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ABSTRACT 
 
In this paper, we present an integrated algebraic model 
of the dynamic source routing protocol used in ad hoc 
networks. Algebraic description of this protocol has 
been realized by means of powerful operators of 
Extended Markovian Process Algebra EMPA and by 
exploiting value passing feature in order to express 
activities execution delay with general distribution. 
Afterwards, functional properties of the model are 
formally verified using µ-calculus/CTL model checking 
formulas and performance parameters are assessed via 
simulation through the EMPA software tool. 
 
1. INTRODUCTION 
 
Modelling and analyzing a concurrent system, 
especially when it is composed of a large number of 
components that cooperate to achieve some tasks, are 
very important to prevent costly redesigns and time loss 
(Bernardo et al. 1998) by verifying functional and 
performance properties of the model early in design 
phase and before its implementation (Bernardo and 
Gorrieri 1996). 
 
Classical process algebras like CCS (Milner 1989) and 
CSP (HOARE 1985) are formal description techniques 
that provide a linguistic means: to model a system by 
describing it mathematically via predefined operators 
and to analyze its characteristics in order to ensure that 
it is correctly designed (Brinksma and Hermanns 2001). 
This modelling formalism allows designers to specify 
only the functional aspects of the system and to verify 
its qualitative properties by analyzing the labeled 
transition graph derived from its algebraic description.  
 
However, neglecting the temporal aspect of the system’s 
behaviour is a major drawback in the expressiveness of 
this formalism, because once the model is realized or 
implemented and it seems that it does not satisfy the 
required performance criteria, it must be redesigned 
(Bernardo et al. 1998; Benzekri 2002). To alleviate this 

problem, the designer models quantitative properties by 
resorting to stochastic processes such as Markov chain. 
Using this technique, the designer describes what 
possible states the system may enter and how it moves 
form one state to another in time. However, this 
specification becomes tedious, error prone and manually 
infeasible when the state space of the model contains 
many hundreds of states, as it is often the case in 
practice. Furthermore, tests for functionality and 
performance are realized on two different models of the 
system, so the designer has to make sure that these 
models are consistent. 
 
In response to these limitations, Stochastic Process 
Algebras (SPA) (Brinksma and Hermanns 2001; 
Benzekri 2002) have been introduced as an extension to 
classical process algebras via the assignment of an 
exponentially distributed random variable to each 
activity in the model representing its duration. Time is 
restricted to exponentially distributed because the 
underlying labeled transition graph can easily be 
transformed into a Continuous Time Markov Chain 
(CTMC for short), which is limited to describe systems 
satisfying the property that the future behaviour only 
depends on the current state. 
 
SPAs provide then an integrated formalism where 
functional and performance aspects are both taken into 
account from the beginning of the design process, 
thereby achieving a part of the desired objective. Beside 
this, it inherits compositionality and abstraction features 
of classical process algebras. These attractive features 
allow user to construct a model from smaller 
components without considering their internal structure. 
In the last years, several SPA languages and tools have 
appeared, such as PEPA (Performance Evaluation 
Process Algebra (Hillston and Ribaudo 1996)), TIPP 
(TImed Processes and Performability evaluation (Götz 
et al. 1993)) and EMPA (Extended Markovian Process 
Algebra (Bernardo 1998)). All these languages propose 
the same approach to performance modelling by 
restricting time to exponential for deriving a CTMC 
from the described algebraic model, and then they use 
linear algebra methods to get steady states and transient 
states distribution probabilities, which are useful to 
assess performance parameters. However, the most 
significant difference between these stochastic process 



algebras is related to synchronization rate of processes 
interaction (proofs are detailed in (Brinksma and 
Hermanns 2001)), which results when two or many 
components synchronise, or cooperate, to achieve an 
action.  
 
Among these languages, we will focus in this paper at 
EMPA, which was inspired from existing languages 
(PEPA and TIPP). It extends the expressiveness of these 
languages by allowing the designer to describe 
prioritized weighted immediate actions with 
exponentially distributed actions. The restriction in 
describing activities duration to exponential was 
necessary in SPA in order to define the semantics of 
these languages in an interleaving style like in classical 
process algebras by exploiting the memory-less 
property, which makes the derivation of CTMC easily 
from label transition diagram by discarding the 
activities name and by keeping only the temporal 
parameters (Hillston and Ribaudo 1996; Bernardo 
1998). 
 
