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Abstract—In this paper, we propose an efficient framework for A naive idea for monitoring flows at high speed link,
online detection and identification of network anomalies, i early js to maintain a database for active flows for a fixed time
stage of its occurrence, to quickly react by taking the appreriate jntarva| T, and to query database for heavy hitter (or massive)

countermeasures. The proposed framework is based on online fl H this strat . t labl h fil
detection of change point in a multi-layer reversible sketh, which ows. However, (IS strategy IS not scalable, where spa

aggregates multiple data streams from high speeds links in a temporal complexities for update and query operationsgrev
stretched database. To detect network anomalies, we applyon- its use for handling a large number of flows at high speed links
parametric multi-channel CUSUM algorithm at the counter value  jn real time manner.

in each bucket of the proposed reversible sketch, in order to |, response to these limitations, a special data structure

undermine flows with abrupt change, and to discover the keys .
of culprit flows via sketch inversion. Theoretical framework for based ok — ary hash tables (Fig. 1), called sketch [1]-[3],

detection and classification of attacks are presented. Wesd give Was proposed and used to handle large state space, withla smal
the results of our experiments analysis at two data traces dlected memory requirement and linear computational (updatejquer
with Netflow and Endace DAG-3 card. Our analysis results from complexity. It is a multi-stage bloom filter based on random
real-time intemet traffic and online implementation show that  5q4ragation, where flows identifier (key) are hashed to index
our proposed architecture is able to detect culprit flows quekly . . .
with a high level of accuracy. |n_t0 a set of bucke_ts (or cells) in dlfferen_t stages using
different hash functions. These hash functions are gdgeral
|. INTRODUCTION chosen to reduce collision effect. Sketch has proven to be
Security threats for computer network have risen signifisseful in many data stream computation applications [4],
cantly, which include viruses, worm-based attacks, pahsc especially in detecting hierarchical heavy hitters [5], #d
ning, denial of service (DoS), distributed DoS (DDoS), ethieavy changes [7] in network monitoring.
As the use of internet in society become crucial, it will at- To use sketch in context of network anomalies detection,
tract more intentional attacks. While many anomaly debecti IP flows are typically classified by some fields combination
mechanisms have been introduced to undermine attacks, ithgpacket header, such as destination IP addrés&P|, or
effectiveness of these models is largely dependent of draffiource and destination IP address/P/DIP), etc. This
distributions parameters. They lack the capability of Hiawgd flow identifier is a key used to updaté” hash table by its
shape irregularities and unpredictable large fluctuatidneal associated valug:ey, value). The value is a reward associated
IP traffic. with key, and which can be the number of: packets, bytes,
Furthermore, most existing intrusion detection systent®nnection request{SY N), number of half open connection
(IDS) reside at end host or end router. They usually lad¢tSY N — #SY NACK), or other flow characteristics.
scalability in handling large state space traffic informatat Recent work with Count-Min SketctCMS[4]) has shown
high speed links (backbone links), where even the handlitigat random aggregation of flow does not significantly disrup
at flow level is very costly in terms of per-flow state storag#ow variations. TheCMS algorithm can indicate if a given
requirement, and update/search operations complexibys| key exhibits large value, and even one can query sketch about
are usually characterized by 5 tuples (e.g. Netflow) : souroecurrence frequency for a given key, i.e. the accumulated
and destination IP address, source and destination pait, aalue with a given key.
protocol number. This means monitoring flows state spaceHowever, sketch is based on universal hash functions, which
requires updating and handling a database table of2dfZe are not reversible. Consequently, we cannot use sketch to
In this paper, we consider the problem of online detectioeport the set of heavy hitter flows, because sketch does
and identification of network anomalies at high speed linkstore any information about its key entry. Thus, the only
in order to cope with attacks as soon as possible, by takingy to get all heavy keys (which exhibit heavy values) is
countermeasure actions. Useful information about vicaimd to test all entries, in order to determine those mapped to
attackers are provided, and can be exploited to shield theavy buckets, which mean when monitoring high speed links,
victim server. The embedded information in alert messag#f keys must be recorded and verified. Unfortunately, this
depends on the type of attack. approach is neither scalable nor efficient.
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the values of the buckets associated to a given key are heavy
hitter or not. Recent work in [8] lookup for heavy buckets Fig. 1. Sketch data structure.
in the sketch resulted from the difference between current . . .
epoch and time series forecasting sketches. However,h‘(g:uﬁncrements its associated counter in {Hé hash table by,

