
MODELLING AND ANALYZING DYNAMIC SOURCE ROUTING
PROTOCOL WITH GENERAL DISTRIBUTIONS

Osman Salem

Abdelmalek Benzekri
Institut de Recherche en Informatique de Toulouse

Université Paul Sabatier
118 Route de Narbonne, 31062 Toulouse Cedex 04, France

E-mail: {benzekri, osman}@irit.fr

KEYWORDS
SPA, CTMC, Performance Evaluation, General
distributions, Insensitivity, MANETs, DSR.

ABSTRACT

In this paper, we present an integrated algebraic model
of the dynamic source routing protocol used in ad hoc
networks. Algebraic description of this protocol has
been realized by means of powerful operators of
Extended Markovian Process Algebra EMPA and by
exploiting value passing feature in order to express
activities execution delay with general distribution.
Afterwards, functional properties of the model are
formally verified using µ-calculus/CTL model checking
formulas and performance parameters are assessed via
simulation through the EMPA software tool.

1. INTRODUCTION

Modelling and analyzing a concurrent system,
especially when it is composed of a large number of
components that cooperate to achieve some tasks, are
very important to prevent costly redesigns and time loss
(Bernardo et al. 1998) by verifying functional and
performance properties of the model early in design
phase and before its implementation (Bernardo and
Gorrieri 1996).

Classical process algebras like CCS (Milner 1989) and
CSP (HOARE 1985) are formal description techniques
that provide a linguistic means: to model a system by
describing it mathematically via predefined operators
and to analyze its characteristics in order to ensure that
it is correctly designed (Brinksma and Hermanns 2001).
This modelling formalism allows designers to specify
only the functional aspects of the system and to verify
its qualitative properties by analyzing the labeled
transition graph derived from its algebraic description.

However, neglecting the temporal aspect of the system’s
behaviour is a major drawback in the expressiveness of
this formalism, because once the model is realized or
implemented and it seems that it does not satisfy the
required performance criteria, it must be redesigned
(Bernardo et al. 1998; Benzekri 2002). To alleviate this

problem, the designer models quantitative properties by
resorting to stochastic processes such as Markov chain.
Using this technique, the designer describes what
possible states the system may enter and how it moves
form one state to another in time. However, this
specification becomes tedious, error prone and manually
infeasible when the state space of the model contains
many hundreds of states, as it is often the case in
practice. Furthermore, tests for functionality and
performance are realized on two different models of the
system, so the designer has to make sure that these
models are consistent.

In response to these limitations, Stochastic Process
Algebras (SPA) (Brinksma and Hermanns 2001;
Benzekri 2002) have been introduced as an extension to
classical process algebras via the assignment of an
exponentially distributed random variable to each
activity in the model representing its duration. Time is
restricted to exponentially distributed because the
underlying labeled transition graph can easily be
transformed into a Continuous Time Markov Chain
(CTMC for short), which is limited to describe systems
satisfying the property that the future behaviour only
depends on the current state.

SPAs provide then an integrated formalism where
functional and performance aspects are both taken into
account from the beginning of the design process,
thereby achieving a part of the desired objective. Beside
this, it inherits compositionality and abstraction features
of classical process algebras. These attractive features
allow user to construct a model from smaller
components without considering their internal structure.
In the last years, several SPA languages and tools have
appeared, such as PEPA (Performance Evaluation
Process Algebra (Hillston and Ribaudo 1996)), TIPP
(TImed Processes and Performability evaluation (Götz
et al. 1993)) and EMPA (Extended Markovian Process
Algebra (Bernardo 1998)). All these languages propose
the same approach to performance modelling by
restricting time to exponential for deriving a CTMC
from the described algebraic model, and then they use
linear algebra methods to get steady states and transient
states distribution probabilities, which are useful to
assess performance parameters. However, the most
significant difference between these stochastic process

algebras is related to synchronization rate of processes
interaction (proofs are detailed in (Brinksma and
Hermanns 2001)), which results when two or many
components synchronise, or cooperate, to achieve an
action.

