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Abstract—In this paper, we focus on online detection and
isolation of erroneous values reported by medical wireless sensors.
We propose a lightweight approach for online anomaly detection
in collected data, able to raise alarms only when patients enter
in emergency situation and to discard faulty measurements. The
proposed approach is based on Haar wavelet decomposition and
Hampel filter for spatial analysis, and on boxplot for temporal
analysis. Our objective is to reduce false alarms resulted from
unreliable measurements. We apply our proposed approach on
real physiological data set. Our experimental results prove the
effectiveness of our approach to achieve good detection accuracy
with low false alarm rate.

Index Terms—Wireless Sensor Networks, Fault detection, Secu-
rity, Anomaly detection, Haar wavelet

I. INTRODUCTION

Wireless Body Area Networks (WBANs) are composed from

a set of small sensors with constrained resources, attached or

implanted into the body of the patient to collect vital signs,

while offering freedom to move for patients with long-term

diseases [1]. These devices are used to continuously monitor

patients or elderly people in home or in hospital, and transmit

collected data to a portable collection point (e.g. smart phone)

with more processing and transmission power.

The collection point may process the received data locally,

and transmit them to DataBase server for storage. It is also

responsible for raising medical alarms for caregivers or health-

care professionals, when detecting anomaly in the physiological

data of monitored patients, to quickly react [2], [3], [4] by

taking the appropriate actions. The deployment of Wireless

Sensor Networks (WSNs) for patient monitoring will reduce

the healthcare costs (overcapacity, waiting and sojourn time,

number of nurses, etc.), and help people with cardiac and

pulmonary insufficiencies, Diabetes, Alzheimer or Asthma.

Medical sensors with wireless transmission are available in

the market (MICAz, TelosB, Imote2, Shimmer [5], etc.). For

example, ECG wireless sensor is connected to three electrodes

placed on the chest for real time monitoring. Many other

devices are available to monitor vital signs, such as glucose

level, blood pressure, cardiac and respiratory activity, skin

temperature, oxygen saturation, etc.
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The pulse oximeter is used to measure the pulse and blood

oxygenation ratio (SpO2), through the use of infrared light and

photosensor. These valuable information can be exploited to

detect asphyxia, insufficient oxygen (hypoxia) or pneumonia.

Normal SpO2 ratio is larger than 95%. When this ratio is

lower than 90%, an emergency alarm must be triggered due

to respiratory failure.

Sensor readings are unreliable and inaccurate [6], [7], due

to constrained sensor resources, which make them susceptible

to various sources of errors. For example, additional environ-

mental light (fluorescent lighting) may affect the functioning of

pulse oximeter, and cause faulty measurements.

Abnormal values may be resulted from many reasons in

WSNs [8], such as hardware faults, corrupted sensors, energy

depletion, calibration, electromagnetic interference, disrupted

connectivity, compromised sensors, data injection, patient with

sweating, detached sensor, heart attacks or health degradation,

etc. Therefore, an important task is to detect abnormal mea-

surements (outliers) that deviate from other observations, and

to distinguish between sensor faults and emergency situation to

reduce false alarms.

Various anomaly-based detection techniques for sensor fault

identification and isolation have been proposed and applied [9],

[10], [11], [12]. Distributed detection techniques identify

anomalous values at individual sensors to prevent the transmis-

sion of erroneous values and reduce energy consumption. These

techniques require resources that are not available in sensors,

and their accuracy is lower than centralized approaches, which

have global view for spatio-temporal analysis.

Physiological parameters are correlated in time and space,

and correlation must be exploited to identify and isolate faulty

measurements, in order to ensure reliable operation and accu-

rate diagnosis result. Usually, there is no spatial or temporal

correlation among monitored attributes for faulty measure-

ments.

In this paper, we propose a lightweight fault detection and

isolation approach to reduce the false alarms, by removing

the underlying outliers from faulty sensor measurements. We

consider a general deployment scenario, where many sensors

are attached to the patient, and are used to monitor different

physiological attributes. The collected data are transmitted to a
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portable device (smart phone) for processing.

The proposed approach is based on Haar wavelet, Hampel

filter and boxplot, and is intended to work on smart phone.