at heavy hitter is not very useful in practice, due to large d:hi(s)+ = v;), as shown in Fig. 1. The update procedure is
traffic fluctuations and variations, and heavy hitter resdib realized byd different hash function, chosen from the set of 2-

not necessarily correspond to malicious flows. universal hash functionf; = {((a;z +b;) mod P) mod w},

Our proposed framework for network anomalies dete&g gqiformly distribute x; over hash tables and to reduce
tion is carried out by applying sequential anomalies dete%(-)"'s'on' ) ) .
tion algorithm (Multichannel Non-Parametric CUSUM MNP- The Count-Min point query returns an estimate of the
CUSUM [9], [10]) over the buckets of sketch data structur&©UNter for a given key, as the minimum éfcounters value
An additional multi-layer reversible sketcMLRS is used for (3¢ = Oglgd{c[ﬂ][hj(“iﬂ})-
software efficient sketch inversion, in order to pinpoinipcit -
flows after the detection of anomalies. B. MNP-CUSUM change detection algorithm

The proposed method begins by recording the packet streany, contrast to the most widely used techniques for anoma-

in a compact sketch representation for edefime interval. |ios detection (heavy hitter), sketch can be used with vari-
Afterward, MNP-CUSUM algorithm is used to check the, s sophisticated sequential detection procedures tovenco
presence of buckets which value deviates significantly frogomalies. In this paper, we will focus at sequential MNP-
no_rmal behavior. In _fact, CUSUM algori_thm is able to reac_(t;USUM [9], [10] algorithm, due to its high precision, low
quickly when observing abrupt changes in bucket value,evhilo 1\ tational overhead and modest storage requirements.
being able to distinguish effect of attack deviation from CUSUM relies on two phases: training and detection. In
usual traffic fIl_Jctuatlons. After the dgtecnon of anomaligs training phase, it establishes and updates a dynamic l@havi
CUSUM algorithm, we recover associated keys to buckets witligijes for normal flows, and in second phase, it uses log
raised alarm, by exploiting bucket indexMLRS to pinpoint jiyejingod ratio to detect any kind of abrupt deviation from

responsible flows. well established flow profile, through using the assumptiat t

, In fact, the cpmbination of MNP'_CUSUM an_d sketchy st anomalies induce a change in distributions of moritore
improves the efficiency of the detection mechanism, Wheﬁ%rameters.

CUSUM is used to undermine anomalies, and sketch reduceiet (XrT 1<i<d1<j<uw} be the value of each

significantly required memory and computational comp}exitb cketdulﬁnb the ' time interval. Observation¥ " are i.i.d
when handling a large amount of data. Proposed meth bJ

RAth apdf f;;,(x) for n < t, (before attack occﬂjrrence) and
. . 27,70 a

has been_ anglytzed an(;l validated prgcncally. Ol:.r resutts ith anothempdf f;; -, («) (after attack), where, is the instant
encouraging In terms ol accuracy and response time. of attack detection. M-CUSUM test statistical hypothesgs

The remainder of this paper is organized as follows. I& . T
. ) ) ; _ g. 1) to detect abrupt change in bucket with indey) at
the following section, we give a brief overview dEMS the time epochn = f,:

Sketch and MNP-CUSUM mechanisms that are related to

our studies. Section Il describes our proposed method foer-Lo .

detecting change point in a reversible sketch. In section 1V

we show measurement based verification and evaluation of iNaere~, and~, are respectively thedf parameters before

effectiveness of our proposed framework. Finally, sectibn and after change occurrence. The detection of anomaly is

presents concluding remarks and the future work. given by testing M-CUSUM function vaIué?;;-T (if G;}T >
threshold h then raises alarm), given by eq. 2:

