traffic flows. In-house methods do
not have optimality properties and suffer from many shortcomings such as false alarms, instabilities,
sensitivity to the training period, etc. [44]. In this paper we will use the multi-chart non parametric
CUSUM algorithm [51] over sketch in order to uncover changes. Indeed the optimality property of
CUSUM algorithms is translated in practice into less false alarms and smaller detection delays than
in-house methods.

We are not the only ones who detect anomalies in traffic with CUSUM based approaches. Indeed
the CUSUM algorithm has been used in order to detect a varietyof different security problems (mainly
DoS/DDoS and worms) from traffic inspection. For example, Wang et al. [54, 53, 55] detect SYN
flooding and DDoS attacks. Wanget al. in [54] aggregate the whole traffic in one flow, and use a
non parametric version of CUSUM for detecting TCP SYN flooding. They consider different metrics
such as number of SYN, FIN and SYN/ACK in CUSUM for detecting flooding attacks. Siriset al.
in [49] evaluate and compare two anomaly detection algorithms (adaptive threshold and CUSUM) for
the detection of TCP SYN flooding. The result of the comparison shows that CUSUM is more efficient
for detecting low intensity attacks than adaptive threshold. Lim et al. [38] implement SYN flooding
detection methods on a programmable network processor. Heet al. [26] focus on available bandwith
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estimation and DDoS detection. As the vulnerabilities of wireless communication protocols are the
vectors of many attacks today, some papers use in their detection mechanism the CUSUM algorithm :
Leeet al. [35] detect DoS attacks on 3G wireless networks ; Yanet al. (2009) [56] detect Bluetooth
worm propagation with CUSUM and GLR. CUSUM has also been usedby several authors in order
to detect worm propagation : Boet al. (2005) [9] focus on worm outbreaks and SYN flooding, Buet
al. [14] detect scan-based worms in darknets. Darknets traffic has been studied by different authors :
Ahmedet al. [4, 5] detect nested anomalies in darknet traffic with a sliding-window mechanism and
CUSUM. Tartakovskyet al. (2007) have introduced the now celebrated multi-chart CUSUM [51] and
initially applied it to the monitoring of production networks (packet size analysis). The same author
(Tartakovskyet al., 2006, [50]) has compared the performance of decentralized distributed change
detection methods. Kanget al. study botnet detection with entropy based multi-chart CUSUM [29].
As attacks against encrypted protocols such as SSH and SSL evade signature-based IDS, statistical
approaches such as CUSUM are particularly useful in that case ; Fadlullahet al. (2007) [23] detect
attacks against ciphered protocols with CUSUM.

As the main problem is the huge amount of data to process, manyresearchers have tried to reduce
the size of collected data before processing, through packet filtering and sampling. The most famous
example is NetFlow [18] in CISCO IOS, which can be configured with uniform packet sampling.
Packet sampling has been widely studied, some works have investigated how packet sampling impacts
the precision of anomaly detection algorithms [10, 40], and others propose various sampling techniques
to improve accuracy in anomaly detection.

As many packet sampling methods change the characteristic features of traffic flows, it is easy
to miss flows with a small number of packets, and to incorrectly estimate the flow size, especially
during the identification of mice and elephant flows. In general, if the flow is built from sampled
packets, the precision of the anomaly detection system depends on the sampling rate. Kawaharaet
al. [30] show that packet sampling degrades the results of anomaly detection algorithms. Hohnet
al. [27] compared packet sampling with flow sampling and found that flow sampling outperforms
packet sampling in recovering flow size distributions. Maiet al. [40] present the impact of random
packet sampling and random flow sampling on anomaly detection. Results revealed that both degrade
anomaly detection. However, random flow-sampling outperforms random packet sampling, because
packet sampling introduces a bias that degrades the detection effectiveness and increases the number
of false alarms.

Recently, Androulidakisel al. in [7, 6] designed and analyzed selective flow sampling in order to
improve the accuracy of anomaly detection algorithms. Theyinvestigate the impact of sampling on
the performance of non parametric CUSUM and entropy based anomaly detection, and they prove that
selective flow sampling achieves ”magnification” of the anomalies. This sampling method has inspired
the sampling algorithm used in this paper.

The approach presented in this paper uses sampling to reducethe amount of data and to discard
unpredictable variations of legitimate traffic. Afterward, it uses the sequential MNP-CUSUM over
sketch for anomaly detection thus allowing us to detect changes with a small delay and a low false alarm
rate. A new software efficient approach for sketch inversionthrough encryption and index exploitation
is proposed to provide information about victim/attacker.An appropriate definition of which IP header
fields define a flow makes it possible to classify the anomaliesby categories (DoS, DDoS, network or
port scanning, etc.).

After the seminal papers by Cormode and Muthukrishnan [19, 20, 21] a few methods which combine
the use of sketches and time series analysis methods have been published [34, 46, 22, 15]. Lakhinaet
al. in [34] improve the performance of their Principal Component Analysis (PCA) based system by
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inserting the use of sketch structures. Analysis of PCA methods performance in the discovery of traffic
anomalies have revealed that these approaches are sometimes prone to false alarms and misdetections
[44]. Indeed PCA methods are data-driven and require a particularly long anomaly free training phase
in order to calibrate the decomposition basis. This leads toa risk of incorporating some of the anomalies
of the training dataset into the decomposition basis. Some authors combine the use of sketch and
a multiresolution (or multiscale) analysis based on wavelets in order to undermine traffic anomalies
[22, 15]. Wavelet analysis is used to detect discontinuities (irregular patterns) in traffic data. One of
the advantages of wavelet analysis is that it does not need a training phase with anomaly free traffic.
Dewaeleet al. analyze a 6 years long traffic trace on a trans-Pacific backbone link (MAWI dataset).
They discover a large number of irregular patterns; some aredue to known anomalies but the method
also reveals a large number of unexpected flows, be their nature legitimate or not remaining still an open
issue. Example of ”anomalous” flows can be elephant flows (HTTP traffic, FTP or SSH connections), or
destination IP addresses receiving small number of packetsfrom a large number of source IP addresses
(P2P traffic). The key used in order to index the cells in the sketch data structure in [22, 15] is a
destination IP address (DIP) or a source IP address (SIP). In[36] the authors also detect changes in
high-dimensional traffic data. They use a non parametric change detection test based on the U statistics.
Two different dimension reduction techniques are used: TopRank which is based on record filtering and
HashRank which is based on random aggregation.