The restriction of activity timing aspects to exponential 
distribution is regarded by some like a limitation in the 
expressiveness power of SPA modelling formalism, 
because even deterministic delay, which frequently 
arises in practice, can not be specified (e.g. time out in 
communication protocols).  
 
The combined use of immediate and exponentially 
delayed actions in EMPA, allows phase type 
distribution (Bernardo 1996) to be represented, which is 
very useful because many frequently occurring 
distributions are or can be approximated by phase type 
distributions. Well-known examples of phase type 
distributions are: hypo-exponential, hyper-exponential 
and coxian distribution.  
 
Indeed, several attempts have been done to incorporate 
general distributions in this modelling formalism, to 
make it able to express directly durations with arbitrary 
distributions and to avoid approximation through 
combination of actions. However, general distributions 
approach lead to intractable model where it is often 
impossible to analyse it. Also, The memory-less 
property can not be exploited to define the semantics in 
interleaving style because the actions can no more be 
thought as being started in the states where they will be 
executed. In contrast, we must keep track of the 
sequence of states in which an action started and 
continued its execution. The underlying performance 
diagram is no longer Markovian and its performance 
can be evaluated by using mathematical methodologies 
in some cases by employing the notion of insensitivity 
(Clark 1999), or by using simulation.  
 
A stochastic process is said to be insensitive if its steady 
state distribution depends on the distribution of one or 
more of its state lifetime random variables only through 
their mean. This means that these random variables may 

be replaced with other distributed ones having identical 
mean for preserving the steady state solution of the 
process. As a consequence exponential distributions can 
be used to transform the underlying transition graph into 
CTMC that can be easily analysed.  
 
Bravetti et al. in (Bravetti et al. 1997), propose a 
Generalised Semi Markov Process Algebra GSMPA 
modelling formalism, which incorporates general 
probability distributions. This modelling formalism 
includes all operators used in process algebra. To keep 
track of residual lifetimes of actions in execution 
through many states, they adopt a mechanism of action 
identification by representing each action in the 
semantic model as a combination of action start and 
action termination.  In addition, they rely at preselection 
policy to resolve choice according to priority level and 
weight associated to each activity. Afterward, they 
provide a mapping to GSMP and exploit insensitivity to 
resolve it. In (Bravetti et al. 1998), they give an example 
of a simple queue modelled in GSMPA, where the 
service time was deterministic, and then they exploit 
insensitivity to derive CTMC from GSMP by 
aggregating particular states. 
 
Bernardo in (Bernardo 1997) enhances the 
expressiveness power of EMPA by adding the 
mechanism of value passing to this formalism. In this 
paper, we will model the DSR protocol with general 
distributions by exploiting value passing strategy, where 
this protocol will be expressed in the algebraic formal 
description language EMPAvp to describe general 
distributed activities.  
 
The rest of this paper is organized as follows. In section 
2 we briefly introduce the syntax of EMPA with value 
passing and the meaning of its operators. In Section 3 
we present the basic operations of DSR with the 
algebraic description of its items. In section 4 and 5, we 
present the results of the functional and performance 
analysis realized at the DSR algebraic model. In section 
6 we report some concluding remarks. 
 
2. EXTENDED MARKOVIAN PROCESS 
ALGEBRA: EMPA 
 
In this section, we present the syntax of the specification 
language EMPA that is necessary to understand the 
algebraic description of the DSR protocol and we 
concentrate on features such as value passing, general 
distributions and simulation that we have exploited in 
our case study. 
 
