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Abstract: The Adaptive Ridge Algorithm is an iterative algorithm designed for vari-
able selection. It is also known under the denomination of Iteratively Reweighted Least-
Squares Algorithm in the communities of Compressed Sensing and Sparse Signals Re-
covery. Besides, it can also be interpreted as an optimization algorithm dedicated to the
minimization of possibly nonconvex `q penalized energies (with 0 < q < 2). In the litera-
ture, this algorithm can be derived using various mathematical approaches, namely Half
Quadratic Minimization, Majorization-Minimization, Alternating Minimization or Local
Approximations. In this work, we will show how the Adaptive Ridge Algorithm can be
simply derived and analyzed from a single equation, corresponding to a variational refor-
mulation of the `q penalty. We will describe in detail how the Adaptive Ridge Algorithm
can be numerically implemented and we will perform a thorough experimental study
of its parameters. We will also show how the variational formulation of the `q penalty
combined with modern duality principles can be used to design an interesting variant of
the Adaptive Ridge Algorithm dedicated to the minimization of quadratic functions over
(nonconvex) `q balls.
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1. Introduction

In statistical applications, variable selection is often a desirable goal. It allows
to identify relevant predictors and at the same time may enhance the prediction
performance of the model. There is a large literature on this topic that can
be roughly separated in two main approaches: stepwise selection and penalized
models. The first one encompasses the best subset selection method and the
forward-backward stepwise selection methods. They either explore exhaustively
all possible subsets (defined by all possible combinations of covariates) or find a
good path through these subsets by sequentially adding or removing variables
into the model. A criterion that can be based on a statistical test or on criterions
such as AIC or BIC is used at each step to compare the models among them-
selves (see [26] for a review on these methods). On the other hand, penalized
models estimate the regression coefficients by constraining their size. They were
popularized with the ridge estimator [27], the LASSO estimator [46] and its ex-
tensions such as the adaptive lasso [54] or the elastic-net [55]. In this paper, we
provide a review on one of these methods, the adaptive-ridge proposed in [20],
which is an iterative weighted penalized algorithm. In the following, we start by
rewriting the variable selection problem as a `0 penalized criterion. The aim of
this work is to make the connection between the adaptive-ridge algorithm and
this variable selection problem.

Given a positive integer p, a data-fidelity (usually a log-likelihood or a least-
squares criterion) function C : Rp → R ∪ {+∞} such as dom(C) := {β ∈
Rp , C(β) < +∞} 6= ∅, and a regularity (or penalty) parameter λ > 0, most
variable selection models boil down to computing

β ∈ argmin
β∈Rp

(Eλ(β) := C(β) + λL0(β)) (1)

where L0(β) denotes the number of non-zero entries of β, that is, L0(β) :=
#{j ∈ {1, 2, . . . , p}, βj 6= 0}, denoting by # the cardinality. Notice that the
argmin in (1) can be restricted to dom(C) without changing the set of its
minimizers. Allowing C to take the value +∞ over Rp is a simple and com-
mon way in optimization to integrate constraints (for instance nonnegativity)
in the optimization problem (1). In the general case, the nonconvexity and the
nonsmoothness of the L0 penalty make the optimization problem (1) difficult
to handle [35, 44]. A common alternative to (1) consists in replacing the L0

penalty by smoother approximations [5, 40, 17, 19, 54, 44]. For instance, given
q > 0, one can consider the `q approximation of the L0 penalty (see e.g. [19]
and Fig. 1 (a)),

L0(β) ≈ ‖β‖qq :=

p∑
j=1

|βj |q , (2)
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(a) `q penalty (b) square-log penalty

Fig 1. Smooth approximations of the L0-penalty. We display the graphs of several ap-
proximations of the L0 penalty in the monodimensional setting. The graph of the `q penalty,
that is the function β 7→ |β|q, is displayed in (a) for several positive values of q. The graph
of the log-square penalty, that is the function β 7→ log

(
1 + (β/δ)2

)
/ log

(
1 + δ−2

)
, is dis-

played in (b) for several positive values of δ. The L0 penalty (not represented here) satisfies
L0(0) = 0 and L0(β) = 1 for any β 6= 0 and is therefore discontinuous at 0. Both the `q and
the log-square penalties are continuous over R and can be viewed as smooth approxmimations
of the L0 penalty that get more accurate as their parameters q > 0 and δ > 0 decrease.
However, taking q = 0 would yield |β|q = 1 for any β ∈ R, which is not a satisfactory ap-
proximation of L0(β) anymore. Similarly, the setting δ = 0 is not allowed for the square-log
penalty. Therefore, both parameters must be kept positive in practice.

leading to the `q-penalized problem of finding

β̃ ∈ argmin
β∈Rp

(
Eλ,q(β) := C(β) + λ ‖β‖qq

)
. (3)

Alternatively, given δ > 0, one can consider the square-log approximation of the
L0 penalty (see [24, 23] and Fig. 1 (b)),

L0(β) ≈
p∑
j=1

log
(
1 + (βj/δ)

2
)

log (1 + δ−2)
(4)

and look for a solution of the square-log penalized problem

β̃ ∈ argmin
β∈Rp

Fλ,δ(β) := C(β) + λ

p∑
j=1

log
(
1 + (βj/δ)

2
)

log (1 + δ−2)

 . (5)

Both the `q penalized energy Eλ,q and the square-log penalized energy Fλ,δ
can be viewed as smooth approximations of the targeted L0 penalized energy
Eλ. As illustrated in Fig. 1, the smaller the parameters q and δ are, the better
accurate those approximations are. Notice that, in general, Fλ,δ is nonconvex,
and so is Eλ,q when q < 1. Thus, handling (3) and (5) remains a difficult
task. Several algorithms designed to approach some (at least local) minimizers
of energies like Eλ,q or Fλ,δ can be found in the literature. Those come from
various communities, such as statistics [17, 28, 56, 42, 20], sparse signal recovery
and compressed sensing [12, 5, 34, 41], optimization [36, 8, 39, 29] and image
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processing [2, 9, 37, 3, 22, 21]. The Adaptive-Ridge (AR) Algorithm is one of
those which was proposed in [20] and comes from a long line of optimization
algorithms. Given w(0) ∈ (R∗+)p, δ > 0, q ∈ [0, 2) and γ > 0, the AR scheme, to

which we may refer below as ARδ,γ
λ,q, consists in iterating, for k ≥ 0,

β(k+1) ∈ argmin
β∈Rp

C(β) +
λ

2

p∑
j=1

w
(k)
j β2

j

w(k+1) =
(
|β(k+1)|γ + δγ

) q−2
γ

,

(6a)

(6b)

having set |z|a = (|z1|a, |z2|a, . . . , |zp|a) for all a ∈ R and all z ∈ Rp.
Prior to [20], many numerical schemes closely related to (6) have been pro-

posed in the literature. They can be described using different mathematical
approaches, including locally quadratic or linear approximations [17, 56, 42],
majorize-minimize schemes [28, 56], iteratively reweighted algorithms [10, 12,
39], half-quadratic regularization [37, 36, 8]. Those scheme and their properties
remain a topical and fruitful research subject [49, 31, 41, 23] covering a wide
range of applications beyond the single problem of variable selection.

In this work, we will perform a review of the Adaptive-Ridge Algorithm, from
its mathematical design to its numerical implementation, including a thorough
experimental analysis of its parameters and its general behavior. We will en-
lighten the links between this algorithm and other closely related schemes and
we will propose several extensions. This work is organized as follows. In Sec-
tion 2, we will firstly provide a variational formulation of the `q penalty (2)
and use it to build up some iteratively reweighting schemes designed for solv-
ing (3). We will show how the Adaptive-Ridge Algorithm can be identified to a
particular instance of those schemes and we will demonstrate, using noticeably
simple arguments, its ability to decrease the `q penalized cost function Eλ,q
involved in (3) along the scheme iterations. We will also show how other math-
ematical constructions of the scheme based on majorize-minimize or alternat-
ing minimization strategies can be derived naturally from the above mentioned
variational formulation of the `q penalty. Links with other existing instances
or closely related variant of the Adaptive-Ridge that can be found in the lit-
erature will be also presented. Section 3 will be dedicated to the particular
setting q = 0 in (6) where the Adaptive-Ridge Algorithm will be interpreted
as a locally linear approximation scheme dedicated to the minimization of the
square-log penalized energy involved in (5). In Section 4, we will focus on two
numerical implementations of the Adaptive-Ridge Algorithm, a particular care
will be taken to ensure robustness of the proposed implementations with respect
to numerical errors. Then, we will present a thorough experimental study of the
Adaptive-Ridge Algorithm over synthetic datasets. Finally, in Section 5, we will
propose and study a variant of the Adaptive-Ridge Algorithm dedicated to the
minimization of a quadratic cost over a `q ball constraint set.
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2. Iteratively reweighted algorithms for `q penalized selection

2.1. Variational formulation of the `q penalty

The mathematical construction of iteratively reweighted algorithms dedicated
to `q penalized optimization problems like (3) can be explained in various ways,
leading to different interpretations of very closely related numerical schemes.
We found that a quite simple and elegant description of such numerical scheme
could be derived using a variational reformulation of the `q penalty described
in Lemma 1 in dimension one and extended to Rp in Proposition 1.

Lemma 1. For all β ∈ R, for all q > 0 and for all ν > q, we have

|β|q = inf
η∈R∗+

(
`νq (β, η) :=

q

ν
· |β|

ν

η
+
ν − q
ν
· η

q
ν−q

)
, (7)

where R∗+ denotes the set (0,+∞). Besides, when β 6= 0, the infimum (7) is
attained at η = |β|ν−q.

Proof. Let β ∈ R, q > 0 and ν > q. When β = 0, both sides of (7) are equal to 0
(note that the infimum is not attained). When β 6= 0, noting f = η 7→ `νq (β, η),
one easily checks that f assumes η∗ = |β|ν−q as unique critical point over R∗+
and that f ′(η) ≥ 0 if and only if η ≥ η∗. Therefore, f achieves its minimum
over R∗+ at η∗ and we can finally check that f(η∗) = |β|q( qν + ν−q

ν ) = |β|q.

Proposition 1 (variational reformulation of the `q penalty term). For all β =
(β1, β2, . . . , βp) ∈ Rp, for all q > 0 and for all ν > q, we have

‖β‖q = inf
η=(η1,η2,...,ηp)∈(R∗+)

p

Lνq (β, η) :=

p∑
j=1

q

ν
· |βj |

ν

ηj
+
ν − q
ν
· η

q
ν−q
j

 , (8)

and, when β ∈ (R∗)p, the infimum is attained at η = |β|ν−q.