Our method combines sketch data structures (CMS and reversible sketch) and the MNP-CUSUM
to discover in real-time significant changes in the number ofSYN packets associated to some
”flows”. Flows are associated to some particular fields in theIP and TCP headers : source IP address
(SIP), destination IP address (DIP), source port (SP), destination port (DP) or a combination of
those fields. There are a number of advantages to using our algorithm compared to other published
algorithms. MNP-CUSUM algorithm is particularly simple and computationally efficient compared
to decomposition methods such as PCA or wavelet analysis. Moreover CUSUM is sequential by
nature which makes it adapted to on-line treatments. The optimality properties of the CUSUM have
been theoretically established (low false alarm rate, low delay) and this translates into practice into
fewer raised false alarms than decomposition based methods. We recognize that MNP-CUSUM is less
sensitive to subtle irregularities in traffic than wavelet based analysis and thus reveals less ”anomalies”
in traffic than [22]. Using a non-parametric version of the CUSUM algorithm (NP-CUSUM) makes the
algorithm robust against non stationarities in traffic. Another very important feature of our algorithm
is that it reveals precise information about the ongoing attack. Many methods raise alarms but then
a manual inspection of the traffic is often necessary in orderto analyze the traffic and to classify
the anomaly (DoS, scan, false alarm, etc.) Our algorithm automates the classification step by using
appropriate combination of TCP/IP header fields as keys to index cells in the sketch data structures.
Our algorithm moreover pinpoints malicious flows as it includes a sketch reversion step in order to
recover the value of the keys from the index of anomalous cells.

3. THEORETICAL BACKGROUNDIn this section, we briefly survey the underlying Count-Min Sketch (CMS) data structure and Multi-
chart Non-Parametric CUSUM (MNP-CUSUM) used in our framework.
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3.1. Count-Min Sketch

Cormode and Muthukrishnan [21] introduced another kind of multi-stage Bloom filter calledCount
Min Sketch (CMS). The advantage of the proposed algorithm isto provide an estimate of the associated
counter with a key in the stretched data structure (CMS). LetS = s1s2 . . . sn be the set of input stream,
where each itemsi = (κi, νi) is identified by a keyκi ∈ U , drawn from a fixed universe of itemsU .
νi ∈ R is the reward associated with each key. For example, withνi = #SY N andκi = DIP, the goal
will be to count the number of SYN packets corresponding to the different destination IP addresses.
The sketch data structure is made up ofd hash tables. The arrival of an item with keyκi increments
its associated counter in thejth hash table byνi (Cj,hj(κi)+ = νi), as shown in Figure1. The update
procedure is realized byd different hash functions, chosen from the set of 2-universal hash functions
hj(κi) = {((ajκi + bj) mod PU ) mod w′}, to uniformly distributeκi over hash tables and to reduce
collisions. The parameterPU is a prime number larger than the maximum number in the universe,
where Mersenne prime numbers of the form2i − 1 are generally chosen for fast implementation.aj

andbj are random integers smaller thanPU , with aj 6= 0. To highlight the use of 2-universal hash
function in the context of IP address (PU = 261−1) let us takeκi equal to1.2.3.4, with random values
of aj = 2 andbj = 3, and a sketch widthw′ = 256, the result of hash function ish(1.2.3.4) = 4. This
means that the associate bucket in the first line of the sketchis the number 4.� � �� −���� �	
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Figure 1. Sketch data structure.

The Count-Min point query returns an estimate of the counterfor a given keyκi as the minimum of
the correspondingd counter values :̂sk(κi) = min

0≤j<d
{C[j][hj(κi)]}.

The definition of the accuracy of the result of a CMS query is probabilistic. The distance between
the estimated and true values of the count should be lower than a precisionǫ with an error probability at
mostδ : P(d(ŝ, s) ≤ ǫ) ≥ 1−δ. With this constraint, the parametersd (number of pairwise independent
universal hash functions) andw′ (number of hash values) should be chosen as follows :d = ⌈ln(1/δ)⌉
andw′ = ⌈e/ε⌉ wheree is the base of the Neperian logarithm. Thus, it maintains modest storage
requirements ofln(1/δ) × (1/ε) count cells.

Flow records from collected data traces, can be classified into series of(κi, vi), whereκi can be the
concatenation of DIP and DP (DIP |DP ), or any other combination from flow record identifiers, and
the valueνi can be, for example, the number of SYN requests. The CMS querycan check for example
if a givenDIP |DP is under SYN flooding attack by verifying the value ofŝk(κi). But it is unable to
identify whichDIP |DP is under attack.

3.2. MNP-CUSUM

To uncover anomalies we use the multi-chart non parametric CUSUM algorithm (MNP-CUSUM,
[51]). The CUSUM algorithm is a sequential change point detection method. Suppose that a flow
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of data is monitored sequentially :y1, y2, y3, . . .. The goal of a sequential change point detection
algorithm is to detect with a delay as small as possible a change in the distribution of the datayi.
Suppose that the pre-change and post-change distributionsare known and that they are characterized
by probability density functions (p.d.f.)fθ1(yk) andfθ2(yk). The alarm time in the parametric version
of the CUSUM algorithm is defined asta = min {k ≥ 1 : gk ≥ h} whereh is a threshold andgk is

the test statistics which can be computed sequentially :g0 = 0, gk = max(0, gk−1 + log
fθ2

(yk)

fθ1
(yk) ).