Yij = Yo Versus Hiji: vj=m Q)

Il. BACKGROUND

+
In this section, we briefly survey the underlyi@giSsketch .. _ [ \m-nr 4 P(X2|y1) AGY 0 ()
data structure and MNP-CUSUM theory related to our work.”"% — | = -4 n P(XETWO) ij

A. Stretching data stream in sketch However, due to large variation in traffic pattern, and lack
Let S = sy1s5...s, be the set of input stream that arrive®f consensus on network traffic characteristics (self simil
sequentially, item by item [4]. Each item;, = (x;,v;) iS exponential inter-arrival, heavy tailed length, etc.),aoasider
identified by a keyx; € U drawn from a fixed universe of noni.i.d traffic characteristics, and we will apply Multichannel
items U. A reward (or frequency occurrence) valug € R Non-Parametric adaptive CUSUM (MNP-CUSUM [11]) to
is associated with each key. The arrival of item with key every sketch buckeB; ;, as a detection mechanism insensitive



to traffic patterns. The test function of MNP-CUSUM is | — 7 —
updated using the following formula: e INEE L T T T T Bl
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Fig. 2. Multi-Layer Reversible SketchlLRSand CMS sketch.
Where{y}" = max (0,y), u;; andé;; are the pre-change and
post-change mean value of the corresponding bucket. Edelgrification, we assume that sketch key is théP address
means monitoring the sequential value of bucket to detege arrival stream, and the last arrival oneli&.168.41.25.
change in the mean value in unknown instant. The valggrMLRSwith P = 8, wy = 2® andl = 4, we split DI P into
of 4;; can be estimated in a self learning phase and update@yte, and we increment the counter in each layg][(192],
periodically using EWMA (Exponential Weighted Movingp(1][168], b[2][41], b[3][25]) by the associated valug.
Average) formula given in eq. 4. Henge; is supposed to  |f we seek to search for victinDIP (or key that maps to
be known. buckets with raised alarm by MNP-CUSUM), we can release
nT _  (n=1)T nT hierarchical search procedureMLRS If we don't find at least

Hij = bty +(1—a)Xj; “) one bucket with raised alarm in each of tHé (i <1 — 1)

The value off;; are unknown and should be dynamicallyirst layers ofMLRS there is no need to continue searching in
estimated online, subject to condition thgt > p,;, and other deep layer or through the secdbblSsketch. Malicious
attack leads to change in the mean valueugf — 6;;. 6;; flows must have one alarmed bucket in each layer.
is an estimation of the unknown meéy) and depends on the On the other hand, we will begin by the simple case, where
past observationsy;; is a positive weight for performancewe assume that there is at most one alarmed bucket per layer
adjustment, and usually set toclis a tuning parameter choseras shown in Fig. 2. To recover key, we concatenate /the
from [0, 1]. We refer to [11] for a complete reference aboutinary value of indexes iMLRS and we recover the value
these parameters. of suspect key (e.gDIP). We can not be sure of suspect
before verification, where due to collision with other IPfpte
their value becomes large. The suspect key is verified throug

Our proposed framework is based on 2 data summadmshing and verification (by count-min query of CUSUM
architecture: a Multi-Layer Reversible SketcML(RS and alarm function) in theCMS for confirmation.

a Count-Min Sketch@MS as shown in Fig. 2. Operations In general, even with a different value of width (e2d? or

of the proposed framework are performed by two step3!?) for the MLRS many buckets in different layers will be
First, it continuously updates the two sketch®4LRS and subject to collision occurrence, and in some case, we will be
CMS counters from input data streafs;,v;) for a fixed found with a bigger set of keys to verify throug@MS than
time interval . Secondly it applies MNP-CUSUM in thethe original one. Nevertheless, it is important to notifyatth
background at each bucket to detect anomalies. Afterwarden if the set of suspect key is larger than departure one, it
we identify and output keys that mapped to buckets with requires a small memory and fast update time with respect to
CUSUM triggered alarm. original list.