Among these languages, we will focus in this paper at
EMPA, which was inspired from existing languages
(PEPA and TIPP). It extends the expressiveness of these
languages by allowing the designer to describe
prioritized weighted immediate actions with
exponentially distributed actions. The restriction in
describing activities duration to exponential was
necessary in SPA in order to define the semantics of
these languages in an interleaving style like in classical
process algebras by exploiting the memory-less
property, which makes the derivation of CTMC easily
from label transition diagram by discarding the
activities name and by keeping only the temporal
parameters (Hillston and Ribaudo 1996; Bernardo
1998).

The restriction of activity timing aspects to exponential
distribution is regarded by some like a limitation in the
expressiveness power of SPA modelling formalism,
because even deterministic delay, which frequently
arises in practice, can not be specified (e.g. time out in
communication protocols).

The combined use of immediate and exponentially
delayed actions in EMPA, allows phase type
distribution (Bernardo 1996) to be represented, which is
very useful because many frequently occurring
distributions are or can be approximated by phase type
distributions. Well-known examples of phase type
distributions are: hypo-exponential, hyper-exponential
and coxian distribution.

Indeed, several attempts have been done to incorporate
general distributions in this modelling formalism, to
make it able to express directly durations with arbitrary
distributions and to avoid approximation through
combination of actions. However, general distributions
approach lead to intractable model where it is often
impossible to analyse it. Also, The memory-less
property can not be exploited to define the semantics in
interleaving style because the actions can no more be
thought as being started in the states where they will be
executed. In contrast, we must keep track of the
sequence of states in which an action started and
continued its execution. The underlying performance
diagram is no longer Markovian and its performance
can be evaluated by using mathematical methodologies
in some cases by employing the notion of insensitivity
(Clark 1999), or by using simulation.

A stochastic process is said to be insensitive if its steady
state distribution depends on the distribution of one or
more of its state lifetime random variables only through
their mean. This means that these random variables may

be replaced with other distributed ones having identical
mean for preserving the steady state solution of the
process. As a consequence exponential distributions can
be used to transform the underlying transition graph into
CTMC that can be easily analysed.

Bravetti et al. in (Bravetti et al. 1997), propose a
Generalised Semi Markov Process Algebra GSMPA
modelling formalism, which incorporates general
probability distributions. This modelling formalism
includes all operators used in process algebra. To keep
track of residual lifetimes of actions in execution
through many states, they adopt a mechanism of action
identification by representing each action in the
semantic model as a combination of action start and
action termination. In addition, they rely at preselection
policy to resolve choice according to priority level and
weight associated to each activity. Afterward, they
provide a mapping to GSMP and exploit insensitivity to
resolve it. In (Bravetti et al. 1998), they give an example
of a simple queue modelled in GSMPA, where the
service time was deterministic, and then they exploit
insensitivity to derive CTMC from GSMP by
aggregating particular states.

Bernardo in (Bernardo 1997) enhances the
expressiveness power of EMPA by adding the
mechanism of value passing to this formalism. In this
paper, we will model the DSR protocol with general
distributions by exploiting value passing strategy, where
this protocol will be expressed in the algebraic formal
description language EMPAvp to describe general
distributed activities.

The rest of this paper is organized as follows. In section
2 we briefly introduce the syntax of EMPA with value
passing and the meaning of its operators. In Section 3
we present the basic operations of DSR with the
algebraic description of its items. In section 4 and 5, we
present the results of the functional and performance
analysis realized at the DSR algebraic model. In section
6 we report some concluding remarks.

2. EXTENDED MARKOVIAN PROCESS
ALGEBRA: EMPA

In this section, we present the syntax of the specification
language EMPA that is necessary to understand the
algebraic description of the DSR protocol and we
concentrate on features such as value passing, general
distributions and simulation that we have exploited in
our case study.

