

Total Variation Restoration of Images Corrupted by Poisson Noise with Iterated Conditional Expectations

Rémy Abergel, Cécile Louchet, Lionel Moisan, Tieyong Zeng

The TV-ICE model

The Poisson TV-ICE algorithm

OBSERVATION MODEL

Let $u : \Omega \to \mathbb{R}_+$ denote an (unobserved) intensity image defined on a discrete domain Ω , and v a random photon-count observation of the ideal image u, following the **Poisson probability density function**

$$p(v|u) = \prod_{x \in \Omega} \frac{u(x)^{v(x)}}{v(x)!} e^{-u(x)} \propto e^{-\langle u - v \log u, \mathbb{1}_{\Omega} \rangle} ,$$

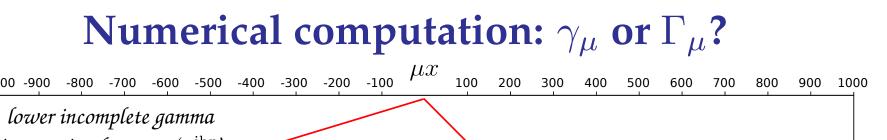
where $\mathbb{1}_{\Omega}$ denotes the constant image equal to 1 on Ω and $\langle \cdot, \cdot \rangle$ is the usual inner product on \mathbb{R}^{Ω} .

The practical computation of the TV-ICE recursion raises several **numerical issues**:

- 1. For some values of the parameters, the numerator and the denominator in (1) **cannot be represented by the machine arithmetic** although the **actual value of the ratio is representable**. To solve that issue we represent each integral $I_{x,y}^{\mu,p}$ under the form $\rho \times e^{\sigma}$.
- 2. An integral $I_{x,y}^{\mu,p}$ can be computed as the difference between generalized lower (γ_{μ}) or/and upper (Γ_{μ}) incomplete gamma functions:

Generalized incomplete gamma functions

 $\gamma_{\mu}(p,x) = \int_0^x s^{p-1} e^{-\mu s} ds \quad (\forall \mu)$ $\Gamma_{\mu}(p,x) = \int_x^{+\infty} s^{p-1} e^{-\mu s} ds \quad (\mu > 0)$



MAXIMUM A POSTERIORI (MAP)

The equivalent of the Rudin-Osher-Fatemi (ROF) model [1] in the case of a Poisson noise model corresponds to the unique minimizer of the convex energy $E(u) = \langle u - v \log u, \mathbb{1}_{\Omega} \rangle + \lambda \operatorname{TV}(u)$ which is usually reinterpreted from a Bayesian point of view as the unique **maximizer of the posterior density**

 $\pi(u) = p(u|v) \propto p(v|u)p(u)$

taking $p(u) \propto e^{-\lambda \operatorname{TV}(u)}$. The main drawback of this approach is that the restored image generally suffers from the **staircasing effect** due to the non-differentiability of the Total Variation (TV) term.

LEAST SQUARE ERROR (TV-LSE)

In the case of Gaussian noise, this undesirable staircasing effect can be avoided by considering the **posterior mean** instead of the maximizer of p(u|v), that is,

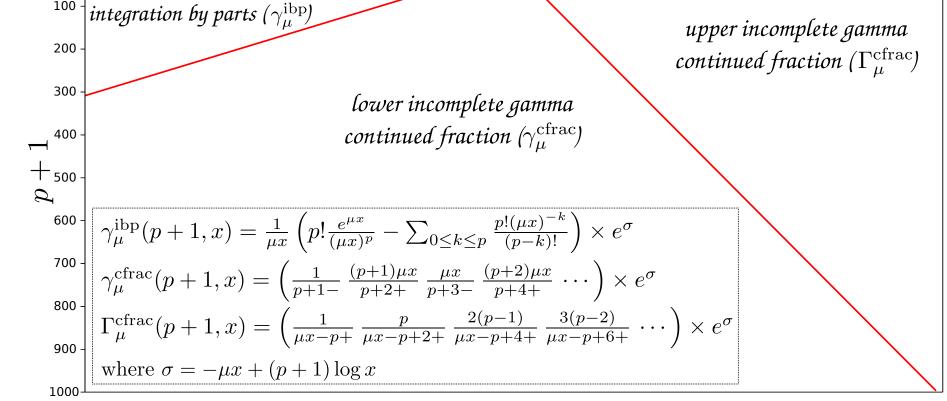
$$\widehat{u}_{\text{LSE}} = \mathbb{E}_{u \sim \pi}(u) = \int_{\mathbb{R}^{\Omega}} u \,\pi(u) \, du \;,$$