Proof. Let β = (β1, β2, . . . , βp) ∈ Rp, q > 0, and ν > q. By additive separability
of Lνq (β, η) =

∑p
j=1 `

ν
q (βj , ηj) with respect to (η1, η2, . . . , ηp), we can interchange

infimum and sum in the right-hand side of (8). Thus, using Lemma 1, we get

inf
η=(η1,η2,...,ηp)∈(R∗+)

p
Lνq (β, η) =

p∑
j=1

inf
ηj∈R∗+

`νq (βj , ηj) =

p∑
j=1

|βj |q = ‖β‖qq ,

as announced.

The variational formulation (7) with the setting ν = 2 and q ∈ (0, 2) can
be found in [8] where `2q is referred as half-quadratic since it is quadratic with
respect to β but not with respect to η. The relation (7) can also be found in [33]
for the more particular setting q = 1 and ν = 2 but in a slightly disputable
form since the infimum (7) is taken over R+ instead of R∗+ in [33, Section 5.4]
although the function η 7→ `νq (β, η) involved in (7) is not defined for η = 0.
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A closely related (but non equivalent) result as (8) with the setting ν = 2
and q ∈ (0, 2) can be found in [30, Lemma 3.1] and seems also, as formulated,
slightly contestable due to an infimum taken over Rp+ instead of (R∗+)p. Notice
that the methodology described in [36, Section II], which was initiated in [21]
and applies to more general penalty terms than the `q penalty considered here,
can be used to derive (7) and (8) in the case ν = 2 and q ∈ (0, 2). Besides, a
very interesting link between the variational formulation (8) and the Legendre-
Fenchel conjugate was pointed out in [36]. Another interesting methodology
relying on the notion of Legendre pairs for obtaining similar (but non equivalent)
variational (in fact half-quadratic) formulations of a large class of penalty terms
was initiated in [22] and further developed for image processing applications
in [37, 9, 29, 2]. We could not find explicit references to (7) and (8) for ν 6= 2
(in particular, for ν = 1) in the literature but we believe that those relations
are probably well known as they can be used to derive some classical iteratively
reweighted algorithms in a very natural way, as we shall see now.

2.2. The majorize-minimize strategy

In all the following and unless explicitly mentioned otherwise, ν and q denote two
real numbers such as ν > q > 0. A straightforward consequence of Proposition 1
is that, for any η ∈

(
R∗+
)p

, we have the upper-bound

∀β ∈ Rp , Eλ,q(β) ≤ Sνλ,q(β, η) := C(β) + λLνq (β, η) . (9)

Besides, when β ∈ (R∗)p (and only in this case), this large inequality becomes
an equality for η = |β|ν−q, i.e.,

∀β ∈ (R∗)p , Eλ,q(β) = Sνλ,q(β, |β|ν−q) . (10)

Therefore, if we consider an initial guess β(0) ∈ (R∗)p for the optimization
problem (3), then S0 : β 7→ Sνλ,q(β, |β(0)|ν−q) bounds Eνλ,q from above over Rp

and both functions coincide at point β = β(0). More precisely, we have

∀β ∈ Rp , Eλ,q(β) ≤ S0(β) and Eλ,q(β
(0)) = S0(β(0)) . (11)

Now, assuming that we are able to compute a minimizer of S0, noting β(1) such
a minimizer, we obtain

Eλ,q(β
(1)) ≤ S0(β(1)) ≤ S0(β(0)) = Eλ,q(β

(0)) . (12)

Assuming that β
(1)
j 6= 0 for all j, we can repeat the process replacing S0 by

S1 : β 7→ Sνλ,q(β, |β(1)|ν−q), look for a minimizer β(2) of S1, and so on. This
yields the so-called majorize-minimize iterations, which amounts to computing

∀k ∈ N , β(k+1) ∈ argmin
β∈Rp

Sνλ,q(β, |β(k)|ν−q) , (13)
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or, equivalently, to setting η(0) = |β(0)|ν−q and iterating β(k+1) ∈ argmin
β∈Rp

Sνλ,q(β, η(k))

η(k+1) = |β(k+1)|ν−q .

(14a)

(14b)

Finally, removing from Sνλ,q the constant terms that do not change the value of
the argmin (14a), we obtain

β(k+1) ∈ argmin
β∈Rp

C(β) +
λq

ν

p∑
j=1

|βj |ν

η
(k)
j

η(k+1) = |β(k+1)|ν−q .

(15a)

(15b)

It is important to note that the majorize-minimize scheme (15) is valid as long
as its iterates (η(k))k≥0 remain in (R∗+)p, or equivalently, as long as its iterates

(β(k))k≥0 remain in (R∗)p. Under this assumption, the scheme (15) guarantees
the monotonic decrease of the energy sequence (Eλ,q(β

(k)))k≥0, as stated in
Proposition 2.

Proposition 2. Assuming that η(0) = |β(0)|ν−q ∈ (R∗+)p and that the iterates

(β(k))k≥0 generated using (15) lie in (R∗)p, we have

∀k ∈ N , Eλ,q(β
(k+1)) ≤ Eλ,q(β(k)) . (16)

Consequently, if C is bounded from below, then, the sequence
(
Eλ,q(β

(k))
)
k≥0

is

also bounded from below and, thus, converges.

Proof. Let k ∈ N. By construction in (15), we have η(k) = |β(k)|ν−q and, by
assumption, we have η(k) ∈ (R∗+)p. Then, thanks to (9) and (15a), we have

Eλ,q(β
(k+1)) ≤ Sνλ,q(β(k+1), η(k)) ≤ Sνλ,q(β(k), η(k)) = Eλ,q(β

(k)), the right-hand
side equality coming from (10).

Interestingly enough, one can see that, when ν = 2, the scheme (15) is closely
related to the Adaptive-Ridge scheme (6), as we detail in Remark 1.

Remark 1 (link between (15) and the ARδ,γ
λ,q scheme (6)). Taking ν = 2 in (15)

and noting w
(k)
j = 1

η
(k)
j

, we obtain
β(k+1) ∈ argmin

β∈Rp
C(β) +

λq

2

p∑
j=1

w
(k)
j β2

j

w
(k+1)
j = |β(k+1)

j |q−2 for all j ∈ {1, 2, . . . , p} ,

(17a)

(17b)

which corresponds to the ARδ,γ
λ′,q scheme (6) provided that we set δ = 0, γ 6= 0

and λ′ = λq. Since we explained that (15) (and thus (17)) is suited to the min-

imization of Eλ,q, we can see that the ARδ,γ
λ,q scheme described in [20] is in fact
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suited to the minimization of Eλ
q ,q

(instead of that of Eλ,q, as was announced

in [20]).

Despite the nice energy decrease property (16) provided by Scheme (15), this
scheme is only valid when all the iterates (β(k))k≥0 remain in (R∗)p, which is
not guaranteed. In fact, if we keep in mind that the `q penalty is used in (3) to
promote sparsity, we precisely expect a minimizer of Eλ,q to assume zero entries.
Consequently, it is likely that, at some point k0 of the iteration process, we will
obtain an iterate β(k0+1) with zero entries so that (15b) yields η(k0+1) 6∈ (R∗+)p

and Scheme (15) cannot be iterated for k ≥ k0 due to the presence of indefinite

terms
|βj |ν

0 in (15a). A way to tackle this issue and keep iterating Scheme (15)

when β
(k0)
j = 0 consists in imposing β

(k)
j = 0 for the next iterations k ≥ k0.

This modification of the scheme can be formally stated by replacing the terms
|βj |ν
ηj

in (15a) by r(|βj |ν , ηj), noting r : R2 → R∪{+∞} the function defined by

∀(x, y) ∈ R2 , r(x, y) =


0 if x = y = 0

+∞ if x 6= 0 and y = 0
x
y otherwise.

(18)

This yields the iterations
β(k+1) ∈ argmin

β∈Rp
C(β) +

λq

ν

p∑
j=1

r(|βj |ν , η(k)
j )

η(k+1) = |β(k+1)|ν−q .

(19a)

(19b)

One can see that, when β
(k)
j = 0, we have η

(k)
j = 0 and the only way to avoid

the sum taking the value +∞ in (19a) is to impose the constraint βj = 0
in (19a). Therefore, when (19) generates an iterate with vanishing entries, the
same entries will remain equal to zero in all later iterations. As pointed out
in [12], the persistence of vanishing entries may be problematic. For instance,
assuming that (3) admits a unique solution β∗, if one iteration of (19) produces

β
(k)
j = 0 while β∗j 6= 0, then (19) has no longer chance to converge towards β∗.

Despite this limitation, (19) remains interesting because, of Proposition 3.

Proposition 3. When C is finite and additively separable over Rp, then, the
iterates (β(k))k≥0 generated using (19) satisfy the energy decrease property (16).

Proof. The proof is given in Appendix A.

Another way to tackle the issue of vanishing iterates in the majorize-minimize
scheme (15) consists in imposing nonzero entries for the η(k) iterates. This can
be done by introducing a numerical parameter δ > 0, and replacing for in-
stance (15b) by

η(k+1) =
(
|β(k)|ν + δν

) ν−q
ν

, (20)
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leading to the iterations
β(k+1) ∈ argmin

β∈Rp
C(β) +

λq

ν

p∑
j=1

|βj |ν

η
(k)
j

η(k+1) =
(
|β(k+1)|ν + δν

) ν−q
ν

.

(21a)

(21b)

Thanks to the presence of the positive parameter δ in (21b), the entries of
the η(k) iterates cannot vanish anymore, so that we can safely perform the it-
erations (21). However, the energy decrease property (16) is not guaranteed
anymore. Indeed, looking at (21) and noting Sk : β 7→ Sνλ,q(β, η(k)), from (9)

and (21a), we have Eλ,q(β
(k+1)) ≤ Sk(β(k+1)) ≤ Sk(β(k)) but Sk(β(k)) 6=

Eλ,q(β
(k)) since, for β = β(k) and η = η(k) 6= |β(k)|ν−q, the large inequality (9)

is in fact a strict inequality. For that reason, in the general case, we won’t have
Eλ,q(β

(k+1)) ≤ Eλ,q(β
(k)) using (21). Nevertheless, we show in Proposition 4

that, instead of Eλ,q, a slightly modified energy decreases along the iterations
of (21). Besides, Scheme (21) corresponds to an instance of the Adaptive-Ridge
Algorithm, as pointed out in Remark 2.

Lemma 2. Let δ > 0, ν > q and Eν,δλ,q : Rp → R the energy defined by

∀β ∈ Rp , Eν,δλ,q(β) = C(β) + λ
∥∥|β|ν + δν

∥∥q/ν
q/ν

. (22)

Then, we have

∀β ∈ Rp , Eν,δλ,q(β) = min
η∈(R∗+)p

(
Sν,δλ,q(β, η) := C(β) + λLν,δq (β, η)

)
, (23)

noting Lν,δq (β, η) =
∑p
j=1

q
ν ·
|βj |ν+δν

ηj
+ ν−q

ν ·η
q

ν−q
j . Besides, the minimum in (23)

is attained at η = (|β|ν + δν)
ν−q
ν .