EMPA allows the description of a complex system from
many components modelled separately and then
combined using the appropriate operators. Every
component performs timed activities represented by <a,
λ>, where ''a'' characterizes action name, and ''λ''
represents action duration given by the rate of
exponential distribution function F(t) = 1-e-λt and

indicates the speed at which the action occurs. Based on
the value of its rate, an action is classified as
exponentially timed if ''λ'' is a positive real number, or
passive if ''λ'' is left unspecified (denoted *) usually
used to model activities waiting for synchronization, or
immediate if ''λ'' is equal to infinity. Immediate actions
represented by <a, ∞L,W>, have two parameters: L and
W. the former is used to express the priority level of
action ''a'' and the second is used to express the weight
of action execution. EMPA processes can be
constructed according to the following syntax:

P = 0│<a,λ>.P│<a,*>.P│<a ,∞L,W>.P│

P/L│P[φ]│P + Q│ P ||s Q│A

VP = <a!(x), ∞L,W>.P │ <a?(x), ∞L,W>.P │
 if (β,p) the P1 else P2 │ A(local_param ; local_var)

Here 0 denotes the zero process that cannot perform any
actions. Expression <a,->.P represents sequential
execution of action ''a'' followed by process P. The
hiding operator -/L transforms actions belonging in list
L into internal actions whose functionality cannot be
observed (like τ in LOTOS (Bolognesi and Brinksma
1987)). The re-labeling operator P[ϕ] renames actions in
process P according to ϕ equation. The choice operator
P + Q executes process P or process Q depending on
whether an action in P or in Q is executed first. The
parallel composition operator P ||S Q allows the
asynchronous execution of P and Q activities, which are
not belonging to list S and synchronous execution at
actions listed in S, where synchronization can take place
only between active and passive actions. Finally,
constant operator is used to express recursive behaviour.

Implementing value passing in EMPA, add to
unstructured actions of the form <a, λ> additional
information needed to exchange data among system
components which synchronize when performing some
activities. Actions which take data variable x as input
are of the forms <a?(x), λ> and actions that output data
expression e are of the forms < a!(e), λ>. Further details
can be found in (Aldini et al. 2001).

The conditional operator (if (β, p) then P1 else P2) has
been added to EMPA, where β is a Boolean expression
and p is the probability that β is satisfied. In simulation,
the boolean expression is considered to solve the choice,
while the probability p that β holds is used in case of
numerical analysis and this operators can be represented
by the internal immediate choice like appears in the
following expression: <τ, ∞1, p>. P1 + <τ, ∞1,1-p >.P2.

Finally, when using value passing, we should be able to
keep track of the data we are interested in, this can be
achieved by means of parameterized constant
definitions of the form A(x) = P, where x is a vector of
variables composed of local variables and formal
parameters (Bernardo 1997). Local variables are used to

get values from other processes via synchronisation
while formal parameters are bound to actual parameters
used when a constant invocation occurs.

3. FORMAL DESCRIPTION OF DSR

The dynamic source routing protocol (Broch et al. 2003)
is an efficient reactive routing protocol designed for use
in Mobile Ad Hoc Networks (MANETs), which are a
collection of mobile host dynamically forming a
temporary network, without the need for any existing
network infrastructure or administration. Due to the
limited transmission range of wireless network
interfaces, multiple hops may be needed for one node to
exchange data with another across the network.
Therefore, each mobile node inside such network may
operate not only as a host but also as a router,
forwarding packets for other mobile nodes in the
network that may not be within direct wireless
transmission range of each other.

DSR uses source routing rather than hop-by-hop routing
(e.g. packets carry in their header the path through
which it must pass). The key advantage of source
routing is that intermediate nodes do not need to
maintain up-to-date routing information in order to
route the packets they forward, since packets themselves
contain all the routing decisions. This fact, couplet with
the on demand nature of the protocol, eliminates the
need for the periodic exchange of routing packets.

This protocol allows the network to be completely self-
organizing and self-configuring in the following
manner: when source host attempts to send packets to
another host and does not already know a route to this
last, it floods a Route Request packet (RREQ) in the
network. Therefore, when an adjacent node receives this
packet, it appends its address, and floods the received
packet (RREQ) if it is not the destination and does not
see this request before. When RREQ packet reaches
destination host, it contains in its header the path
towards the source, so destination host will use this path
to send a route reply packet (RREP) if the link is full
duplex. When source host receives RREP, it appends
received path to every packet that it will send.
Intermediate host will route these packets according to
header-included path. If the network topology has
changed such that the used path is broken because one
host listed in path has moved out, the adjacent host of
this last notifies the source by sending Route Error
packet (RERR). When source host receives route error
packet, it restarts the same algorithm to find another
path if it does not have other previously learned route.