This approach provides online anomaly detection with reduced

memory and complexity, and without using a predefined fixed

threshold or labeled training data. The Haar wavelet and Ham-

pel filter are used to detect spatial deviation between correlated

attributes, and the boxplot is activated for temporal analysis,

only when spatial deviations are detected.

Experimental results, on a real medical data set, show that

our proposed approach is accurate in detecting anomalies in

physiological parameters, and is reliable in term of reduced

false alarm rate with the presence of inconsistent data in

monitored attributes.

The rest of this paper is organized as follows. Section II sur-

veys related work. Section III briefly reviews related techniques

and presents our approach for anomaly detection. Section IV

presents our experimental results. Finally, Section V concludes

the paper.

II. RELATED WORK

Several medical applications for WSNs have been proposed

for health monitoring. Authors in [13] propose an accelerometer

based method to detect patient inactivity in home and to trigger

an alarm for long time immobile patient. Other approach in [14]

deals with wearable accelerometer to detect the fall of elderly

people under remote monitor.

Various architectures for vital sign monitoring have been pro-

posed, such as CodeBlue [15], LifeGuard [16], AlarmNet [17],

MEDiSN [3], Medical MoteCare [18], Vital Jacket [19], etc. A

survey of medical applications using WSNs is available in [1],

[20].

However, collected data by WSNs have low quality and

poor reliability. Different approaches for anomaly detection

have been applied. Authors in [21] explore four classes of

methods for fault detection: rule-based, estimation-based, time

series analysis, and learning based methods. They investigate

fixed and dynamic threshold, linear least squares estimation,

Auto Regressive Integrated Moving Average (ARIMA), Hidden

Markov Model (HMM), etc. They focus on detecting three fault

categories: short, noise and constant. The authors found no best

class of detection methods suitable for every type of anomaly.

Rule-based methods require calibrating and tuning threshold

parameter, learning methods require training phase, estimation

methods cannot classify faults, and time series analysis has the

highest false positives.

Authors in [22] propose an approach based on Support Vector

Machine (SVM) and k-nearest neighbor (KNN) for anomaly

detection in WSNs. Authors in [23] use an unsupervised

approach for anomaly detection in WSNs, which is based on

Discrete Wavelet Transform (DWT) and Self-Organizing Map

(SOM). The DWT is used to reduce the size of input data for

SOM clustering.

Authors in [10] propose a distance based method to identify

insider malicious sensors, while assuming neighbor nodes mon-

itoring the same attributes. Each sensor monitors its one hop

neighbors and uses Mahalanobis distance between measured

and received multivariate instances to detect anomaly. Authors

in [24] propose a voting based system to detect events. Authors

in [9] propose a failure detection approach for WSNs, which

exploits metric correlations to detect abnormal sensors and to

uncover failed nodes.

Authors in [11] propose a score parameter for anomaly

detection in collected data by sensors. This parameter is

based on Hampel filter and KDE (Kernel Density Estimator).

Authors in [7] note that only limited research uses spatial

and temporal correlation for outlier detection. The temporal

dependency means that the current attribute measurement de-

pends on readings at the previous time instants, while the

spatial dependency means that the observations from different

attributes are correlated.

In health monitoring, the physiological parameters are heav-

ily correlated. To increase the anomaly detection accuracy, the

spatio-temporal dependencies must be exploited to distinguish

between errors and medical emergencies, where measurements

tend to be correlated in time and space, and errors are usually

uncorrelated from other attributes.

In this paper, we propose a simple and light approach for

online anomaly detection in collected data by medical wireless

sensors. The proposed approach is based on discrete Haar

wavelet transform and Hampel filter for spatial analysis, and

boxplot for temporal analysis. The objective is to reduce false

alarms resulted from faulty measurements, in order to enhance

the reliability and the accuracy of patient monitoring systems.

III. PROPOSED APPROACH

We consider a medical deployment scenario for continu-

ous monitoring, with N sensors (S1, . . . , SN ) are attached or

weared by the patient (as shown in Fig. 1). These sensors are

used to gather vital signs, and to transmit collected data to

portable device for processing. Each sensor monitors one or

many attributes, e.g. pulse oximeter monitors the pulse and

SpO2. We denote the collected measurements at the given time

instant t by Xt = (x1t, x2t, . . . , xpt), where p is the total

number of monitored attributes (p ≥ N ).

