
  

AN ALGEBRAIC MODEL OF AN ADAPTIVE 
EXTENSION OF DIFFSERV FOR MANETs 
 

Osman Salem and Abdelmalek Benzekri 
Institut de recherche en informatique de Toulouse, 
Université Paul Sabatier, 
118 Route de Narbonne - 31062 Toulouse Cedex 04 – France 
E-mail: {benzekri, osman}@irit.fr 

 

Abstract: In this paper, we propose an extension to DiffServ QoS architecture in 
order to enhance its performance and its flexibility when used in 
MANETs and its adaptation to the characteristics of these networks. 
Then we present a formal model of our proposed extension using 
stochastic process algebras in order to verify the correctness and the 
efficiency of the proposed extension. 
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1. INTRODUCTION 

A Mobile Ad Hoc Networks (MANETs) [1] is an autonomous system of mobile 
hosts connected by wireless links and forming a temporary network without any pre-
existing infrastructure. Each host is directly connected to hosts that are within its 
range of transmission and reception, and it is free to move randomly in and out of 
any other host’s range. Communication between hosts that are not located in the 
same covering range can be realized by establishing a multi-hop route through 
intermediates hosts that act as routers when they forward data for others.  

A lot of research has been done in routing area, and today routing protocols are 
mature enough to face frequently changing network topology. A quick look at 
intended applications area for MANET shows the need to integrate real time 
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multimedia traffic with data traffic. Many QoS aware routing protocols and models 
that claim to provide a partial (or complete) solution to QoS routing problems have 
appeared, e.g. QoS-AODV [2],  MP-DSR [3], ASAP [4], CEDAR [5]. 

In the current days, the Integrated services (IntServ) [6] and the differentiated 
services (DiffServ) [7] are the two principal architectures proposed to provide QoS 
in wired network. IntServ suffers from well-known scalability problem caused by 
massive storage cost at routers when keeping flows’ state information. The 
migration of this architecture to MANETs is judged very heavy because of 
network’s constraint in term of storage capacity, contention of RSVP’s out-band 
signaling packets with data packets and the two ways reservation mechanism of 
RSVP. The two-way reservation mechanism is inadequate and slow to adapt with 
the highly dynamic nature of hosts in MANETs, which leads to frequently change in 
the paths and thus rendering existing reserved resources unusable for some amount 
of time, in addition to excessive control overhead when path is broken. 

DiffServ [7] on the other hand classify flows into several classes whose packets 
are treated differently in forwarding routers. It was designed to overcome the 
scalability drawbacks of IntServ. However, the notion of three kinds of nodes 
(ingress, interior, and egress nodes) and the SLA [7] (service level agreement) do 
not exist in MANETs. In DiffServ, the edge router is responsible to mark DSCP for 
each flow according to user profile listed in the SLA that includes the whole or 
partial traffic conditioning rules used to mark or re-mark traffic streams, discard or 
shape packets according to the traffic characteristics such as rate, and burst size. To 
alleviate these problems in MANETs, each host must be able to act as an edge and 
core router, and each host must be responsible for marking its traffic with the 
appropriate DSCP according to application’s requirements. This means that every 
host plays the role of ingress router if it is transmitting data, a core router if it is 
forwarding data and an egress router if it is receiving data.  

Several QoS schemes that are either a modification of the conventional IntServ and 
DiffServ based models have proposed for MANETs, like INSIGNA [8], FQMM [9], 
and SWAN [10]. SWAN (Service differentiation in stateless Wireless Ad Hoc 
Networks) differentiates traffic into 2 classes: high priority for real time UDP traffic 
and low priority for best effort UDP/TCP traffic. SWAN architecture (presented in 
figure 1) uses traffic differentiation in conjunction with a source based admission 
control mechanism to provide soft QoS assurances for real time traffic. However, 
this model differentiates traffic into two classes only; as it serves all real time 
traffics with equal priority, also it drops real time traffic with equal probability when 
congestion occurs, regardless their requirement in term of bandwidth and delay.  