The dynamic source routing protocol described in
previous section has been formally modeled with
EMPA for analyzing its qualitative and quantitative
parameters. Using value passing has been necessary to
model activities with general distributions (such as
deterministic or generally distributed time out). We

present the algebraic specification that has been done
while exploiting compositionality to deal with three
entities: Source, Receiver and MANET. The complete
specification of DSR is given by:

• DSR
 S0(nb, req_id, to, ceil(exp(1))) ||SM MANET ||RM R

• MANET
 NET_std(clk_std,[],mem) || NET_dts(clk_dts, [])

The interaction between the source and the network is
given by the list of actions in SM while the interaction
between the network and the receiver is given by the list
MR.

SM = {rreq, net_rreq, net_rrep, net_error, send_pkt,

resend_pkt, net_pkt }
MR = {net_rreq, deliver_rrep, net_pkt}

3.1 Specification of the source

The source host begins by checking its cache to find if
there is any previously learned path toward the intended
destination, so if it finds a cached path, it appends it to
every packet and sends it to next hop. However, if it
doesn’t find a cached path, it floods RREQ and wait
until the reception of RREP. Aware that many RREQ
packets flooded by the network may be returned to the
source, this last exploits these packets to discover its
neighbors. Also after sending a RREQ, if time out
occurs before receiving any route reply packet (usually
after sending RREQ packet 7 times), the source wait for
an amount off time, usually called exponentially back-
off, to limit the rate of transmitted RREQ. The
specification of this component is the following:

• S0(int nb, int req_id, int to, int back_off;)
 <prep_pkt, ∞1,1>.<verif_cache, ∞1,1>.
 (<τ, ∞1,50>.<pnf, ∞1,1>.S1(nb, req_id, to0, back_off)
+ <τ,∞1,50>.<pf, ∞1,1>.Sender(nb, req_id, to, back_off))

S1(int nb, int req_id, int to, int back_off; int rq_id)

 <rreq!(req_id), ∞1,1>.S1’(nb, req_id, to -- 1, back_off)

S1’(int nb, int req_id, int to, int back_off; int n)
 if (to > 0, 0.8) then
 <net_rreq?(n), *>.<discard_rreq, ∞1,1>.
 S2(nb, req_id, to0, back_off)
 else
 <elapse_tick, ∞1,1>.
 Check_nb(nb, req_id, to --1, back_off)

Check_nb(int nb, int req_id, int to, int back_off;)
 if (nb <= 3, 0.99) then
 <rreq!(req_id ++ 1), ∞1,1>.
 S1’(nb ++ 1, req_id ++ 1, to -- 1, back_off)
 else
 <back_off_phase, ∞1,1>.
 Back_off(1, req_id ++ 1, to0, back_off --1)
Back_off(int nb, int req_id, int to, int back_off;)

 if (back_off < 0, 0.5) then
 <try_again, ∞1,1>.S0(1, req_id, to0, ceil(exp(1)))
 else
 <elapse_tick, ∞1,1>.
 Back_off(nb, req_id, to, back_off -- 1)

S2(int nb, int req_id, int to, int back_off; int rrepl)
 if (to >> 0, 0.9) then
 <net_rrep?(rrepl),*>.
 Verif_rrep(rrepl, nb, req_id, to -- 1, back_off)
 + <elapse_tick, ∞1,1>.S2(num,req_id,to -- 1, back_off)
 else
 <timeout, ∞1,1>.S1(nb, req_id ++ 1, to0, back_off)

Verif_rrep(int rrepl, int nb, int req_id, int to, int
back_off;)
 if (req_id >= rrepl, 0.8) then
 <cache_path, ∞1,1>.<add_path2pkt, ∞1,1>.
 Sender(1, req_id, to0, back_off)
 else
 <discard_rrep, ∞1,1>.S2(nb, req_id, to, back_off)

Sender(int nb, int req_id, int to, int back_off;)
 <send_pkt, ∞1,1>.
 Hear_forward(1, req_id, to0, back_off)

