
An Efficient Online Anomalies Detection
Mechanism for High-speed Networks

Osman Salem, Sandrine Vaton, Annie Gravey
ENST Bretagne

Department of Computer Science
Brest, France

Email: {osman.salem, sandrine.vaton, annie gravey}@enst-bretagne.fr

Abstract—In this paper, we propose an efficient framework for
online detection and identification of network anomalies, in early
stage of its occurrence, to quickly react by taking the appropriate
countermeasures. The proposed framework is based on online
detection of change point in a multi-layer reversible sketch, which
aggregates multiple data streams from high speeds links in a
stretched database. To detect network anomalies, we apply non-
parametric multi-channel CUSUM algorithm at the counter value
in each bucket of the proposed reversible sketch, in order to
undermine flows with abrupt change, and to discover the keys
of culprit flows via sketch inversion. Theoretical framework for
detection and classification of attacks are presented. We also give
the results of our experiments analysis at two data traces collected
with Netflow and Endace DAG-3 card. Our analysis results from
real-time internet traffic and online implementation show that
our proposed architecture is able to detect culprit flows quickly
with a high level of accuracy.

I. I NTRODUCTION

Security threats for computer network have risen signifi-
cantly, which include viruses, worm-based attacks, port scan-
ning, denial of service (DoS), distributed DoS (DDoS), etc.
As the use of internet in society become crucial, it will at-
tract more intentional attacks. While many anomaly detection
mechanisms have been introduced to undermine attacks, the
effectiveness of these models is largely dependent of traffic
distributions parameters. They lack the capability of handling
shape irregularities and unpredictable large fluctuationsof real
IP traffic.

Furthermore, most existing intrusion detection systems
(IDS) reside at end host or end router. They usually lack
scalability in handling large state space traffic information at
high speed links (backbone links), where even the handling
at flow level is very costly in terms of per-flow state storage
requirement, and update/search operations complexity. Flows
are usually characterized by 5 tuples (e.g. Netflow) : source
and destination IP address, source and destination port, and
protocol number. This means monitoring flows state space
requires updating and handling a database table of size2104.

In this paper, we consider the problem of online detection
and identification of network anomalies at high speed links,
in order to cope with attacks as soon as possible, by taking
countermeasure actions. Useful information about victimsand
attackers are provided, and can be exploited to shield the
victim server. The embedded information in alert message
depends on the type of attack.

A naı̈ve idea for monitoring flows at high speed link,
is to maintain a database for active flows for a fixed time
intervalT , and to query database for heavy hitter (or massive)
flows. However, this strategy is not scalable, where spatialand
temporal complexities for update and query operations prevent
its use for handling a large number of flows at high speed links
in real time manner.

In response to these limitations, a special data structure
based onk − ary hash tables (Fig. 1), called sketch [1]–[3],
was proposed and used to handle large state space, with a small
memory requirement and linear computational (update/query)
complexity. It is a multi-stage bloom filter based on random
aggregation, where flows identifier (key) are hashed to index
into a set of buckets (or cells) in different stages usingk
different hash functions. These hash functions are generally
chosen to reduce collision effect. Sketch has proven to be
useful in many data stream computation applications [4],
especially in detecting hierarchical heavy hitters [5], [6] and
heavy changes [7] in network monitoring.

To use sketch in context of network anomalies detection,
IP flows are typically classified by some fields combination
in packet header, such as destination IP address (DIP), or
source and destination IP address (SIP/DIP), etc. This
flow identifier is a key used to updatekth hash table by its
associated value(key, value). The value is a reward associated
with key, and which can be the number of: packets, bytes,
connection request (#SY N), number of half open connection
(#SY N − #SY NACK), or other flow characteristics.

Recent work with Count-Min Sketch (CMS [4]) has shown
that random aggregation of flow does not significantly disrupt
flow variations. TheCMS algorithm can indicate if a given
key exhibits large value, and even one can query sketch about
occurrence frequency for a given key, i.e. the accumulated
value with a given key.