EMPA allows the description of a complex system from 
many components modelled separately and then 
combined using the appropriate operators. Every 
component performs timed activities represented by <a, 
λ>, where ''a'' characterizes action name, and ''λ'' 
represents action duration given by the rate of 
exponential distribution function F(t) = 1-e-λt and 



indicates the speed at which the action occurs. Based on 
the value of its rate, an action is classified as 
exponentially timed if ''λ'' is a positive real number, or 
passive if ''λ'' is left unspecified (denoted *) usually 
used to model activities waiting for synchronization, or 
immediate if ''λ'' is equal to infinity. Immediate actions 
represented by <a, ∞L,W>, have two parameters: L and 
W. the former is used to express the priority level of 
action ''a'' and the second is used to express the weight 
of action execution. EMPA processes can be 
constructed according to the following syntax:  

 
P = 0│<a,λ>.P│<a,*>.P│<a ,∞L,W>.P│ 

P/L│P[φ]│P + Q│ P ||s Q│A 
 

VP = <a!(x), ∞L,W>.P │ <a?(x), ∞L,W>.P │ 
 if (β,p) the P1 else P2 │ A(local_param ; local_var) 

 
Here 0 denotes the zero process that cannot perform any 
actions. Expression <a,->.P represents sequential 
execution of action ''a''  followed by process P. The 
hiding operator -/L transforms actions belonging in list 
L into internal actions whose functionality cannot be 
observed (like  τ in LOTOS (Bolognesi and Brinksma 
1987)). The re-labeling operator P[ϕ] renames actions in 
process P according to ϕ equation. The choice operator 
P + Q executes process P or process Q depending on 
whether an action in P or in Q is executed first. The 
parallel composition operator P ||S Q allows the 
asynchronous execution of P and Q activities, which are 
not belonging to list S and synchronous execution at 
actions listed in S, where synchronization can take place 
only between active and passive actions. Finally, 
constant operator is used to express recursive behaviour. 
 
Implementing value passing in EMPA, add to 
unstructured actions of the form <a, λ> additional 
information needed to exchange data among system 
components which synchronize when performing some 
activities. Actions which take data variable x as input 
are of the forms <a?(x), λ> and actions that output data 
expression e are of the forms < a!(e), λ>. Further details 
can be found in (Aldini et al. 2001).  
 
The conditional operator (if (β, p) then P1 else P2) has 
been added to EMPA, where β is a Boolean expression 
and p is the probability that β is satisfied. In simulation, 
the boolean expression is considered to solve the choice, 
while the probability p that β holds is used in case of 
numerical analysis and this operators can be represented 
by the internal immediate choice like appears in the 
following expression: <τ, ∞1, p>. P1 + <τ, ∞1,1-p >.P2. 
 
Finally, when using value passing, we should be able to 
keep track of the data we are interested in, this can be 
achieved by means of parameterized constant 
definitions of the form A(x) = P, where x is a vector of 
variables composed of local variables and formal 
parameters (Bernardo 1997). Local variables are used to 

get values from other processes via synchronisation 
while formal parameters are bound to actual parameters 
used when a constant invocation occurs. 
 
3. FORMAL DESCRIPTION OF DSR  
 
The dynamic source routing protocol (Broch et al. 2003) 
is an efficient reactive routing protocol designed for use 
in Mobile Ad Hoc Networks (MANETs), which are a 
collection of mobile host dynamically forming a 
temporary network, without the need for any existing 
network infrastructure or administration. Due to the 
limited transmission range of wireless network 
interfaces, multiple hops may be needed for one node to 
exchange data with another across the network. 
Therefore, each mobile node inside such network may 
operate not only as a host but also as a router, 
forwarding packets for other mobile nodes in the 
network that may not be within direct wireless 
transmission range of each other.  
 
DSR uses source routing rather than hop-by-hop routing 
(e.g. packets carry in their header the path through 
which it must pass). The key advantage of source 
routing is that intermediate nodes do not need to 
maintain up-to-date routing information in order to 
route the packets they forward, since packets themselves 
contain all the routing decisions. This fact, couplet with 
the on demand nature of the protocol, eliminates the 
need for the periodic exchange of routing packets.  
 
This protocol allows the network to be completely self-
organizing and self-configuring in the following 
manner: when source host attempts to send packets to 
another host and does not already know a route to this 
last, it floods a Route Request packet (RREQ) in the 
network. Therefore, when an adjacent node receives this 
packet, it appends its address, and floods the received 
packet (RREQ) if it is not the destination and does not 
see this request before. When RREQ packet reaches 
destination host, it contains in its header the path 
towards the source, so destination host will use this path 
to send a route reply packet (RREP) if the link is full 
duplex. When source host receives RREP, it appends 
received path to every packet that it will send. 
Intermediate host will route these packets according to 
header-included path. If the network topology has 
changed such that the used path is broken because one 
host listed in path has moved out, the adjacent host of 
this last notifies the source by sending Route Error 
packet (RERR). When source host receives route error 
packet, it restarts the same algorithm to find another 
path if it does not have other previously learned route.  
 