Hear_forward (int nb, int req_id, int to, int back_off;)
 if (to > 0, 0.9) then
 (<net_pkt, *>.Sender(nb, req_id, to0, back_off)
 + <elapse_tick, ∞1,1>.
 Hear_forward(nb, req_id, to -- 1,back_off))
 else
 <elapse_tick, ∞1,1>.
 Check_sended(nb, req_id, to -- 1, back_off)

Check_sended(int nb, int req_id, int to, int back_off;)
 if (nb <= 3, 0.5) then
 (<resend_pkt, ∞1,1 >.
 Hear_forward(nb ++1, req_id, to0, back_off)
 + <net_error, *>.
 Check_sended(nb, req_id, to -- 1, back_off)
 + <net_pkt,*>.Sender(nb, req_id, to0, back_off))
 else
 <broken_net, ∞1,1>.S0(1, REQ_ID, to0, back_off)

3.2 Specification of the network

The MANET-std and MANET-dts components model
the mobile network from source to destination and from
destination to source respectively, which is composed
from many intermediate nodes. This entity may receive
RREQ from the source host or directly packets that
must forwarded to the receiver host. Also it may: floods
received route request packet, sends received route reply
packet to source host, move outside source transmission
zone, deliver route request to receiver host and sends
route error packet to the source when receiver become
unreachable. The complete specification of DSR is
given by:

• MANET_std(int clk_std, list(list(int)) list_pkt, int
mem; int id)
 <RREQ?(id),*>.

Verify_ID(clk_std ++ 1, list_pkt, mem, ID)
+ <send_pkt, *>.

Delivery_check_pkt(clk_std ++ 1,
insert([clk_std ++ ceil(normal(100,7))],
list_pkt), mem)

+ <resend_pkt, *>.
Delivery_check_pkt(clk_std ++ 1,
insert([clk_std ++ ceil(normal(100,7))],
list_pkt), mem)

+ <τ, ∞1,0.01>.<move_out, ∞1,1>.
MANET_std(clk_std ++ 1, list_pkt, mem)

Delivery_check_pkt(int clk_std, list(list(int)) list_pkt,
int mem;)
if ((list_pkt != []) &&
 (clk_std >= first(first(list_pkt))), 0.9) then

(<τ, ∞1,0.99>.<net_pkt, ∞1,1>.
MANET_std(clk_std ++1, tail(list_pkt), mem)
+ <τ, ∞1,0.01>.<net_error, ∞1,1>.
MANET_std(clk_std ++1, [], mem))

else
 <elapse_tick, ∞1,1>.
 Delivery_check_pkt(clk_std ++ 1, list_pkt, mem)

Verify_ID(int clk_std, list(list(int)) list_pkt, int mem, int
ID;)
if (id >= mem, 0.9) then

(<add_cache, ∞1,1>.Delivery_rreq(clk_std ++ 1,
insert([clk_std ++ ceil(normal(100,7))], list_pkt),
ID)
+ <τ, ∞1,0.001>.discard_rreq, ∞1,1>.
MANET_std(clk_std ++ 1, list_pkt, mem))

else
<discard_rreq, ∞1,1>.
MANET_std(clk_std ++ 1, list_pkt, mem)

Delivery_rreq(int clk_std, list(list(int)) list_pkt, int
mem;)
if (clk_std >= first(first(list_pkt)),0.9) then

<net_rreq!(mem), ∞1,1>.
MANET_std(clk_std ++ 1, tail(list_pkt), mem)

else
<elapse_tick,∞1,1>.
Delivery_rreq(clk_std ++ 1, list_pkt, mem)

• MANET_dts(int clk_dts, list(list(int)) delivery_time;
int rep_id)
 <deliver_rrep?(rep_id),*>.

 Delivery_rrep(clock_dts ++ 1, insert([clk_dts ++
10], delivery_time), rep_id)

Delivery_rrep(int clk_dts, list(list(int)) delivery_time,
int rep_id;)
if (clock_dts >= first(first(delivery_time)), 0.9) then
 <NET_RREP!(rep_id), ∞1,1>.
 MANET_dts(clk_dts ++ 1, tail(delivery_time))

 else
 <elapse_tick, ∞1,1>.
 MANET_dts(clock_dts ++ 1, delivery_time)