Proof. This result is a simple consequence of Proposition 1 after remarking that
Lν,δq (β, η) = L1

q
ν

(|β|ν + δν , η). The proof is detailed in Appendix B.

Proposition 4. Let δ > 0, ν > q, β(0) ∈ Rp and η(0) =
(
|β(0)|ν + δν

) ν−q
ν .

Then, the sequence of iterates (β(k))k≥0 generated using (21) satisfies

∀k ∈ N , Eν,δλ,q(β
(k+1)) ≤ Eν,δλ,q(β

(k)) . (24)

Consequently, if C is bounded from below, then, the sequence
(
Eν,δλ,q(β

(k))
)
k≥0

is also bounded from below and, thus, converges.

Proof. Let k ∈ N. By construction, we have η(k) = (|β(k)|ν + δν)
ν−q
ν ∈ (R∗+)p.

Thus, from (23), we have Eν,δλ,q(β
(k+1)) ≤ Sν,δλ,q(β(k+1), η(k)). Besides, since the
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iterate β(k+1) computed using (21a) is a minimizer of β 7→ Sν,δλ,q(β, η(k)), we get

Sν,δλ,q(β(k+1), η(k)) ≤ Sν,δλ,q(β(k), η(k)) and, from Lemma 2, we have Sν,δλ,q(β(k), η(k)) =

Eν,δλ,q(β
(k)). Finally, we obtain Eν,δλ,q(β

(k+1)) ≤ Eν,δλ,q(β(k)) as announced.

Remark 2 (link between (21) and the ARδ,γ
λ,q scheme (6)). Using again the

variable change w
(k)
j = 1/η

(k)
j and setting ν = 2 in (21) yields exactly the ARδ,γ

λ′,q

scheme with with γ = 2 (which is the setting recommended by the authors of [20])
and λ′ = λq.

2.3. The alternating minimization strategy

In Section 2.2, we used Proposition 1 to derive numerical schemes for the mini-
mization of Eλ,q using the majorize-minimize framework. Interestingly enough,
Proposition 1 can also be used to interpret those schemes in terms of alternating
minimization framework. Indeed, from Proposition 1 we have

∀β ∈ Rp , Eλ,q(β) = inf
η∈(R∗+)p

Sνλ,q(β, η) (25)

were Sνλ,q : (β, η) 7→ C(β) + λLνq (β, η) is the function defined in (9). Therefore,
the optimization problem (3) is equivalent to

argmin
β∈Rp

inf
η∈(R∗+)p

Sνλ,q(β, η) . (26)

If the infimum in (26) was systematically attained, it could be replaced by a
minimum, and we could implement the alternating minimization scheme

β(k+1) ∈ argmin
β∈Rp

Sνλ,q(β, η(k))

η(k+1) ∈ argmin
η∈(R∗+)p

Sνλ,q(β(k+1), η) .

(27a)

(27b)

Assuming that β(k+1) ∈ (R∗)p, then, problem (27b) admits η(k+1) = |β(k+1)|ν−q
as unique solution and (27) is exactly the same as (14) or (15). Of course, (27)
exhibits the same limitation as (14) and (15), that is, it cannot be iterated
anymore when one of the iterates β(k+1) admits vanishing entries. An alternative
to (26) can be obtained using function r defined in (18) to reformulate (25) as
a minimum, thanks to Proposition 5.

Proposition 5. For any ν > q and for any β ∈ Rp, we have

Eλ,q(β) = min
η∈Rp+

S̃νλ,q(β, η) , (28)

noting S̃νλ,q(β, η) = C(β) +
∑p
j=1

λq
ν · r(|βj |

ν , η) + λν−qν · η
q

ν−q
j . Besides, the

minimum in (28) is attained at η = |β|ν−q, whatever the value of β.
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Proof. The proof is given in Appendix C.

From Proposition 5, we can reformulate the optimization problem (3) as

argmin
β∈Rp

min
η∈Rp+

S̃νλ,q(β, η) , (29)

so that an alternating minimization scheme for (29) can be obtained by replacing

Sνλ,q by S̃νλ,q in (27), yielding exactly (19). As mentioned before, a limitation of
such scheme is that any vanishing entry that it generates won’t change anymore
in all later iterations.

Instead of the minimization of the energy Eλ,q, one can consider the mini-

mization of the modified energy Eν,δλ,q defined in (22). From Lemma 2, finding a

minimizer of Eν,δλ,q is equivalent to computing

argmin
β∈Rp

min
η∈(R∗+)p

Sν,δλ,q(β, η) . (30)

An alternating minimization scheme for (30) can be obtained by replacing Sνλ,q
by Sν,δλ,q in (27) yielding exactly (21).

2.4. The local approximation based strategy

Another very interesting way to address optimization problems like (3) is based
on local approximations of the energy to minimize. Such approach was proposed
in [17] in a slightly different framework than (3) since the authors focus on
a variable selection model that boils down to the minimization of an energy
Jλ : Rp → R of the type

∀β ∈ Rp , Jλ(β) = C(β) + λ

p∑
j=1

pj(|βj |) , (31)

where λ > 0 and where each pj is a coordinate-wise penalty function from R+ to
R. The iterative local approximation framework proposed in [17] is the following.
Assuming that we are able to design a function Gλ : Rp × Rp → R such that,
for all (β, β′) ∈ Rp × Rp,

β ≈ β′ ⇒ Jλ(β) ≈ Gλ(β, β′) and Jλ(β′) = Gλ(β′, β′) (32)

and such that Gλ(β, β′) can be easily minimized over Rp with respect to β, then,
from an initial guess β(0) ∈ Rp, one can iterate

β(k+1) ∈ argmin
β∈Rp

Gλ(β, β(k)) . (33)
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Remark 3. We can notice that, if β 7→ Gλ(β, β(k)) bounds Jλ from above,
then (33) is a majorize-minimize scheme. Otherwise, we must hope that, at
each step of (33), β(k+1) is close to β(k), so that the approximation (32) is
accurate and the minimization of β 7→ Gλ(β, β(k)) is roughly related to that of
Jλ in the vicinity of β(k).

The authors of [17] designed Gλ by combining a second order Taylor ap-
proximation of C (assuming C twice continuously differentiable) with a local
quadratic approximation (LQA) for each coordinate-wise penalty term. For all

j ∈ {1, 2, . . . , p}, given β
(k)
j ∈ R∗ and assuming pj differentiable overs R∗+, the

proposed LQA is

∀βj ∈ R , βj ≈ β(k)
j ⇒ pj(|βj |) ≈ pj(|β(k)

j |) +
1

2

p′(|β(k)
j |)

|β(k)
j |

(
β2
j − β

(k)
j

2)
︸ ︷︷ ︸

:=lqaj(βj ,β
(k)
j )

, (34)

and can be obtained by integrating over [β
(k)
j , βj ] both sides of the linear ap-

proximation g′j(s) ≈
p′j(β

(k)
j )

|β(k)
j |

s noting gj(s) = pj(|s|) for all s ∈ R∗ (see also [23]).

The authors of [17] handle the computation of (33) using the Newton-Raphson
Algorithm. Besides, when (33) generates an iterate β(k+1) with vanishing entry
(or an entry smaller than a given threshold), they propose to keep this entry
vanishing in all later iterations, not without mentioning the limitations of such
strategy as we did in Sections 2.2 and 2.3.

In terms of optimization, unless when β 7→ Gλ(β, β(k)) bounds Jλ from above,
a relation like (32) does not ensure the relevance of (33) regarding the minimiza-
tion of Jλ since, as stated in Remark 3, we must have β(k+1) ≈ β(k) at each
iteration to keep the approximation of Jλ by β 7→ Gλ(β, β(k)) accurate. In fact,
the local approximation scheme (33) is probably efficient mostly in situations
where it boils down to a majorize-minimize scheme. In [28, Proposition 3.1],
some sufficient conditions on the coordinate-wise penalty functions (pj)1≤j≤p

are given to ensure that each function βj 7→ lqaj(βj , β
(k)
j ) bounds βj 7→ pj(|βj |)

from above. One of those conditions is that each pj is piecewise differentiable
over R∗+ and that p′j(|βj |) admits a (finite) limit as βj → 0. We can remark that
if we set pj(|βj |) = |βj |q in order to have Jλ = Eλ,q, then the limit of p′j(|βj |) as
βj → 0 is infinite as soon as q < 1 and [28, Proposition 3.1] cannot be applied
in this situation.

The local approximation framework was further studied and extended in [56]
where the authors propose, as an alternative to the LQA (34), to consider a
locally linear approximation (LLA). Assuming each pj differentiable over R+

and given β
(k)
j ∈ R, the proposed LLA is given by

∀βj ∈ R , βj ≈ β(k)
j ⇒ pj(|βj |) ≈ pj(|β(k)

j |) + p′j(|β
(k)
j |)

(
|βj | − |β(k)

j |
)

︸ ︷︷ ︸
:=llaj(βj ,β

(k)
j )

, (35)



R. Abergel, O. Bouaziz and G. Nuel/Adaptive-Ridge Algorithm and extensions 13

and can be derived from a simple first order Taylor approximation of pj at point

|β(k)
j |. In [56, Theorem 1], the authors provide sufficient conditions to ensure that

βj 7→ llaj(βj , |β(k)
j |) bounds βj 7→ pj(|βj |) from above and they derive further

majorize-minimize schemes. However, the differentiability of each pj at zero is
required to apply [56, Theorem 1] and also to compute (35). Therefore, the
choice pj(|βj |) = |βj |q with q < 1 seems again problematic.