The dynamic source routing protocol described in 
previous section has been formally modeled with 
EMPA for analyzing its qualitative and quantitative 
parameters. Using value passing has been necessary to 
model activities with general distributions (such as 
deterministic or generally distributed time out). We 



present the algebraic specification that has been done 
while exploiting compositionality to deal with three 
entities: Source, Receiver and MANET. The complete 
specification of DSR is given by: 
 
• DSR   
          S0(nb, req_id, to, ceil(exp(1))) ||SM MANET ||RM R 
 

• MANET   
         NET_std(clk_std,[],mem) || NET_dts(clk_dts, []) 
 
The interaction between the source and the network is 
given by the list of actions in SM while the interaction 
between the network and the receiver is given by the list 
MR. 
 
SM = {rreq, net_rreq, net_rrep, net_error, send_pkt, 

resend_pkt, net_pkt } 
MR = {net_rreq, deliver_rrep, net_pkt} 
 
3.1 Specification of the source  
 

The source host begins by checking its cache to find if 
there is any previously learned path toward the intended 
destination, so if it finds a cached path, it appends it to 
every packet and sends it to next hop. However, if it 
doesn’t find a cached path, it floods RREQ and wait 
until the reception of RREP. Aware that many RREQ 
packets flooded by the network may be returned to the 
source, this last exploits these packets to discover its 
neighbors. Also after sending a RREQ, if time out 
occurs before receiving any route reply packet (usually 
after sending RREQ packet 7 times), the source wait for 
an amount off time, usually called exponentially back-
off, to limit the rate of transmitted RREQ. The 
specification of this component is the following: 
 
• S0(int nb, int req_id, int to, int back_off;)  
     <prep_pkt, ∞1,1>.<verif_cache, ∞1,1>. 
    (<τ, ∞1,50>.<pnf, ∞1,1>.S1(nb, req_id, to0, back_off) 
+   <τ,∞1,50>.<pf, ∞1,1>.Sender(nb, req_id, to, back_off)) 
 
S1(int nb, int req_id, int to, int back_off; int rq_id)  
       

  
    <rreq!(req_id), ∞1,1>.S1’(nb, req_id, to -- 1, back_off) 

S1’(int nb, int req_id, int to, int back_off; int n)  
   if (to > 0, 0.8) then 
       <net_rreq?(n), *>.<discard_rreq, ∞1,1>. 
       S2(nb, req_id, to0, back_off) 
   else 
       <elapse_tick, ∞1,1>. 
       Check_nb(nb, req_id, to --1, back_off) 
 
Check_nb(int nb, int req_id, int to, int back_off;)   
    if (nb <= 3, 0.99) then 
         <rreq!(req_id ++ 1), ∞1,1>. 
         S1’(nb ++ 1, req_id ++ 1, to -- 1, back_off) 
    else 
         <back_off_phase, ∞1,1>. 
         Back_off(1, req_id ++ 1, to0, back_off --1) 
Back_off(int nb, int req_id, int to, int back_off;)  

     if (back_off < 0, 0.5) then 
          <try_again, ∞1,1>.S0(1, req_id, to0, ceil(exp(1))) 
    else 
 <elapse_tick, ∞1,1>. 
           Back_off(nb, req_id, to, back_off -- 1) 
 

S2(int nb, int req_id, int to, int back_off; int rrepl)  
    if (to >> 0, 0.9) then 
        <net_rrep?(rrepl),*>. 
        Verif_rrep(rrepl, nb, req_id, to -- 1, back_off) 
     + <elapse_tick,   ∞1,1>.S2(num,req_id,to -- 1, back_off) 
     else 
         <timeout, ∞1,1>.S1(nb, req_id ++ 1, to0, back_off) 
 
Verif_rrep(int rrepl, int nb, int req_id, int to, int 
back_off;)  
    if (req_id >= rrepl, 0.8) then 
        <cache_path, ∞1,1>.<add_path2pkt, ∞1,1>. 
        Sender(1, req_id, to0, back_off) 
    else 
        <discard_rrep, ∞1,1>.S2(nb, req_id, to, back_off) 
 