The rational behind the CUSUM algorithm is that before the change the quantitylog
fθ2(yk)

fθ1
(yk) is on the

average negative, whereas after the change it is on the average positive : as a consequence, the test
statisticsgk remains around0 before the change, and it increases linearly with a positiveslope after
the change, until it reaches the thresholdh when the alarm is raised. This is illustrated on Figure2. In
this case a change in the mean of a Gaussian time series is detected.Sk is the cumulated log-likelihood

ratio which is defined asS0 = 0, Sk = Sk−1 +log
fθ2(yk)

fθ1
(yk) . sk = log

fθ2(yk)

fθ1
(yk) is the log-likelihood ratio.

One can observe from this figure thatSk has a negative slope before the change point and a positive
slope after the change has occurred.
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Figure 2. Intuitive derivation of the CUSUM.

The CUSUM algorithm is asymptotically optimal in the classKγ of tests with average time
between false alarms bounded byγ. More precisely, it reaches the Lorden bound which states that
among the classKγ the average detection delay is at best proportional tolog(γ) asγ → ∞ with a
proportionality factor that depends on the Küllback-Leibler divergence between pre-change and post-
change distributions.

Now suppose that we have to monitor several channels or sensors jointly : for example,yk(i) will be
the number of SYN packets during a time intervalk for a subseti of all DIP adresses (e.g. those who
collide in the same cell numberi of a given hash table). Until the unknown change timet0 each random
value follows a distributionfθ1,i(yk(i)) and aftert0 a change occurs in the distributionfθ,i(yk(i)) of
one channel only, say channel numberi. The goal is to identify with a small delay that the change has
occurred and also in which channel it has occurred. The multi-chart parametric CUSUM [51], simply
called LR-CUSUM, is defined as :ta = min1≤i≤N ta(i) whereta(i) = min {k ≥ 1 : gk(i) ≥ hi}. hi

is a threshold adapted to the channeli (constant in our case) andgk(i) is a CUSUM test statistics for

channel numberi : g0(i) = 0, gk(i) = max(0, gk−1(i) + log
fθ2,i(yk(i))

fθ1,i(yk(i)) ). The alarm is raised when
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one of the test statisticsgk(i) reaches the thresholdhi and the change is declared in the channeli. The
LR-CUSUM is asymptotically optimal in the sense that (i) theaverage detection delay for a change
of type i is asymptotically linear withh (whenh → ∞) with a slope that is related to the entropy of
the pre-change distribution, and (ii) ifh = log(Nγ) then the mean time before false alarms is greater
thanγ and the worst case of the average detection delay is asymptotically linear with log(γ) (when
γ → ∞).

Due to large variations in traffic patterns, to non stationarities, and to lack of consensus on network
traffic characteristics, we cannot assume that the monitored variables follow a specific distribution.
Therefore, we use the non-parametric version of the multi-chart CUSUM, as it only requires a very
loose information on the distribution of the traffic time series before and after the change. In the non-

parametric multi-chart CUSUM (MNP-CUSUM) the log-likelihood ratiolog
fθ2,i(yk(i))

fθ1,i(yk(i)) is replaced

with some functionLi(yk(i)) which is chosen in such a way that its average valueE(Li(yk(i))) is
negative before the change and positive after the change. For example, in our simulations we chose
Li(yk(i)) = yk(i)−(µi +cσi), whereµi andσi represent the pre-change mean and standard deviation
respectively. With this definition the non parametric CUSUMis sensitive to a change in the mean value
of the time series, supposing thatµi is the average value before change, and supposing that the average
value of the time series after the change is greater thanµi + cσi.

Network traffic is naturally variable. Without any anomaly (attacks, flashcrowds, etc.) the traffic
is subject to natural variations due, for example, to day/night effects. These variations occur on a
significantly longer time scale than anomalies which can then be identified as abrupt changes in
traffic patterns. In this paper, we will use CUSUM algorithm to detect short term anomalies, and
the detection of longer-term anomalies (several minutes orhours) is not addressed in this paper.
Because of natural variability the parameters of traffic distribution in normal operation, for example
µi and σi, slowly vary along the time. In order to follow the slow trends of traffic parameters
on the long term the meanµi and varianceσ2

i before change are estimated recursively using the
EWMA (Exponentially Weighted Moving Average) :̂µi(k) = αµ̂i(k − 1) + (1 − α)yk(i) and
σ̂2

i (k) = ασ̂2
i (k−1)+(1−α)(yk(i)−µ̂i(k))2. The estimation of mean and variance using the EWMA

can deal with seasonal variations (working hours, night, day of week, etc.), by slowly updating these
statistical parameters (µ̂i,σ̂2

i ). It is worth noting that the algorithm is not much sensitiveto the value of
the weighting parameterα that should be taken close to1 ; a typical value isα = 0.9.

4. PROPOSED APPROACH

To detect network anomalies over high speed networks, the first logical step is data reduction and
aggregation of the huge amount of collected flow records. This step is useful for several reasons,
including saving the bandwidth used for report transmission, and reducing the memory requirement and
the processing complexity of analyzing collected data. We achieve this through flow level sampling, by
selecting small size flows (size is the number of packets in the flow), as done in [7, 6].

Flows with a small number of packets are the source of many anomalies. In DDoS/DoS, the attacker
uses a spoofed IP address with each packet to evade detection, identification, filtering and tracing back.
Even when using botnets, the disclosure of zombies is not in the interest of the attacker. Firstly, the
identification of the attacker may be more easily discerned,and secondly he wants to keep his remote
control of the zombie for future use. Therefore, spoofed source IP addresses are used by bots in each
packet when launching DDoS.
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In the case of NetScan, worms usually scan networks to infectnew vulnerable hosts as quickly as
possible (e.g. Code Red, Slammer). Network scan also allowsan attacker to identify an active host for
security assessment, where all exploitations are always preceded by a reconnaissance phase. In security
assessment, the malicious user scans port for enumerating services to identify vulnerable applications.
Each packet in all these attacks results in a new flow.