However, sketch is based on universal hash functions, which
are not reversible. Consequently, we cannot use sketch to
report the set of heavy hitter flows, because sketch does
store any information about its key entry. Thus, the only
way to get all heavy keys (which exhibit heavy values) is
to test all entries, in order to determine those mapped to
heavy buckets, which mean when monitoring high speed links,
all keys must be recorded and verified. Unfortunately, this
approach is neither scalable nor efficient.

Even if one can assume that we will stay far from worst
case, and only a relative small number of keys (SIP |DIP)
with respect to universe of size264, will appear during aT
time interval, still the question of attack detection, where a
lot of approaches have tackled this problem by verifying if
the values of the buckets associated to a given key are heavy
hitter or not. Recent work in [8] lookup for heavy buckets
in the sketch resulted from the difference between current
epoch and time series forecasting sketches. However, focusing
at heavy hitter is not very useful in practice, due to large
traffic fluctuations and variations, and heavy hitter results do
not necessarily correspond to malicious flows.

Our proposed framework for network anomalies detec-
tion is carried out by applying sequential anomalies detec-
tion algorithm (Multichannel Non-Parametric CUSUM MNP-
CUSUM [9], [10]) over the buckets of sketch data structure.
An additional multi-layer reversible sketch (MLRS) is used for
software efficient sketch inversion, in order to pinpoint culprit
flows after the detection of anomalies.

The proposed method begins by recording the packet stream
in a compact sketch representation for eachT time interval.
Afterward, MNP-CUSUM algorithm is used to check the
presence of buckets which value deviates significantly from
normal behavior. In fact, CUSUM algorithm is able to react
quickly when observing abrupt changes in bucket value, while
being able to distinguish effect of attack deviation from
usual traffic fluctuations. After the detection of anomaliesby
CUSUM algorithm, we recover associated keys to buckets with
raised alarm, by exploiting bucket index inMLRS, to pinpoint
responsible flows.

In fact, the combination of MNP-CUSUM and sketch
improves the efficiency of the detection mechanism, where
CUSUM is used to undermine anomalies, and sketch reduces
significantly required memory and computational complexity
when handling a large amount of data. Proposed method
has been analyzed and validated practically. Our results are
encouraging in terms of accuracy and response time.

The remainder of this paper is organized as follows. In
the following section, we give a brief overview ofCMS
Sketch and MNP-CUSUM mechanisms that are related to
our studies. Section III describes our proposed method for
detecting change point in a reversible sketch. In section IV,
we show measurement based verification and evaluation of the
effectiveness of our proposed framework. Finally, sectionV
presents concluding remarks and the future work.

II. BACKGROUND

In this section, we briefly survey the underlyingCMSsketch
data structure and MNP-CUSUM theory related to our work.

A. Stretching data stream in sketch

Let S = s1s2 . . . sn be the set of input stream that arrives
sequentially, item by item [4]. Each itemsi = (κi, vi) is
identified by a keyκi ∈ U drawn from a fixed universe of
items U . A reward (or frequency occurrence) valuevi ∈ R

is associated with each key. The arrival of item with keyκi

� �� −���� ��
−

	
+	
+��+ 	
+

()
� ��κ

� � ���
κ� �� ��

κ

Fig. 1. Sketch data structure.

increments its associated counter in thejth hash table byνi

(Cj,hj(κi)+ = νi), as shown in Fig. 1. The update procedure is
realized byd different hash function, chosen from the set of 2-
universal hash functionHi = {((aix + bi) mod P) mod w},
to uniformly distributeκi over hash tables and to reduce
collision.

The Count-Min point query returns an estimate of the
counter for a given key, as the minimum ofd counters value
(ŝk = min

0≤j<d
{C[j][hj(κi)]}).

B. MNP-CUSUM change detection algorithm

In contrast to the most widely used techniques for anoma-
lies detection (heavy hitter), sketch can be used with vari-
ous sophisticated sequential detection procedures to uncover
anomalies. In this paper, we will focus at sequential MNP-
CUSUM [9], [10] algorithm, due to its high precision, low
computational overhead and modest storage requirements.

