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The TV-ICE model

OBSERVATION MODEL

Let u : Ω→ R+ denote an (unobserved) intensity
image defined on a discrete domain Ω, and v a ran-
dom photon-count observation of the ideal image u,
following the Poisson probability density function

p(v|u) =
∏
x∈Ω

u(x)v(x)

v(x)!
e−u(x) ∝ e−〈u−v log u,1Ω〉 ,

where 1Ω denotes the constant image equal to 1 on
Ω and 〈·, ·〉 is the usual inner product on RΩ.

MAXIMUM A POSTERIORI (MAP)

The equivalent of the Rudin-Osher-Fatemi (ROF)
model [1] in the case of a Poisson noise model cor-
responds to the unique minimizer of the convex en-
ergyE(u) = 〈u−v log u,1Ω〉+λTV(u) which is usu-
ally reinterpreted from a Bayesian point of view as
the unique maximizer of the posterior density

π(u) = p(u|v) ∝ p(v|u)p(u)

taking p(u) ∝ e−λTV(u). The main drawback of
this approach is that the restored image generally
suffers from the staircasing effect due to the non-
differentiability of the Total Variation (TV) term.

LEAST SQUARE ERROR (TV-LSE)

In the case of Gaussian noise, this undesirable
staircasing effect can be avoided by considering the
posterior mean instead of the maximizer of p(u|v),
that is,

ûLSE = Eu∼π(u) =

∫
RΩ

uπ(u) du ,

which is the image that reaches the Least Square Er-
ror under π (see [2]). As in the Gaussian case, the
numerical computation of ûLSE could be done using
a Markov Chain Monte Carlo Metropolis-Hasting al-
gorithm, but would exhibit a slow convergence rate.

ITERATED CONDITIONAL MEANS (TV-ICE)

To overcome this computational limitation, in [3]
a new variant was proposed based on the iteration of
conditional marginal posterior means (in the case
of a Gaussian noise). The ûICE estimate is defined as
the limit of the iterative scheme

∀x ∈ Ω, un+1(x) = Eu∼π
(
u(x)

∣∣u(xc) = un(xc)
)
,

noting xc = Ω \ {x}. Like in the Gaussian case, the
iterates are relatively easy to compute as they only
involve the computation of integrals over R.

In order to obtain explicit formulae we need to
consider the anisotropic version of the discrete total
variation

TV(u) =
1

2

∑
x∈Ω

∑
y∈Nx

|u(x)− u(y)| ,

whereNx represents the 4-neighborhood of the pixel
x. Noting a = (a1, a2, a3, a4) the values of un(Nx)
sorted in nondecreasing order (set a0 = 0 ≤ a1 ≤
a2 ≤ a3 ≤ a4 ≤ a5 = +∞). We obtain

un+1(x) =

∑
1≤k≤5 ck I

µk,v(x)+1
ak−1,ak∑

1≤k≤5 ck I
µk,v(x)
ak−1,ak

, (1)

where ck, µk are simples constants that explicitly de-
pend on k, a and λ, while Iµ,px,y denotes the integral

Iµ,px,y =

∫ y

x

spe−µsds ,

whose numerical evaluation is closely related to that
of lower and upper incomplete gamma functions.

The Poisson TV-ICE algorithm

NUMERICAL COMPUTATION OF THE POISSON TV-ICE

The practical computation of the TV-ICE recur-
sion raises several numerical issues:

1. For some values of the parameters, the numer-
ator and the denominator in (1) cannot be rep-
resented by the machine arithmetic although
the actual value of the ratio is representable.
To solve that issue we represent each integral
Iµ,px,y under the form ρ× eσ .

2. An integral Iµ,px,y can be computed as the dif-
ference between generalized lower (γµ) or/and
upper (Γµ) incomplete gamma functions:

• Iµ,px,y = γµ(p+ 1, y)− γµ(p+ 1, x),
• Iµ,px,y = Γµ(p+ 1, x)− Γµ(p+ 1, y),

• Iµ,px,y = p!
µp+1 − γµ(p+ 1, x)− Γµ(p+ 1, y).

We derived a partition of the plane (µx, p) that
allows an efficient computation of γµ or Γµ.

Generalized incomplete gamma functions

γµ(p, x) =
∫ x

0
sp−1e−µsds (∀µ)

Γµ(p, x) =
∫ +∞
x

sp−1e−µsds (µ > 0)

Numerical computation: γµ or Γµ?
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EXPERIMENTS
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Mathematical properties
Theorem 1 (linear convergence). Given an image v ∈ RΩ, the
sequence of images (un)n≥0 defined by u0 = 0 and the TV-ICE
recursion converges linearly to an image ûICE.

Theorem 2 (no staircasing). Let v : Ω → N be a noisy image, and
ûICE its denoised version. Let x and y be two pixels of Ω, then if
ûICE is constant over Nx ∪Ny ∪ {x, y}, necessarily v(x) = v(y).

More intuitively, Theorem 2 proves that Poisson TV-ICE can-
not produce large constant regions that were not at least partially
present in the initial data.

Convergence rate
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Main perspective: use the Poisson TV-ICE model in more complex inverse problems involving TV terms.
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