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Intermède

Les ensembles de nombres

Comme introduction au chapitre sur les suites qui va suivre, quelques indications et rappels sur les en-
sembles de nombres que les mathématiques utilisent.

Les ensembles des entiers naturels, N, relatifs, Z, ou des fractions, Q, sont faciles à concevoir de manière
intuitive ; tout le monde a en tête ce qu’est un nombre entier naturel : un nombre avec lequel on peut comp-
ter des objets, et même un entier relatif : les températures négatives, en hiver, ne posent aucun problème
ou les fractions, quand il s’agit, par exemple, de monnaie : les centimes...
Les nombres réels, R, sont beaucoup plus difficiles à concevoir : que sont ces nombres — dont tous les
précédents font partie — que l’on ne peut nommer autrement que par des symboles de l’arithmétique :√

2,
√

3, . . . ou par des lettres, éventuellement empruntées à d’autres alphabets : π,e,γ, . . .

Les suites sont un outil mathématique qui permet de calculer des valeurs approchées des nombres réels
avec une erreur aussi petite que l’on veut.
Par exemple, le nombre π, rapport de la circonférence d’un cercle à son diamètre, peut être approché en

donnant à l’entier n des valeurs de plus en plus grande dans la somme suivante : 4
n∑
k=1

n

n2 + k
; ou
√

2 peut

être calculé par itération de la formule :
1
2

(
xn +

2
xn

)
en partant de la valeur x0 = 1.

Propriétés des nombres réels R

– R contient l’ensemble des nombres rationnels Q : Q ⊂R

– R possède une addition et une multiplication qui prolongent l’addition et la multiplication définies
sur Q

– R est muni d’un ordre ≤ qui prolonge l’ordre défini sur Q
– R possède la propriété d’Archimède :

Si A ∈R, A ≥ 0, il existe un entier naturel n ∈N tel que A < n

Combinaison
Le binôme de Newton
Pour tous nombres (entiers,..., réels, complexes) a et b et tout nombre entier n , 0 :

(a+ b)n =
p=n∑
p=0

(
n
p

)
ap .bn−p =

p=n∑
p=0

(
n
p

)
an−p .bp

(a+ b)2 = a2 + 2a.b+ b2[7pt] (a+ b)3 = a3 + 3a2.b+ 3a.b2 + b3[7pt]
(a+ b)6 = a6 + 6a5.b+ 15a4.b2 + 20a3.b3 + 15a2.b4 + 6a.b5 + b6

2 Suites

2.1 Définitions

Une suite est une application de N dans R :

u : N −→ R

n → un
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Remarque : On note un les éléments de la suite, plutôt que u(n) ; on « numérote » chaque élément de la
suite : u0 : premier élément, u1 : deuxième élément, . . . , un : n+ 1-ième élément, etc.

Exemples

u0 = 0, u1 = 1, u2 = 2, u3 = 3, u4 = 4, . . . un = n

u0 = 0, u1 = 2, u2 = 4, u3 = 6, u4 = 8, . . . un = 2n

u0 = 1, u1 = 3, u2 = 5, u3 = 7, u4 = 9, . . . un = 2n+ 1

u1 =
1
1
, u2 =

1
2
, u3 =

1
3
, u4 =

1
4
, u5 =

1
5
, . . . un =

1
n

u0 = 0, u1 =
sin(1)

2
, u2 =

sin(2)
5

, u3 =
sin(3)

10
, . . . un =

sin(n)

n2 + 1

Autre manière de définir une suite

On peut aussi construire une suite en définissant chaque terme à partir du précédent, il faut dans ce cas
préciser le premier terme. On appelle cette construction, une suite définie par récurrence :

u0 = −1
2

et un+1 =
(un + 1)(9−un)

4

Dans cet exemple, on a donné le premier terme, u0 = −1
2

, et le terme de rang n+1 est alors construit par une

formule mathématique à partir du terme de rang n. On obtient, pour cet exemple, les premières valeurs
suivantes :

u1 =
(u0 + 1)(9−u0)

4
= 1,19 u7 =

(u6 + 1)(9−u6)
4

= 5,86

u2 =
(u1 + 1)(9−u1)

4
= 4,27 u8 =

(u7 + 1)(9−u7)
4

= 5,39

u3 =
(u2 + 1)(9−u2)

4
= 6.23 u9 =

(u8 + 1)(9−u8)
4

= 5,77

u4 =
(u3 + 1)(9−u3)

4
= 5,01 u10 =

(u9 + 1)(9−u9)
4

= 5,47

u5 =
(u4 + 1)(9−u4)

4
= 6 u11 =

(u10 + 1)(9−u10)
4

= 5,71

u6 =
(u5 + 1)(9−u5)

4
= 5,25 u12 =

(u11 + 1)(9−u11)
4

= 5,52

2.2 Limite d’une suite

Les suites de nombres réels sont intéressantes si elles permettent de calculer des approximations des
nombres ; autrement dit, si elles s’« approchent » aussi près que l’on veut d’un nombre. Cette propriété
s’appelle en mathématique, la convergence.