CUSUM relies on two phases: training and detection. In
training phase, it establishes and updates a dynamic behavior
profiles for normal flows, and in second phase, it uses log
likelihood ratio to detect any kind of abrupt deviation from
well established flow profile, through using the assumption that
most anomalies induce a change in distributions of monitored
parameters.

Let {XnT
i,j , 1 ≤ i ≤ d, 1 ≤ j ≤ w} be the value of each

bucket during thenth time interval. ObservationsXnT
i,j are i.i.d

with a pdf fij,γ0
(x) for n < ta (before attack occurrence) and

with anotherpdf fij,γ1
(x) (after attack), whereta is the instant

of attack detection. M-CUSUM test statistical hypothesesHij

(eq. 1) to detect abrupt change in bucket with index(i, j) at
the time epochn = ta:

Hij,0 : γij = γ0 versus Hij,1 : γij = γ1 (1)

Whereγ0 and γ1 are respectively thepdf parameters before
and after change occurrence. The detection of anomaly is
given by testing M-CUSUM function valueGnT

ij (if GnT
ij >

threshold h then raises alarm), given by eq. 2:

GnT
ij =

{

0, G
(n−1)T
ij + ln

(

P (XnT
ij |γ1)

P (XnT
ij |γ0)

)}+

∧ G0
ij = 0 (2)

However, due to large variation in traffic pattern, and lack
of consensus on network traffic characteristics (self similar,
exponential inter-arrival, heavy tailed length, etc.), weconsider
non i.i.d traffic characteristics, and we will apply Multichannel
Non-Parametric adaptive CUSUM (MNP-CUSUM [11]) to
every sketch bucketBi,j , as a detection mechanism insensitive

to traffic patterns. The test function of MNP-CUSUM is
updated using the following formula:

GnT
ij =

{

G
(n−1)T
ij + wij(X

nT
ij − µij − εθ̂ij)

}+

∧ G0
ij = 0 (3)

Where{y}+
= max (0, y), µij andθij are the pre-change and

post-change mean value of the corresponding bucket. Eq. 3
means monitoring the sequential value of bucket to detect
change in the mean value in unknown instant. The value
of µij can be estimated in a self learning phase and updated
periodically using EWMA (Exponential Weighted Moving
Average) formula given in eq. 4. Henceµij is supposed to
be known.

µnT
ij = αµ

(n−1)T
ij + (1 − α)XnT

ij (4)

The value ofθij are unknown and should be dynamically
estimated online, subject to condition thatθij > µij , and
attack leads to change in the mean value ofµij → θij . θ̂ij

is an estimation of the unknown meanθij and depends on the
past observations,wij is a positive weight for performance
adjustment, and usually set to 1.ε is a tuning parameter chosen
from [0, 1]. We refer to [11] for a complete reference about
these parameters.

III. PROPOSED APPROACH

Our proposed framework is based on 2 data summary
architecture: a Multi-Layer Reversible Sketch (MLRS) and
a Count-Min Sketch (CMS) as shown in Fig. 2. Operations
of the proposed framework are performed by two steps.
First, it continuously updates the two sketches (MLRS and
CMS) counters from input data stream(κi, vi) for a fixed
time interval T . Secondly it applies MNP-CUSUM in the
background at each bucket to detect anomalies. Afterward
we identify and output keys that mapped to buckets with a
CUSUM triggered alarm.

However, reversing sketch is a difficult operation, where
there is only two existing approaches in the literature. The
first [12] is based on intuitive idea by storing all keys inT
time interval, and achieve verification by re-hashing (hashing
for the second time) the set of stored keys at the end of each
interval. This strategy is inefficient in term of storage space
and update speed for the list of keys.

The second approach [8], [13] is based on modular hashing
and mangling via Galois FieldGF (2n) operators, used in
Reed-solomon coding technique. However,GF is based on
binary polynomial representation and bit by bit operations.
This strategy is very complex and more efficient for hardware
implementation, as it was done in [8].