Many priority levels are required to differentiate important flows from others 
like in DiffServ, because it supports many classes of traffic. In addition, DiffServ 
relays on TCP rate control to reduce congestion and it is interesting enough to 
deserve a closer investigation. We think that the adoption of DiffServ by MANETs 
is better than IntServ due to characteristics of MANETs, which can not guarantee 
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any tight bounds on performance measures. It is useless to make a reservation of 
resources to guarantee a worst case delay for high priority flows in MANETs, 
because we can not guarantee neither the lifetime of the link or the delay on the link. 
Consequently, IntServ and reservation based approaches are not a favorite candidate 
to provide QoS in ad hoc networks. In contrast, DiffServ overcomes these 
disadvantages; it does not define any absolute guarantee and only proposes 
differentiations in scheduling when forwarding flows. In addition, extending 
DiffServ to Ad Hoc networks will provide consistent end-to-end QoS behavior when 
relaying flows between heterogeneous networks.  

However, the differentiated services architecture does not define any scheme for 
taking corrective action when congestion occurs, and this is why a pure static 
DiffServ model is not suitable for ad hoc networks. Therefore, it is imperative to use 
some kind of feedback as a measure of the conditions of the network to dynamically 
regulate the traffic of the network when using this technology.  

Our approach to provide QoS in MANETs is to extend DiffServ by adopting 
some positive aspects of SWAN and by adding new component to make DiffServ 
flexible and adaptive with bandwidth variation.  

The qualitative and quantitative study of our scheme is conducted on a formal 
description, expressed through stochastic extensions of process algebras that allow 
us to formally describe both functional and performance aspects.  

The rest of this paper is organized as follows. Section 2 gives a brief overview of 
the SWAN architecture. Our proposed scheme is described in detail in section 3. In 
section 4 we present a formal specification of our proposed extension to DiffServ 
using stochastic process algebra and we analyze both qualitative and quantitative 
aspects of the described model. Finally, in section 5 we conclude the paper with a 
summary of the results and future direction. 

2. SWAN MODEL 

The SWAN model presented in [10] differentiates flows into real time and best 
effort. This model works as follows: if a real time application at a node wants to 
communicate with another, it probes the network to obtain the minimal available 
bandwidth on the path, assuming the QoS aware routing protocol has found a path.  

SWAN is composed from a classifier and a shaper located between the IP and 
the MAC layer as appear in figure 1. Aware that the bandwidth probe is sent at the 
beginning, so topology changing due to mobility and the variation of channel load 
conditions, SWAN uses rate control and explicit congestion notification mechanisms 
to adapt to these variations. It uses rate control for shaping or delaying the 
UDP/TCP best effort traffics and marks the ECN bits in the packet header to 
dynamically regulate admitted real-time traffic when temporary overload occurs by 
asking one or more real time source(s) to find another path. The rate control 
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operation of best effort traffic is performed at every mobile host in a distributed 
manner, where this rate will vary based on feedback information from MAC layer to 
maintain delay and bandwidth bounds for real time traffic.  
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Figure 1. SWAN ARCHITECTURE 

3. PROPOSED ARCHITECTURE 

Our proposed extension to DiffServ QoS architecture is illustrated in figure 2. 
This scheme works as follows: applications notify their requirements and send their 
traffics to DiffServ component, which is responsible for marking and conditioning 
received packets from high level according to application’s requirements. If received 
packets must be marked with one of the highest priority level, the marker component 
sends a request to the Call Admission Control (CAC) component. This request 
contains the amount of bandwidth required by this traffic to work properly. The 
CAC component verifies if the required QoS can be provided by the network, and 
this can be done by sending a probe request to routing protocol, which will collect 
the minimum end-to-end bandwidth (bottleneck bandwidth) along all existing paths 
from this source toward the specified destination. If the required bandwidth can not 
be provided by the network, CAC component reject the request and notify the 
application, which must decide to defer or to send with a medium priority profile.  

