

Licence 1ère année, 2012-2013, MATHÉMATIQUES ET CALCUL 1 (MC1)

$\label{eq:Feuille de TD n°1:}$ Nombres complexes et géométrie du plan

Exercice 1 Mettre sous la forme algébrique z = Re(z) + i Im(z) les nombres complexes suivants:

(1)
$$z_1 = (1 - 3i)(1 + 3i)$$

(2)
$$z_2 = 3 + \frac{2}{i}$$

(3)
$$z_3 = (1+i)(2-i)(3+i)$$

(4)
$$z_4 = \frac{2+5i}{1-i} + \frac{1-i}{2-5i}$$

(5)
$$z_5 = \frac{e^{2i\theta} + e^{4i\theta}}{1 - e^{6i\theta}}$$
 où θ est un angle non-multiple de $\frac{\pi}{3}$.

Exercice 2

Donner le module et un argument des nombres complexes suivants :

(a)
$$2 + 2i$$
 (b) i^{95} (c) $\sqrt{3} + 3i$

Mettre les nombres complexes suivants sous forme trigonométrique :

(d)
$$(1+i)^5$$
 (e) $\left(\frac{1+i}{1-i}\right)^3$ (f) $(1-\sqrt{3}i)^4$

Exercice 3

- (1) Donner sous forme trigonométrique puis sous forme algébrique les racines carrées de i.
- (2) Donner sous forme trigonométrique puis sous forme algébrique les racines carrées de -i.
- (3) Donner sous forme trigonométrique les racines quatrièmes de i.
- (4) Calculer sous forme algébrique les racines carrées de $\frac{1+i}{\sqrt{2}}$.
- (5) En déduire les valeurs de $\cos(\pi/8)$ et $\sin(\pi/8)$, puis les racines quatrièmes de i sous forme algébrique.

Exercice 4 On note $j = e^{2i\pi/3}$.

- (1) Mettre j et j^2 sous la forme z = Re(z) + i Im(z).
- (2) Vérifier que $1 + j + j^2 = 0$.
- (3) Factoriser le polynôme $z^3 1$.
- (4) En déduire les racines réelles et complexes du polynôme $z^3 1$.

Exercice 5 Pour chacune des applications de $\mathbb C$ dans $\mathbb C$ suivantes, déterminer si elle est injective :

- (1) $f_1: z \mapsto z$
- (2) $f_2: z \mapsto \operatorname{Re}(z)$
- $(3) f_3: z \mapsto z^2$
- (4) $f_4: z \mapsto z^3$
- (5) $f_5: z \mapsto iz + 1$
- (6) $f_6: z \mapsto (1+3i) \operatorname{Re}(z) + 4 \operatorname{Im}(z)$

Exercice 6 Résoudre dans \mathbb{C} les équations suivantes:

$$(E_1)$$
 $z^2 - 1 + 2i = 0$

$$(E_2)$$
 $(z^7 - 1)(z^3 + 1/27) = 0$ (donner les solutions sous forme trigonométrique)

$$(E_3) z^2 + \sqrt{3}z - i = 0$$

$$(E_4) z^4 + z^3 - 2z = 0$$

Exercice 7 Calculer les sommes suivantes :

(1)
$$S = \sum_{k=0}^{32} \left(\frac{-1}{2} + i \frac{\sqrt{3}}{2} \right)^k$$

$$(2) S_n = \sum_{k=0}^n \cos(k\theta)$$

(2)
$$S_n = \sum_{k=0}^{n} \cos(k\theta)$$
(3)
$$T_n = \sum_{k=0}^{n} \binom{n}{k} \sin(k\theta)$$

Exercice 8

- (1) Pour $\theta \in \mathbb{R}$, exprimer $\cos(3\theta)$ en fonction de $\cos(\theta)$ et $\sin(\theta)$.
- (2) Pour $\theta \in \mathbb{R}$, exprimer $\cos(5\theta)$ en fonction de $\cos(\theta)$ puis calculer $\cos(\pi/5)$ et $\cos(2\pi/5)$.
- (3) Pour $\theta \in \mathbb{R}$, linéariser $\cos^4(\theta)$ et $\sin^4(\theta)$ (c'est-à-dire les exprimer en fonction des $\cos(k\theta)$, $\sin(k\theta)$).