Our idea to reverse sketch is based on exploiting index in
an additional multi-layer sketch (Fig. 2), where indexes are
used to store keys. In fact, the multi-layer sketch is used in
the same way ofCMS sketch, where the arrival of each key
increments its counter. However, each key hasl counter (one
by layer), where we split the key ofN bit into l × w bit,
with w0 = 2P , andl = ⌈N/P ⌉. P is the number of bits used
to split the key, andw0 is used as layer width inMLRS. For

���� � � −!"� # $% −!&'()*
−

+,+ +,+ -.+-.++,++,+

+,++,+ /
Fig. 2. Multi-Layer Reversible SketchMLRSandCMS sketch.

clarification, we assume that sketch key is theDIP address
the arrival stream, and the last arrival one is192.168.41.25.
For MLRSwith P = 8, w0 = 28 andl = 4, we splitDIP into
4-byte, and we increment the counter in each layer (b[0][192],
b[1][168], b[2][41], b[3][25]) by the associated valuevi.

If we seek to search for victimDIP (or key that maps to
buckets with raised alarm by MNP-CUSUM), we can release
hierarchical search procedure inMLRS. If we don’t find at least
one bucket with raised alarm in each of theith (i ≤ l − 1)
first layers ofMLRS, there is no need to continue searching in
other deep layer or through the secondCMSsketch. Malicious
flows must have one alarmed bucket in each layer.

On the other hand, we will begin by the simple case, where
we assume that there is at most one alarmed bucket per layer
as shown in Fig. 2. To recover key, we concatenate thel
binary value of indexes inMLRS and we recover the value
of suspect key (e.g.DIP). We can not be sure of suspect
before verification, where due to collision with other IP prefix,
their value becomes large. The suspect key is verified through
hashing and verification (by count-min query of CUSUM
alarm function) in theCMS for confirmation.

In general, even with a different value of width (e.g.212 or
214) for the MLRS, many buckets in different layers will be
subject to collision occurrence, and in some case, we will be
found with a bigger set of keys to verify throughCMS than
the original one. Nevertheless, it is important to notify that
even if the set of suspect key is larger than departure one, it
requires a small memory and fast update time with respect to
original list.

To resolve this problem and reduce collision inMLRS,
we use the idea of IP-mangling presented in [8], but with
a software efficient procedures rather thanGF (2n) and its
polynomial multiplication and division operations. IP man-
gling is a reversible procedure, which randomizes the input
data in an attempt to destroy correlation between keys, to
disperse adjacent keys uniformly at all available buckets.This
technique is a bijective function that maps keys in a universeU
to U . Each keyκi is mapped toyi = f(κi), with the functionf
chosen in a way to destroy any correlation between keys,
as show in table I. Any bijective function able to destroy
correlation between keys, and return a completely random set
of keys, can be used. Afterward, we usef−1(yi) to recover
suspect keyκi from MLRS. However, we don’t store the
set of suspect keys, but once we have a suspect, we realize
verification through theCMS before integrating it in alert
message.

In our experiments, we are interested in mangling keys of
size 48 and 64 bit, as we will focus onDIP |DP as key to
detect victim server of DDoS/DoS, by associating the number
of received SYN as reward, andDIP |SIP to detect either

TABLE I
MANGLING BY OPTIMIZED RC4.

DIP : DP Mangled value

81.220.180.191:80 101110001001101001011010· · · 0011000111001

81.220.180.192:80 101011100111011101101011· · · 1000111111000

81.220.180.193:80 101011110010001110000010· · · 0110000001010

· · · · · ·

port scan or source address of attacker (if not spoofed). We
use cipher techniques instead of most widely used functions
for mangling:f(κi) = a.κi mod n or f(κi) = a⊗κi ⊕ b [8].
Modulo function is not efficient because keys that share the
same lastk bit, may share the same lastk bit after mangling.
Galois function is hardware compliant and requires additional
memory for fast calculation of polynomial products modulo
another prime one. On the other hand, cipher techniques try
to uniformly distribute data, and they are robust enough to
face statistical cryptanalyst attack. There exist many ciphers
encoding techniques that are appropriate for software adapta-
tion.