In MANETs, even though admission control is performed to guarantee enough 
available bandwidth before accepting high priority flows, the network can still 
experience congestion due to mobility or connectivity changes. We do not attack the 
problem of broken link due to mobility, and we rely on the underlying routing 
protocol to detect and to resolve this problem by finding an alternate path toward the 
destination. Nevertheless, we try to resolve the problem of invading the channel by 
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others nodes forwarding medium and low priority flows and causing degradation to 
the QoS of accepted highest priority flows because of the limited bandwidth of this 
shared media. This is why the congestion control component is extremely important 
in our model. It monitors the network bandwidth utilization continuously and signal 
network congestion to the rectification component.  

The proposed scheme has six basic components, namely bandwidth estimator, 
routing protocol, call admission control, DiffServ, congestion control and 
rectification component.  
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Figure 2. Proposed scheme 
 

3.1 Bandwidth estimator component 

The bandwidth estimator will periodically calculate the available bandwidth at 
each node. This value will be used by QoS aware routing protocol and the call 
admission control component to determine if flows can be admitted with one of the 
highest priority classes.  

In MANETs, the communication media is shared among neighboring nodes, so 
to determine available bandwidth capacity in each node, we must take into account 
the transmissions of all its neighbors. We use the status of the shared channel as our 
base to calculate the channel utilization rate and the available bandwidth by each 
node. Using a shared channel allows mobile hosts to listen to packets sent within its 
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radio transmission range and to calculate resource availability. The channel 
utilization ratio is defined as the fraction of time within which a node is sensing the 
channel as being utilized. A node can calculate the utilization ratio of the channel by 
adding the time when it pumps data in the channel with the time that it finds the 

channel busy during period T, as R = channel busy period .
T

− −  Then we use the 

RTT method to estimate the average utilization ratio through the following formula: 
Average_Ratiot = α×Average_Ratiot-1 + (1-α)×measured_Ratiot, where α is a 
constant belong to [0,1]. After estimating the channel utilization at time t, we are 
able to calculate the available bandwidth of a node at time t as BWt= W×(1-Rt), 
where W is the raw channel bandwidth (2 Mbps for a standard IEEE 802.11 radio).  

3.2 Call admission control component 

The bandwidth information is already available at each node like explained in 
previous section. When the call admission control component receives a request to 
open a new session, it notifies the routing protocol component that is responsible for 
collecting the end-to-end bandwidth available along existing paths. When receiving 
route reply (RREP) packet for a path with available bandwidth greater than or equal 
to the requested value, then the session is admitted.   

The objective of this CAC algorithm is twofold: to grant highest bandwidth 
utilization and avoiding at the same time the occurrence of congestion events by 
rejecting some requests. Nevertheless, it cannot guarantee that the bandwidth will 
not degrade for the admitted flow, since the available bandwidth may change after 
flows are admitted, due to the transmission of medium or low priority flows that do 
not need CAC by nodes sharing the media with any node belong to the path. 
Therefore, the network congestion can still occur and can be detected by the 
congestion control component. 

3.3 Congestion control component 

The role of the congestion control component is to detect network congestion, 
which is very simple to be detected in wired networks by verifying if the queue is 
overflow or even begin to build up. However, detecting congestion in MANETs is 
very difficult, because the queue length is no longer a valid indication of congestion. 
The MAC layer usually retries to transmit a packet for a limited number of times 
(e.g. default retry time of the IEEE 802.11b DCF is 7) before dropping this packet. 
Therefore, the queue may not have yet build up at the early stage of congestion. In 
our scheme, the congestion control component uses the channel utilization ratio 
provided by the bandwidth estimator component to detect congestion in MANETs. 
This component contains a predefined threshold value for channel utilization ratio, 
and compares this value with that provided by the estimator. If the estimated value is 
larger than this threshold, it assumes that due to congestion and signals congestion 
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occurrence to the rectification component, only if this node contains a high priority 
packet to forward. 