Définition : Soit une suite (un)n∈N et L un nombre réel, on dit que

un a pour limite L si :

∀ε > 0, ∃N ∈N : pour n ≥N, |un −L| ≤ ε

Notation : lim
n→∞

un = L
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On dit aussi : un converge vers L

Le nombre |un − L| mesure la distance entre le terme un de la suite et le nombre réel L. Cette définition
signifie donc que si une suite converge, à partir d’un rang (le rang N ), tous les nombres de la suite se
trouve à une distance de la limite L, inférieure à n’importe quel nombre ε choisi.

En mathématique, cela s’exprime ainsi :

|un −L| ≤ ε ⇔ −ε ≤ un −L ≤ ε ⇔ L− ε ≤ un ≤ L+ ε

2.3 Unicité de la limite

Voici une propriété importante de la limite d’une suite.

Théorème : Si une suite (un)n∈N converge vers une limite L, cette limite est unique

En voici la démonstration. On raisonne par l’absurde : on suppose que la suite converge et qu’elle a deux
limites et, en utilisant la définition de la limite d’une suite, on aboutit à une contradiction, ce qui veut dire
que l’hypothèse faite — il y a deux limites différentes — est absurde.

– S’il y a 2 limites différentes L et L′ : |L−L′ | > 0

– pour 0 < ε <
|L−L′ |

2
∃N ∈N : si n ≥N, |un −L| ≤ ε et |un −L

′ | ≤ ε
– |L−L′ | = |L−un +un −L

′ | ≤ |L−un|+ |un −L
′ | ≤ 2ε < |L−L′ |

Ici, la contradiction obtenue est : |L−L′ | < |L−L′ |. Il n’est pas possible qu’un nombre soit strictement plus
petit que lui-même !

2.4 Suites bornées

Définitions

On dit qu’une suite (un)n∈N est

– majorée si : ∃M ∈R, ∀n ∈N : un ≤M
– minorée si : ∃m ∈R, ∀n ∈N : un ≥m
– bornée si : ∃C ∈R, ∀n ∈N : |un| ≤ C

Proposition : Une suite convergente est bornée

En effet :

– Pour ε = 1 ∃N : n ≥N, |un −L| ≤ 1 puisque la suite est convergente.
– |un| = |un −L+L| ≤ |un −L|+ |L| ≤ 1 + |L|
– Il n’y a qu’un nombre fini d’entiers inférieurs à N , l’ensemble {|u0|, |u1|, · · · |uN−1|} a donc un plus grand

élément : M = max
0≤i≤N−1

|ui |
– ∀n ∈N,

– soit : n < N et : |un| ≤M
– soit : n ≥N et : |un| ≤ 1 + |L|
dans tous les cas : |un| ≤max(M,1 + |L|), donc la suite est bornée.

2.5 Suites divergentes

Une suite qui ne converge pas est une suite divergente

Exemple : un = (−1)n

u0 = 1, un = −1, u2 = 1, u3 = −1, . . . , u2p = 1, u2p+1 = −1, . . .
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Montrons que cette suite n’a pas de limite : on raisonne par l’absurde en supposant qu’il y a une limite.

Supposons que lim
n→∞

un = L

– Pour ε =
1
2
, ∃N ∈N, ∀n ≥N : |un −L| ≤

1
2

– Pour n = 2p ≥N : 2 = |u2p −u2p+1| = |u2p −L+L−u2p+1| ≤ |u2p −L|+ |u2p+1 −L| ≤
1
2

+
1
2

= 1

Conséquence : une suite bornée n’est pas forcément convergente ! La proposition : « Toute suite convergente
est bornée » (voir page 3) n’a donc pas de réciproque

Autre exemple : un =
√
n+ 1

u0 =
√

1, u1 =
√

2, u2 =
√

3, u3 =
√

4, . . .

On va montrer que un peut dépasser n’importe quel nombre réel.

– Soit A ∈R, A ≥ 0
– Par la propriété d’Archimède (voir page 1) : ∃N ∈N : A2 − 1 ≤N
– Alors pour n ∈N, n ≥N : A ≤

√
n+ 1 = un

C’est une manière différente de diverger que pour la suite (−1)n : la suite
√
n+ 1 peut prendre des valeurs

arbitrairement grandes et n’atteint donc aucune valeur limite.

Définitions

On dit qu’une suite (un)n∈N tend vers +∞ si :

∀A ∈R, A ≥ 0, ∃N ∈N : ∀n ≥N, A ≤ un
Notation : lim

n→∞
un = +∞

On dit qu’une suite (un)n∈N tend vers −∞ si :

∀A ∈R, A ≤ 0, ∃N ∈N : ∀n ≥N, A ≥ un
Notation : lim

n→∞
un = −∞

Remarque : L’écriture lim
n→∞

un = ±∞ est une notation commode pour exprimer que les termes d’une suite

deviennent plus grands que n’importe quel nombre réel positif (+∞) ou plus petits que n’importe quel
nombre réel négatif (−∞). Il n’existe aucun nombre réel appelé +∞ ou −∞ avec lesquels on pourrait
faire des calculs !

2.6 Sommes et produits de suites

Il existe des opérations sur les nombres réels, les résultats suivants montrent que les limites des suites sont
compatibles avec ces opérations.