However, reversing sketch is a difficult operation, where To resolve this problem and reduce collision MLRS
there is only two existing approaches in the literature. Thee use the idea of IP-mangling presented in [8], but with
first [12] is based on intuitive idea by storing all keysTh a software efficient procedures rather th@d#'(2™) and its
time interval, and achieve verification by re-hashing (fragh polynomial multiplication and division operations. IP man
for the second time) the set of stored keys at the end of eagling is a reversible procedure, which randomizes the input
interval. This strategy is inefficient in term of storage &pa data in an attempt to destroy correlation between keys, to
and update speed for the list of keys. disperse adjacent keys uniformly at all available buckeisés

The second approach [8], [13] is based on modular hashiteghnique is a bijective function that maps keys in a unwérs
and mangling via Galois Field7F'(2") operators, used in to U. Each keyk; is mapped ta;; = f(x;), with the functionf
Reed-solomon coding technique. Howevét" is based on chosen in a way to destroy any correlation between keys,
binary polynomial representation and bit by bit operationas show in table I. Any bijective function able to destroy
This strategy is very complex and more efficient for hardwar®rrelation between keys, and return a completely randam se
implementation, as it was done in [8]. of keys, can be used. Afterward, we uge!(y;) to recover

Our idea to reverse sketch is based on exploiting index $suspect keyx; from MLRS However, we don't store the
an additional multi-layer sketch (Fig. 2), where indexes aset of suspect keys, but once we have a suspect, we realize
used to store keys. In fact, the multi-layer sketch is used werification through theCMS before integrating it in alert
the same way oCMS sketch, where the arrival of each keymessage.
increments its counter. However, each key hasunter (one  In our experiments, we are interested in mangling keys of
by layer), where we split the key oWV bit into [ x w bit, size 48 and 64 bit, as we will focus adI P|DP as key to
with wy = 2P, andl = [N/P]. P is the number of bits used detect victim server of DDoS/DoS, by associating the number
to split the key, andu, is used as layer width iMLRS For of received SYN as reward, anB/P|SIP to detect either

IIl. PROPOSED APPROACH
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port scan or source address of attacker (if not spoofed). e
use cipher techniques instead of most widely used functions Fig. 3. Distribution of collisions for each bucket.

for mangling: f(k;) = a.k; mod n or f(k;) = a®k; Db [8].

Modulo function is not efficient because keys that share the

same lask bit, may share the same lastit after mangling. corresponding buckets with thiuniversal hash functions have
Galois function is hardware compliant and requires additio @ triggered alarm by CUSUM.

memory for fast calculation of polynomial products modulo Our proposed framework can be applied to detect different
another prime one. On the other hand, cipher techniques type of attacks, e.g. TCP SYN flood, UDP packet storm,
to uniformly distribute data, and they are robust enough t€MP ping of Death, TCP/UDP PortScan, NetScan, Smurf,
face statistical cryptanalyst attack. There exist manyeip etc. Nevertheless, we will only focus at TCP traffic and
encoding techniques that are appropriate for softwaretadapespecially at the number of connection request (SYN). From
tion. each arrival packet, we extract three keisyqg = DIP|DP,

Most block ciphers use 64-bit blocks or larger. We use they2 = SIP|DIP, keys = SIP|DP) by the concatenation
Tiny Encryption algorithm (TEA [14]) for 64-bit key, which of binary value of two fields from packet header. These keys
based on small number of non linear iterations in Feistare used to update four copies of the proposed framework with
transformation manner (alternation of XOR and ADD). TEAhe corresponding number of SYN. Our mechanism for attacks
has been proven very powerful for software implementatishassification is given by:

(few lines of code available in [15]), where it doesn't need Firstly, we seek to detect victim of DoS/DDoS SYN flood-
any preset table or any additional memory, and its securityg. We update the counters of first couple of sketches with
has been extended with XTEA and XXTEA. We don't rely otthe key; during predefined” time intervals, and we output
its security, just its bijectivity and binary dispersion. list L, of all victim serverDIP|DP as described above. We