Sender(int nb, int req_id, int to, int back_off;)  
        <send_pkt, ∞1,1>. 
         Hear_forward(1, req_id, to0, back_off) 
 
Hear_forward (int nb, int req_id, int to, int back_off; )  
    if (to > 0, 0.9) then 
        (<net_pkt, *>.Sender(nb, req_id, to0, back_off) 
      + <elapse_tick, ∞1,1>. 
         Hear_forward(nb, req_id, to -- 1,back_off)) 
    else 
         <elapse_tick, ∞1,1>. 
         Check_sended(nb, req_id, to -- 1, back_off) 
 
Check_sended(int nb, int req_id, int to, int back_off;)  
    if (nb <= 3, 0.5) then 
        (<resend_pkt, ∞1,1 >. 
          Hear_forward(nb ++1, req_id, to0, back_off) 
       + <net_error, *>. 
          Check_sended(nb, req_id, to -- 1, back_off) 
       + <net_pkt,*>.Sender(nb, req_id, to0, back_off)) 
    else 
          <broken_net, ∞1,1>.S0(1, REQ_ID,     to0, back_off) 

 
3.2 Specification of the network 
 

The MANET-std and MANET-dts components model 
the mobile network from source to destination and from 
destination to source respectively, which is composed 
from many intermediate nodes. This entity may receive 
RREQ from the source host or directly packets that 
must forwarded to the receiver host. Also it may: floods 
received route request packet, sends received route reply 
packet to source host, move outside source transmission 
zone, deliver route request to receiver host and sends 
route error packet to the source when receiver become 
unreachable. The complete specification of DSR is 
given by: 
 



• MANET_std(int clk_std, list(list(int)) list_pkt, int 
mem; int id)  
    <RREQ?(id),*>. 

Verify_ID(clk_std ++ 1, list_pkt, mem, ID) 
+ <send_pkt, *>. 

Delivery_check_pkt(clk_std ++ 1, 
insert([clk_std ++ ceil(normal(100,7))], 
list_pkt), mem) 

+  <resend_pkt, *>. 
Delivery_check_pkt(clk_std ++ 1, 
insert([clk_std ++ ceil(normal(100,7))], 
list_pkt), mem) 

+  <τ, ∞1,0.01>.<move_out, ∞1,1>. 
MANET_std(clk_std ++ 1, list_pkt, mem) 

 
Delivery_check_pkt(int clk_std, list(list(int)) list_pkt, 
int mem;)  
if ((list_pkt != []) &&   
   (clk_std >= first(first(list_pkt))), 0.9) then 

(<τ, ∞1,0.99>.<net_pkt, ∞1,1>. 
MANET_std(clk_std ++1, tail(list_pkt), mem) 
+ <τ, ∞1,0.01>.<net_error, ∞1,1>. 
MANET_std(clk_std ++1, [], mem)) 

else 
 <elapse_tick, ∞1,1>. 
 Delivery_check_pkt(clk_std ++ 1, list_pkt, mem) 
 
Verify_ID(int clk_std, list(list(int)) list_pkt, int mem, int 
ID;)  
if (id >= mem, 0.9 ) then 

(<add_cache, ∞1,1>.Delivery_rreq(clk_std ++ 1, 
insert([clk_std ++ ceil(normal(100,7))], list_pkt), 
ID) 
+ <τ, ∞1,0.001>.discard_rreq, ∞1,1>. 
MANET_std(clk_std ++ 1, list_pkt, mem)) 

else 
<discard_rreq, ∞1,1>. 
MANET_std(clk_std ++ 1, list_pkt, mem) 

 
Delivery_rreq(int clk_std, list(list(int)) list_pkt, int 
mem;)  
if (clk_std >= first(first(list_pkt)),0.9) then  

<net_rreq!(mem), ∞1,1>. 
MANET_std(clk_std ++ 1, tail(list_pkt), mem) 

else 
<elapse_tick,∞1,1>. 
Delivery_rreq(clk_std ++ 1, list_pkt, mem) 

 
• MANET_dts(int clk_dts, list(list(int)) delivery_time; 
int rep_id)  
        <deliver_rrep?(rep_id),*>. 