Fig. 1. Vital signs in real time remote monitoring

The collected data on the smart phone must be processed

in real time for online anomaly detection. These measurements

are probably of low quality and reliability, due to constrained

resources of sensors and the deployment context (sweat, de-

tached, damaged sensors, interrupted communications, etc.).
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The accuracy of this monitoring system relies on the data,

where faulty measurements trigger false alarms for caregiver.

Therefore, to increase the accuracy of diagnosis result, faulty

observations must be detected and isolated in order to reduce

the false alarms and to prevent fault diagnosis.

Our proposed approach is based on three steps: Discrete

Haar Wavelet transform (DWT), Hampel filter and Boxplot. The

DWT and Hampel filter are used to detect spatial deviations,

and the boxplot is used for temporal analysis, to pinpoint

suspects underlying attributes, which are responsible for the

detected deviation. The objective is to reduce false alarms and

to raise alarms only when patient health degrades (respiratory

failure, cardiac arrest, etc.).

The architecture of the proposed sequential approach is

shown in Fig. 2, where the three algorithms (DWT, Hampel,

Boxplot) are applied on every instance to raise alarms only

when the patient enters in critical phase.

start

Wavelet

decomposition
Boxplot

Hampel filter
Anomalous

attributes

Patient healthy
measurement

is faulty
Generate alarm

Update

sliding window

Yes

No

< 2 ≥ 2

Fig. 2. Flow diagram of the implementation

A. Discrete wavelet transform

The discrete Haar wavelet transform is used to divide the

observations in the vector Xt into two parts: approximation At

and detail Dt signals. Approximation signal (At) is the filtering

result of input signal through Low Pass Filter (LPF) and Inverse

Low Pass Filter (ILPF), and detail signal (Dt) is the filtering

result through High Pass Filter (HPF) and Inverse High Pass

Filter (IHPF) as shown in Fig. 3.

LPF ILPF

HPF IHPF

ai

di

At

Dt

Input

Xt

Output

At +Dt

Fig. 3. Filters used in the Haar transform

Observations in Xt can be reconstructed as the results of

inversion filters. We use the Haar wavelet as it is the simplest

form of discrete wavelet transform (the smallest computational

cost), with only two coefficients {l0 = l1 = 1/
√
2} for LPF,

and {h0 = −h1 = 1/
√
2} for HPF [25]. The signal can be

expressed using the matrix L & H with dimension p/2× p:

L =











l0 l1 0 0
0 0 l0 l1
...

...
...

...

0 0 0 0

· · · 0 0 0
· · · 0 0 0
. . .

...
...

...

· · · 0 l0 l1











The matrix H has the same structure by replacing the scale

coefficients l0 and l1 by h0 and h1 respectively. The approxi-

mation and detail coefficients are obtained as:

ai = L×XT
t =

x2i−1,t + x2i,t√
2

i ∈ [1, p/2] (1)

di = H ×XT
t =

x2i−1,t − x2i,t√
2

i ∈ [1, p/2] (2)

The approximation At (average) and detail Dt (fluctuation)

signals are calculated as follows:

At = at × L =

p/2
∑

i=1

Lit × ai t ∈ [1, p] (3)

Dt = dt ×H =

p/2
∑

i=1

Hit × ai t ∈ [1, p] (4)

To detect abnormal deviations between monitored attributes, we

monitor the energy of fluctuation signal (Dt) with respect to

the total energy of both signals as it has been proposed in [26]

for stealth attack detection in VoIP:

Ei =

∑p
t=1

(Dt)
2

∑p
t=1

(At)2 +
∑p

t=1
(Dt)2

(5)

The energy ratio signal (Ei) will increase when one or more

attributes change. Statistical based parameters, such as mean

(µ) and standard deviation (σ) have been widely used as

dynamic threshold to detect deviations (z-score or µ± kσ). At

a confidence level of 95%, the associated value of k is 1.96,

and 99% of observations fall within k = 2.57σ from µ, and

99.73% of observations fall with 3σ from µ.

To detect deviations in energy time series (Et =
{E1, . . . , En}), we use a sliding window of last w observations

(as shown in Fig. 4) to estimate statistical parameters (µ & σ)

used in the z-score rule. However, the data in sliding window

may contain outliers, which distort and skew the means and

the variance toward them, and affect the detection performance.