Théorème : Soit deux suites, un et vn, convergentes, de limites respectives L et L′.

1. ∀λ ∈R, lim
n→∞

(λun) = λL

2. lim
n→∞

(un + vn) = L+L′

3. lim
n→∞

(un.vn) = L.L′

4. Si L , 0, lim
n→∞

1
un

=
1
L
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On peut traduire ces résultats en disant que la limite de la somme de deux suites est la somme des limites,
que la limite du produit de deux suites est le produit des limites, etc.

La démonstration des résultats 1. et 2. ne posent aucun problème, il suffit d’appliquer la définition de la
limite d’une suite aux nouvelles suites (λ.un)n∈N et (un + vn)n∈N. C’est un très bon exercice que de faire
cette démonstration.

Le coin des curieux

Le résultat 3., la limite d’un produit est égal au produit des limites, est un peu plus difficile à démontrer,
on se sert de l’identité :

(I) un.vn −L.L
′ = (un −L).(vn −L

′) +L′ .(un −L) +L.(vn −L
′)

Comme les suites un et vn convergent respectivement vers L et L′, on peut écrire :

∀ε > 0, ∃N1 ∈N, ∀n ≥N1 |un −L| ≤
√
ε

∀ε > 0, ∃N2 ∈N, ∀n ≥N2 |vn −L| ≤
√
ε

L’identité (I) permet alors d’écrire :

|un.vn −L.L
′ | ≤ |un −L|.|vn −L

′ |+ |L′ |.|un −L|+ |L|.|vn −L
′ ≤ ε+ |L′ |.

√
ε+ |L|.

√
ε

Les nombres |L| et |L′ | étant des nombres réels fixes, la dernière inégalité montre que la distance de un.vn à
L.L′ peut être rendue aussi petite que l’on veut, dès que le rang N ≥max(N1, N2).
La suite (un.vn)n∈N converge donc vers L.L′.

Le résultat 4. peut se démontrer comme suit : puisque la suite un converge vers L , 0, on peut écrire :

1. ∃N1 ∈N : n ≥N1 ⇒ |un −L| <
|L|
2
. Donc : |un| >

|L|
2

2. ∀ε > 0 ∃N2 ∈N, N2 ≥N1 : n ≥N2 ⇒ |un −L| <
|L|2

2
· ε

D’où, pour n ≥N2 : ∣∣∣∣ 1
un
− 1
L

∣∣∣∣ =
∣∣∣∣un −Lun.L

∣∣∣∣ ≤ 2

|L|2
· |un −L| ≤ ε

Remarque : un point de cette démonstration prouve que si une suite (un)n∈N a une limite non-nulle, alors
à partir d’un certain rang tous les termes de la suites sont non-nuls. Lequel ?
Cette remarque justifie le fait que supposer que les termes de la suite sont non-nuls pour écrire : « Si

L , 0, lim
n→∞

1
un

=
1
L

» n’est pas nécessaire.

2.7 Comparaison de suites

On vient de voir que la notion de limite était compatible avec les opérations définies sur R, elle est égale-
ment compatible avec l’ordre défini sur les réels : si tous les termes d’une suite sont inférieurs à tous les
termes d’une autre suite et si ces suites convergent, les limites sont classées dans le même ordre. Ceci va
nous permettre de donner de nouveaux critères pour étudier la convergence des suites.

Proposition : Soit 2 suites, un et vn, telles que :
– ∀n ∈N, un ≤ vn
– un et vn convergent
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Alors : lim
n→∞

un ≤ lim
n→∞

vn

Démonstration. Par définition : un ≤ vn, ⇔ vn −un ≥ 0
Cela revient à montrer que si une suite a tous ses termes positifs, sa limite est positive. Démontrons le par
l’absurde en supposant qu’une suite un, avec un ≥ 0, converge vers une limite L < 0.

Si L < 0, alors −L > 0. Choisissons ε = −L
2
> 0 et écrivons que la suite converge vers L :

∃N ∈N : |un −L| ≤ ε = −L
2

On a alors, pour tout n ≥N :
L
2
≤ un −L ≤ −

L
2
, ⇒ un ≤

L
2
< 0

Ce qui est contraire à l’hypothèse : ∀n ∈N,un ≥ 0.

Conséquence : si un converge et si ∀n ∈N, un ≥ a, alors : lim
n→∞

un ≥ a

Remarque : même si ∀n ∈ N, un > a, on ne peut conclure que : lim
n→∞

un ≥ a comme le montre l’exemple

suivant : ∀n ∈N∗, un =
1
n
> 0, mais lim

n→∞
un = 0

Le théorème dit « des gendarmes »

Soit 3 suites, un, vn et wn.

– si ∀n ∈N, un ≤ vn ≤ wn
– si un et wn convergent
– si lim

n→∞
un = lim

n→∞
wn

Alors :

1. vn converge

2. lim
n→∞

vn = lim
n→∞

un = lim
n→∞

wn

Remarque : les trois hypothèses doivent être vérifiées à la fois ; si l’une d’entre elles manque, la conclusion
peut être fausse.