Most block ciphers use 64-bit blocks or larger. We use the
Tiny Encryption algorithm (TEA [14]) for 64-bit key, which
based on small number of non linear iterations in Feistel
transformation manner (alternation of XOR and ADD). TEA
has been proven very powerful for software implementation
(few lines of code available in [15]), where it doesn’t need
any preset table or any additional memory, and its security
has been extended with XTEA and XXTEA. We don’t rely on
its security, just its bijectivity and binary dispersion.

However, we lack the theory to modify block ciphers
techniques into 48 bit blocks, and we use an optimized version
of RC4 (with code available in [16]), as a stream cipher to
mangle each key and hide any correlation between adjacent
keys, as shown binary values in table I. These two encoding
techniques have been proven to be powerful for mangling in
our experimentations in terms of random Hamming distance
between adjacent keys.

In Fig. 3, we show the distribution of collision when using
direct mapping and mangling in multi-layer sketch update with
P = 12. Data traces are∼ 5 minutes real bidirectional Internet
traffic of 3.105 packets, and42770 flows (here flows are
classified byDIP andDP). In fact, used mangling techniques
allow to uniformly distributing key over buckets, and prevent
collision over IP with same prefix. It is worth noting, that
we proved by experiments that the number of collision reduce
significantly by increasing the width of multi-layer sketch.

At the end of each time intervalT , and after updating
counters of the proposed framework continuously in online
manner, MNP-CUSUM anomaly detection algorithm run in
the background, to update CUSUM function in each bucket,
and to raise alarm in bucket where the value of functionGnT

ij

exceeds the threshold. Afterward, we scanMLRSfor identifi-
cation of all possible sequence ofl bucket (one per layer) with
triggered alarm and we realize verification through universal
hashing and count-min query over theCMS, to ensure that

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3

x 10
4

Buckets (sorted by Nb of collisions)

N
b

of
 c

ol
lis

io
ns

 fo
r

ea
ch

 b
uc

ke
ts

Direct mapping

Layer 0
Layer 1
Layer 2
Layer 3

0 1000 2000 3000 4000
0

5

10

15

20

25

30

Buckets (sorted by Nb of collisions)

N
b

of
 c

ol
lis

io
ns

 fo
r

ea
ch

 b
uc

ke
ts

Mapping with mangling

Layer 0
Layer 1
Layer 2
Layer 3

Fig. 3. Distribution of collisions for each bucket.

corresponding buckets with thed universal hash functions have
a triggered alarm by CUSUM.

Our proposed framework can be applied to detect different
type of attacks, e.g. TCP SYN flood, UDP packet storm,
ICMP ping of Death, TCP/UDP PortScan, NetScan, Smurf,
etc. Nevertheless, we will only focus at TCP traffic and
especially at the number of connection request (SYN). From
each arrival packet, we extract three keys (key1 = DIP |DP ,
key2 = SIP |DIP , key3 = SIP |DP) by the concatenation
of binary value of two fields from packet header. These keys
are used to update four copies of the proposed framework with
the corresponding number of SYN. Our mechanism for attacks
classification is given by:

Firstly, we seek to detect victim of DoS/DDoS SYN flood-
ing. We update the counters of first couple of sketches with
the key1 during predefinedT time intervals, and we output
list L1 of all victim serverDIP |DP as described above. We
can also monitor another kind of flooding (ACK, RST, FIN,
etc.) by changing the associated reward.

Secondly, thekey2 is used to update a second data structure
sketches. Output of this step is listL2 that contains mali-
ciousSIP , which try to scan the ports of givenDIP , if this
last is not a victim of DDoS/DoS. In contrast, ifDIP is in
list L1 (i.e. victim of flooding), we store a list of suspectLoS
whose elements are (SIP , DIP , DP), becauseSIP are sus-
pects of contribution in DDoS/DOS through a static spoofed
or not spoofed address.