Contaminated data have two underlying effects: masking and

swamping problems. Masking occurs when outliers are masked

and are not detected, and swamping occurs when normal

observation is detected as abnormal (inversion). To avoid these

problems, we use robust Hampel filter instead of z-score to

detect deviations in energy time series (Et).
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TimeE1 E2
... Ew Ew+1

Window w 1

Fig. 4. Sliding window used to estimate statistical parameters

B. Hampel Filter

The Hampel filter is a sliding window implementation of

the Hampel identifier, proposed as robust alternative to outlier

sensitive z-score. To provide robust method for estimating µ and

σ in contaminated data, Hampel proposes the use of median

and Median Absolute Deviation (MAD) as outlier resistant

parameters. We use a sliding window containing the prior w
values of energy ratio Ew

i = {Ei−w, . . . , Ei}, and we compute

the median and the scale (MAD) of Ew
i as follows:

φw = median(Ew
i ) (6)

Sw = 1.4826×median{|Ew
i − φw|} (7)

After replacing the mean µ by the median φw, and the standard

deviation σ by Sw, the z-score is used to test if the new value

Ei+1 is abnormal:

|Ei+1 − φw| ≥ k × Sw (8)

With k is a threshold value (k = 1.96 in our experi-

ments). However, the data in sliding window have zero or

near zero MAD under normal condition [11], and we use

Sw = max(Sw , c1) to eliminate false alarms. c1 is a predefined

constant greater than zero.

As physiological parameters are heavily correlated, and

faulty measurements are spatially unrelated with other at-

tributes, the time series analysis of energy ratio Et can only

detect spatial deviations, without any information of the under-

lying attributes responsible of the occurred change. To identify

the abnormal attributes, we activate the univariate boxplot only

after the detection of spatial anomaly. The boxplot is used to

check temporal deviation in each attribute with low compu-

tational complexity. If the number of underlying attributes is

smaller than r (r = 2 in Fig. 2), we consider the measurement

of this attribute is faulty and we discard the alarm. In the other

case, we raise an alarm for caregiver to quickly react for the

patient health degradation.

C. Box-and-Whisker plot

The Box-and-Whisker plot or boxplot is a simple and ro-

bust outlier detection method. Let Xw
i = {xi,t−w, . . . , xi,t}

represents a temporal sliding window of the last w values for

the ith monitored attribute. The lower quartile (Q1 is the 25th

percentile) and the upper quartile (Q3 is the 75th percentile)

of Xw
i are used to obtain robust measurements for the mean

µ̂ = (Q1 + Q3)/2, and the standard deviation is replaced by

the interquartile range σ̂ = IQR = Q3 −Q1. A measurement

is considered as abnormal (Fig. 5) if the following condition is

satisfied:

xi,t ≤ Q1− 1.5.(Q3−Q1) ∨ xi,t ≥ Q3+1.5.(Q3−Q1) (9)

The univariate boxplot is applied on every attribute, and an

alarm variable is incremented for detected deviation in each

attribute, and when the value of this variable is greater or equal

to r, we raise an alarm. For clarification, when the heart rate

and respiration rate increase, and the SpO2 decreases, a medical

intervention is required. In the other case, the measurements are

considered faulty and no alarm will be raised.

We use a value of r ≥ 2 in our experiments, as the

probability that many sensors are faulty in the same time instant

is low. We also consider that the physical check for sensors is

necessary when more than r sensors report abnormal values.

The proposed method is presented in algorithm 1.

Min MaxQ1 Q3Median

Anomaly Anomalies

Fig. 5. Boxplot

Algorithm 1 Anomaly Detection Approach

1: Apply Haar DWT to get At & Dt

2: Calculate Energy ratio Ei

3: Estimate median & MAD for the last w values of Ei

4: if |Ei+1 −median(Ew
i )| ≥ k × Sw then

5: for all xit do

6: if ((xit ≤ Q1 − 1.5.IQR) || (xit ≥ Q3 + 1.5.IQR))
then

7: Alarm++

8: end if

9: end for

10: if Alarm ≥ r then

11: Raise an alarm for caregiver

12: end if

13: end if

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed approach, we

conduct many experiments using real medical dataset from

he Physionet database [27], where each record contains 8

parameters (Blood Pressure, C.O., Heart rate, Pulmonary Artery

Pressure, Pulse, RESP, SpO2, Body temperature). We apply

our approach on this trace before and after injecting synthetic

anomalies at different instants. We use a sliding window of

width w = 10 to reduce memory requirement, and we set

k = 1.96 and r = 2.