Some neighbors of this congested node may be carrying medium or low priority 
traffic that reduces the available bandwidth and cause severe performance 
degradation to the high priority flows forwarded by this node. As they are in the 
direct reception range, these nodes can be directly informed by the rectification 
component. 

3.4 Rectification component 

The rectification component reacts to the detection of bandwidth degradation 
when there are some accepted flows with high priority crossing this congested node. 
Generally, when channel utilization ratio exceeds the predefined value, rectification 
component receives a notification message from the congestion control component 
and it broadcasts a stop-sending-request with TTL equal to 1. All nodes within direct 
reception range will receive this message and react accordingly if they forward 
medium or low priority packet. 

Obviously, if all nodes receiving this request stop sending, there will be an under 
utilization of the channel and this strategy will prohibit these flows from using 
existing path even if there is enough bandwidth. To fight this problem, when a node 
receives stop-sending-request message, it does not immediately stop sending 
medium and low priority packets. Rather, each node chooses an exponential random 
amount of time from a pre-defined interval and triggers a counter with this value and 
begins to count down. If the counter reaches zero then this node drops all medium 
and low priority packets that are in the queue of this node and notify its neighbors 
that it stops sending. Also, this node (if it is not the source of these flows) mimics a 
broken link for these traffic by sending route error packet (RERR) to their 
corresponding sources, and it stops forwarding any new RREQ for a predefined 
amount of time to make this flows re-routed and dispersed away of the congested 
area. When neighbor nodes in the same range receive this notification (which can be 
embed in RERR), they cancel their counter by stops counting down. 

3.5 DiffServ component  

DiffServ divides traffics into many classes by marking a field in the IP packet 
header, called the Differentiated Services Code Point (DSCP) field. Its value 
depends on the traffic profile indicated by the application. The sender of a flow 
marks all outgoing packet in DS field of their IP headers and intermediate nodes 
forward these classes with different priorities with respect to the DSCP field content.  

DiffServ supports 3 types of services: premium service, assured forwarding and 
best effort. Premium service or expedited forwarding (EF) class is used for loss and 
delay sensitive applications such as voice over IP (VoIP). Assured forwarding 
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classes offer a lower priority service from the previous one (EF), and each class of 
this four is subdivided into three subclasses (3 priority level) [14]. Finally best effort 
traffic does not require any QoS guarantee. The DiffServ model is composed from a 
classifier and a traffic conditioner like appears in left part of figure 3. The traffic 
conditioner presented in right part of figure 3 is composed from a meter, 
shaper/dropper, maker, separate physical queues for each class of traffic and a 
scheduler to schedule packets out of queues. DiffServ enqueues flows in separate 
buffer where packets with high priority will be serviced out of the buffer before than 
packets marked with low and medium priority. In addition, low priority packets may 
be selectively dropped prior to dropping packets of medium and high priority when 
congestion occurs.  
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Pre-makred
packets

Traffic Conditioner

Classifier

DiffServ Queueing and Scheduling Policy

Pre-makred
packets

Policier and Shaper
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Figure 3. DiffServ router. 

3.6 Routing protocol component 

The first essential task of routing protocol is to find a suitable path through the 
network between the source and destination, and to record the minimum available 
bandwidth for CAC component. Our scheme does not rely on any specific reactive 
routing protocol and it may use any one able to collect the bottleneck value of the 
bandwidth along existing path. 

4. FORMAL SPECIFICATION 

One approach to ensure the correctness of our scheme is to use a formal model 
that integrates the theory needed for the verification of qualitative requirements 
together with the expressivity needed to analyze performance aspects. Moreover, a 
formal integration of these aspects in the initial phase of the system design allows 
the study of the potential dependencies that may occur between them.  