Let us focus back on the problem (3) and link the schemes presented in
sections 2.2 and 2.3 to those local approximation based algorithms. First, remark
that both the LQA and the LLA can be unified using a single formula, using,

for βj ≈ β(k)
j ,

pj(|βj |) ≈ gνj (βj , β
(k)
j ) := pj(|β(k)

j |) +
1

ν

p′j(|β
(k)
j |)

|β(k)
j |ν−1

(
|βj |ν − |β(k)

j |
ν
)
, (36)

which boils down to the LQA (34) for ν = 2 (and β
(k)
j 6= 0), and to the LLA (35)

for ν = 1. Thus, defining

∀β ∈ Rp , Gλ(β, β′) = C(β) + λ

p∑
j=1

gνj (βj , β
′
j) (37)

yields a LQA (for ν = 2 and β′ ∈ (R∗)p) or a LLA (for ν = 1 and β′ ∈ Rp) of
Jλ that satisfies (32). Now, let us set pj(|βj |) = |βj |q and ν ∈ {1, 2}. Assuming

β
(k)
j 6= 0, (36) yields

∀βj ∈ R , gνj (βj , β
(k)
j ) = |β(k)

j |
q +

q

ν
|β(k)
j |

q−ν
(
|βj |ν − |β(k)

j |
ν
)

=
q

ν
|β(k)
j |

q−ν |βj |ν +
ν − q
ν
|β(k)
j |

q

= `νq (βj , η
(k)
j )

(38)

noting η
(k)
j = |β(k)

j |ν−q and recognizing the function `νq defined in (7). Thus,
when q < ν, using Lemma 1, we get

∀βj ∈ R , gνj (βj , β
(k)
j ) = `νq (βj , |β(k)

j |
ν−q) ≥ |βj |q = pj(|βj |) ,

so that the local approximation βj 7→ gνj (βj , β
(k)
j ) does indeed bound βj 7→

|βj |q from above. Besides, using gνj (βj , β
(k)
j ) = `νq (βj , |β(k)

j |ν−q) in (37) yields

Gλ(β, β(k)) = Sνλ,q(β, |β(k)|ν−q) and Scheme (33) is indeed a majorize-minimize
scheme which is nothing more than (13), although the sufficient conditions given
in [28, Proposition 3.1] and [56, Theorem 1] are not fulfilled by (pj)1≤j≤p. Im-

posing, as done in [17], vanishing entries β
(k)
j = 0 to be kept unchanged in later

iterations yields exactly Scheme (19).

Instead of addressing the minimization of Eλ,q, one can focus on that of Eν,δλ,q

for a given δ > 0 by setting pj(|βj |) = (|βj |ν + δν)
q
ν . In this case, both [28,
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Proposition 3.1] and [56, Theorem 1] can be applied to show that gνj bounds
βj 7→ pj(|βj |) from below. However, as we shall see now, this result can be
proven very simply using the variational formulation of the `q penalty presented
in Section 2.1. Indeed (36) yields

gνj (βj , β
(k)
j ) =

(
|β(k)
j |

ν + δν
) q
ν

+
q

ν

(
|β(k)
j |

ν + δν
) q−ν

ν
(
|βj |ν − |β(k)

j |
ν
)

and is well defined whatever the values of βj ∈ R and β
(k)
j ∈ R. Using

|βj |ν − |β(k)
j |

ν =

(
|βj |ν + δν

)
−
(
|β(k)
j |

ν + δν
)
,

and setting η
(k)
j =

(
|β(k)
j |ν + δν

) ν−q
ν

, we obtain

gνj (βj , β
(k)
j ) =

q

ν

|βj |ν + δν

η
(k)
j

+

(
ν − q
ν

)(
η

(k)
j

) q
ν−q

= `1r(|βj |ν + δν , η
(k)
j ) where r =

q

ν
.

(39)

Thus, from Lemma 1, we get gνj (βj , β
(k)
j ) ≤ (|βj |ν + δν)

r
= pj(|βj |) as an-

nounced. Besides, using (39) in (37) yields Gλ(β, β(k)) = Sν,δλ,q(β, η(k)) where

Sν,δλ,q was defined in (23). Consequently, (33) is the same as (21) in this situa-
tion.

2.5. Links with other algorithms

In addition to the Adaptive-Ridge Algorithm, the numerical schemes derived
above can be linked to many other algorithms. One of those is the famous Itera-
tively Reweighted Least Squares (IRLS) Algorithm proposed in [12] to address,
given a matrix X ∈ Rn×p, a vector y ∈ Rn, and for q ∈ (0, 1], the constrained
minimization problem

argmin
β∈Rp

‖β‖qq subject to Xβ = y . (40)

Problem (40) is equivalent to (3) provided that we set C = {β ∈ Rp , Xβ = y}
and

∀β ∈ Rp, C(β) = δC (β) :=

{
0 if β ∈ C

+∞ otherwise.
(41)

The IRLS Algorithm described in [12] corresponds to (21) with ν = 2 and with,
in addition to (21a) and (21b), a clever update of the δ parameter (which is not
fixed anymore and decreases along the iterations) depending on the value of the
coordinate residuals (|yj − (Xβ)j |)1≤j≤p and the assumed number of nonzero
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elements in the search for solution of (40). We refer to [12] (see also [41]) for
more details about the IRLS Algorithm.

A variant of IRLS, usually referred as the IRL1 Algorithm, was proposed in [5]
and further studied in [34]. This algorithm is equivalent to iterating Scheme (21)
with the setting C = δC , ν = 1 and provided that each iteration of (21) is done
asymptotically for q → 0+. As for the IRLS Algorithm, an iterative update of
the δ parameter is proposed in [5] although the use of a fixed value for δ is also
considered. Notice that the authors of [20] remarked that the weight update of
IRL1, that is, step (21b) with ν = 1 and q = 0, is similar to step (6b) of their
algorithm with the setting γ = 1 and q = 1. However, the comparison cannot be
led any further because, under these settings, the steps (21a) and (6a) remain
sensibly different and both algorithms probably do not address the minimization
of the same energy. In particular, we are not able to identify the underlying
energy minimization addressed by the ARδ,γ

λ,q scheme for γ 6= 2.
Another algorithm, namely the Adaptive Lasso Algorithm, was proposed

in [54] for the purpose of variable selection. The Adaptive-Lasso Algorithm
is a two steps algorithm. Given λ′ > 0, the first step consists in computing a
solution β̂ of the LASSO problem, i.e.,

β̂ ∈ argmin
β∈Rp

‖y −Xβ‖22 + λ′ ‖β‖1 . (42)

Then, the second step consists in finding

β ∈ argmin
β∈Rp

‖y −Xβ‖22 + λ′
p∑
j=1

r(|βj |, |β̂j |γ) , (43)

where γ > 0 is an hyperparameter that must be set by the user. Assuming the
uniqueness of the minimizer β of (43) to simplify the discussion, we can remark
that β corresponds to the first iterate β(1) generated by Scheme (19) with the
setting ν = 1, q < ν, λ = λ′/q, C : β 7→ ‖y − Xβ‖22 and the initialization

η(0) = |β̂|γ . Assuming a Gaussian distribution for the (yi)1≤i≤n, the authors
of [54] provide sufficient conditions for λ′ and γ to ensure the consistency of
selection and the normality of the Adaptive-Lasso estimate β as n → +∞
(see [54, Theorem 2] for more details).

3. Adaptive-Ridge and square-log penalized selection

As explained in Section 1, the `q penalized energy Eλ,q (for q > 0) involved
in (3) can be viewed as an approximation of the sparsity promoting L0-penalized
energy Eλ defined in (1). In Section 2, we showed how the minimization of Eλ,q
or its approximation Eδ,νλ,q (for ν = 2), defined in (22), could be handled using

the ARδ,γ
λq,q Algorithm (see Remark 1 and Remark 2). However, other smooth

approximations of Eλ, such as the square-log penalized energy Fλ,δ (for δ > 0)
defined in (5), can also be considered. The LQA methodology that we recalled
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in Section 2.4 can be used to address the minimization of Fλ,q. Indeed, given
δ > 0 and letting

∀ρ ∈ R+ , pδ(ρ) =
log
(
1 + (ρ/δ)2

)
log (1 + δ−2)

,

the LQA of pδ given by (34) yields, for all (ρ, ρ̃) ∈ R2
+,

ρ ≈ ρ̃ ⇒ pδ(ρ) ≈
log
(
1 + (ρ̃/δ)2

)
log (1 + δ−2)

+
1

log (1 + δ−2)
· ρ

2 − ρ̃2

δ2 + ρ̃2︸ ︷︷ ︸
:=lqa(ρ,ρ̃)

. (44)

Since pδ is continuously differentiable, nondecreasing and concave over R+,

from [28, Proposition 3.1], we have, for all β ∈ Rp, for all β̃ ∈ (R∗)p and
for all j ∈ {1, 2, . . . , p},

pδ (|βj |) ≤ lqa
(
|βj |, |β̃j |

)
and pδ

(
|β̃j |
)

= lqa
(
|β̃j |, |β̃j |

)
. (45)

One can easily check that (45) is in fact also valid for any β̃ ∈ Rp (i.e., without

the restriction β̃ ∈ (R∗)p). Thus, letting

∀(β, β̃) ∈ Rp × Rp , Gλ(β, β̃) = C(β) + λ

p∑
j=1

lqa
(
|βj |, |β̃j |

)
,

we obtain a majorize-minimize scheme for Fλ,δ by choosing β(0) ∈ Rp and
iterating for k ≥ 0,

β(k+1) ∈ argmin
β∈Rp

Gλ(β, β(k)) . (46)

Using (44) and removing from Gλ the terms that do not depend on β (and
thus do not change the argmin in (46)), the majorize-minimize scheme (46) is

equivalent to setting η(0) = β(0)2
+ δ2 and iterating for k ≥ 0

β(k+1) ∈ argmin
β∈Rp

C(β) +
λ

log (1 + δ−2)

p∑
j=1

β2
j

η
(k)
j

η(k+1) =
(
β(k+1)

)2

+ δ2 .

(47a)

(47b)

We can see that (47) corresponds exactly to the ARδ,γ
λ′,q Algorithm with the

setting γ = 2, q = 0 and λ′ = 2λ/ log (1 + δ−2). Notice that the ability of
the Adaptive-Ridge Algorithm to handle the minimization of the square-log
penalized energy Fλ,δ using the majorize-minimize strategy was already pointed
out in [24]. Note also that the LLA methodology could also be used to handle
the minimization of Fλ,δ and would also yield a majorize-minimize scheme since
pδ satisfies the conditions of [56, Theorem 1].
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4. Several implementations of the Adaptive-Ridge Algorithm

In this Section, given a matrix X ∈ Rn×p and an element y ∈ Rn, we focus on
practical implementations of the AR scheme in the case where C(β) = 1

2‖y −
Xβ‖22. We will restrict our study to the case γ = 2, since, as mentionned in
Section 2.5, we could not derive a satisfactory interpretation of the AR scheme
in terms of energy minimization for other settings of γ. Given q ∈ [0, 2), δ > 0

and λ′ > 0, the ARγ,δ
λ′,q scheme (with γ = 2) boils down to setting w(0) ∈ (R∗+)p

and to iterating, for k ≥ 0,
β(k+1) ∈ argmin

β∈Rp

1

2
‖y −Xβ‖22 +

λ′

2

p∑
j=1

w
(k)
j β2

j

w(k+1) =
(
|β(k+1)|2 + δ2

) q−2
2

.

