

Licence 1ère année, 2012-2013, MATHÉMATIQUES ET CALCUL 1 (MC1)

Feuille de TD n 6: Formule de Taylor, développements limités

Exercice 1

- 1) Retrouver l'expression de la dérivée de Arcsin.
- 2) En utilisant la formule de Taylor, calculer le développement limité de Arcsin à l'ordre 2 en 0.

Exercice 2

- 1) A partir de la dérivée de sin et cos, retrouver l'expression de la dérivée de tan.
- 2) En déduire la dérivée de Arctan.
- 3) En utilisant la formule de Taylor calculer le développement limité de la dérivée de Arctan au voisinage de 0, à l'ordre 4. En déduire le développement limité de Arctan à l'odre 5 au voisinage de 0.

Exercice 3

- 1) Rappeler le développement limité de ln(1+x) au voisinage de 0, à l'ordre 4, et le développement limité de $\cos x$ au voisinage de 0, à l'ordre 4.
 - 2) En déduire le développement limité de $\ln(\cos x)$ au voisinage de 0 à l'ordre 4.

Exercice 4

Donner le développement limité au voisinage de 0 des fonctions suivantes :

- 1) $\frac{1}{1-x} e^x$ à l'ordre 3.
- 2) $\ln(1 + x(x-1))$ à l'ordre 5.
- 3) $\frac{\sin x}{1+3x}$ à l'ordre 3.
- 4) $\sin x \cos(2x)$ à l'ordre 6.
- 5) $\frac{\sin^2 x}{1-x^2}$ à l'ordre 4.
- 6) $\frac{(1-\cos x)^2}{x^2}$ à l'ordre 5.
- 7) $\operatorname{sh}(x^2)\operatorname{ch}(x)$ à l'ordre 3

Exercice 5

Calculer le développement limité au voisinage de 0 de

- 1) $\frac{3x^2+3x+2}{1+x^2}$ à l'ordre 4. 2) $\frac{3x+1}{2+3x+x^2}$ à l'ordre 3.

Exercice 6

- 1) Calculer le développement limité au voisinage de 0 de à l'ordre 4 de $\frac{\ln(1+x)}{1-x^2+x^4}$.
- 2) En déduire le développement limité au voisinage de 0 à l'ordre 4 de $(1+x)^{\frac{1}{1-x^2+x^4}}$.

Exercice 7

- 1) Calculer le développement limité de $e^{\frac{x \sin x}{2}} e^{1-\cos x}$ à l'ordre 4, au voisinage de 0.
- 2) En calculant le développement limité de $\frac{x \sin x}{2} (1 \cos x)$ au voisinage de 0 à un ordre suffisant, déterminer la limite en 0 de :

$$\frac{e^{\frac{x\sin x}{2}} - e^{1-\cos x}}{\frac{x\sin x}{2} - (1-\cos x)}$$

Exercice 8

Calculer les développements limités suivants :

- 1) $\ln(\frac{1}{1+x})$ en 0, à l'ordre 3.
- 2) $\exp(\sin x)$ en 0, à l'ordre 4.

1

3) $\ln(4 - 8x + x^2)$ en 0, à l'ordre 4.

Exercice 9 Vrai ou faux?

- 1) Si f admet un développement limité d'ordre k au voisinage de 0, alors f' admet un développement limité d'ordre (k-1) au voisinage de 0.
 - 2) Si $f_1 \sim g_1$ et $f_2 \sim g_2$ alors $f_1 f_2 \sim g_1 g_2$.
 - 3) Si $f_1 \sim g_1$ et $f_2 \sim g_2$ alors $f_1 f_2 \sim g_1 g_2$.
- 4) Si f possède un développement limité au voisinage de a à l'ordre n, alors f possède un développement limité au voisinage de a à l'ordre k pour tout $k \leq n$.
 - 5) Si $f \in \mathcal{C}^n([-1,1])$, alors quand $x \to 0$, on a

$$f(x) = f(0) + xf'(0) + \frac{x^{2}}{2}f^{(2)}(0) + \dots + \frac{x^{n}}{n!}f^{n}(0) + o(x^{n}).$$

Exercice 10

Déterminer les limites suivantes

1)
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x}$$
 2) $\lim_{x \to 0} \frac{e^x - \sin x - 1}{\sinh x - \operatorname{Arcsin} x}$ 3) $\lim_{x \to \frac{1}{2}} (2x^2 - 3x + 1) \tan(\pi x)$ 4) $\lim_{x \to +\infty} \left(\cos \frac{1}{x}\right)^{x \ln x}$

$$5) \lim_{x \to 0} \frac{\cos x - 1 - \ln(1 - \frac{x^2}{2})}{x^4} \quad 6) \lim_{x \to 0} \frac{(e^{x^2} - 1 + \sin^2 x)}{x^2} \quad 7) \lim_{x \to a} \frac{a^x - b^x}{x}, \ (a \text{ et } b \in \mathbb{R}_+^\star \text{ sont fixés}).$$

Exercice 11

Soit f la fonction définie sur \mathbb{R} par

$$f(x) = \ln(x^2 + 2x + 2) .$$

- 1) Effectuer un développement limité de f en 0, à l'ordre 3.
- 1) En déduire l'équation de la tangente à la courbe représentative de f au point de coordonnées (0, f(0)).
- 2) Étudier la position relative de la courbe et de la tangente au voisinage de ce point. Que peut-on dire du point de coordonnées (0, f(0))?

Exercice 12

Soit f la fonction définie par

$$f(x) = \sqrt{x^2 + 1} + \sqrt{x^2 - 1} .$$

- 1) À l'aide des développements limités, prouver que la courbe représentative de f admet une asymptote oblique dont on donnera une équation.
 - 2) Étudier la position de la courbe par rapport à son asymptote.

Exercice 13

Soit

$$f: x \mapsto \frac{1 - \frac{\sin x}{x}}{1 - \cos x} .$$

- 1) Quel est le domaine de définition de f?
- 2) Donner le développement limité de f en 0, à l'ordre 2.
- 3) Calculer la limite de f en 0. En déduire que f est prolongeable par continuité en 0.

Exercice 14

Si une fonction est n fois dérivable en 0, alors elle admet un développement limité à l'ordre n en 0. Nous allons montrer que la réciproque est fausse. Soit f la fonction définie sur \mathbb{R} par :

$$\begin{cases} f(0) = 0\\ f(x) = x^3 \sin(\frac{1}{x^2}), & \forall x \neq 0. \end{cases}$$

- 1) Montrer que f est dérivable sur $\mathbb R$ et calculer sa dérivée.
- 2) Montrer que f n'est pas deux fois dérivable sur \mathbb{R} .
- 3) En utilisant $|f(x)| \leq |x|^3$, montrer que f admet un développement limité à l'ordre 2 en 0.