3.3 Specification of the receiver

The receiver host may receive many route request
packets and it answers to all received packets. The
source uses only the first received one by supposing that
it crosses the best route and experiences the less delay,
and it drops all others. Afterwards, it delivers received
packets to the appropriate applications. The
specification of this component is given by:

• R(; int r_id)
 <net_rreq?(r_id),*>.R1(r_id)
 + <net_pkt, *>.<del_to_appl, ∞1,1>.R

R1(int r_id1; int new_id)
 <deliver_rrep!(r_id1), ∞1,1>.R
+ <net_rreq?(new_id),*>.R1(new_id)
+ <net_pkt, *>.<del_to_appl, ∞1,1>.R

4. FUNCTIONAL ANALYSIS

The functional analysis aims at verifying the correctness
of the designed model and at detecting conceptual errors
in its behaviour. We start our analysis by verifying
freedom from deadlock, e.g. states without outgoing
transitions also called absorbing states. A naïve strategy
would be to use the simulation approach and consider
several simulation runs. As the coverage of such
simulations is some time low, e.g. if no deadlock is
reached during simulation, this does not guaranteed
absence of deadlocks.

In EMPA, freedom from deadlock can be verified easily
by generating the state space of the algebraic
specification of DSR, which has 1825 states (0 tangible,
1825 vanishing, 0 open, 0 deadlocked) and 3888
transitions. Note that the state spaces are very compact
because the semantic models are symbolic. Due to space
constraints, we cannot present in detail EMPA and its
theory; we invite the reader to see for example
(Bernardo 2003) for further details.

We have used µ-calculus/CTL (Clarke et al. 1986)
model checking to verify other behavioural aspects of
our algebraic model. More precisely, we have proved
that: the receiver does not send any RREP packet before
the network deliver a RREQ packet, and the network
does not flood Route Request packet before the sender
sends a Route Request. These properties have been
formalized through the following formulas:

• (AG([deliver_rrep]

 A([deliver_rrep]ff W <net_rreq> tt)))

• (AG([net_rrep] A([net_rrep]ff W < rreq> tt)))

The first (second) equations means that for any state
(operator G) of any computation (operator A) starting at
the initial state, action deliver_rrep (net_rrep) can be
executed by a state where its derivative must verify the
following condition: a deliver_rrep (net_rrep) labelled
transition cannot be encounter before a net_rreq (rreq)
labelled transition is executed. They check the order of
actions’ executions.

5. PERFORMANCE ANALYSIS

The performance analysis, which aims at determining
efficiency parameters, has been made by using
simulation routine in EMPA software tool
(TwoTowers), because the presence of generally
distributed activities encoded within assignments, which
cannot be taken into account elsewhere and an exact
performance analysis realised at Markov chain would be
meaningless, because assignments are kept as symbolic
(Bernardo 2003).

The simulation routine implemented in EMPA tool is
based at the method of independent replications, which
means that in each step of each simulation run, the
transitions for the current state are computed according
to the formal semantic and one of them (together with
the related derivative states) is chosen.

To realize this simulation, we use an auxiliary
specification containing additional information like the
termination condition, the number of simulation runs
and the performance parameters of interest. In our
study, the termination condition was:

elapse_tick n1 n2

Where elapse_tick is the name of action representing the
passage of 1ms, n1 is the number of times action
elapse_tick must be executed before terminating each
simulation run, and n2 is the number of simulation runs.
Performance parameters are calculated by using reward,
which is a simple method that associates a value to
related performance parameters. The interested reader is
referred to (Bernardo 1996) for more details about
rewards.

Many performance parameters can be calculated (like
throughput, utilization rate …), but we are interested to
the ratio of routing packets (overload percentage that
DSR adds to network due to energy, CPU and memory
limitations of intermediate hosts) and to percentage of
delivered packets. In order to get these parameters, we
have realized the simulation by specifying n1 to 100000
ms (100s) and n2 to 20 simulation runs. The results are
reported in table 1, where we can see that in worst case
in our model, only 6% of packets are added by DSR in
the beginning of transmission and the average value
during all the transmission time was 3.12%. These
results are directly related to the numerical values of
probabilities about the speed of each host (very small in
our model) and packets loss rate in the network, which

are represented in our model by the probability of
generating route error and by an internal action (τ) that
represents loss.