To select all small flows with sizex < B, we choose a sampling rate inversely proportional to the
number of packets in the flow (p = 1/x) if (x ≥ B) and no samplingif (x < B). B is a threshold
for the number of packets. This is a slight modification of selective sampling (p = B/n.x) suggested
in [7]. Despite the sampling, the reduction gain ratio was approximately 5% over the used traces.
Manual inspection of these IP traces with P2P traffic, shows that the majority of TCP flows have less
than 3 packets/flow. In fact, the dominant number of records are small flows. Therefore, to achieve
a reduction ratio of more thank%, we use the random sampling technique to reduce the number of
records with small numbers of packets, as shown in eq.1:

q =

{

rand[1, k] == 1 ? 1 : 0 if x ≤ B

rand[1, x] == 1 ? 1 : 0 Otherwise
(1)

If q = 1 then the flow is kept otherwise it is discarded. This means that the sampling rate is (p = 1/k) if
(x ≤ B) and (p = 1/x) if (x > B). In our simulations we tookk = 2 andB = 3. At monitoring points
each flow generates a record. Once the flow has expired (eitherbecause of flow termination or because
of timeout expiration) the numberx of packets in the flow determines the value of the probabilityp(x).
The record is then exported to the central NOC with probability p(x).

It is worth noting that per flow record collection is performed at monitoring points and that records
processing for anomalies detection and malicious flows identification is performed at the central NOC.
Monitoring points can be for example routers in the infrastructure of the ISP. In this paper, we assume
the monitoring infrastructure (monitoring points, and central collector) has always enough computing
resources to monitor and analyze the attack, while the consumption of communication resources are
mitigated by sampling. The sampling procedure is beneficialsince it reduces the number of exported
flows which results in bandwidth usage reduction for flow exports and in CPU usage reduction at NOC.
Under attack situations, load shedding mechanisms, such asproposed in [8], might be considered as
extensions, but these are left out of scope of the current work.

When designing a traffic monitoring system (IDS, application recognition system, etc.) it is
important to consider how easy it can be for an adversary to evade the detector. One could imagine
that the attacker would try to evade the detector by generating artificially large flows. This strategy
would not succeed in the context of SYN flooding attacks for some reasons that we are going to
explain. Let us assume that the attacker sends a SYN packet and goes on transmitting data without
acknowledging the SYN-ACK packet. Then the server will senda RST packet and the TCP connection
will be closed without having generated a ”large flow”. In fact, the attacker cancels the SYN flooding
attack by generating packets in the same flow without sendingSYNACK. On the other hand if the
attacker sends several SYN packets in the same TCP connection these packets will be considered as
duplicate SYN packets by the server and this will not result in a DoS attack. It is important to note,
that small flow sampling is applicable for TCP SYN flooding andSYN scanning attacks, and can not
be applied to detect other attacks based on UDP or ICMP.

After data reduction, the anomaly detection phase uses random aggregation, to avoid aggregating the
whole set of records into one, and to reduce the required memory in per-record treatment. The proposed
approach is based on two data structures: Count-Min Sketch (CMS) and Multi-Layer reversible Sketch
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(MLRS) as shown in Figure3. The theoretical background on the CMS data structure and onthe MNP-
CUSUM algorithm that operates over this structure is summarized in section3. The shared counters are
continuously updated from the input data stream.κi is a key that identifies a flow (e.g. SIP—DIP) and
νi is a reward associated to that flow ; in our caseνi is a number of SYN packets for this particular flow
during a fixed duration periodT (e.g.T = 1 min.) The cells in the sketch are continuously updated that
is to say that for each new SYN packet thed corresponding cells in the CMS sketch are incremented
by 1. d instances of the multi-channel non parametric CUSUM (MNP-CUSUM) algorithm run in the
background in order to monitor each row of the sketch. The aimis to detect a significant change in one
of the cells of each row. At the end of each periodT the MNP-CUSUM statisticsgk(i, j) are updated
as follows :gk(i, j) = max(0, gk−1(i, j)+ ∆xi,j − (µ̂ij + cσ̂ij)). ∆xi,j is the difference between the
value of the cell(i, j) in two consecutive intervals or, equivalently, the increment of cell (i, j) during
that interval.̂µij andσ̂2

ij are the sample mean and sample variance of the time series of cell increments
∆xi,j(k), k = 1, 2, . . . ; they are computed as an exponential moving average as it wasexplained in
section3. In our implementation, each cell in the 2D table becomes a data structure, containing the
current and previous value of the number of SYN, the sample meanµ̂ij and variancêσ2

ij and the value
of MNP-CUSUM statisticsgk(i, j). Once the statisticsgk(i, j) exceeds the thresholdh for one of the
cells, say cellj, then the MNP-CUSUM that monitors rowi raises an alarm. When we have at least
one alarm in all rows of the sketch, then a global alarm is raised.

As we want to uncover culprit flows, e.g. the flows responsiblefor the CUSUM raised alarms, one
solution for verification could be to keep the key values inside a file/database, and to re-hash these data
to find the key that maps to cells with raised alarms. This procedure is heavy in terms of storage space
and update speed as it requires storing all keys for verification.

In fact, due to random aggregation and collision occurrences with hash functions, reversing sketch
is a difficult operation. However, some interesting works have been proposed in [47, 13, 24] to reverse
hashing, in order to identify keys associated with cells having raised alarms. The first approach [47]
is based on modular hashing and mangling via Galois FieldGF (2n) operators, which is complex and
more efficient for hardware implementation, as it was done with FPGA equipment in [47]. The second
approach [13] is an extension of the previous method. The third approach [24] is based on nonsingular
matrix onGF ({0, 1}n,⊕, .), and requires more memory and update cost than the previous method.