Exemple : un = −2− 1
n
, vn = (−1)n, wn = 2 +

1
n

– ∀n ∈N, un ≤ vn ≤ wn
– un et wn convergent : lim

n→∞
un = −2 lim

n→∞
wn = 2

– mais : vn ne converge pas !

Démonstration. Puisque les suites un et wn convergent vers la même limite L, on peut écrire : ∀ε > 0 :

1. ∃N1 ∈N : ∀n ≥N1, L− ε ≤ un ≤ L+ ε

2. ∃N2 ∈N : ∀n ≥N2, L− ε ≤ wn ≤ L+ ε

Donc : si n ≥max(N1, N2), on a les deux à la fois et, comme vn est encadré par un et wn, on a le classement :
L− ε ≤ un ≤ vn ≤ wn ≤ L+ ε

Ce qui veut dire que la limite de vn est L.
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Voici un exemple d’utilisation du théorème « des gendarmes »

Soit la suite définie par : ∀n ∈N∗, vn =
1
n

+
1

n+
√

1
+

1

n+
√

2
+ · · ·+ 1

n+
√
n

Nous allons montrer que cette suite converge en l’encadrant par deux suites dont les limites, égales, sont
faciles à trouver.

La difficulté de cette suite vient du fait que nous avons une somme de termes qui augmente avec n ; à la
limite, cette somme aura une infinité de termes... or nous ne savons calculer que des sommes qui ont un
nombre fini de termes !

v1 =
1
1

+
1

1 +
√

1

v2 =
1
2

+
1

2 +
√

1
+

1

2 +
√

2

v3 =
1
3

+
1

3 +
√

1
+

1

3 +
√

2
+

1

3 +
√

3

v4 =
1
4

+
1

4 +
√

1
+

1

4 +
√

2
+

1

4 +
√

3
+

1

4 +
√

4
etc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On peut, très facilement, encadrer les dénominateurs des fractions :
∀k : 0 ≤ k ≤ n, n ≤ n+

√
k ≤ n+

√
n

Tous ces nombres sont positifs, donc si on prend leurs inverses, on change le sens des inégalités :

∀k : 0 ≤ k ≤ n, 1
n+
√
n
≤ 1

≤ n+
√
k
≤ 1
n

On va maintenant écrire, ligne par ligne, tous ces encadrements pour k variant de 0 à n :

n+ 1 lignes



k = 0
1

n+
√
n
≤ 1

n
≤ 1

n

k = 1
1

n+
√
n
≤ 1

n+
√

1
≤ 1

n

k = 2
1

n+
√
n
≤ 1

n+
√

2
≤ 1

n

k = 3
1

n+
√
n
≤ 1

n+
√

3
≤ 1

n
· · · · · · · · · · · · · · · · · ·

k = n
1

n+
√
n
≤ 1

n+
√
n
≤ 1

n
Si on additionne toutes ces inégalités, on obtient :

n+ 1
n+
√
n
≤ vn ≤ n+ 1

n

Donc la suite vn est encadrée entre deux suites un et wn :

∀k : 0 ≤ k ≤ n, un =
n+ 1
n+
√
n
≤ vn ≤

n+ 1
n

= wn

En simplifiant par n les suites un et wn, on peut écrire :

un =
n+ 1
n+
√
n

=
1 + 1

n

1 + 1√
n

, donc : lim
n→∞

un = 1

wn =
n+ 1
n

= 1 +
1
n
, donc : lim

n→∞
wn = 1

Toutes les hypothèses du théorème « des gendarmes » sont alors satisfaites, on peut conclure que lim
n→∞

vn = 1
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2.8 Valeurs absolues

Proposition : Si lim
n→∞

un = L, lim
n→∞
|un| = |L|

La démonstration repose sur l’inégalité triangulaire : ∀a, b ∈R, on a :
∣∣∣ |a| − |b| ∣∣∣ ≤ |a± b| ≤ |a|+ |b|

On a supposé que la suite convergeait vers L, on peut donc écrire, par définition de la limite d’une suite et
en utilisant l’inégalité triangulaire :

∀ε > 0, ∃N : ∀n ≥N,
∣∣∣ |un| − |L| ∣∣∣ ≤ |un −L| ≤ ε

Ce qui veut dire que la suite |un| converge vers |L|.
Remarque : cette proposition n’admet pas de réciproque ; si la suite |un| converge, la suite un peut ne
pas converger, comme le montre l’exemple de la suite (−1)n dont la valeur absolue est constante, et donc
convergente, alors que la suite ne converge pas.

Cette proposition trouve son application dans le théorème suivant :

Théorème : Si (un)n∈N est une suite bornée et (vn)n∈N est une suite qui converge vers 0, alors lim
n→∞

un.vn = 0

1. ∃M ∈R, ∀n ∈N, |un| ≤M Puisque la suite un est bornée.

2. 0 ≤ |un.vn| ≤M.|vn| D’après 1.

3. Puisque lim
n→∞

vn = 0, lim
n→∞
|vn| = 0 et donc : lim

n→∞
|un.vn| = 0 Ce qui veut dire : lim

n→∞
un.vn = 0

2.9 Suites arithmétiques

Définition : Soit a et r deux nombres réels, la suite un = a + nr s’appelle une suite arithmétique de terme
initial a et de raison r.