However, we lack the theory to modify block ciphergan also monitor another kind of flooding (ACK, RST, FIN,
techniques into 48 bit blocks, and we use an optimized versigtc.) by changing the associated reward.
of RC4 (with code available in [16]), as a stream cipher to Secondly, theey, is used to update a second data structure
mangle each key and hide any correlation between adjacskétches. Output of this step is lidt; that contains mali-
keys, as shown binary values in table I. These two encodiogus ST P, which try to scan the ports of giveRI P, if this
technigues have been proven to be powerful for mangling last is not a victim of DDoS/DoS. In contrast, DI P is in
our experimentations in terms of random Hamming distantiet L, (i.e. victim of flooding), we store a list of suspekbS
between adjacent keys. whose elements ar& (P, DIP, DP), becaus& P are sus-

In Fig. 3, we show the distribution of collision when usingPects of contribution in DDoS/DOS through a static spoofed
direct mapping and mangling in multi-layer sketch updatéawior not spoofed address.

P = 12. Data traces are’ 5 minutes real bidirectional Internet  Thirdly, the keys is used for updating the third sketches,
traffic of 3.10° packets, and42770 flows (here flows are where outputs keys ar&7P trying to achieve a NetScan
classified byDI P andD P). In fact, used mangling techniquesactivity, if the ST P does not belong to the ligtoS. Otherwise,
allow to uniformly distributing key over buckets, and prate it is the source of DDoS/DoS flooding.

collision over IP with same prefix. It is worth noting, that The preceding three steps are used in our implementation to
we proved by experiments that the number of collision reduegrly identify three types of anomaly (DDoS/DoS victim, Sca
significantly by increasing the width of multi-layer sketch network and scan port), and provide useful information @bou

At the end of each time intervdl’, and after updating victim or attacker. The PortScan and NetScan were chosen for
counters of the proposed framework continuously in onlirteir association with malicious attacks and worms. P@mSc
manner, MNP-CUSUM anomaly detection algorithm run iare often used by attacker as first step to discover whicls port
the background, to update CUSUM function in each bucketre open on victim machine, to insert malicious code and use
and to raise alarm in bucket where the value of funcﬁqﬁ it as a zombie. NetScan are usually performed by worms in
exceeds the threshold. Afterward, we sédhRSfor identifi- spreading phase (random scan in code Red, linear in Blaster,
cation of all possible sequenceldbucket (one per layer) with bias in code Red Il and Nimda, etc.) to gain access to new
triggered alarm and we realize verification through unigkrsmachines and infect them. Our proposed approach is able to
hashing and count-min query over ti@MS to ensure that detect all these kinds of scan activities.



IV. EXPERIMENTS RESULTS

——#Packets in Auckland trace|
——#Packets in Mixed trace

In this section, we present performance analysis results
juxtaposing MNP-CUSUM detection algorithm over reversibl =
sketch, for detecting victims of TCP SYN flooding attacks: ..,
NetScan and PortScan. We have implemented MNP-CUSL xo
over sketch in C using the code of CMS available from [17 ”
We applied the proposed algorithm over many public trac -
(LBL'TCP'S, Ab”ene, AUCkIand, etC.) available from [18], 0 WO a0 w0 w000 0 200 /00 G000 800 10000
i(ion%j_lgtl’f[r)g[])publlshed traces used in OSCAR RNRT project(a) #SYN in Auckland traces. (b) #Packets in Auckland & mixed

’ . traces.
In this paper, we present the result of our experiments over

2 set of traces: manually mixed (legal & malicious) trace
and OSCAR OTIP trace. To investigate the performance

@

-~

the proposed framework (true positive and false positive °
and to perform a tuning of different parameters, we usedz:s
hours of Auckland traces (Auckland-VIIl 20031202-14h- ).7?