Our approach to reverse sketch is based on the idea of exploiting cell index to store keys. An
additional 2D table, so-called Multi-Layer Reversible Sketch (MLRS), also containing shared counters
is used (as shown by the first table in Figure3). The key is implicitly stored in this 2D table. Firstly,
the key in binary is divided intol equal parts, where each part is used as index of the shared counter in
each line of the MLRS. The width of each line in the MLRS table is given byw = 2P , and the number
of lines isl = ⌈N/P⌉. N is the number of bits used to represent the largest number in the universe of
key, andP is the number of bits in each part of the key. The update procedure of the CMS and MLRS
is summarized by Algorithm1.
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Figure 3. Multi-Layer Reversible SketchMLRSand Count-Min SketchCMS.
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Algorithm 1 Sketches Update procedure

1: Ckey = Encrypt RC4(key);
2: for i = 0 to d − 1 do
3: j = univ hashi(Ckey);
4: CMS[i][j].counter+ = ν;
5: end for
6: for i = 0 to l − 1 do
7: MLRS[i][Ckey & (2P − 1)].counter+ = ν;
8: Ckey >>= P ;
9: end for

A MNP-CUSUM runs in the background for each row of the MLRS structure, as it is the case for
the CMS structure. At the end of each intervalT , we release a hierarchical search in each layer of the
MLRS for cells with alarm raised by the MNP-CUSUM. We must have at least one cell in each layer
with a CUSUM raised alarm. Otherwise, no needs to continue searching in other layers or to look in
the result of the CMS.

In the simple case, when we have one alarm in each layer, the key can be recovered by concatenating
the index of thel cells in MLRS. We cannot be sure of the suspect key before verification, since because
of collisions with other key prefixes, the corresponding counter value can become large without any
attack going on. The suspect key is verified through hashing and verifying if an alarm was raised for
the corresponding cells of the CMS.

In the case ofkey = DIP , even with different widths for the decomposition procedure (8bit, 10bit,
12bit, etc.), many cells in different layers will be subjectto collision occurrence (same prefix, etc.),
and in some cases, we will end up with a larger set of keys to verify throughCMS than the original
key list since all possible combinations must be considered. Nevertheless, it is important to note that
even if the set of suspect keys is larger than the departure one, it requires smaller memory and has a
fast update time with respect to maintaining a database/fileof the original key list.

To resolve this problem and reduce collision in MLRS, we use encryption with stream cipher RC4
(Ron’s Code [25]) algorithm rather than Galois FieldGF (2n). In cryptography RC4 is the most
popular stream cipher. It is used in popular protocols such as SSL or WEP. RC4 is remarkable for
its simplicity and speed in software. The used C implementation of the RC4 code is available from [3].
The RC4 algorithm is ideal for software implementation, as it requires only byte manipulations
and its implementation is based on a few lines of code. It has been proven to be powerful in our
experimentations for mangling and destroying any correlation between keys having some portion in
common (prefixes). The Hamming distance between cipehered keys is large even if there is some
correlation between the original ones.

Encryption is a bijective function, which transforms cleartext key into cipher text, denoted byCkey,
whereCkey = ES(key) andkey = DS(Ckey). S is the shared key, and the functionE() must be
chosen in a way to destroy any correlation between clear texts with for example the same prefix. This
principle is shown in TableI for the key built from the concatenation of DIP with DP, with the use of
RC4.

Any bijective function able to destroy correlation betweenkeys, and return a completely random
set of keys, can be used. Afterward,Ckey is divided intol parts and used as an index in MLRS. To
recover the key from cells with raised alarms in MLRS, we mustconcatenate the raised alarm indexes
in each layer to getCkey, and useDS(Ckey) to recover the suspect keyκ from MLRS. This key is
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DIP:DP Encrypted
192.168.100.101:80 6E96A9468CF5
192.168.100.102:80 DD08C66271E4
192.168.100.103:80 2F0F5EB19313
192.168.100.104:80 3FE7204B0435

· · · · · ·

Table I. Encryption ofDIP—DPby RC4.

used for verification through CMS to ensure that all associated cells in thed hash tables have raised
alarms. The hierarchical search procedure, as well as verification and sketch inversion are summarized
in Algorithm 2, for a universe of size2N , and a width of2P for MLRS, P = N/2 and l = 2. A
boolean alarm variable is used to indicate if the MNP-CUSUM algorithm has raised an alarm for the
considered cell.

Algorithm 2 Hierarchical search and verification

1: for i = 0 to 2P − 1 do
2: if (MLRS[0][i].Alarm) then
3: for j = 0 to 2P − 1 do
4: if (MLRS[1][j].Alarm) then
5: Ckey = (j << P ) | i;
6: Alarm = cms alarm query(CMS, Ckey);
7: if (Alarm) then
8: key = decrypt RC4(Ckey);
9: output(key)

10: end if
11: end if
12: end for
13: end if
14: end for

The proposed framework can be applied to detect different types of attacks, e.g. TCP SYN flooding,
UDP packet storms, TCP/UDP PortScan, NetScan, Smurf, etc. Nevertheless, in this paper, we will
only focus on TCP traffic and especially on the number of connection requests (SYN).The proposed
method does not only perform anomaly detection, that is to say to raise an alarm when an anomaly is
detected. It is also able to able to identify malicious flows through the use of associated key values, and
to classify the anomaly by using different key definitions.

To classify anomaly, we extract from each flow record three keys (key1 = DIP |DP , key2 =
SIP |DIP , key3 = SIP |DP ) through the concatenation of the binary value of two fields from each
entry. These keys are used to update three instances of the proposed approach with the observed number
of SYN packets with the corresponding key value for each discrete time interval (say every minute).
We denote byFi the framework instance associated withkeyi. The classification algorithm can be
described as follows :

Step 1. We seek to detect victims of DoS/DDoS SYN flooding. We update the counters ofF1 with
thekey1 during predefinedT time intervals, and we output the listL1 of all victim serversDIP |DP .
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Step 2. Thekey2 is used to update a second instanceF2. Outputs of this step are maliciousSIP ,
which try to scan the ports of a givenDIP , if the latter is not a victim of DDoS/DoS. In contrast, if
DIP is in list L1 (i.e. victim of flooding), we store a list of suspect (LoS) whose elements are (SIP ,
DIP , DP ), becauseSIP are suspects of contribution in DDoS/DoS through a static source address.