(48a)

(48b)

One can easily check that, when δ > 0, problem (48a) admits a unique solution
(by continuity, strict convexity and coercivity of the function to minimize).
However, we will also extend the study to the case δ = 0 and comment on our
implementations in this situation.

4.1. System inversion based implementation

Given any vector z ∈ Rp, we set D(z) = diag(z1, z2, . . . , zp). When δ > 0, we
can easily check that all iterates (w(k))k≥1 generated using (48b) lie in (R∗+)p.
In this situation, (48a) can be written

β(k+1) ∈ argmin
β∈Rp

1

2
‖y −Xβ‖22 +

λ′

2
‖D((w(k))1/2)β‖22 (49)

and admits as unique solution that of the linear system(
XtX + λ′D(w(k))

)
β(k+1) = Xty . (50)

Solving (50) is formally possible but can be numerically difficult because the
matrix XtX + λ′D(w(k)) can be badly conditioned, especially when δ is small.
For instance, if we assume that the iterate β(k) generated using (48a) satisfies

β
(k)
j = 0 and β

(k)
j′ = α 6= 0 for two indexes j 6= j′, then, we have w

(k)
j = δq−2 and

w
(k)
j′ = (|α|2+δ2)

q−2
2 . It follows that the condition number in `2 norm of D(w(k))

is larger than ( δ2

|α|2+δ2 )
q−2
2 , and thus, becomes arbitrary large as δ → 0+. Al-

though, in the general case, the bad conditioning of the matrix D(w(k)) does not
necessarily imply a bad conditioning for the matrix XtX + λ′D(w(k)), we ob-
served in practice that such situation does make (50) ill-conditioned. To tackle
this numerical difficulty we suggest to consider, instead of (50), the precondi-
tioned system

D(r(k))
(
XtX + λ′D(w(k))

)
β(k+1) = D(r(k))Xty (51)
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where r(k) corresponds to the vector made of the inverse of the diagonal elements
of the matrix XtX + λ′D(w(k)), i.e.,

∀j ∈ {1, 2, . . . , p} , r
(k)
j =

1

vj + λ′w
(k)
j

noting vj = (XtX)jj =

n∑
i=1

X2
ij . (52)

Notice that using vj ≥ 0 and w
(k)
j > 0 in (52) yields r

(k)
j > 0. Thus, the

diagonal matrix D(r(k)) involved in (51) is invertible and, therefore, (51) is
equivalent to (50). The inverse of D(r(k)), that is the diagonal matrix made with
the diagonal elements of XtX + λ′D(w(k)), corresponds to the so-called Jacobi
preconditioner of the system (50). The advantage of considering (51) instead
of (50) in terms of system conditioning will be experimentally illustrated in
Section 4.3.7.

Another practical advantage of (51) compared to (50) is that the matrix of
system (51) remains finite as δ → 0+, which is not necessarily true for that of
system (50). Indeed from (48b), for all j ∈ {1, 2, . . . , p}, we have

lim
δ→0
δ≥0

w
(k)
j = lim

δ→0
δ≥0

(
|β(k)
j |

2 + δ2
) q−2

2

=

{
|β(k)
j |q−2 if β

(k)
j 6= 0

+∞ otherwise.
(53)

Therefore, as long as β
(k)
j = 0, the j-th diagonal element of the matrix of

system (50) diverges to infinity as δ → 0+. As we shall see now, this is not the

case for system (51). Setting z
(k)
j = r

(k)
j w

(k)
j for all j ∈ {1, 2, . . . , p}, we can

write (51) as (
D(r(k))XtX + λ′D(z(k))

)
β(k+1) = D(r(k))Xty . (54)

Besides, when β
(k)
j = 0, from (52) and (53), we have

lim
δ→0
δ≥0

r
(k)
j = 0 and lim

δ→0
δ≥0

z
(k)
j =

1

λ′
(55)

so that the j-th diagonal element of the matrix of sytem (54) (or (51)) remains
finite as δ → 0+. Practically speaking, the setting δ = 0 can be allowed in
numerical implementations provided that we evaluate r(k) and z(k) using

∀j ∈ {1, 2 . . . , p}, r
(k)
j =

η
(k)
j

vjη
(k)
j + λ′

and z
(k)
j =

1

vj η
(k)
j + λ′

, (56)

noting η(k) = (|β(k)|2 + δ2)
2−q
2 (as we did in Section 2). Thus, assuming that

β
(k)
j = 0 and δ = 0, we obtain η

(k)
j = 0, r

(k)
j = 0 and z

(k)
j = 1

λ′ in (56).

Notice that, in such situation, D(r(k)) is not invertible. Therefore, (51) (or (54))
and (50) are not equivalent anymore and we can wonder how the solution of (54)
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can be linked to (48a). In fact, in such situation, the j-th row of (54) simply

yields β
(k+1)
j = 0 and we can easily show that the iterates β(k+1) generated by

inversion of (54) are exactly the same as those generated using Scheme (19)
with λ = λ′/q and ν = 2. Finally, the system inversion based implementation of
the AR algorithm is summarized in Algorithm 1. Notice that an energy based
criterion is used to stop the iterations in Algorithm 1. Other stopping criteria
may be considered, for instance in situations where we are interested in the
convergence of the iterates (β(k))k≥0 themselves rather than that of the targeted
energy.

Algorithm 1: system inversion based implementation of the Adaptive-Ridge
(aridge sysinv module).

Inputs : a number q ∈ [0, 2), a penalty parameter λ′ > 0, a smoothing parameter
δ ≥ 0 (δ = 0 is allowed only when q > 0), a matrix X ∈Mn,p(R), a vector
y ∈ Rp, an initial guess β(0) ∈ Rp, a tolerance parameter ε.

Output: an estimate of a local minimizer of the targeted energy, that is, of

E : β 7→
1

2
‖y−Xβ‖22 +

{
λ′

q

∑p
j=1(β2

j + δ2)
q
2 if q 6= 0

λ′

2

∑p
j=1 log

(
1 + (βj/δ)

2
)

if q = 0 (and δ 6= 0) .

1 v ← vector made of the diagonal elements of XtX
2 k ← 0
3 repeat

4 η(k) ←
(
|β(k)|2 + δ2

) 2−q
2

5 z ←
(
v · η(k) + λ′

)−1

6 r ← η(k) · z
7 β(k+1) ← solution of

(
D(r)XtX + λ′D(z)

)
β = D(r)Xty

8 k ← k + 1

9 until E(β(k−1))− E(β(k)) ≤ ε · E(β(k−1)) // energy-based stopping criterion

10 return β(k)

Lines 5 and 6: the dot product refers to the coordinatewise mutliplication between two vectors.
Line 7: it is recommended to solve the linear sysem in the least-squares sense rather than by direct
matrix inversion, this can be done using standard librairies such as LAPACK [1] (the latter being
natively used in popular scientific programming langages such as R, Matlab or Octave).

4.2. Conjugate-Gradient based implementation

The system inversion based implementation of the Adaptive-Ridge Algorithm
described in Section 4.1 relies on the inversion of a p × p sized linear system
like (54) at each iteration (see Algorithm 1 line 7). Even though optimized
solvers are available through standard libraries, the latter usually involve ma-
tricial manipulations (e.g., singular values decompositions, orthogonal factor-
ization, QR decomposition, ...) which are computationally expensive, both in
terms of time and memory (their typical complexity is Θ(p3) of Θ(p4) depending
on the method). The Conjugate Gradient (CG) Algorithm is a famous iterative
algorithm for solving symmetric and positive definite systems. The latter only
requires matrix-vector multiplications (and thus Θ(p2) operations) at each it-
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eration. The convergence rate of the CG Algorithm depends on the spectral
properties of the matrix of the system [48, 45, 38]. In many situations, it reveals
faster and computationally less expensive than the previously mentioned meth-
ods. We shall describe now how the CG Algorithm can be used to implement
the Adaptive-Ridge scheme (48). Notice that the idea of using the CG Algo-
rithm within IRLS procedures is not new and was proposed in [18] (see also [41,
Chapter 4]) in the framework of compressed sensing and sparse reconstruction.

Let us assume that δ > 0. As we discussed in Section 4.1, solving (48a) is
equivalent to solving the symmetric and positive definite linear system (50). To
avoid bad conditioning issues with (50), we considered (54) in Section 4.1 as an
equivalent preconditioned system, but the matrix of this system is not symmetric
so that it cannot be addressed using the CG Algorithm. Another similar way to
precondition (50) is the following. Let k ≥ 0, let us keep the notations r(k) and

z(k) defined in (56) and let us set s(k) = (r(k))
1
2 . The assumption δ > 0 ensures

that the entries of r(k) are positive (see Section 4.1), and so are those of s(k).
Thus, we can consider the bijective change of variables

β(k+1) = D(s(k)) β̃(k+1) , (57)

and reformulate (50) into the equivalent form(
XtX + λ′D(w(k))

)
D(s(k)) β̃(k+1) = Xty . (58)

Left-multiplying (58) by D(s(k)) and using D(s(k))D(w(k))D(s(k)) = D(z(k)),
we reformulate (58) into the equivalent linear system(

D(s(k))XtXD(s(k)) + λ′D(z(k))
)
β̃(k+1) = D(s(k))Xty , (59)

which is a symmetric and positive definite system. Thus, the CG Algorithm can
be used to approach the solution β̃(k+1) of (59). Afterwards, one can retrieve
the solution of (50) simply using (57). The CG Algorithm is summarized in Al-
gorithm 2, and the CG based implementation of the Adaptive-Ridge Algorithm
is summarized in Algorithm 3.

Remark 4. One can easily check that the matrix of system (59) remains finite

when δ = 0. However, when δ = 0, we have, for all j ∈ {1, 2, . . . , p}, β(k)
j =

0 ⇔ r
(k)
j = 0 ⇔ s

(k)
j = 0. When s(k) admits vanishing entries, the change of

variables (57) is not bijective anymore so that we loose the equivalence between

system (50) and the preconditioned system (59). Note also that s
(k)
j = 0 yields

β̃
(k+1)
j = 0 in (59) and β

(k+1)
j = 0 in (57). One can easily check that the

iterates (β(k))k≥0 generated by Algorithm 3 with δ = 0 are exactly the same as
those generated using Scheme (19) with λ = λ′/q and ν = 2.
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Algorithm 2: Conjugate Gradient Algorithm (cg module)

Inputs : a symmetric and positive definite matrix A with order p, a vector b ∈ Rp, an
initial guess x0 ∈ Rp, a maximal number of iterations Niter and a tolerance
parameter εcg.