Thirdly, the key3 is used for updating the third sketches,
where outputs keys areSIP trying to achieve a NetScan
activity, if theSIP does not belong to the listLoS. Otherwise,
it is the source of DDoS/DoS flooding.

The preceding three steps are used in our implementation to
early identify three types of anomaly (DDoS/DoS victim, Scan
network and scan port), and provide useful information about
victim or attacker. The PortScan and NetScan were chosen for
their association with malicious attacks and worms. PortScan
are often used by attacker as first step to discover which ports
are open on victim machine, to insert malicious code and use
it as a zombie. NetScan are usually performed by worms in
spreading phase (random scan in code Red, linear in Blaster,
bias in code Red II and Nimda, etc.) to gain access to new
machines and infect them. Our proposed approach is able to
detect all these kinds of scan activities.

IV. EXPERIMENTS RESULTS

In this section, we present performance analysis results of
juxtaposing MNP-CUSUM detection algorithm over reversible
sketch, for detecting victims of TCP SYN flooding attacks,
NetScan and PortScan. We have implemented MNP-CUSUM
over sketch in C using the code of CMS available from [17].
We applied the proposed algorithm over many public traces
(LBL-TCP-3, Abilene, Auckland, etc.) available from [18],
and other unpublished traces used in OSCAR RNRT project
(OTIP, ADSL).

In this paper, we present the result of our experiments over
2 set of traces: manually mixed (legal & malicious) traces
and OSCAR OTIP trace. To investigate the performance of
the proposed framework (true positive and false positive),
and to perform a tuning of different parameters, we used 3
hours of Auckland traces (Auckland-VIII 20031202-14h-17h)
collected with Endace DAG-3 card, as background traffic to
insert various intensity level of anomalies (Fig. 4(c)), due to
the lack of public well documented traces with well known
attacks. The proposed algorithm does not show any flooding or
scanning attack after analyzing the used 3 hours of Auckland
traces. Afterward, we modified the timestamp of Auckland
traces and we mixed it with only the SYN packets of real
distributed attacks. We use the same analysis strategy in [19]
for parametric CUSUM, but with real attacks.

Afterward, we present our analysis result over anonymized
OTIP traces: 3 days traces collected with Netflow format (∼
6.9GB) and contains a∼ 896.105 flows.

The parameters we considered for the MNP-CUSUM al-
gorithm were: thresholdh = 6, ε = 0.12, α = 0.9. MLRS
parameters wereP = 14 unless otherwise noted,w0 = 16384,
l = 4, d = 4 hashing functions from the set of 2-universal hash
function, and with the use of tabulation [20].θnT

ij is updated
over some past time window byθnT

ij = δnT
ij + µnT

ij , where
initial value and adaptive estimation ofδnT

ij are detailed in [9].

A. Detection of SYN flooding and scanning attacks

Our first experiment considers detection of different inten-
sity of attack, where the objective was to perform a tuning
of different parameters. Fig. 4(a) shows the variation of the
number of SYN packets in background traces, Fig. 4(b)
presents the total number of mixed packets traces, Fig. 4(c)is
the number of malicious SYN traffic and Fig. 4(d) is the raised
alarm of MNP-CUSUM algorithm whenever a thresholdh is
reached. It is worth noting that value of thresholdh controls
the sensitivity of the attack detection.

In Fig. 5, we present our analysis results over OTIP trace,
where we have detected also one NetScan at different time
instant bySIP = 224.87.77.70 & DP = 66506, and non
PortScan attack.

Non-parametric CUSUM is very efficient in detecting at-
tacks even with low intensity, and with small average delay
detection. In [10], it was proven that CUSUM is asymptotically
optimal for minimizing average detection delay given a fixed
false alarm rate.

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

400

450

500

#S
Y

N

Time (sec)

(a) #SYN in Auckland traces.