Step 3. Thekey3 is used to update a third instanceF3, where output keys areSIP trying to perform
a NetScan activity, if theSIP does not belong to the list LoS. Otherwise, it is the source ofDDoS/DoS
flooding.

The preceding three steps are used in our implementation to early identify three types of anomalies
(DDoS/DoS victim, NetScan and PortScan), and provide useful information about victim or attacker.
The identification of scanning attacks is based on source addresses generating too many connection
requests at different ports/hosts. The PortScan and NetScan were chosen for their association with
malicious attacks and worms. PortScan is often used by attackers for vulnerability assessment of
running applications at victim host. NetScan are usually performed by worms in their spreading phase
(random scan in code Red, linear in Blaster, bias in code Red II and Nimda, etc.) to gain access to new
machines and infect them. Our proposed approach is able to detect all these kinds of scan activities.

5. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of using MNP-CUSUM over a Multi-Layer Reversible
Sketch (MLRS) and a Count Min Sketch (CMS) structures in the detection and classification of attacks
(SYN flooding attack, NetScan and PortScan). We have implemented MNP-CUSUM over sketch in
C by extending the code of CMS available from [1]. We have tested the proposed algorithm over
MAWI traces available from [2], and other IP traces used in the OSCAR project funded by the french
National Research Agency. The so-called OTIP and ADSL traces were collected and provided to the
OSCAR consortium by France Telecom (FT). The ADSL trace was collected on a geographical and
technical subdivision of an ADSL network. The OTIP trace is a6.9 GB trace made of Netflow records
from CISCO routers in a FT backbone network. These traces were used as a benchmark and have been
widely analyzed in the project. We also use one of the traces collected during online experiments, which
were carried out to test the detection performance of the algorithms designed during the project. The
topology of the measurement overlay deployed during the OSCAR project is displayed on Figure4.

Each partner is equipped with a DAG card which sniffes all thetraffic between a laboratory network
and a central router in the partner institution. Flow level reports are collected at the sniffing point
by each partner and sent to a central Network Operation Center (NOC) by UDP sockets. Different
algorithms run at the NOC in order to detect anomalies in the aggregated reports. Figure4 describes a
centralized detection architecture. Semi-decentralizedarchitectures with anomaly detection algorithms
running at the different monitoring points have also been implemented in OSCAR.

In order to reduce the spatial and temporal complexity of theproposed algorithms, OSCAR partners
decided to enhance the capture process of high speed sniffingcard (Endace DAG card), by adding a
small C program to transform captured packets over one minute into OSCARFIX flows.

Therefore, we keep approximately the same definition of flow as the one used by Netflow [18] in
Cisco routers or standardized by the IETF in the IPFIX protocol [17]. An OSCARFIX flow is defined
as a unidirectional stream of packets that share the same fivetuples (source IP, destination IP, protocol,
source port, destination port). When a flow is considered as finished (through flow aging or TCP
connection termination) a flow record is exported. The OSCARFIX flow record contains a variety
of information such as the source and destination IP, sourceand destination ports. Instead of including

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt2010;00:1–24



16 O. SALEM, S. VATON, A. GRAVEY

Report

1Partner

FT

DAG

DAG nPartner

NOC

DAG

Figure 4. Topology of the measurement overlay

the binary XOR of all TCP flags of the flow in the record as it is the case in Netflow, OSCARFIX flow
records include the number of SYN, SYNACK, RST & FIN packets in the flow. In OSCARFIX we
took a timeout value of 1 minute. A new flow record is generatedwith the first new packets crossing
the DAG sniffing card. To simplify implementation, even if the flow doesn’t finish in the current time
interval (1 min), subsequent packets are considered as belonging to a new flow in the following minute.

Although the time measurement interval has an impact on the detection precision, an agreement at 1
minute of data collection has been adopted by all the projectpartners. In fact, a small interval enhances
the detection delay at the cost of potentially increasing the False Alarm Rate (FAR). On the other
hand, a large interval increases the detection delay. One minute was considered as a good tradeoff by
the OSCAR consortium. Online implementation over Endace DAG card has been realized, and many
experiments have been conducted online for accuracy analysis. Our results are encouraging in terms
of accuracy and response time. All the experiments have beenperformed using a Ubuntu box with an
Intel core 2 DUO (E4500) with2.2 Ghz, 3 GB of RAM and750 GB SATA disks.

In this paper, we will present the analysis results obtainedover 3 traces. The first trace is made up
of two hours of OSCARFIX flow records collected during onlineexperiments in the framework of the
OSCAR project. The second set of measurements is made up of anADSL download trace ; it contains
unidirectional packet traces collected during 3 hours on a geographical and technical subdivision of an
ADSL access network. The OTIP trace contains 3 days of bidirectional traces collected with NetFlow
on some routers of a backbone network. The main objective of parsing the last traces (ADSL & OTIP)
is to check the scalability of our algorithms that is to say their ability to analyze traffic at a high data
rate in real time. Each report (1 minute) must be analyzed within the next minute of data collection. The
last experiment has been conducted with the aim of analyzingthe performance of the algorithms ; we
conducted an off-line experiment on a synthetic trace to study the influence of the various parameters
on the detection and false alarm rates.