collected with Endace DAG-3 card, as background traffic m

MNP-CUSUM raised Alaram
N w

N

insert various intensity level of anomalies (Fig. 4(c))edo
the lack of pUbIlC well documented traces with well knowr o 006 w0 e0a 5000 10000 () 200 4000 76000 000 10000
attacks. The proposed algorithm does not show any flooding or

scanning attack after analyzing the used 3 hours of Auckland
traces. Afterward, we modified the timestamp of Auckland Fig. 4. Analysis results of mixed traces.
traces and we mixed it with only the SYN packets of real

distributed attacks. We use the same analysis strategyoin [

for parametric CUSUM, but with real attacks. .
Afterward, we present our analysis result over anonymiz -
OTIP traces: 3 days traces collected with Netflow format ( £ * 2 5000
6.9GB) and contains a- 896.10° flows.
The parameters we considered for the MNP-CUSUM & zzzz
gorithm were: thresholdh = 6, ¢ = 0.12, « = 0.9. MLRS  *

parameters were = 14 unless Otherwise notedJ,[) — 16384' 0 500 1000 1500 ng?r%m)zsoo 3000 3500 4000 % 500 1000 1500 2000 2500 3000 3500 4000

I = 4, d = 4 hashing functions from the set of 2-universal hash (a) #Packets. (b) #SYN.
function, and with the use of tabulatlon [Z(M{LT is updated

over some past time window = 670 + pit, where S ast
initial value and adaptive estlmat|on &FT are detailed in [9]. e T Prmesmitezs s
b5 5 tosesey 29
A. Detection of SYN flooding and scanning attacks ' T”( W
Our first experiment considers detection of different inter ™ e

(c) #SYN in malicious traffic. (d) Raised alarms.

#SYN

sity of attack, where the objective was to perform a tunin *” '
of different parameters. Fig. 4(a) shows the variation & tt . | *
number of SYN packets in background traces, Fig. 4( ©° ® wo = T o0 W0 w00 w0 © S0 100 IS0 2000, 200 300 300 400
presents the total number of mixed packets traces, Fig.ig(C) (c) Detected malicious flows. (d) MNP-CUSUM raised alarms.
the number of malicious SYN traffic and Fig. 4(d) is the raised
alarm of MNP-CUSUM algorithm whenever a threshalds Fig. 5. Analysis results for OTIP trace.
reached. It is worth noting that value of threshaladtontrols
the sensitivity of the attack detection.
B Performance evaluation

In Fig. 5, we present our analysis results over OTIP trace
where we have detected also one NetScan at different tlmaNe conduct performance analysis study via Receiver Oper-
instant by SIP = 224.87.77.70 & DP = 66506, and non ational characteristics (ROC) curve, to study the accuaicy
PortScan attack. the proposed framework. Our analysis verify the true pasiti

Non-parametric CUSUM is very efficient in detecting atprobability vs. false positive probabiliteP{tpr = f(Prp)),
tacks even with low intensity, and with small average delayith the variation of the value of threshold These parameters
detection. In [10], it was proven that CUSUM is asymptofical are easily verified from mixed used traces, because we know
optimal for minimizing average detection delay given a fixeth advance the start/stop instant of attacks, the IP addmeds
false alarm rate. port number of victim, and the number of existing attacks.
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Prp is the number of detected attacks divided by the total
number of existing onesPrp is the percentage of raised
alarm that did not correspond to real attack. Fig. 6 illussa [°]
the relation between true positive and false positive, ab we
asPrp = f(h) andPrp = f(h), whereF' P decreases as the
threshold value increases, and true attacks may also ctetyplel10]
missed. Hence, a tradeoff between false alarm and truaymosit
detection is required to control sensitivity and prevenssni
detection. We also notice that large sketch width decreases
the false positive and increases the detection rate. 11

V. CONCLUSION [12]

In this paper, we propose a new framework that integrates
sketch and CUSUM for online anomalies detection at high
speed link. Proposed framework is able to automatically pifi3]
point the malicious IP flows responsible of anomaly, through
exploiting bucket index in an additional multi-layer sketc

We proved the effectiveness of the proposed approaldhl
through implementation and testing at real traces with DDoS
and scan attacks. Results of our experimentations have@roys;
the capacity of early detection even for low intensity of
DoS/DDoS attacks. E17

The proposed method is easily decentralized due to linear
property of sketch with respect to addition operator. Feituf18]
direction will be converged toward the hierarchical diattion 19
of the proposed approach, and the reduction of the size o
exchanged sketch information between different monitprin
nodes in different layers. [20]
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