Stochastic process algebras (SPA) [11] are formal specification languages used 
to describe the behavior of a system in order to derive its functional and 
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performance properties. They are suitable for automatic analysis and verification of 
the behaviour of systems. Several SPA languages have appeared in the literature; 
these include PEPA (Performance Evaluation Process Algebra [12]), TIPP (TImed 
Processes and Performability evaluation [13]) and EMPA (Extended Markovian 
Process Algebra [14]). They are a high level modeling formalism able to derive the 
state space structure that consists of all states that a system model can reach. Given 
the state space of the system, there are many practical algorithms for answering 
some verification and analysis questions. 

These three languages propose the same approach to quantitative analysis, where 
a random variable is associated with each action to represent its duration. In this 
paper, we will use EMPA language, which is supported by a tool called TwoTowers. 
EMPA is inspired from PEPA and TIPP languages and it is considered like an 
extension to existing languages. The syntax of EMPA can be summarized by the 
following expression:  

P = 0│<a, λ>.P │<a, ∞L,W>.P│<a, *>.P│P/L│P[φ]│P + Q│P || s Q│A 
In the rest of this paper, we suppose that reader is familiar with process algebra. 

Interested reader must refer to [14] for further details.  
We exploit the compositionality and abstraction features to specify each 

component apart by describing tasks that must be accomplished by this component. 
In addition, for the sake of simplicity and to avoid well-known state space explosion 
problem, we model only three queues to hold high, medium and low priority flows. 
Routing protocol component like DSR is modeled in a previous work [15], and a 
detailed specification of DiffServ router can be found in [16]. 

The complete model is composed from seven components: call admission 
control (CAC), DiffServ, Queues, Scheduler, Bandwidth estimator 
(Bandwidth_EST), congestion control (CC) and rectification component. Its 
algebraic specification and the specification of each component are given below: 
Adaptive_DiffServ  (DIFFSERV ||COM CAC) ||Arr QUEUES ||Ser SCHEDULER|| SR 

                              (Bandwidth_EST ||CUR CC ||NC RECTIFICATION)  
    

     COM = {send_request, send_response} Arr = {arrivalH, arrivalM, arrivalL} 
      Serv = {deliverH, deliverM, deliverL} SSR = {stop_sending_request} 
      CUR = {send_CUR_to_cc} NC = {notify_rectification} 
 
• DIFFSERV <packet_arrival, λ>.CLASSIFIER 

CLASSIFIER <check_header, φ>.<classification, ψ>.CLASSIFIER1 
CLASSIFIER1 <not_marked, ∞1,P>.MARKER +  

             <marked, ∞1,1-P >.SEND_TO_QUEUE 
• MARKER <τ, ∞1,P>.<mark_pkt, ∞1,1>.TRAFIC_COND +  

                      <τ, ∞1,1-P>.<send_request, ∞1,1>.WAIT_DECISION 
WAIT_DECISION  <send_response, *>.MARKER1 
MARKER1 <mark_pkt, ∞1,p>.TRAFIC_COND +  
                       <notify_application, ∞1,1-p>.MARKER 
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• TRAFIC_COND  <shaping_and_conditioning, η>. SEND_TO_QUEUE 

SEND_TO_QUEUE <arrivalH, λH>.DIFFSERV + <arrivalM, λM>.DIFFSERV+                                       
                                      <arrivalL, λL>.DIFFSERV 

• CAC  <send_request, *>.<prepare_probe, β>. 
              <send_probe, ∞1,1>.WAIT_RESP 
WAIT_RESP  <receive_probe_response, δ>.ADM_MECHANISM 

     ADM_MECHANISM  <comparing_values, ε>.ADM_RESULT 
ADM_RESULT  <accept, ∞1,P>.<send_response, ∞1,1>.CAC +  
                               <reject, ∞1,1-P>.<send_response, ∞1,1>.CAC 

• QUEUES     Queue_High0 ||ø Queue_Medium0 ||ø Queue_Low0 
Queue_High0  <arrivalH, *>.Queue_High1

Queue_Highi  <arrivalH, *>.Queue_Highi+1  +  
                           <deliverH,*>. Queue_Highi-1                                                       1 ≤  i ≤  N-1                                               