Convergence d’une suite arithmétique

Proposition : Si r > 0, lim
n→∞

un = +∞
Si r < 0, lim

n→∞
un = −∞

Si r = 0, lim
n→∞

un = a

– Soit A ∈R, A > 0, par la propriété d’Archimède, ∃N ∈N : N >
A− a
r

– ∀n ∈N, n ≥N, un = a+nr ≥ A
un peut dépasser tout nombre réel positif, c’est la définition de lim

n→∞
un = +∞

La première proposition est donc établie.
La deuxième se déduit de la première en changeant r en −r et donc le sens des inégalités.
La troisième proposition, si r = 0, est évidente : dans ce cas, une suite arithmétique est constante.

Somme des termes d’une suite arithmétique

Proposition : Soit un = a+nr une suite arithmétique de terme initial a et de raison r. Alors :

S =
n∑
k=0

uk =
n∑
k=0

a+ kr =
(n+ 1)(2a+nr)

2

S = a + a+ r + a+ 2r + · · ·+a+ (n− 1)r+ a+nr
S = a+nr +a+ (n− 1)r+a+ (n− 2)r+ · · ·+ a+ r + a

En faisant la somme des deux lignes précédentes, on obtient :

2S=2a+nr+ 2a+nr + 2a+nr + · · ·+ 2a+nr +2a+nr
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Donc : 2S = (n+ 1)(2a+nr)

2.10 Suites géométriques

Définition : Soit a ∈R on appelle suite géométrique de raison a, la suite un définie par : un = an, ∀n ∈N

Convergence d’une suite géométrique

Théorème :

1. Si a > 1, lim
n→∞

an = +∞

2. Si |a| < 1, lim
n→∞

an = 0

3. Si a = 1, lim
n→∞

an = 1

4. Si a ≤ −1, an n’est pas convergente

Démonstration:
1. Si a > 1, a = 1 + h, h > 0

Donc, par la formule du binôme, on peut écrire :

an = (1 + h)n =
n∑
k=0

(
n
k

)
hk = 1 +n.h+

n∑
k=2

(
n
k

)
hk

︸    ︷︷    ︸
>0

≥ 1 +n.h −−−−−→
n→∞

+∞

2. Si a , 0,
1
|a|
> 1, lim

n→∞

( 1
|a|

)n
= lim
n→∞

1
|a|n

= +∞ d’après 1. Donc : lim
n→∞
|a|n = 0

Si a = 0, an = 0 : lim
n→∞

an = 0

3. La suite est constante, égale à 1

4. Si a < −1, |a| > 1, lim
n→∞
|a|n = +∞, d’après 1. La suite n’est pas bornée et ne peut donc converger.

Si a = −1, an = (−1)n diverge.

Somme des termes d’une suite géométrique

Proposition : Soit a ∈R. S =
n∑
k=0

ak =
1− an+1

1− a

S =1 + a + a2 + a3 + · · · + an

S.a = a + a2 + a3 + · · · + an + an+1

En faisant la différence des deux lignes précédentes, on obtient :

S − S.a=1 − an+1

D’où : S =
1− an+1

1− a
En particulier, si |a| < 1, on a : S =

1
1− a
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Application des suites géométrique : Suites un telles que :
∣∣∣un+1
un

∣∣∣ < α < 1

Proposition : Soit α ∈R, 0 < α < 1 et (un)n∈N une suite telle que : ∀n ∈N, un , 0, et
∣∣∣un+1
un

∣∣∣ < α
Alors : lim

n→∞
un = 0

Démonstration:

1.
∣∣∣un
u0

∣∣∣ =
∣∣∣u1
u0

∣∣∣∣∣∣u2
u1

∣∣∣∣∣∣u3
u2

∣∣∣ · · · ∣∣∣ un
un−1

∣∣∣ =
n∏
k=1

∣∣∣ uk
uk−1

∣∣∣ < αn
2. On en déduit : |un| < α

n|u0|
3. Puisque α < 1, lim

n→∞
αn = 0 Donc, d’après 2. lim

n→∞
un = 0

Application des suites géométrique : lim
n→∞

an

n!
= 0

Proposition : Pour tout réel a lim
n→∞

an

n!
= 0

Démonstration:
On suppose a , 0, sinon la proposition est évidente !

On va se ramener à l’exemple précédent.

– On calcule le rapport de deux termes consécutifs :
un+1
un

=
an+1

(n+ 1)!
n!
an

=
a

n+ 1
– Par la propriété d’Archimède : ∃N ∈N : N > 2|a|
– On majore la valeur absolue du rapport calculé en 1. ; on utilise pour cela, une propriété évidente des

fractions : quand on diminue le dénominateur d’une fraction sa valeur augmente.