Table 1: Ratio of Routing Packets

Experiment estimate 90% confidence int.
estimate 0 5.92705 [5.09417, 6.75993]
estimate 1 3.04501 [2.32435, 3.76568]
estimate 2 2.31663 [1.79883, 2.83442]
estimate 3 3.31035 [2.58241, 4.0383]
estimate 4 3.21337 [2.53473, 3.89202]
estimate 5 2.57794 [1.94359, 3.2123]
estimate 6 2.59094 [2.05932, 3.12255]
estimate 7 3.1949 [2.39891, 3.99088]
estimate 8 2.26937 [1.77628, 2.76246]
estimate 9 2.8377 [2.33404, 3.34135]

Table 2 shows the results obtained for the packet
delivery ratio (PDR) given by:

nb of data packets received
 nb of data packets sent

PDR =

Table 2: Packet Delivery Ratio

exp. estimate 90% confidence int
estimate 0 0.988003 [0.986436, 0.989571]
estimate 1 0.990486 [0.988683, 0.99229]
estimate 2 0.991686 [0.990439, 0.992932]
estimate 3 0.989334 [0.985785, 0.991083]
estimate 4 0.989454 [0.987893, 0.991015]
estimate 5 0.991624 [0.989809, 0.99344]
estimate 6 0.991126 [0.989637, 0.992615]
estimate 7 0.990017 [0.98821, 0.991823]
estimate 8 0.991999 [0.990487, 0.993511]
estimate 9 0.9911 [0.990053, 0.992147]

This means that with 100 packets transmitted by the
source, 99 packets delivered by the network to receiver
host, and these results was expected because the
probability of loosing packets is considered equal to
0.01 in our algebraic model.

6. Conclusions and Further Research

In this paper, we have formally modelled and analyzed
by means of the stochastic process algebra EMPA, the
Dynamic Source Routing protocol with general
distributed activities while exploiting the value passing
mechanism and the compositionality feature of process
algebras to construct a complex model from small
components. This case study shows the adequacy and
the expressive power of this formalism to model a
complex system and to analyze both its functional and
its performance properties early in its design phase.

Accuracy of our results is going to be depending on the
details that we have invested in the model. Here, we do

not claim that DSR is the best routing protocol because
the results of described algebraic model are optimal. In
contrast, the protocol is not under some circumstances
(highly dynamic nature of mobile hosts). However, this
protocol is interesting enough to deserve a closer
investigation about possible attacks and how to make it
secure in cases where it provides the best performance
with respect to other existing routing protocols. The
focus of our current and future work is to analyze and
compare the influence of securing this protocol at its
performance, because security mechanisms in this type
of networks consume resources and can delay or even
prevent successful exchanges of routing information.
Many proposals to secure DSR protocol have their own
merits and some of them may appear to be extremely
secure, but their real performance when deployed in the
network is still unclear. Therefore, we will investigate
the effect of adding security tasks that we will propose
at this protocol by extending our algebraic model to
develop a trade off between network performance and
security solution that effectively balances security
strength and network performance.

References

Aldini, A.; M. Bernardo; R. Gorrieri; and M. Roccetti. 2001.
“Comparing the QoS of Internet Audio Mechanisms via
Formal Methods”, in ACM Transaction on Modeling and
Computer Simulation, No.11 (Jan),1-42.

Benzekri, A. 2002. “Qualitative and Quantitative Evaluation
using Process Algebra”, The 17th International Symposium
on Computer and Information Sciences, (Orlando, Florida
USA, Oct. 26-28), 415-418.

Bernardo, M. and R. Gorrieri. 1996. “Extended Markovian
Process Algebra”, in Proceedings of the 7th International
Conference on Concurrency Theory, (Pisa, Italy),
Montanari U. & Sassone V. editors, Lecture Notes in
Computer Science 1119, 315-330.

Bernardo, M. 1996. “On the Coexistence of Exponential,
Immediate and Passive Actions in EMPA“, in Proceedings
of the 4th Int. Workshop on Process Algebras and
Performance Modelling, (Torino, Italy, July), M. Ribaudo
editor, 58-76.