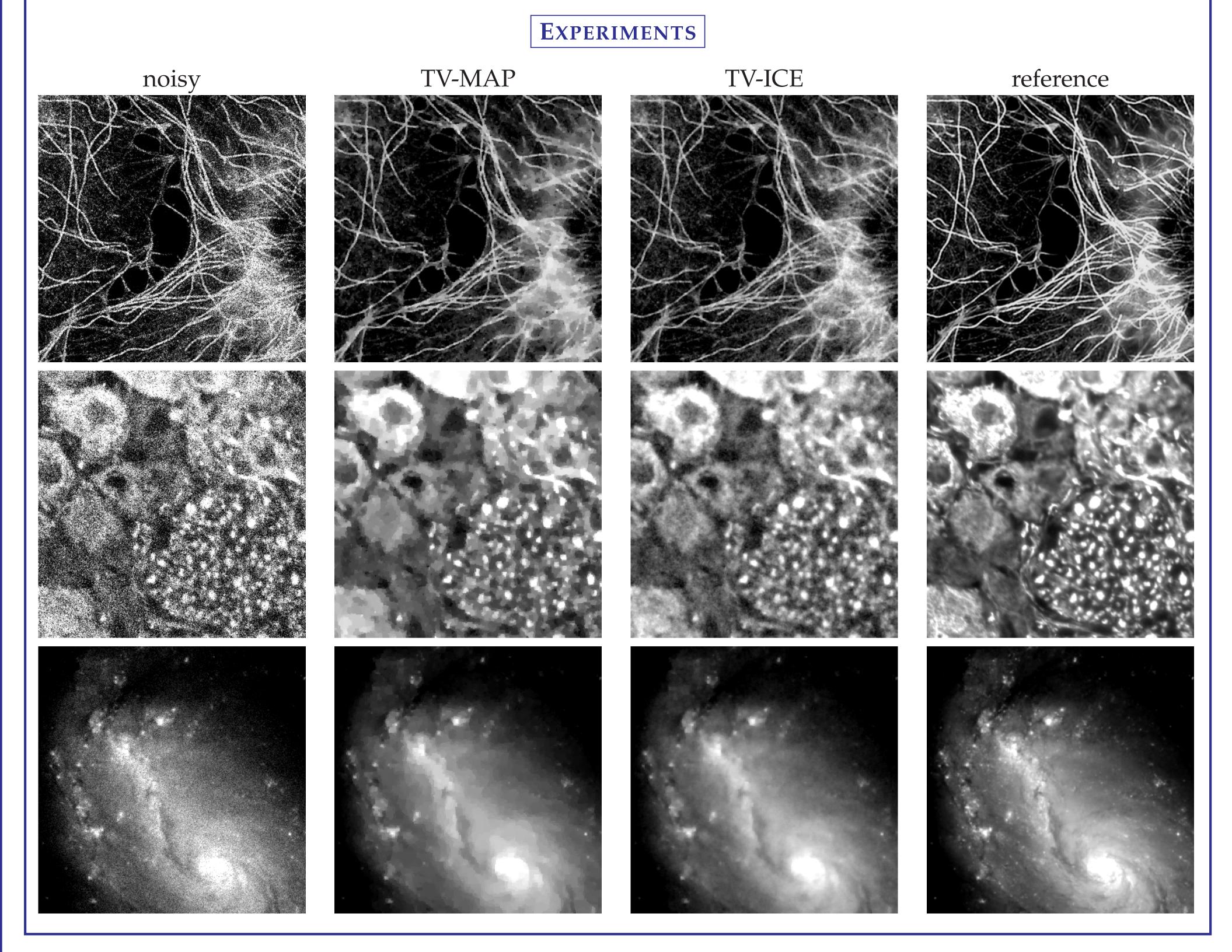
•
$$I_{x,y}^{\mu,p} = \gamma_{\mu}(p+1,y) - \gamma_{\mu}(p+1,x),$$

•
$$I_{x,y}^{\mu,p} = \Gamma_{\mu}(p+1,x) - \Gamma_{\mu}(p+1,y),$$

•
$$I_{x,y}^{\mu,p} = \frac{p!}{\mu^{p+1}} - \gamma_{\mu}(p+1,x) - \Gamma_{\mu}(p+1,y).$$

We derived a partition of the plane $(\mu x, p)$ that allows an **efficient computation** of γ_{μ} or Γ_{μ} .





NUMERICAL COMPUTATION OF THE POISSON TV-ICE

which is the image that **reaches the Least Square Error** under π (see [2]). As in the Gaussian case, the numerical computation of \hat{u}_{LSE} could be done using a Markov Chain Monte Carlo Metropolis-Hasting algorithm, but would exhibit a **slow convergence rate**.