Queue_HighN  <deliverH,*>. Queue_HighN-1  
Queue_Medium0 <arrivalM, *>.Queue_Medium1

Queue_Mediumj <arrivalM, *>.Queue_Mediumj+1 +  
                               <deliverM,*>. Queue_Mediumj-1                           1≤  j ≤  M-1 
Queue_MediumM  <deliverM,*>. Queue_MediumM-1   
Queue_Low0  <arrivalL, *>.Queue_Low1

Queue_Lowk  <arrivalL, *>.Queue_Lowk+1 +  
                           <deliverL,*>. Queue_Lowk-1                                      1≤  k ≤  P-1 
Queue_LowP   <deliverL,*>. Queue_LowP-1

• SCHEDULER   <deliverH, ∞3,1>.<serviceH, μ>.SCHEDULER  +  
                              <deliverM, ∞2,1>.<serviceM, μ>.SCHEDULER +  
                              <deliverL, ∞1,1>.<serviceL, μ>.SCHEDULER  +  
                              <stop_sending_request,*>.<serviceSR, ∞1,1>.SCHEDULER 

• Bandwidth_EST   <listen_to_channel, ω>.<cal_ch_util_ratio,θ>. 
                                        <send_CUR_to_cc, ∞1,1>.Bandwidth_EST 
• CC  < send_CUR_to_cc, *>.<compare_with_thrsh, ∞1,1>. 

           (<lower, ∞1,P >.CC + <higher, ∞1,1-P >.Congested_Channel) 
Congested_Channel <check_high_priority_queue, ∞1,1>.(<empty, ∞1,P >.CC + 
                                     <not_empty, ∞1,1-P >.<notify_rectification, ∞1,1>.CC) 

• RECTIFICATION    <notify_rectification, *>. 
                                      <stop_sending_request, ∞4,1>.RECTIFICATION 

4.1 Function analysis 

The functional analysis aims at verifying the correctness of the designed model 
and at detecting conceptual error in its behaviour. An important advantage of using 
TwoTowers is the possibility of exploiting well knows formal verification 
techniques to investigate functional properties of the model. Indeed, with respect to 
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conventional simulation environments (e.g. Network Simulator NS-2), TwoTowers 
provides verification of the satisfaction of correctness properties. Prominent 
examples of functional verification are checking that specified model does not lead 
neither to deadlock nor to livelock, controlling that certain activities are carried out 
according to a given order, or ensuring that certain resources are used in a mutually 
exclusive way.  

The technique adopted in this tool to provide functional verification support is 
based on temporal model checking logic like µ-calculus/computational tree logic 
(CTL) [17]. With model checking, we refer to the possibility to express functional 
requirements by means of a set of formulas and verifying the satisfaction of desired 
properties by the algebraic specification. We start our analysis by verifying some 
behavioural requirements that we have formalized through the following formulas: 
• No_deadlock = (min X = [-]ff ∨ 〈-〉X) 
• AG([arrivalH]ff ∨ [arrivalH]A(([deliverM]ff ∧ [deliverL]ff ) W < deliverH > tt)) 
• AG([send_stop_sending_request] 

        A([send_stop_sending_request]ff  W < notify_rectification > tt)     
         ∧ [notify_rectification]A([notify_rectification]ff  W < higher > tt)) 

     Informally a formula a ψ  holds in a state if there is a-labeled transition from 
this state to another one where the property  holds, i.e. it expresses a possibility. 
The formula 

ψ

[ ]a ψ  holds in a state if the specified property ψ  holds in each state 
that is reachable through a-labeled transition, i.e. it expresses a necessity.  