The parameters we considered for the MNP-CUSUM algorithm were the following ones: threshold
valueh = 7 in the MNP-CUSUM algorithms, weighting factorα = 0.9 in the EWMA algorithms
(estimation of the sample mean and variance), standard deviation scaling factorc = 0.5 in the update
procedure of the MNP-CUSUM algorithms. Sketches parameters for MLRS wereP = 12 (l = 4) for
keys with 48bits, andP = 14 (l = 5) for keys with 64bits. CMS parameters were:w

′

= 4096 and the
number of hash functionsd = 4 chosen from the set of 2-universal hash functions, and with the use of
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tabulation [52]. The used configuration parameters of the sampling algorithm were:B = 3 andk = 2.
Experiment 1. In the first experiment, we validate and tune the model using an online experiment

trace. This online experiment has been conducted using Planetlab machines, and with the collaboration
of some French research laboratories (project partners). The data trace corresponds to traffic collected
at NOC in Figure4, and each minute is the concatenation of OSCARFIX reports collected, using DAG
cards with GPS-synchronized timestamp, over the experimental network of each partner. These reports
are exported to NOC over UDP sockets. Reports contain much background traffic (HTTP, SSH, etc.)
with mainly P2P traffic. During this experiment, well known attacks type/instant have been generated
by FT to test the detection efficiency of the proposed algorithms. Figures5(a), 5(b)& 5(c)display the
variation of the total number of: flows, packets, and SYN before and after sampling. We can obviously
conclude from Figure5(c) to the efficiency of the sampling algorithm in reducing legitimate variations
and the amount of traffic to process. After the application ofour proposed approach over this trace, we
identify 4 victims of SYN flooding attacks, and 4 hosts scanning the network for an SSH server. The
number of malicious SYN received by the four different victim servers are shown in Figure5(d), where
we can observe 4 attacks of different intensity. The number of SYN received by victims (10.0.0.1-
4:18019) are obtained by filtering the trace to extract flow records with the identifiedDIP.DP using
our approach. We demonstrate the ability to detect low intensity attacks. In this trace, we also identify
NetScan against SSH server. The number of SYN sent by scanners are displayed in Figure5(e), where
even for a small intensity, the attack has been detected and identified. The total number of SYN as well
as raised alarms are shown in Figure5(f). It is important to note that we had 0 false positives and 0
false negatives reflecting the efficiency of our proposed approach. The response time for the analysis
of the 2 hour trace is less than one minute.

As we are collecting unsampled flow-records, we evaluate theimpact of the used sampling technique
on the precision of the anomaly detection algorithm. To compare the results, we count the number of
raised alarms before and after sampling. We have one additional raised alarm after sampling during the
last flooding attack. This is due to the ability of the sampling technique used to magnify suspect flows.

Furthermore, to obtain a comparison, we apply single channel non parametric CUSUM over the
raw sequence which results from the aggregation of all flows into one time series. The result is very
interesting and deserves to be noted. First, all NetScan attacks were not detected due to aggregation,
because low intensity traffic fluctuations are not observable. Second, we had 3 false alarms even when
tuning the parametersh andc. Either the last 2 flooding attacks were missed after tuning,or we had a
larger number of false alarms. On the other hand, only one false alarm was obtained by applying single
channel CUSUM over the sampled traffic, where many legitimate deviations have been smoothed or
discarded by the proposed sampling technique.

Experiment 2. Since the performance observed over the previous 2 hours trace can not be
generalized without further analysis, we consider 3 hours of unidirectional packet level capture
(pcap) with anonymized IP addresses over an ADSL infrastructure, and we transform this trace into
OSCARFIXflow records. We carry out the same analysis and manual verification as in the first
experiment. In fact, we conduct the same analysis over upload and download ADSL traces, but due
to space limitations, we omit to comment on the results over the download trace since they are very
similar to those over the upload trace.

Figures6(a), 6(b) & 6(c) present the total number of flows, packets, and SYN before andafter
sampling. One SYN flooding attack and one PortScan have been identified by our approach. Figure6(d)
shows the number of SYN received by the identified victim server of distributed SYN flooding
(DIP1.DP1 = 97.65.192.238 : 35415), and figure6(e)displays the number of SYN generated for
PortScan bySIP2 = 240.178.148.21 to scan the ports ofDIP2 = 97.68.23.88. After filtering, we
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Figure 5. Analysis results for the online experiment.

get only one additional alarm for SYN flooding at its end. As the only available information about this
trace is P2P contents with some attacks, this trace may contain other undetected anomalies and we can
not conclude to 0 false negatives, but we can conclude to 0 false positive. The identified SYN flooding
additional alarm has been manually verified during our analysis, and also detected by other partners.
The PortScan is verified manually by flow-records extractionand verification. Figure6(f) shows the
time series of the total number of SYN for sampled flows, and the raised alarms. The response time for
the analysis of the 3 hours ADSL trace is less than 5 minutes.

Experiment 3. This trace is exported from CISCO routers (with Netflow v5) toa central collector
(NOC), whose role is to store the received records in a database/file after anonymizing IP addresses. It
contains 3 days of flow records (∼ 896.105 flows) and has a size of∼ 6.9GB.

Figures7(a), 7(b)and7(c)show the variation of the total number of flows, packets and SYN before
and after sampling during the 3 days. After the application of our proposed framework over traces to
uncover attacks, we compare our results with other partners’ results. We conclude to one misdetection
after comparison and manual verification. Afterward, we isolate the number of connection requests
received by each identified victim at the specific port as shown in figure7(d) for manual verification.
The number of SYN received by victim (attack missed by our approach) is presented in figure7(f).
The manual verification of missed attack shows a TCP flooding at different ports, and this explains its
misdetection. Furthermore, the detection of flooding at different ports can be achieved by monitoring
theDIP instead ofDIP.DP . Also, we notice the presence of one NetScan bySIP = 224.87.77.70
with DP = 65506 (figure7(e)). Manual verification ofOTIP trace proves the NetScan by the given
SIP at raised alarm instants. It is worth noting that response time for analyzing the whole 3 daysOTIP
trace is about a few minutes for the 3 days trace over a Pentium2.2 Ghz with 3 GB of RAM memory.

The previous plots over real IP traces demonstrate that the number of anomalous source/destination
adress pairs (6 abnormal behaviors) is so small with respectto the whole number of collected records
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Figure 6. Analysis results for ADSL download trace.
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Figure 7. Analysis results for the OTIP trace.

in the trace, that providing only an attack instant without further information is not enough to uncover
culprit flows. Our proposed approach identifies the bad flows and helps understanding the malicious
activities behind these flows.
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Figure 8. Comparison between CUSUM over raw data & CUSUM oversketch.