ITERATED CONDITIONAL MEANS (TV-ICE)

To overcome this computational limitation, in [3] a new variant was proposed based on the iteration of **conditional marginal posterior means** (in the case of a Gaussian noise). The \hat{u}_{ICE} estimate is defined as the limit of the iterative scheme

$$\forall x \in \Omega, \ u^{n+1}(x) = \mathbb{E}_{u \sim \pi} \left(u(x) \middle| u(x^c) = u^n(x^c) \right) ,$$

noting $x^c = \Omega \setminus \{x\}$. Like in the Gaussian case, the iterates are relatively **easy to compute** as they only involve the computation of integrals over \mathbb{R} .

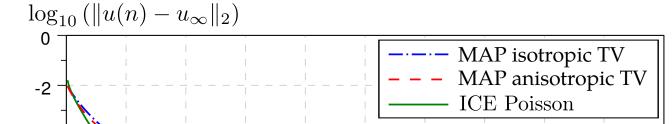
In order to obtain explicit formulae we need to consider the **anisotropic** version of the discrete total variation

 $TV(u) = \frac{1}{2} \sum_{x \in \Omega} \sum_{y \in \mathcal{N}_x} |u(x) - u(y)| ,$

Mathematical properties

Theorem 1 (linear convergence). Given an image $v \in \mathbb{R}^{\Omega}$, the sequence of images $(u^n)_{n\geq 0}$ defined by $u^0 = 0$ and the TV-ICE recursion **converges linearly** to an image \hat{u}_{ICE} .

Convergence rate



where \mathcal{N}_x represents the 4-neighborhood of the pixel x. Noting $a = (a_1, a_2, a_3, a_4)$ the values of $u^n(\mathcal{N}_x)$ sorted in nondecreasing order (set $a_0 = 0 \le a_1 \le a_2 \le a_3 \le a_4 \le a_5 = +\infty$). We obtain

 $u^{n+1}(x) = \frac{\sum_{1 \le k \le 5} c_k I^{\mu_k, v(x)+1}_{a_{k-1}, a_k}}{\sum_{1 \le k \le 5} c_k I^{\mu_k, v(x)}_{a_{k-1}, a_k}},$

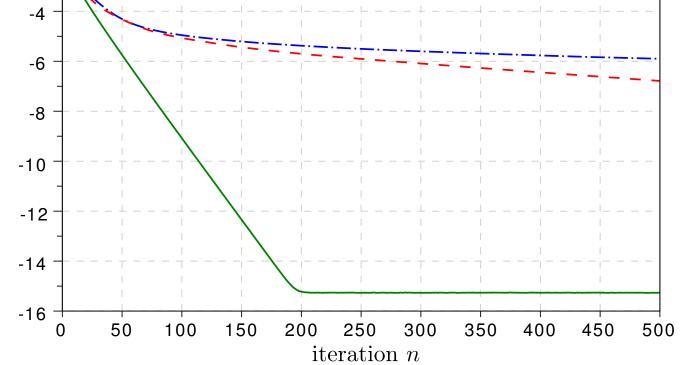
where c_k , μ_k are simples constants that explicitly depend on k, a and λ , while $I_{x,y}^{\mu,p}$ denotes the integral

$$I_{x,y}^{\mu,p} = \int_x^y s^p e^{-\mu s} ds \;,$$

whose numerical evaluation is closely related to that of lower and upper **incomplete gamma functions**.

Theorem 2 (no staircasing). Let $v : \Omega \to \mathbb{N}$ be a noisy image, and \widehat{u}_{ICE} its denoised version. Let x and y be two pixels of Ω , then if \widehat{u}_{ICE} is constant over $\mathcal{N}_x \cup \mathcal{N}_y \cup \{x, y\}$, necessarily v(x) = v(y).

More intuitively, Theorem 2 proves that Poisson **TV-ICE cannot produce large constant regions** that were not at least partially present in the initial data.



Main perspective: use the Poisson TV-ICE model in more complex inverse problems involving TV terms.

Main references

(1)

1] Rudin, L. I., Osher, S., Fatemi, E.: "Nonlinear total variation based noise removal algorithms". (1992)

[2] Louchet, C., Moisan, L.: "Posterior Expectation of the Total Variation model: Properties and Experiments". SIAM J. Imaging Sci. (2013)

[3] Louchet, C., Moisan, L.: "Total Variation Denoising Using Iterated Conditional Expectation". Proc. European Signal Processing Conf. (2014)

[4] Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W.: "NIST Handbook of Mathematical Functions". Cambridge University Press, N-Y. (2010)