Pour n ≥N,
∣∣∣un+1
un

∣∣∣ =
|a|
n+ 1

≤ |a|
N + 1

≤ |a|
N
<

1
2

– On calcule maintenant le rapport entre le terme de rang n et le terme de rang N ≤ n et on utilise la
majoration du rapport de deux termes consécutifs trouvée en 3.∣∣∣ un
uN

∣∣∣ =
∣∣∣uN+1
uN

∣∣∣∣∣∣uN+2
uN+1

∣∣∣ · · · ∣∣∣ un
un−1

∣∣∣ =
k=n∏

k=N+1

∣∣∣ uk
uk−1

∣∣∣ < (1
2

)n−N
=

(1
2

)n
.2N

– Finalement : |un| <
(1
2

)n
.2N .|uN |

– Comme lim
n→∞

(1
2

)n
= 0 (voir la proposition sur les suites géométriques) : lim

n→∞
un = 0 puisque |uN | est un

nombre fixe.

2.11 Suites monotones

Certaines propriétés des suites permettent de trouver des critères de convergence ; c’est le cas pour les
suites dont la valeur des termes augmente — suites croissante — ou diminue —suites décroissantes — : les
suites monotones.

Définition : On dit qu’une suite (un)n∈N est :
– croissante si : ∀n ∈N, un+1 ≥ un
– décroissante si : ∀n ∈N, un+1 ≤ un
Pour étudier la croissance (ou la décroissance) d’une suite, on calcule un+1 − un et on étudie le signe de la
différence.

Exemple : Soit la suite (un)n∈N où un = ln(n+ 1)− ln(n)
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un+1 −un =
(
ln(n+ 2)− ln(n+ 1)

)
−
(
ln(n+ 1)− ln(n)

)
= ln

(n+ 2
n+ 1

)
+ ln

( n
n+ 1

)
= ln

(n(n+ 2)

(n+ 1)2

)
n(n+ 2)

(n+ 1)2 < 1 donc un+1 −un = ln
(n(n+ 2)

(n+ 1)2

)
< 0 un est décroissante.

Autre possibilité : Si ∀n ∈N, un > 0, pour étudier la croissance de un, on peut calculer :
un+1
un

– si
un+1
un
≥ 1, la suite est croissante

– si
un+1
un
≤ 1, la suite est décroissante

Exemple : Soit la suite (un)n∈N où un = ne−
1
n!

un+1
un

=
(n+ 1)e−

1
(n+1)!

ne−
1
n!

=
n+ 1
n

e
1
n!−

1
(n+1)!

=
n+ 1
n

e
n

(n+1)! > 1

La suite un est donc croissante.

Théorème : Une suite croissante et majorée converge.
Une suite décroissante et minorée converge.

Démonstration:
Montrons, par exemple, qu’une suite croissante et majorée converge.

Soit (un)n∈N une suite croissante et A = {un | n ∈N}
1. A , ∅ puisque la suite existe !

2. La suite est majorée, donc A est majorée ; A ⊂R donc A admet une borne supérieure L.

RAPPEL : Les nombres réels, bornes
3. Par définition de la borne supérieure, on a : ∀ε > 0, ∃N ∈N : L− ε < uN ≤ L
4. La suite est croissante, on a donc le classement suivant :

∀n ∈N, n ≥N : L− ε < uN ≤ un ≤ L ≤ L+ ε C’est-à-dire : pour n ≥N : |un −L| ≤ ε
La suite un a donc pour limite L.

Exercice : Imiter la démonstration ci-dessus pour montrer la deuxième assertion du théorème : toute suite
décroissante et minirée converge.

Exemple : Étudier la suite : un =
n∑
k=1

1

k2 = 1+
1

22 +
1

32 + · · ·+ 1

n2 . On montrera qu’elle est croissante et majorée

et on concluera qu’elle converge.
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Voici les premiers termes de cette suite :
u1 = 1

u2 = 1 +
1

22

u3 = 1 +
1

22 +
1

32

u4 = 1 +
1

22 +
1

32 +
1

42

u5 = 1 +
1

22 +
1

32 +
1

42 +
1

52

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On notera que le nombre de termes de la somme augmente de un à chaque nouvelle valeur de n.

Montrons que la suite est croissante :

un+1 −un =
n+1∑
k=1

1

k2 −
n∑
k=1

1

k2 =
1

(n+ 1)2 > 0 un est donc croissante.

Montrons que cette suite est majorée ; pour cela on va d’abord montrer que : ∀n ∈N, un ≤ 2− 1
n

Attention : Ceci n’est pas une majoration de la suite ! Majorer un ensemble de nombres — les termes de
la suite —, veut dire trouver un nombre fixe supérieur à tous les nombres de l’ensemble et ici le nombre

2− 1
n

change avec n, ce n’est pas le même pour tous les termes de la suite.

On va utiliser un raisonnement par récurrence.

1. vrai pour n = 1 : u1 = 1 ≤ 2− 1
1

2. supposons que pour 1 ≤ k ≤ n un ≤ 2− 1
n

(hypothèse de récurrence)

3. un+1 = un +
1

(n+ 1)2 et, en appliquant l’hypothèse de récurrence : un+1 ≤ 2− 1
n

+
1

(n+ 1)2

4. Or on a :
1

(n+ 1)2 =
1

(n+ 1)(n+ 1)
≤ 1
n(n+ 1)

=
1
n
− 1
n+ 1

5. On en déduit : un+1 ≤ 2− 1
n+ 1

L’hypothèse de récurrence est encore vérifiée au rang n+ 1, elle est

donc vraie pour tout entier n.