 Delivery_rrep(clock_dts ++ 1, insert([clk_dts ++  
10], delivery_time), rep_id) 

 
Delivery_rrep(int clk_dts, list(list(int)) delivery_time, 
int rep_id;)  
if (clock_dts >= first(first(delivery_time)), 0.9) then 
        <NET_RREP!(rep_id), ∞1,1>. 
        MANET_dts(clk_dts ++ 1, tail(delivery_time)) 

    else 
        <elapse_tick, ∞1,1>. 
        MANET_dts(clock_dts ++ 1, delivery_time) 
 
3.3 Specification of the receiver 
 

The receiver host may receive many route request 
packets and it answers to all received packets. The 
source uses only the first received one by supposing that 
it crosses the best route and experiences the less delay, 
and it drops all others. Afterwards, it delivers received 
packets to the appropriate applications. The 
specification of this component is given by: 
 

• R(; int r_id)  
      <net_rreq?(r_id),*>.R1(r_id) 
  + <net_pkt, *>.<del_to_appl, ∞1,1>.R 
 
R1(int r_id1; int new_id)  
      <deliver_rrep!(r_id1), ∞1,1>.R 
+    <net_rreq?(new_id),*>.R1(new_id) 
+    <net_pkt, *>.<del_to_appl, ∞1,1>.R 
 
4. FUNCTIONAL ANALYSIS 
 
The functional analysis aims at verifying the correctness 
of the designed model and at detecting conceptual errors 
in its behaviour. We start our analysis by verifying 
freedom from deadlock, e.g. states without outgoing 
transitions also called absorbing states. A naïve strategy 
would be to use the simulation approach and consider 
several simulation runs. As the coverage of such 
simulations is some time low, e.g. if no deadlock is 
reached during simulation, this does not guaranteed 
absence of deadlocks.  
 
In EMPA, freedom from deadlock can be verified easily 
by generating the state space of the algebraic 
specification of DSR, which has 1825 states (0 tangible, 
1825 vanishing, 0 open, 0 deadlocked) and 3888 
transitions. Note that the state spaces are very compact 
because the semantic models are symbolic. Due to space 
constraints, we cannot present in detail EMPA and its 
theory; we invite the reader to see for example 
(Bernardo 2003) for further details. 
 
We have used µ-calculus/CTL (Clarke et al. 1986) 
model checking to verify other behavioural aspects of 
our algebraic model. More precisely, we have proved 
that: the receiver does not send any RREP packet before 
the network deliver a RREQ packet, and the network 
does not flood Route Request packet before the sender 
sends a Route Request. These properties have been 
formalized through the following formulas: 
 
• (AG([deliver_rrep]  

  A([deliver_rrep]ff W <net_rreq> tt))) 
 

• (AG([net_rrep] A([net_rrep]ff W < rreq> tt))) 
 



The first (second) equations means that for any state 
(operator G) of any computation (operator A) starting at 
the initial state, action deliver_rrep (net_rrep) can be 
executed by a state where its derivative must verify the 
following condition: a deliver_rrep (net_rrep) labelled 
transition cannot be encounter before a net_rreq (rreq) 
labelled transition is executed. They check the order of 
actions’ executions. 
 
5. PERFORMANCE ANALYSIS 
 
The performance analysis, which aims at determining 
efficiency parameters, has been made by using 
simulation routine in EMPA software tool 
(TwoTowers), because the presence of generally 
distributed activities encoded within assignments, which 
cannot be taken into account elsewhere and an exact 
performance analysis realised at Markov chain would be 
meaningless, because assignments  are kept as symbolic 
(Bernardo 2003).  
 
The simulation routine implemented in EMPA tool is 
based at the method of independent replications, which 
means that in each step of each simulation run, the 
transitions for the current state are computed according 
to the formal semantic and one of them (together with 
the related derivative states) is chosen.  
 
To realize this simulation, we use an auxiliary 
specification containing additional information like the 
termination condition, the number of simulation runs 
and the performance parameters of interest. In our 
study, the termination condition was:  

 

elapse_tick n1 n2
 

Where elapse_tick is the name of action representing the 
passage of 1ms, n1 is the number of times action 
elapse_tick must be executed before terminating each 
simulation run, and n2 is the number of simulation runs. 
Performance parameters are calculated by using reward, 
which is a simple method that associates a value to 
related performance parameters. The interested reader is 
referred to (Bernardo 1996) for more details about 
rewards. 
 