Output: an estimate of the solution of the linear system Ax = b

1 r0 ← b−Ax0
2 π0 ← r0
3 k ← 0
4 while ‖rk‖2 > εcg · ‖b‖2 and k < Niter do

5 α← ‖rk‖22
πt
k
Aπk

6 xk+1 ← xk + α · πk
7 rk+1 ← rk − α ·Aπk
8 πk+1 ← rk+1 +

‖rk+1‖22
‖rk‖22

· πk
9 k ← k + 1

10 end
11 return xk

Convergence of the Conjugate Gradient Algorithm is theoretically ensured after at most p iterations.
In practice, more than p iterations may be needed due to numerical error propagation (mainly
round-off and cancellation errors). Line 7: in the absence of numerical errors, we would have rk+1 =
b− Axk+1 at each iteration k ≥ 0.

Algorithm 3: Conjugate Gradient based implementation of the Adaptive-
Ridge (aridge cg module).

Inputs : a number q ∈ [0, 2), a penalty parameter λ′ > 0, a smoothing parameter
δ ≥ 0 (δ = 0 is allowed only when q > 0), a matrix X ∈Mn,p(R), a vector
y ∈ Rp, an initial guess β(0) ∈ Rp, two tolerance parameters ε and εcg.

Output: an estimate of a local minimizer of the targeted energy, that is, of

E : β 7→
1

2
‖y−Xβ‖22 +

{
λ′

q

∑p
j=1(β2

j + δ2)
q
2 if q 6= 0

λ′

2

∑p
j=1 log

(
1 + (βj/δ)

2
)

if q = 0 (and δ 6= 0) .

1 v ← vector made of the diagonal elements of XtX
2 k ← 0
3 repeat

4 η(k) ←
(
|β(k)|2 + δ2

) 2−q
2

5 z ←
(
v · η(k) + λ′

)−1

6 s←
(
η(k) · z

) 1
2

7 β̃(k+1) ← cg
(
D(s)XtXD(s) + λ′D(z),D(s)Xty,D(s)†β(k), p, εcg

)
8 β(k+1) ← D(s)β̃(k+1)

9 k ← k + 1

10 until E(β(k−1))− E(β(k)) ≤ ε · E(β(k−1))

11 return β(k)

Lines 5 and 6: the dot product refers to the coordinatewise mutliplication between two vectors.
Line 7 : D(s)† denotes the Moore-Penrose pseudoinverse of the diagonal matrix D(s), that is, the
diagonal matrix obtained by inverting each nonzero diagonal term of D(s) and keeping all zero-

values in place. One can check that, at each iteration k ≥ 1, we have D(s)†β(k) = β̃(k). At iteration

k = 0, the initial guess D(s)†β(0) used in the cg module is a rescaling of β(0) sharing the same

support as β(0).
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4.3. Numerical experiments

This section aims to illustrate the behavior of the Adaptive-Ridge Algorithm
as well as the influence of its parameters (λ′, q, δ) on the computed output. To
facilitate the study, we will focus on synthetic datasets generated using a simple
and standard simulation scheme that we shall now describe.

4.3.1. Simulation scheme

Given (n, p) ∈ N2, a synthetic dataset (X,β?, y) ∈ Rn×p × Rp × Rn is obtained
as follows.

(i) We compute a random matrix X̃ ∈ Rn×p made of independant and uni-

formly distributed random entries X̃ij ∼ U[0,1]. Then, we apply a colum-
nwise normalization (to impose zero-mean and unitary `2 norm of the
columns) using

∀(i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , p} , Xij =
X̃ij − µj

nj
,

where µj =
∑n
i=1 X̃ij and n2

j =
∑n
i=1(X̃ij − µj)2.

(ii) We compute a random sparse reference signal β? ∈ Rp (referred as ground-
truth in the following) using

∀j ∈ {1, 2, . . . , p} , β?j =

{
1 if δj > 0.95
0 otherwise

where {δj}1≤j≤p are independant and uniformly distributed random vari-
ables. By construction, in average 95% of the entries of β? are zero, the
5% remaining are equal to one.

(iii) We compute a random observation y ∈ Rn using

∀i ∈ {1, 2, . . . , n} , yi = (Xβ?)i + σεi (60)

where σ = 0.2 and {εi}1≤i≤n are independant Gaussian random variables
following a normal distribution and (Xβ?)i denotes the i-th entry of Xβ?.

Unless explicitly mentioned, we will consider the setting n = 300 and p =
150 in our simulations. We experimentally checked that both Algorithm 1 and
Algorithm 3 returned the same output (up to machine precision) when applied
to the same dataset with the same setting for their parameters (q, λ′, δ, ε) and
taking εcg = 10−16 in Algorithm 3. This is not surprising since both algorithms
implement the same numerical scheme (48). However, they both differ in terms
of execution time, as it will be illustrated in Section 4.3.5.
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4.3.2. First examples of AR estimates

Examples of estimates produced by the Adaptive-Ridge Algorithm applied to a
synthetical dataset (X,β?, y) with the two settings (q = 0.2, δ = 0, λ′ = 0.1) and
(q = 0, δ = 10−5, λ′ = 0.1) are displayed in Fig 2. The two settings of (q, δ) yield
two different estimates, since the AR scheme (48) addresses the minimization
of two different energies: a `q penalized energy (when q > 0 and δ ≥ 0), or a
log-square penalized energy (when q = 0 and δ > 0).

(a) estimated (local) minimizer of the `q penalized energy

(b) estimated (local) minimizer of the log-square penalized energy

Fig 2. Example of estimates produced by the AR algorithm. A simulated dataset
(X,β?, y) was processed using Algorithm 3 with the setting λ′ = 0.1, ε = εcg = 10−16, a
random initial guess β(0) (with i.i.d. entries following a uniform distribution), and the two
settings (q = 0.2, δ = 0) and (q = 0, δ = 10−5). We display with blue plain stems in (a) the
estimate obtained using (q = 0.2, δ = 0) and with orange plain stems in (b) the estimate ob-
tained using (q = 0, δ = 10−5). The ground-truth β? is displayed in both graphs using yellow
dotted stems. Those two settings yield two different estimates that are both close to β?, which
gives first comforting insights on the ability of those optimization models to be useful for
variable selection. In fact, with q = 0.2 6= 0, Algorithm 3 addresses the minimization of a `q

penalized energy, while with q = 0, a log-square penalized energy minimization is performed.
The reason why the estimates displayed in (a) and (b) are different from β? is simply that the
ground truth β? is not the minimizer of the considered energies (at least for the considered
settings of q, δ and λ′). The ability of Algorithm 3 to efficiently address the minimization of
those energy (independantly from the quality of the produced estimate) is illustrated in Fig. 3.
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4.3.3. Energy decrease

In Remark 4, we pointed out that the iterates (β(k))k≥0 generated using Algo-
rithm 3 with q > 0 and δ = 0 are the same as those generated using Scheme (19)
(with λ = λ′/q and ν = 2). Since C : β 7→

∑n
i=1(yi− (Xβ)i)

2 is additively sepa-
rable, from Proposition 3, the sequence of `q penalized energies

(
Eλ,q(β

(k))
)
k≥0

decreases along the scheme iterations. This result was experimentally high-
lighted in Fig. 3 (a). Similarly, when q = 0 and δ > 0, Algorithm 3 ensures the
decrease of the log-square penalized energy Fλ,δ (with λ = λ′ log (1 + δ−2)/2),
as explained in Section 3 and experimentally illustrated in Fig. 3 (b).

(a) `q penalized energy (b) log-square penalized energy

Fig 3. Energy decrease along with the AR iterations. We consider exactly the same
dataset and experiments as those presented in Fig. 2. We display in (a) the evolution of the
`q penalized energy k 7→ Eλ,q(β

(k)) (with q = 0.2, λ = λ′/q = 0.5 and 1 ≤ k ≤ 35), denoting

β(k) the k-th iterate computed using Algorithm 3 with the setting (q = 0.2, δ = 0). We display
in (b) the evolution of the log-square penalized energy k 7→ Fλ,δ(β

(k)) (with δ = 10−5 and

λ = λ′ log (1 + δ−2)/2 ≈ 1.1513), where β(k) denotes this time the k-th iterate computed using
Algorithm 3 with the setting (q = 0, δ = 10−5). In both cases, we can see that the considered
energy decreases along with the AR iterations, as showed in Proposition 3 or in Section 3.

4.3.4. Sensitivity to the choice of the initializer

Addressing the minimization of non-convex energies is a difficult task, partly
due to the presence of local extrema in the energy to minimize, which makes
most non-convex optimization algorithms sensitive to the choice of the initial-
izer. This is also the case for the Adaptive-Ridge scheme (48). For a given
dataset (X,β?, y), the output of algorithms 1 and 3, as well as the achieved
value of the energy to minimize, may be strongly dependent on the choice of
the initializer β(0). This is especially true for small values of q, as illustrated
in Fig. 4. Interestingly enough, the sensitivity of the Adaptive-Ridge scheme
to the choice of the initializer seems to decrease as q increases from 0 to 1,
with no meaningful variability observed when q = 1. In fact, when q = 1 the
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(a) module aridge cg with q = 0.1 and δ = 0

(b) module aridge cg with q = 0.3 and δ = 0

(c) module aridge cg with q = 0.8 and δ = 0

Fig 4. Variability of the estimated local minimizers with respect to the initialization.
We executed Algorithm 3 over a single dataset (X,β?, y) using 104 random initial guesses
β(0) (simulated using a uniform distribution), and setting λ′ = 0.1, ε = εcg = 10−16, δ = 0
and q ∈ {0.1, 0.3, 0.8}. For each value of q, we display above using blue plain stems the median
estimate computed among the 104 simulations (one simulation per initial guess β(0)), and
we indicate with red error bars the first and last decile estimate values of each entry except
for entries where no variability was observed (in this case no error bar is displayed). We can
see that most of the vanishing entries remained stable (i.e., remained vanishing whatever the
initial guess) in this simulation. However, one can remark that some non vanishing entries
exhibit a large variability with respect to the choice of the initializer. This is especially true
for small values of q (see (a) and (b)) and this variability decreases as q gets close to 1 (see
(c)). The sensitivity of the AR scheme to the choice of the initializer is a consequence of the
nonconvexity (when q < 1) of the energy to minimize. However, when q = 1 the energy is
convex and does not assume local minima. This experiments illustrates that the influence of
local minima of the `q penalized energy on the estimate produced by the AR scheme decreases
as q increases.
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underlying `1 penalized energy to minimize is convex and admits a unique mini-
mizer (since X is of full rank in our simulation scheme). However, for q < 1, the
number of local minima of the `q penalized energy probably increases as q de-
creases, and as a result, the scheme becomes more sensitive to the choice of the
initializer. This can also be observed in Table 1 where we study the sensitivity
of the energy of the final iterate produced by Algorithm 3 with respect to the
choice of the initializer. Looking at the last column of Table 1, we can see that
this sensitivity decreases as q increases from zero to one (with no quantitatively
meaningful variability observed for q = 1).