Maintenant, puisque pour tout n, on a : un ≤ 2 − 1
n

, comme
1
n

est positif, on a : un ≤ 2 − 1
n
≤ 2. La suite

est donc majorée par 2 ; comme on a montré qu’elle est croissante, le théorème « toute suite croissante et
majorée converge » permet de conclure que cette suite est convergente.

Remarque : on ne cherchera pas à calculer la limite de cette suite ! On sait seulement qu’elle existe.

2.12 Suites adjacentes

Théorème et définition : Soit deux suites (un)n∈N et (vn)n∈N telles que :

1. un est croissante et vn est décroissante

2. ∀n ∈N, un ≤ vn
3. lim

n→∞
(un − vn) = 0
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Alors :

1. les deux suites un et vn convergent
2. lim

n→N

un = lim
n→N

vn

Deux suites qui vérifient ces hypothèses sont dites adjacentes

Démonstration:
– On a le classement :

u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v2 ≤ v1 ≤ v0

– un est majorée par v0, comme elle est croissante, elle converge vers L
– vn est minorée par u0, comme elle est décroissante, elle converge vers L′

– On peut alors écrire :

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ L ≤ L
′ ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0

Comme lim
n→∞

(vn −un) = 0, ∀ε > 0 ∃N ∈N : ∀n ≥N : |L−L′ | ≤ |vn −un| ≤ ε

On conclut alors : L = L′

Exemple : Montrer que les suites un =
n∑
k=0

1
k!
, vn = un +

1
n!n

sont adjacentes.

– ∀n ∈N, un+1 −un =
1

(n+ 1)!
≥ 0 un est donc croissante

– ∀n ∈N

vn+1 − vn = (un+1 −un) +
1

(n+ 1)!(n+ 1)
− 1
n!n

=
1

(n+ 1)!
+

1
(n+ 1)!(n+ 1)

− 1
n!n

= − 1
n(n+ 1)!(n+ 1)

≤ 0

vn est décroissante

– vn −un =
1
n!n
≥ 0 donc : vn ≥ un et vn −un −−−−−→n→∞

0

Ces deux suites sont donc adjacentes, elles sont donc convergentes et ont même limite. Ici non plus on ne
cherchera pas à calculer la limite.

2.13 Suites extraites

Définition : Soit ϕ : N 7−→N une application strictement croissante.
On appelle suite extraite de la suite (un)n∈N une suite (vn)n∈N telle que : vn = uϕ(n)

Commentaire : dire que l’application ϕ est strictement croissante, signifie que si n > m, alors ϕ(n) > ϕ(n).
Donc pour construire une suite extraite d’une suite donnée, on choisit certains termes de la suite — ceux
de rang ϕ(n) — sans jamais revenir en arrière.

Exemples : Étant donnée une suite (un)n∈N, on peut extraire de celle-ci :
– La suite des termes de rang pair : vn = u2n (ϕ(n) = 2n)
– La suite des termes de rang impair : wn = u2n+1 (ϕ(n) = 2n+ 1)
– La suite des termes de rang multiple de 3 : an = u3n (ϕ(n) = 3n)
On peut, bien sûr, imaginer des situations plus compliquées. . .

Proposition : Soit(un)n∈N une suite convergente vers L.
Toute suite vn extraite de la suite (un)n∈N converge vers la même limite L.
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Le coin des curieux

Démonstration:
On va d’abord montrer par récurrence que si ϕ : N 7−→ N est une application strictement croissante,
alors : ∀n ∈N ϕ(n) ≥ n

1. C’est évidemment vrai pour 0 : l’application étant strictement croissante et 0 étant le plus petit
entier naturel on a ϕ(0) ≥ 0

2. Hypothèse de récurrence : ∀k, 0 ≤ k ≤ n ϕ(k) ≥ k
3. Montrons que ϕ(n+ 1) ≥ n+ 1 : Puisque n+ 1 > n et que ϕ est strictement croissante :
ϕ(n+ 1) > ϕ(n) ≥ n (la dernière inégalité étant l’hypothèse de récurrence)

4. On en déduit que ϕ(n+ 1) ≥ n+ 1

Maintenant, la suite un est convergente de limite L, on peut donc écrire :

∀ε > 0∃N ∈N tel que : ∀n ≥N |un −L| ≤ ε

Si n ≥N on a : ϕ(n) ≥ n ≥N , on en conclut que : |uϕ(n) −L| ≤ ε.

La suite extraite uϕ(n) converge donc vers L.

La réciproque de cette proposition est fausse : des suites extraites d’une suite peuvent converger sans que
la suite converge comme le montre l’exemple de la suite un = (−1)n :
– On a : ∀n ∈ N u2n = 1 La suite extraite formée des termes de rang pair est constante et donc conver-

gente.
– On a : ∀n ∈ N u2n+1 = −1 La suite extraite formée des termes de rang impair est constante et donc

convergente.
Mais la suite un ne converge pas.