Many performance parameters can be calculated (like 
throughput, utilization rate …), but we are interested to 
the ratio of routing packets (overload percentage that 
DSR adds to network due to energy, CPU and memory 
limitations of intermediate hosts) and to percentage of 
delivered packets. In order to get these parameters, we 
have realized the simulation by specifying n1 to 100000 
ms (100s) and n2 to 20 simulation runs. The results are 
reported in table 1, where we can see that in worst case 
in our model, only 6% of packets are added by DSR in 
the beginning of transmission and the average value 
during all the transmission time was 3.12%. These 
results are directly related to the numerical values of 
probabilities about the speed of each host (very small in 
our model) and packets loss rate in the network, which 

are represented in our model by the probability of 
generating route error and by an internal action (τ) that 
represents loss. 
 

Table 1: Ratio of Routing Packets 
 

Experiment estimate 90% confidence int. 
estimate 0 5.92705 [5.09417, 6.75993] 
estimate 1 3.04501 [2.32435, 3.76568] 
estimate 2 2.31663 [1.79883, 2.83442] 
estimate 3 3.31035 [2.58241, 4.0383] 
estimate 4 3.21337 [2.53473, 3.89202] 
estimate 5 2.57794 [1.94359, 3.2123] 
estimate 6 2.59094 [2.05932, 3.12255] 
estimate 7 3.1949 [2.39891, 3.99088] 
estimate 8 2.26937 [1.77628, 2.76246] 
estimate 9 2.8377 [2.33404, 3.34135] 

 
Table 2 shows the results obtained for the packet 
delivery ratio (PDR) given by: 
  

nb of data packets received 
   nb of data packets sent 

  

PDR =    
 
 

Table 2: Packet Delivery Ratio 
 

exp. estimate 90% confidence int 
estimate 0 0.988003 [0.986436, 0.989571] 
estimate 1 0.990486 [0.988683, 0.99229] 
estimate 2 0.991686 [0.990439, 0.992932] 
estimate 3 0.989334 [0.985785, 0.991083] 
estimate 4 0.989454 [0.987893, 0.991015] 
estimate 5 0.991624 [0.989809, 0.99344] 
estimate 6 0.991126 [0.989637, 0.992615] 
estimate 7 0.990017 [0.98821, 0.991823] 
estimate 8 0.991999 [0.990487, 0.993511] 
estimate 9 0.9911 [0.990053, 0.992147] 

 
This means that with 100 packets transmitted by the 
source, 99 packets delivered by the network to receiver 
host, and these results was expected because the 
probability of loosing packets is considered equal to 
0.01 in our algebraic model.  
 
6. Conclusions and Further Research 
 
In this paper, we have formally modelled and analyzed 
by means of the stochastic process algebra EMPA, the 
Dynamic Source Routing protocol with general 
distributed activities while exploiting the value passing 
mechanism and the compositionality feature of process 
algebras to construct a complex model from small 
components. This case study shows the adequacy and 
the expressive power of this formalism to model a 
complex system and to analyze both its functional and 
its performance properties early in its design phase. 
  
Accuracy of our results is going to be depending on the 
details that we have invested in the model. Here, we do 



not claim that DSR is the best routing protocol because 
the results of described algebraic model are optimal. In 
contrast, the protocol is not under some circumstances 
(highly dynamic nature of mobile hosts). However, this 
protocol is interesting enough to deserve a closer 
investigation about possible attacks and how to make it 
secure in cases where it provides the best performance 
with respect to other existing routing protocols. The 
focus of our current and future work is to analyze and 
compare the influence of securing this protocol at its 
performance, because security mechanisms in this type 
of networks consume resources and can delay or even 
prevent successful exchanges of routing information. 
Many proposals to secure DSR protocol have their own 
merits and some of them may appear to be extremely 
secure, but their real performance when deployed in the 
network is still unclear. Therefore, we will investigate 
the effect of adding security tasks that we will propose 
at this protocol by extending our algebraic model to 
develop a trade off between network performance and 
security solution that effectively balances security 
strength and network performance.  
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