Table 1
Sensitivity of the AR scheme to the initialization. As in Fig. 4. We considered one single
(X,β?, y) dataset and 104 random initial guesses β(0). We provide here some statistics on
the energy of the estimate returned by Algorithm 3 with respect to the choice of the initial

guess β(0) of the AR scheme (other parameters for Algorithm 3: λ′ = 0.1, ε = εcg = 10−16).

Setting
energy of the Adaptive-Ridge output estimate

min first decile median last decile max max−min
median

q = 0 δ = 10−5 9.128 11.29 12.73 13.87 14.51 42 %

q = 0.2 δ = 0 8.56 9.076 9.353 9.694 9.958 15 %

q = 0.4 δ = 0 7.332 7.409 7.466 7.658 8.043 9.5 %

q = 0.6 δ = 0 6.58 6.582 6.591 6.664 7.044 7 %

q = 0.8 δ = 0 5.928 5.93 5.932 5.936 6.018 1.5 %

q = 1 δ = 0 5.197 5.197 5.197 5.197 5.197 5.2 · 10−9

Another interesting point is that the variability of the output estimate with
respect to the choice of the initializer seems to be restricted to some coordinates
only. Indeed, we can observe in Fig. 4 that most vanishing coordinates of the
estimates remained stable (i.e. they remained vanishing) in all our simulations.
This means that the sensitivity of the scheme with respect to the initializer may
not equally affect all entries of the estimator. However, this observation may
also be a consequence of the restricted range of initializers considered in our
simulations.

4.3.5. Execution time

As mentioned before, Algorithm 1 and Algorithm 3 both implement the same
scheme, and thus, they both produce the same estimate (up to numerical round-
ing errors) when applied to the same dataset and using the same input parameter
values. However, since those two algorithms are implemented in different ways,
they exhibit different performances in terms of computation time. Algorithm 1
relies on the direct inversion of a linear system at each iteration, while, with
Algorithm 3, the system is symmetrized and its inversion is specifically handled
using the CG Algorithm (as explained in Section 4.2). The evolution of the
computation time for both algorithms with respect to the dimension p of the
problem is studied in Fig. 6. Unsuprisingly, we found that Algorithm 3 becomes
significantly faster than Algorithm 1 for large values of p.
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Fig 5. Execution time. We measured the execution time of Algorithm 1 and Algorithm 3
applied to simulated datasets (X,β?, y) with matrix X of size n× p for n = 500 and various
values of p between 100 and 1000. We performed 103 simulations per tested value of p and
executed both algorithms using q = 0.1, δ = 0, λ′ = 0.1, ε = 10−5 (and εcg = 10−16 for
Algorithm 3). For each simulation, a given β(0) (randomly sampled according to a uniform
distribution) was used as initial guess for both algorithms. For each value of p, we display
using a blue bar the median execution time obtain with Algorithm 1 among the 103 simula-
tions, and using an orange bar that obtained using Algorithm 3. Error bars indicate the first
and last decile of the computation times measured among the 103 simulations. We can see
that, the execution time of both algorithms is comparable for p < 300. However, we can see
that as p increases, Algorithm 3 becomes significantly faster than Algorithm 3. This is not
surprising since Algorithm 3 exhibits a Θ(p2) temporal complexity while that of Algorithm 1
is in Θ(p3). Notice that the same study was led for n = 100 and n = 1000 and yielded the
same conclusion (results not shown).

4.3.6. Convergence of the scheme iterates

Results of convergence for the iterates generated by the IRLS Algorithm in
the constrained framework (40) can be found in [12] and references therein (we
recall that the link between the IRLS and AR algorithms in this constrained
framework was discussed in Section 2.5). In [12, Theorem 5.3], convergence with
a linear rate (that is, exponential decay of the distance between the scheme
iterates and their limit) of the sequence generated by the IRLS scheme toward
a solution of (40) is shown for q = 1. In the setting 0 < q < 1, convergence
with a superlinear rate of the IRLS scheme toward a (local) solution of (40) is
established in [12, Theorem 7.9]. However, the AR scheme (48) considered in
our experimental section does not address the constrained problem (40) but the
minimization of a `q penalized energy which can be viewed as a relaxed variant of
the constrained problem (40). Some variants of the IRLS scheme in such relaxed
framework are described in [31, 49, 18] and boil down to the same scheme as
the AR scheme (48) provided that an appropriate update of the δ parameter is
done at each iteration. Convergence results are also established in this relaxed
framework but in a weaker sense (only the existence of accumulation points of
the sequence of the IRLS iterates is shown, see [18, Theorem 5] and references
therein). In this work, we performed an empirical study of the convergence of
the AR scheme. It seems that a linear convergence rate is achieved for 0 < q ≤ 1
and that this rate improves as q decreases, as illustrated in Fig. 6.
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(a) Algorithm 3 with q = 1 (b) Algorithm 3 with q = 0.1

Fig 6. Convergence of the AR scheme. We simulated 104 synthetic datasets (X,β?, y).
Each dataset was processed using Algorithm 3 with λ′ = 0.1, q ∈ {0.1, 1} and a random
initial guess. For each simulation, we comptuted the relative distance between the iterate β(k)

and β(1000000) (denoted β(∞)). We display here the first, median and last deciles of this
relative error as functions of k. For both q = 0.1 and q = 1, we can observe a relatively slow
decrease rate of the relative error in O(1/k) during the first iterations, followed by a faster
decrease rate in O(e−αk) for a given α > 0. This rate is much more faster for q = 0.1 than
for q = 1. Interestingly enough, the same behavior was pointed out in [32] for another class
of convex minimization algorithms (the so-called Forward-Backward splitting algorithms).

4.3.7. Systems conditioning

In Section 4.1, we pointed out that some care should be taken when addressing
the numerical computation of step (48a) of the AR scheme. Indeed, if comput-
ing (48a) is formally equivalent to solving the linear system (50), we explained
that the latter may exhibit bad conditioning, especially for small values of δ.
This phenomenon is indeed illustrated in Table 2, where we report some statis-
tics on the condition number (in `2 norm) of all matrices (50) obtained when
implementing the AR scheme (with q = 0.1, λ′ = 0.1 and several values of δ)
to process 104 simulated datasets (X,β?, y). We can see in Table 2 that large

Table 2

Setting
Condition numbers for systems (50)

first decile median last decile

δ = 10−1 11 12 14

δ = 10−5 6.6 · 107 3.3 · 108 3.7 · 108

δ = 10−10 4.9 · 108 4.6 · 1018 5.2 · 1020

enough values of δ (such as δ = 0.1 in our experiments, but, as we will discuss
in the next section, this setting is not scale invariant) yield well conditioned
systems. However, as δ decreases, we rapidely observe extremely badly condi-
tioned systems. This means that, for small values of δ, even small errors on the
input observation y may be dramatically amplified during the inversion process.
Notice that the authors of [20] recommend the setting δ = 10−5. However, as
we will observe in the next section, in practical situations this setting turns out
to be equivalent to the setting δ = 0 (provided that bad conditioning issues are
properly handled).
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Repeating the same experiment as in Table 2 but considering the precondi-
tioned linear systems (51) involved in Algorithm 1 or the preconditioned and
symmetrized linear systems (54) involved in Algorithm 3, we observed condition
numbers of at most 9 among all simulations, for δ ∈ {10−10, 10−5, 10−1} and
even for δ = 0. This empirically confirms the benefit of those preconditioning
operations regarding the numerical implementation of the AR scheme.

4.3.8. Influence of the δ parameter

In Fig. 7, we display a simple example of estimates produced by the AR scheme
with q = 0.1, λ′ = 0.1 and δ ∈ {0, 0.05, 0.1}.

(a) module aridge cg with δ = 0 or δ = 0.1

(b) module aridge cg with δ = 0 or δ = 0.05

Fig 7. Influence of the δ parameter. We processed a single synthetic dataset (X,β?, y)
using Algorithm 3 with λ′ = 0.1, q = 0.1 and various settings of δ. The estimate obtained
using δ = 0 is displayed using blue plain stems in both (a) and (b). The estimate obtained
using δ = 0.1 is displayed using orange dashed stems in (a) and that obtained using δ = 0.05
is displayed using green dashed stems in (b). We can see in (a) that the settings δ = 0 and
δ = 0.1 yield sensibly different estimates. However, one can see in (b) that setting δ = 0.05
yields an estimate closer to that obtained for δ = 0. More comments on this experiments are
given in the text below. Besides, a more exhaustive comparison between the estimates obtained
using δ = 0 and δ > 0 is proposed in Fig. 8.
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In Fig. 7 (a), we can see that the estimate computed with δ = 0.1 is sensibly
different from that obtained using δ = 0. Decreasing the value of δ yields closer
estimates, as illustrated in Fig. 7 (b) with δ = 0.05, and more exhaustively
highlighted in Fig. 8.

Fig 8. Distance between estimates obained with δ = 0 and δ > 0. In this experiment, we
simulated 104 synthetic datasets (X,β?, y). Each dataset was processed by Algorithm 3 using
a random inital guess β(0) and setting λ′ = 0.1, q ∈ [0.1, 1], ε = εcg = 10−16 and δ ∈ [0, 1].
After each experiment, we computed the Euclidean distance between the estimate produced
using δ = 0 and δ > 0. For each setting of (q, δ), we computed the median distances observed
over the 104 simulations and we display here, using false colors and level lines, the evolution
of this distance as a function of (q, δ). We can see that, the estimates obtained using δ > 0
gets rapidly significantly close to that obtained for δ = 0 as δ decreases.

The proximity observed in Fig. 8 between the estimates computed using small
enough values of δ and that computed using δ = 0 was somehow expected since
the underlying energies to be minimized, i.e. Eν,δλ,q (with ν = 2 and λ = λ′/q)
when setting δ > 0 in Algorithm 3 and Eλ,q when setting δ = 0 in Algorithm 3,
are asymptotically the same as δ → 0. However, we observed that a noticeable
difference remains between the estimates produced using δ = 0 and δ > 0: those
obtained using δ = 0 are sparse, while those obtained using δ > 0 exhibit no
vanishing entries. Since producing sparse estimates is the initial motivation for
addressing `q penalized minimization, when the setting δ > 0 is considered, a
natural idea is to hard threshold the produced estimate using δ as threshold
parameter. This means that at the end of the execution of the AR scheme, the
entries of the produced estimate with absolute values less than δ are replaced
by 0. As illustrated in Fig. 7, we observe that, as long as δ is small enough,
this thresholding operation produces estimates with the same support as those
obtained using δ = 0.