Experiment 4. This experiment is conducted in order to study the accuracy of the proposed
framework and to test its sensitivity with respect to the parameters of the detection algorithm. We
begin our evaluation by a comparison between CUSUM over raw data and CUSUM over sketch. By
raw data we mean that the input of the CUSUM algorithm is the time series of aggregated number of
SYN. We use an IP trace of 2 hours, with 6 known anomalies instant & type (4 DDoS and 2 NetScan
attacks) as shown in figure8(a). The 2 scan attacks are represented by filled curves in figure8(a).
The alarms raised by single channel NP-CUSUM over raw data are shown in figure8(b), where we
can observe false alarms due to variations in the aggregatednumber of SYN, and misdetection of low
intensity attacks, which evade the detector after aggregation of the whole traffic into one time series.
The 2 NetScan attacks are not detected when aggregating the whole traffic in one time-series, because
the change is smoothed by the aggregation of the number of flows. Furthermore, to detect DDoS with
small intensity attacks, a low threshold value for CUSUM is required. However, low threshold value in
CUSUM algorithm incurs high false alarm rate with the detection of only 4 over the 6 existing attacks.
Figure8(c)shows the alarms raised by the MNP-CUSUM over sketch. A finer grained analysis results
from using many channels in order to monitor the traffic. Thisclearly reduces the number of false
alarms, and increases the hit ratio of low intensity attacks.

The efficiency of an anomaly detection algorithm is usually described by two values: the power of the
test (or detection rate) and the false alarm rate (FAR). In our context false alarms are legitimate flows
that are classified as malicious, whereas the power of the test is the proportion of malicious flows that
are effectively detected as malicious. There is an inherenttradeoff between power and FAR. Indeed,
in an attempt to detect malicious flows with a higher probability one could be tempted to decrease the
detection threshold but this would automatically result ina higher FAR. The ROC (Receiver Operating
Characteristics) curve is usually used to depict such a tradeoff between power and FAR.

In our analysis we conduct off-line and many times the same experiments with different values of
detection thresholdh in order to test the impact of the thresholdh over the power of the test and over
the FAR. We also test the impact of theMLRSsketch widthP , considering different values ofP .
Because of the lack of public and well documented traces withwell known attacks, we use theOTIP
trace (the largest trace with6.9GB of data) as background traffic in which we manually delete the
previous anomalies, and instead insert 100 SYN flooding attacks of different intensities in different
times. Firstly, we apply CUSUM algorithm over this trace by aggregating whole flows in one time
series. Afterward, we apply our implementation over the same trace while changing the value of the
parametersh andP .

Power and FAR values are easily established because we know in advance the IP address of the
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Figure 9.PTP = f(h), PF A = f(h), ROC curve for CUSUM and MNP-CUSUM over sketch (P = 12,P = 14).

victim servers, the number of existing attacks, and their instants. The power or true positive ratioPTP

is the number of detected attacks divided by the total numberof existing ones (100). The false alarm
ratePFA is the percentage of raised alarms that did not correspond toreal attacks. Figure9 shows the
variations of the power and the FAR as functions of the detection threshold,PTP = f(h) (figure9(a)),
andPFA = f(h) (figure9(b)) as well as the ROC curve (figure9(c)) for two values of theMLRSwidth
(P = 12 andP = 14). As it was expected theFAR as well as the power decrease as the threshold
increases. Hence, a tradeoff between false alarm rate and detection rate must be found to control the
sensitivity of the test and prevent false alarms. From this study it seems that a good choice of operating
point is to selecth ≃ 7 for P = 12 (andh ≃ 5 for P = 14) since for these values the detection rate is
high while keeping a low FAR. We also notice that a large sketch width value upgrades the performance
as displayed by ROC curves on figure9(c). As a matter of comparison Figure9(c) displays the ROC
curve summarizing the performance of a single channel CUSUMalgorithm over the raw traffic data for
the same dataset. We notice that low intensity attacks are not detected after aggregation of the whole
traffic into one time series. False alarms continue to raise even with large threshold value whereas
the algorithm is still unable to detect any existing attacks. Thus is due to the high variability in the
aggregated traffic pattern.

6. CONCLUSION

In this paper, we propose a new framework that integrates multi-stage sketch and multi-chart CUSUM
for anomaly detection over high speed links. The proposed framework is able to automatically pinpoint
the IP flows responsible for anomaly, through exploiting thematrix index in an additional multi-layer
reversible sketch. The proposed approach consists of threestages: data reduction, anomaly detection
and classification. The contributions are: data reduction when collecting flow records for bandwidth
saving and analysis complexity reduction, software efficient sketch inversion method, making up
overall an efficient algorithm to uncover hidden anomalies in the overall traffic.

It is obvious that worm signatures are unknown in their outbreak phase, and as some polymorphic
worms (change their signatures to evade detection) use encryption with different keys and different
encryption algorithms for every instance, it becomes a challenge for a signature based IDS to detect
them. However, worms spreading phase tend to have a large number of destinations (NetScan) to infect
all vulnerable systems, and thus can be identified by our proposed approach.

We proved that our approach is effective through implementation and testing on real traces with
DDoS & Scan attacks. The sampling technique used discards many deviations generated by legitimate
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flows, and thus reduces the false alarm rate. False positive reduction is the most important factor in
measuring the performance of any detection system. The use of sketch and MNP-CUSUM increases
the accuracy and reduces the detection delay with respect tothe aggregation of all the traffic in one time
series. We have shown the ability to detect hidden anomaly inoverall traffic, and to reduce the false
positives. Furthermore, online experiments have proven the effectiveness of the proposed approach as
well as the early detection of attacks.

The proposed method is easily decentralized due to the linear property of sketch values. Ongoing
work will concern the decentralized version of the proposedapproach, and the reduction of the size
of exchanged sketch information between different monitoring nodes in different layers. Decentralized
anomaly detection is indeed a very important issue since many attacks are deployed over the Internet
and it is necessary for the different monitoring points to manage to exchange information. These
monitoring points can be located for example in peering points between Autonomous Systems (AS)
or in different AS. The exchange of information between AS raises new challenges concerning for
example end-user privacy related questions, or trustinessbetween the different organizations.
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