The first equation verifies the freedom of our model from deadlock. Equation 2 
ensures if there is a high priority packet in the queue, it will be served before low 
and medium priority packets. This is explained by the fact that for any state 
(operator global G) of any computation (operator A) starting at the initial state, 
action "arrivalH" can not be executed by a state or if it can be executed the derivative 
must verify this formula A(([deliverM]ff ∧ [deliverL]ff ) W <deliverH>tt) which 
ensures that high priority packet will be scheduled for transmitting before than 
medium and low priority packets. Finally, equation 3 ensures that 
stop_sending_request packet can not be transmitted by the rectification component 
before the notification of the congestion control component, and this notification can 
not be transmitted before the occurrence of congestion , which can be detected when 
the available bandwidth is great than a pre-defined threshold.  

4.2 Performance analysis 

QoS characterizes the non-functional properties of a system; it is expressed in terms 
of a number of quantifiable parameters that can be easily evaluated after the 
derivation of CTMC from algebraic specification of the model, via a structured 
operational semantics rules. This chain can be used for constructing the infinitesimal 
generator matrix which is used to calculate the steady-state and transient probability 
distribution for the system. These probabilities will be used to derive the desired 
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performance parameters by assigning a number describing a weight (usually called a 
reward) is attached to every state of the CTMC, and the performance parameter is 
defined as the weighted sum of the steady state probabilities of the Markovian 
model, like shows the following formula:  

Performance parameter  
N

i i
i 1

r π
=

= ×∑

Where N is the size of CTMC, πi is the steady state probability of state i, and ri is 
the reward attached to state i. EMPA provides an automatic way to calculate 
performance parameters using the preceding formulas, in addition to the 
implemented simulation routine. Using these techniques, we evaluate the 
performance of our algebraic model by focusing at the variation of average delay 
experienced by a packet and the throughput of the three modeled classes. We have 
increased the arrival rate of flows that pass through the model, and we divide this 
rate equally between all classes.  
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Figure 4. Average delay vs arrival rate 
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Figure 5. Throughput vs arrival rate 
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The variation curves that are presented in figures 4 and 5 show that our model 
can provide an acceptable delay and throughput for packets within highest priority 
range. The accuracy of these results is going to be depending on the detail that we 
have invested in the algebraic model, on the service rate of the scheduler, on the 
restriction of activities duration in SPA to exponential delay, and finally to the 
simple priority scheduler mechanism for queues instead of RED (Random Early 
Detection) usually used in DiffServ. These approximations are used to deal with the 
trade-off between accuracy of the model and the ability of the tool to verify 
functional behaviour due to limited memory with respect to the number of states in 
functional transition diagram (FTD), and to avoid state space explosion problem 
when evaluating performance parameters by using CTMC. The used scheduling 
mechanism is the responsible of the fact that medium and low priority traffics 
experience a long delay and their throughputs degrade exponentially to near zero.  

5. CONCLUSION AND FURTHER RESEARCH 

In this paper, we have described a new scheme to create an adaptive extension to 
DiffServ for MANETs after investigating the suitability of the existing QoS wired 
technologies (IntServ and DiffServ) to the characteristics of these networks. Our 
scheme is based on dynamic estimation of the available bandwidth by each node in 
its shared media in a completely distributed manner, and adopts the call admission 
control mechanism used in SWAN to gather minimum available bandwidth along 
existing paths towards a specified destination in route discovery phase. These 
additional components make DiffServ treats highest priority classes in an elegant 
and dynamic way while remaining stateless and lightweight.  

Stochastic process algebras allow only the description of the task that must be 
accomplished by each component with an exponentially distributed duration in order 
to derive the CTMC from the described model. However, this is seen unrealistic for 
components that need deterministic duration and a description of this scheme with 
generally distributed activities will provide more accuracy while evaluating its 
quantitative parameters. This is why we focus in our current and future work at 
specifying our proposed scheme with generally distributed activities. In addition, 
some tasks need to be refined like the mechanism executed by nodes when receiving 
stop-sending-request, because the naïve suppression of any routing information by 
the node that decides react face to network overload is not a good strategy and may 
prevent the use of the only possible path between two hosts. This why there is a 
needs to enhance this mechanism in our future work.  
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