Exercice 9

(1) Résoudre dans \mathbb{R} les équations suivantes :

$$(E_1) \cos(x) = \frac{\sqrt{3}}{2}$$
, $(E_2) \sin(\frac{x}{2}) = -\frac{1}{\sqrt{2}}$, $(E_3) \sqrt{3}\sin(x) - \cos(x) = 1$.

(2) Résoudre dans $[-\pi, \pi]$ les inéquations suivantes :

$$(I_1) \sin(x) < \frac{\sqrt{3}}{2}, \qquad (I_2) \cos^2(x) \geqslant \cos(2x) + \frac{3}{4}.$$

Exercice 10

- (1) Calculer: $S = 1 + e^{2i\pi/5} + e^{4i\pi/5} + e^{6i\pi/5} + e^{8i\pi/5}$.
- (2) En déduire la valeur de : $R = 1 + \cos(2\pi/5) + \cos(4\pi/5) + \cos(6\pi/5) + \cos(8\pi/5)$, puis celle de $\cos(2\pi/5)$.

Exercice 11

- (1) Soit $n \in \mathbb{N}^*$ et $z \in \mathbb{C}$ tel que $z^n = 1$. Que vaut le module de z?
- (2) Combien de solutions complexes a l'équation $z^{11} = -1$? Combien de solutions réelles ?
- (3) Représenter dans le plan complexe les ensembles suivants :

$$\mathbb{U}_3 = \{ z \in \mathbb{C}, \quad z^3 = 1 \}$$

$$\mathbb{U}_6 = \{ z \in \mathbb{C}, \quad z^6 = 1 \}$$

$$\mathbb{U}_8 = \{ z \in \mathbb{C}, \quad z^8 = 1 \}$$

Soient $z_1, z_2 \in \mathbb{C}^*$. On note M_1 (resp. M_2) le point d'affixe z_1 (resp. z_2).

- (1) Quelle(s) condition(s) géométrique(s) doivent vérifier les points M_1 et M_2 pour que $\frac{z_1}{z_2}$ soit réel?
- (2) Quelle(s) condition(s) géométrique(s) doivent vérifier les points M_1 et M_2 pour que $\frac{z_1}{z_2}$ soit imaginaire pur?

Exercice 13 Le plan étant muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, déterminer les ensembles E, F, G des points M(x,y) d'affixes z tels que :

- (1) E: |(1-i)z + 2i| = 9
- (2) F: $|((z+1)/(z-1+i\sqrt{3})|=1$
- (3) G: (1+iz)/(1-iz) soit de module 1.

Donner pour chacun des ensembles une interprétation géométrique.

Exercice 14 Soit $j = e^{2i\pi/3}$.

- (1) Montrer que $\bar{j} = j^2$.
- (2) Soient $z_0 = 1 + i$, $z_1 = jz_0$, $z_2 = j^2 z_0$.

On note M_0 , M_1 , et M_2 les points d'affixes z_0 , z_1 et z_2 respectivement.

Montrer que $M_0M_1M_2$ est un triangle équilatéral.

(3) Soient A, B, et C trois points distincts du plan d'affixes respectives a, b, c.

Montrer que ABC est un triangle équilatéral si et seulement si $\frac{c-a}{b-a} = -j$ ou $\frac{c-a}{b-a} = -\bar{j}$.

(4) En déduire que ABC est un triangle équilatéral si et seulement si $aj^2 + bj + c = 0$ ou $aj + bj^2 + c = 0$.