0 2000 4000 6000 8000 10000

0.5

1

1.5

2

2.5

x 10
4

#P
ac

ke
ts

Time (sec)

#Packets in Auckland trace
#Packets in Mixed trace

(b) #Packets in Auckland & mixed
traces.

0 2000 4000 6000 8000 10000

0.5

1

1.5

2

2.5

x 10
4

#S
Y

N

Time (sec)

(c) #SYN in malicious traffic.

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

M
N

P
−

C
U

S
U

M
 r

ai
se

d
A

la
ra

m

Time (sec)

(d) Raised alarms.

Fig. 4. Analysis results of mixed traces.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

#P
ac

ke
ts

Time (min)

(a) #Packets.

0 500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

#S
Y

N

Time (min)

(b) #SYN.

0 500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

6000

7000

Time (min)

#S
Y

N

251.36.255.40:21
231.117.189.150:80
231.29.226.114:25
13.209.95.186:81
247.19.52.134:6667

(c) Detected malicious flows.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

#P
ac

ke
ts

Time (min)

(d) MNP-CUSUM raised alarms.

Fig. 5. Analysis results for OTIP trace.

B. Performance evaluation

We conduct performance analysis study via Receiver Oper-
ational characteristics (ROC) curve, to study the accuracyof
the proposed framework. Our analysis verify the true positive
probability vs. false positive probabilities (PTP = f(PFP)),
with the variation of the value of thresholdh. These parameters
are easily verified from mixed used traces, because we know
in advance the start/stop instant of attacks, the IP addressand
port number of victim, and the number of existing attacks.

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100

Threshold h

T
ru

e
po

si
tiv

e/
F

al
se

 p
os

iti
ve

True positive
False detection

(a) PTD = f(h) ∧ PF A = f(h).

0 20 40 60 80 100
10

20

30

40

50

60

70

80

90

100

False positive

T
ru

e
po

si
tiv

e

(b) PTP = f(PF P) .

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100

Threshold h

T
ru

e
po

si
tiv

e/
F

al
se

 p
os

iti
ve

True positive
False detection

(c) PTD = f(h) ∧ PF A = f(h).

0 20 40 60 80 100
10

20

30

40

50

60

70

80

90

100

False positive

T
ru

e
po

si
tiv

e

(d) PTP = f(PF P).

Fig. 6. PTD andPF P for P = 12 andP = 14.

PTD is the number of detected attacks divided by the total
number of existing ones.PFP is the percentage of raised
alarm that did not correspond to real attack. Fig. 6 illustrates
the relation between true positive and false positive, as well
asPTD = f(h) andPFP = f(h), whereFP decreases as the
threshold value increases, and true attacks may also completely
missed. Hence, a tradeoff between false alarm and true positive
detection is required to control sensitivity and prevent miss
detection. We also notice that large sketch width decreases
the false positive and increases the detection rate.

V. CONCLUSION

In this paper, we propose a new framework that integrates
sketch and CUSUM for online anomalies detection at high
speed link. Proposed framework is able to automatically pin-
point the malicious IP flows responsible of anomaly, through
exploiting bucket index in an additional multi-layer sketch.

We proved the effectiveness of the proposed approach
through implementation and testing at real traces with DDoS
and scan attacks. Results of our experimentations have proved
the capacity of early detection even for low intensity of
DoS/DDoS attacks.

The proposed method is easily decentralized due to linear
property of sketch with respect to addition operator. Future
direction will be converged toward the hierarchical distribution
of the proposed approach, and the reduction of the size of
exchanged sketch information between different monitoring
nodes in different layers.

ACKNOWLEDGMENTS

This work has been partially funded by the French National
Research Agency through the OSCAR project.

REFERENCES

[1] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” inProceedings of the 29th International Colloquium
on Automata, Languages and Programming (ICALP ’02). London, UK:
Springer-Verlag, 2002, pp. 693–703.