Cependant on a la proposition suivante :

Proposition : Soit un une suite ; on pose vn = u2n et wn = u2n+1.

lim
n→∞

un = L ⇔ lim
n→∞

vn = lim
n→∞

wn = L

Démonstration:
On vient de voir, dans la proposition précédente, que : lim

n→∞
un = L ⇒ lim

n→∞
vn = lim

n→∞
wn = L

Pour établir l’équivalence, il faut montrer l’implication inverse.

On suppose donc que vn et wn convergent vers la même limite L. On peut écrire :

∀ε,∃N : ∀n ≥N, |vn −L| ≤ ε, et |wn −L| ≤ ε
Soit n > 2N :
– Si n est pair, n = 2p alors p > N donc : |un −L| = |u2p −L| = |vp −L| ≤ ε
– Si n est impair, n = 2p+ 1 alors on a aussi p > N , donc : |un −L| ≤ ε
Un entier étant soit pair, soit impair, on a écrit que la suite un convergeait vers L.

Exercices :

1. Soit un une suite et xn = u2n, yn = u2n+1, zn = u3n 3 suites extraites de un. Montrer que si ces 3 suites
sont convergentes, alors un est convergente. (Indication : réfléchir sur la parité des multiples de 3)

2. Soit un une suite telle que pour k ∈N les suites extraites ukn soient convergentes. Peut-on dire que un
est convergente ? (Indication : pensez qu’il existe des nombres premiers...)

2 SUITES 14 1er octobre 2012



Mathématiques et Calcul 1 – 2012-2013

2.14 Suites récurrentes

On appelle suites récurrentes, des suites dont les termes sont définis en fonction d’un, ou de plusieurs,
termes précédents ; pour pouvoir commencer le processus, il faut alors donner le premier terme, si les
termes sont définis chacun en fonction du précédent, ou les premiers termes, si plusieurs termes précédents
entrent dans la définition du terme générique.

Plus précisement :

Définition : Soit I un intervalle de R et f une fonction définie sur I :

f : I 7−→R

Une suite récurrente est définie

1. par son terme initial : u0

2. et par son terme général : un+1 = f (un), défini en fonction du précédent.

Exemples :

Suite arithmétique. Une suite arithmétique, de terme initial a et de raison r, peut être définie par :

1. u0 = a

2. un+1 = un + r

La fonction f : R 7−→R associée est alors : f (x) = x+ r

Il s’agit bien de la suite arithmétique définie précédemment :

Proposition : un = a+nr

Démonstration:
La démonstration se fait par récurrence, outil privilégié de ce type de suite !

1. Pour n = 1, u1 = u0 + r = a+ r C’est donc vrai pour n = 1

2. Hypothèse de récurrence : supposons que pour 1 ≤ k ≤ n, uk = a+ kr

3. Calculons un+1 = un + r = (a+nr) + r = a+ (n+ 1)r

On retrouve bien la définition de la suite arithmétique.

Suite géométrique. Une suite géométrique, de terme initial a et de raison q, est définie par :

1. u0 = a

2. un+1 = un.q

La fonction f : R 7−→R associée est alors : f (x) = x.q

Proposition : un = a.qn

Démonstration:
1. Pour n = 1, u1 = u0.q = a.q C’est donc vrai pour le premier terme.

2. Hypothèse de récurrence : supposons que pour 1 ≤ k ≤ n, uk = a.qk

3. Calculons un+1 = un.q = (a.qn).q = a.qn+1
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Contruction géométrique d’une suite récurrente.

x

y

v0 = −0, 5 v15 = 5, 65

un+1 =
(un+1)(9−un)

4

Certaines propriétés de la fonction f qui sert à la définition des termes de la suite, permettent de simplifier
l’étude d’une suite récurrente.

Définition : Soit f : R 7−→R. On dit que f est croissante si :
∀x, x′ ∈R, x ≥ x′ : f (x) ≥ f (x′)

Proposition : Soit une un une suite récurrente définie par :

u0 et un+1 = f (un), avec f croissante.
Alors :

1. Si u1 ≥ u0, alors la suite un est croissante
2. Si u1 ≤ u0, alors la suite un est décroissante
3. Si u1 = u0, alors la suite un est constante

Remarque : On fera bien attention, si on veut utiliser cette proposition, à montrer que la fonction f , qui
définit la suite, est croissante et ne pas se contenter de comparer les deux premiers nombres d’un ensemble
qui en compte une infinité pour conclure que tous les nombres sont classés comme les deux premiers !

Démonstration:
La démonstration se fait par récurrence. Démontrons la première assertion en supposant que f est crois-
sante et que u1 ≥ u0.

1. La proposition est vraie pour n = 1
2. Supposons que pour 0 ≤ k ≤ n, uk ≥ uk−1 (hypothèse de récurrence)
3. La fonction f est croissante, donc : un ≥ un−1 ⇒ un+1 = f (un) ≥ f (un−1) = un

Théorème : Soit f : I 7−→R une fonction et un une suite définie par récurrence par : u0, et un+1 = f (un)
Alors :

1. Si un est convergente vers L ∈ I
2. Si f est continue
L vérifie : f (L) = L

La démonstration de ce théorème sera donnée dans le chapitre sur les fonctions.
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