We begin by showing the variations of physiological at-

tributes in the used dataset. The variations of the heart rate and

respiration rate (in breaths per minute) are shown in Fig. 6.

We can visually identify 4 anomalies (spikes) in the heart rate,

where one observation falls down to zero and others are less

than 25bpm (beat per minute). Similarly, the respiration ratio

falls to zero in two observations. The variations of the pulse

and the temperature are shown in Fig. 7. The temperature is

constant during the monitoring time, but the pulse exhibits 4
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Fig. 6. Heart rate & respiration
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Fig. 7. Pulse & temperature
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Fig. 8. Blood & pulmonary artery pressure
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anomalies at different time instants in the heart rate. Usually,

the heart rate and the pulse must have the same values and must

show the same variations, as they represent the same attribute

monitored through two different sensors. However, they don’t

superpose on anomalies when drawing them in the same figure,

and different deviations on different time instant appear clearly

when comparing Fig. 6 & Fig. 7.

Fig. 8 shows the variations of the Pulmonary Artery Pressure

(PAPmean) and Blood Pressure (BPmean) for the monitored

patient. BPmean is calculated from the systolic and diastolic

blood pressure, and analogously for the PAPmean. Fig. 9 shows

the variations of the SpO2 and the C.O., where the normal

values of SpO2 must be within the range of [95%-100%], and

a lower value is synonym of asphyxia, lack of oxygen and heart

disease. In Fig. 9, we can notice two abnormal readings with

zero or near zero values for SpO2 followed by normal values.

Fig. 10 shows the variations of energy for approximation (At)

and detail (Dt) signals obtained after applying the DWT on

the 8 physiological attributes. The energy ratio (given in eq. 5)

is shown in Fig. 11, and is used to detect spatial deviations

through Hampel filter. The raised alarms by Hampel filter for

spatial analysis are shown in Fig. 12, where we get a high

number of false alarms. The prior application of data filtering

techniques on each attribute may reduce the noise level by

discarding anomalies and retaining good data, but it may also

change the shape of variations, and discard interesting events.

We activate boxplot analysis only on instant with raised

alarm by Hampel filter to achieve temporal analysis on each

attribute. Only three alarms are raised after the application of

boxplot (with r = 2) as shown in Fig. 13. It is important to note

the difference between the number of raised alarms by Hampel

(Fig 12) and thus transmitted to caregiver (Fig 13). However,

the raised alarm on instant 2500 is a false alarm, and it is

triggered by abnormal measurements in SpO2 and Pulse, which

are measured by the same sensor (pulse oximeter). Therefore,

increasing the value of r may discard this false alarm, as well as

increasing the miss detection rate. The value of r is a tradeoff

between detection accuracy and false alarms.

To conduct performance analysis of the proposed approach,

we inject synthetic anomalies at different time instants on

different attributes, and we use the Receiver Operating Charac-

teristic (ROC) curve to show the impact of the threshold (k) on

the true positive rate and the false negative rate. Fig. 14 shows

the ROC for the proposed approach where we achieve 100%

of detection rate with a false alarm rate of 7%.

V. CONCLUSION

In this paper, we propose a lightweight anomaly detection

approach for medical WSNs. The proposed approach is based

on Wavelet decomposition, Hampel filter and boxplot, and it

is able to achieve spatial and temporal analysis, without prior

knowledge of fault signatures. It is suitable for online detection

and isolation for faulty or injected measurements with low

computational complexity and storage requirement.
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Fig. 13. Raised alarms by boxplot
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We have tested the proposed approach on real physiological

dataset. The experimental results prove that it can improve the

efficiency and reliability, by identifying faulty measurements

and reducing the number of false alarms. Our next task will

be to apply this technique online using Shimmer platinum

development kit [5] and to investigate a real implementation

of distributed detection on sensors to reduce the wasted energy

by the transmission of faulty measurements.
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