Bernardo, M. 1997. “Enriching EMPA with Value Passing: A
Symbolic Approach based on Lookahead”, in Proceedings
of the 5th International Workshop on Process Algebras
and Performance Modelling, (Enschede, Netherlands,
Jun), E. Brinksma and A. Nymeyer editors, 35-49.

Bernardo, M. 1998 “A Tutorial on EMPA: A Theory of
Concurrent Processes with Non-determinism, Priorities,
Probabilities and Time”, in Theoretical Computer Science,
vol. 202 (July), 1-54.

Bernardo, M.; L. Donatiello and R. Gorrieri. 1998. “A Formal
Approach to the Integration of Performance Aspects in the
Modeling and Analysis of Concurrent Systems”,
International journal of Information and Computation,
Vol. 144, No.2 (August), 120-154.

Bernardo, M. 2003. “Symbolic Semantic Rules for Producing
Compact STGLA from Value Passing Process
Descriptions”, ACM Transactions on Computational
Logic.

Bolognesi, T. and Brinksma, E. 1987. “Introduction to the ISO
Specification Language LOTOS”, Computer Networks
and ISDN Systems, Elsevier Science Publishers, Vol. 14,
No.1, 25-59.

Bravetti, M.; Bernardo, M. and Gorrieri R. 1997.
“Generalized Semi Markovian Process Algebra”,
Technical Report UBLCS-97-9, University of Bologna
(Italy, Oct).

Bravetti, M.; M. Bernardo and R. Gorrieri. 1998. “Towards
performance evaluation with general distributions in
process algebras”, Lecture Notes in Computer Science,
No.1466, 405-422.

Brinksma, Ed. and H. Hermanns. 2001. “Process Algebra and
Markov Chains”, Lectures on Formal Methods and
Performance Analysis, (Nijmegen), 183 - 231.

Broch, J.; D.B. Johnson; and D.A. Maltz. 2003. “The Dynamic
Source Routing Protocol For Mobile Ad Hoc Networks”,
IETF draft, (Apr).

Clark, G. 1999. “Stochastic process algebra structure for
insensitivity”. In proceeding of the 7th workshop on
process algebra and performance modelling, (prensas
universitarias de zaragoza, September), 63 –82.

Clarke, E.M.; E.A. Emerson; and A.P. Sistla. 1986.
“Automatic Verification of Finite State Concurrent
Systems Using Temporal Logic Specifications”, in ACM
transaction on programming languages and systems 8,
244-263.

Götz, N.; U. Herzog and M. Rettelbach. 1993. “TIPP - A
Language for Timed Processes and Performance
Evaluation”, The First International Workshop on Process
Algebra and Performance Modelling, (UK, University of
Edinburgh, May).

Hillston J. and M. Ribaudo. 1996. “Stochastic Process
Algebras: a New Approach to Performance Modeling”,
State of the Art Modelling and Simulation of Advanced
Computer Systems, Chapter 10.

HOARE, C.A.R. 1985. Communicating Sequential Processes,
Prentice Hall International, London.

Milner, R. 1989. Communication and Concurrency, Prentice-
Hall.

AUTHOR BIOGRAPHIES

OSMAN SALEM received his Diploma in
networks and telecommunications in 2002 at
ENSEEIHT of Toulouse. He is currently a
Phd student in IRIT. His research interests
areas are formal specification using stochastic
process algebras and quality of service
aspects in mobile Ad Hoc Networks. His e-

mail address is: osman@irit.fr and his Web-page can be found
at http://www.irit.fr/~Osman.Salem.

ABDELMALEK BENZEKRI received his
Doctorat in computer science in 1989 at the
Université Paul Sabatier of Toulouse. In
1998, he obtained the French Habilitation to
direct research in the field of qualitative and
quantitative evaluation of distributed

software, at the same university. He got a full position of
professor in 1999. His main research activities focused on
distributed systems and on internetworking solutions. From
the different EC funded projects he participated in, as the
scientific person in charge of within UPS, he gained
experience in managing more than 9 PhD students (4 already
graduated). He is author of more than 50 papers in
international journals and conferences. He was member of the
French Real-time community before being interested in
security and multimedia concerns. His e-mail address is:
benzekri@irit.fr and his Web-page can be found at
http://www.irit.fr/~Abdelmalek.benzekri.