[2] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: methods, evaluation, and applications,” inProceedings of the
3rd ACM SIGCOMM conference on Internet measurement (IMC’03),
New York, NY, USA, 2003, pp. 234–247.

[3] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, G. Iannaccone,
and A. Lakhina, “Detection and identification of network anomalies
using sketch subspaces,” inProceedings of the 6th ACM SIGCOMM on
Internet measurement (IMC ’06). New York, NY, USA: ACM Press,
2006, pp. 147–152.

[4] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,”Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, April 2005.

[5] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Diamond
in the rough: Finding hierarchical heavy hitters in multi-dimensional
data,” in Proceedings of the 23rd ACM SIGMOD, 2004, pp. 155–166.

[6] Y. Li, J. Yang, C. An, and H. Zhang, “Finding hierarchicalheavy hitters
in network measurement system,” inProceedings of the 2007 ACM
symposium on Applied computing (SAC ’07). New York, NY, USA:
ACM Press, 2007, pp. 232–236.

[7] G. Cormode and S. Muthukrishnan, “What’s new: Finding significant
differences in network data streams,” inProceedings of IEEE Infocom,
2004, pp. 1534–1545.

[8] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, E. Parsons,Y. Zhang,
P. Dinda, M.-Y. Kao, and G. Memik, “Reverse hashing for high-
speed network monitoring: Algorithms, evaluation, and applications,”
in Proceedings of IEEE International Conference on Computer Com-
munications (INFOCOM 06), April 2006, pp. 1–12.

[9] H. Kim, B. Rozovskii, and A. Tartakovsky, “A nonparametric multichart
cusum test for rapid intrusion detection,”International Journal of Com-
puting and Information Science, vol. 2, no. 3, pp. 149–158, December
2004.

[10] A. Tartakovsky, B. Rozovskii, R. Blazek, and H. Kim, “A novel
approach to detection of intrusions in computer networks via adaptive
sequential and batch-sequential change-point detection methods,”IEEE
Transactions on Signal Processing, vol. 54, no. 9, pp. 3372–3382,
September 2006.

[11] R. Blazek, H. Kim, B. Rozovskii, and A. Tartakovsky, “The quickest
sequential detection of intrusions in computer networks,”in Interface
2003, Salt Lake City, Utah, March 2003.

[12] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, G. Iannaccone,
and A. Lakhina, “Detection and identification of network anomalies
using sketch subspaces,” inProceedings of the 6th ACM SIGCOMM on
Internet measurement (IMC ’06). New York, NY, USA: ACM Press,
2006, pp. 147–152.

[13] W. Feng, Z. Zhang, Z. Jia, and Z. Fu, “Reversible sketch based on
the xor-based hashing,” inProceedings of the Asia-Pacific Conference
on Services Computing (APSCC ’06), Guangzhou, Guangdong, China,
December 2006, pp. 93–98.

[14] D. Wheeler and R. Needham, “TEA, a tiny encryption algorithm,” in
Fast Software Encryption: Second International Workshop, ser. LNCS,
vol. 1008. Springer Verlag, 1999, pp. 363–366.

[15] S. Shepherd, “Tea source code,” http://www.simonshepherd.supanet.com/
source.htm.

[16] P. Gutmann, “Optimized rc4 code,” http://www.zengl.net/freeswan/.
[17] Massive Data Analysis Lab: MassDal, “Count-min sketchsource code,”

http://www.cs.rutgers.edu/7Emuthu/massdal-code-index.html.
[18] National Laboratory of Applied Network Research: NLANR, “Traces

archive,” http://pma.nlanr.net/Special/.
[19] V. A. Siris and F. Papagalou, “Application of anomaly detection al-

gorithms for detecting syn flooding attacks,” inProceedings of IEEE
Global Telecommunications Conference (GLOBECOM ’04), vol. 4,
Dallas, USA, 2004, pp. 2050–2054.

[20] M. Thorup and Y. Zhang, “Tabulation based 4-universal hashing with
applications to second moment estimation,” inProceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA ’04), New Orleans,
Louisiana, USA, January 2004.