In [20], the authors recommend the setting δ = 10−5 claiming that δ = 0
would be more attractive but would cause numerical instabilities. We have sev-
eral objections about this recommendation. First, the setting δ = 10−5 is not
scale invariant. If we multiply by a given scalar number the ground-truth β? in
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the simulation scheme, the δ parameter will also need to be rescaled accordingly.
Second, thanks to preconditioning, the AR scheme does no longer suffer from
numerical instabilities caused by the setting δ = 0 (nor by small values of δ).
Besides, as far as we could observe in our simulations, the setting δ ≤ 10−5

yields estimates with no substantial differences compared to those computed
using δ = 0 (as long as the initial guess β(0) does not assume vanishing entries).
From a practical viewpoint, the setting δ = 0 avoids the tuning of δ, the scale
invariance issues, and produces estimates that can assume vanishing entries so
that no further thresholding operation is necessary. For sure, the choice δ = 0
also comes with drawbacks that we already discussed before. More advanced
schemes with adaptive setting of the δ parameter can be found in the field of
compressed sensing with IRLS algorithms [12, 18, 41] although the uptade of δ
also raises some numerical issues, as pointed out in [41, Section 2.4.1.2] and [18].

4.3.9. Regularization paths

The quality of the estimates produced by the AR Algorithm largely depends on
the setting of the q and λ′ parameters, as well as on the sparsity of the targeted
β? vector involved in our simulation scheme. In the statistics community, this
aspect is usually studied through the so-called regularization paths. The latter
correspond to the evolution of each entry of the AR estimate as a function of q
and λ′ (2D regularization paths), or as a function of λ′ for a fixed value of q (1D
regularization paths). An example of 2D regularization path is displayed and
commented in Fig. 9. The 1D regularization paths for q ∈ {0.1, 1, 1.9} extracted
from this 2D regularization path are displayed in Fig. 10 (first column).

(a) view from one side (b) view from the other side

Fig 9. Two-dimensional regularization paths. We synthetized a random dataset (X,β?, y)
with dimensions (n = 300, p = 50) and such as ‖β?‖0 = 5. We used Algorithm 3 to process
this dataset for a large range of parameters (q, λ′) ∈ [0.01, 1.99]× [10−8, 102], using δ = 0 and

ε = εcg = 10−16. Denoting β̂q,λ
′

the estimate produced using (q, λ′) as input parameters, we

display using two dimensional surfaces the evolution of each coordinate β̂q,λ
′

j (for 1 ≤ j ≤ p)

as a function of (q, λ′). The five coordinates corresponding to active coordinates in the ground
truth signal β?, (i.e., the coordinates j such as β?j 6= 0) are drawn in yellow color, while we

used blue color for the other coordinates. Correct support identification (that is non-zero
values for the yellow surfaces and zero-values for the blue ones) seems difficult to obtain for
1 < q < 2 but easier for q ≤ 1 (see also the first column of Fig. 10).
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highly sparse dataset weakly sparse dataset
(90% of zero-entries in β?) (42% of zero-entries in β?)

Fig 10. Mono-dimensional regularization paths. First column : we display the 1D regular-
ization paths extracted from the 2D regularization path of Fig. 9 for q = 1.9 (first row), q = 1
(second row) and q = 0.1 (last row). We used plain curves to display the five coordinates
that are active in the ground truth signal β?, and dashed curves to display the others. We
can see that, provided that λ′ lies in an appropriate interval (delimited by dotted red lines in
the second and last rows), perfect support identification is possible for q = 1 and q = 0.1,
which is not the case for q = 1.9. Second column: we reproduced the same experiment using a
dataset (X,β?, y) generated with ‖β?‖0 = 21 (instead of ‖β?‖0 = 5). We can see that perfect
support identification is no longer possible for this dataset when q = 1 but remains possible
for q = 0.1.
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The first column of Fig. 10 illustrate how `q penalization, for 0 < q ≤ 1, can
provide efficient support identification (i.e., provide an estimate with same sup-
port as the ground thruth signal β?) provided that the λ′ parameter lies into an
approriate range. This observation was confirmed by many simulations operated
in the same conditions (that is, using n = 300, p = 50 and a ground truth β?

with an average of 90% of zero-valued entries). As surprising as it might seem,
the ability of the convex `1 regularizer to perform as well as the nonconvex `0

regularizer in terms of support identification (and under sufficient conditions on
X, β? and y) is in fact a flagship result of compressed sensing [13, 25]. In this
situation, convex `1 minimization can be preferred to nonconvex (and in general
NP-hard) `0 minimization, or to its `q (for 0 < q < 1) or log-square based ap-
proximations, because powerful algorithms can be used in the first case. Indeed,
despite the nondifferentiability of the `1 norm, the minimization of `1 regular-
ized energies can be efficiently handled using modern proximal algorithms based
on Legendre-Fenchel duality [16, 43], such as the celebrated Chambolle-Pock Al-
gorithm [6], or its recent generalization [7] which can efficiently benefit from the
presence of terms with Lipschitz gradient (e.g., a quadratic least squares term)
in the energy to be minimized (see also closely related algorithms in [11, 47, 14]).
Those algorithms are fast and come with strong mathematical garantees regard-
ing the convergence of the sequence of their iterates toward a minimizer of the
targeted energy (which is not the case of the AR scheme). However, `1 mini-
mization may also fail to provide efficient support identification. This typically
occurs when dealing with datasets generated from weakly sparse signals β?, as
illustrated in the second column of Fig. 10. In this situation, `q minimization
with 0 < q < 1 should be considered and the AR Algorithm (and more gen-
erally the IRLS algorithms) definitely provides an efficient scheme to address
those nonconvex problems.

5. Extension to `q constrained selection

5.1. Principles and motivations

In previous sections, we mostly focused on the `q regularized problem (3) as an
approximation of the L0 penalized problem (1) that we write again below for
the reader convenience:

argmin
β∈Rp

C(β) + λL0(β) . (61)

The parameter λ > 0 involved in (61) controls the relative importance of L0

with respect to C in the minimization process. Since the L0 regularizer promotes
sparse signals, as λ increases, we expect the sparsity of the minimizers of (61) to
increase as well. Nevertheless, predicting the sparsity level (that is, the number
of nonzero entries) of the solutions of (61) depending on the calibration of λ is
in general not possible.
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In situations when we have insights about the sparsity level of the signal to
compute, or when we need to precisely control the sparsity level of the signal to
compute, we may prefer to address the constrained problem of computing

β̃ ∈ argmin
β∈Rp

C(β) subject to L0(β) ≤ t (62)

for a given t ≥ 0 which represents the maximal sparsity level allowed for the
signal β̃. In practice, this t parameter plays in (62) a similar role to that of
parameter λ in (61) but with inverse variation (the larger t is, the less spar-
sity is promoted in (62), while the inverse phenomenon occurs with λ in (61)).
In fact, (61) can be interpreted as a relaxed version of the constrained prob-
lem (62). Similarly, the cost function involved in (61) can be interpreted as
the Lagrangian (see for instance [4, Chapter 5]) associated to the constrained
problem (62). When the functionals involved in the minimization problems (cost
functions and inequality constraints) are convex and differentiable, the so-called
Karush-Kuhn-Tucker conditions can be used to characterize the solutions of the
constrained problem and provide a form of equivalence between the constrained
and relaxed problems (see [4, Section 5.5.3]). However, problems (61) and (62)
involve nonconvex and nondifferentiable functions, so that formal equivalence
between those two problems is not ensured here [35, 53]. Apart from those con-
siderations, a practical advantage of the constrained formulation (62) is that
the parameter t has a much more tangible interpretation than the parameter
λ involved in (61). Consequently, the calibration of t may be noticeably easier
than that of λ in practical applications.

For sure, the constrained problem (62) remains very challenging due to the
presence of the nonconvex and nondifferentiable L0 term defining the constraint
set. For that reason, we will use again the `q norm as an approximation of the
L0 penalty, leading to the `q constrained problem of computing

β̃ ∈ argmin
β∈Rp

C(β) subject to ‖β‖qq ≤ t . (63)

In this framework, we are going to show how the variational formulation of
the `q norm presented in Proposition 1 can be used to design an alternating
minimization scheme for (63). As we shall see, the structure and some properties
of this scheme will be similar to that of the AR scheme.

5.2. An alternating minimization scheme and its properties

From now, let us consider q > 0, a sparsity level t ≥ 0, and let us focus on the `q

constrained problem (63). Notice that, when the cost function C is continuous,
since the constraint set

Bq(t
1
q ) =

{
β ∈ Rp , ‖β‖q ≤ t

1
q

}
(64)

is compact (as a closed and bounded subset of Rp), the existence of solutions
for (63) is ensured. The continuity of C is not a necessary condition to ensure the
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existence of solutions for (63), but it happens to be satisfied in most practical
applications (e.g., when C : β 7→ ‖y −Xβ‖22, as in Section 4).

In order to figure out a numerical scheme for solving (63), let us establish a
slight variant of Proposition 1 involving the generalized ratio function r defined
in (18).

Proposition 6. For all β ∈ Rp, for all q > 0 and for all ν > q, we have

‖β‖qq = min
η∈Rp+

L ν
q (β, η) :=

q

ν
·
p∑
j=1

r(|βj |ν , ηj) +
ν − q
ν
·
p∑
j=1

η
q

ν−q
j

 (65)

and the minimum is attained at η = |β|ν−q.

Proof. Let us show this result in the unidimensional case (p = 1). Let β ∈ R. If
β = 0, for all η > 0, we have L ν

q (|β|ν , η) > L ν
q (|β|ν , 0) = 0. Therefore, (65) is

true for β = 0 and the minimum is attained at η = 0 = |β|ν−q as announced.
Now, if β 6= 0, then, for all η > 0, we have L ν

q (|β|ν , η) < L ν
q (|β|ν , 0) = +∞.

Therefore, the minimum in (65) can be restricted to η > 0 so that (65) is nothing
more than (8), and the minimum is indeed attained at η = |β|ν−q thanks to
Proposition 1. This ends the proof of Proposition 6 for p = 1. Finally, this
result can be extended to higher dimension (p ≥ 1) for any β ∈ Rp thanks to
the additive separability of η 7→ L ν

q (β, η) with respect to (η1, η2, . . . , ηp).

Thanks to Proposition 6, the `q constrained problem (63) is equivalent to
computing

β̃ ∈ argmin
β∈Rp

C(β) subject to min
η∈Rp+

L ν
q (β, η) ≤ t . (66)

An interesting alternating minimization strategy to address (66) consists in
setting β(0) ∈ Bq(t) and iterating for k ≥ 0,

η(k+1) ∈ argmin
η∈Rp+

L ν
q (β(k), η)

β(k+1) ∈ argmin
β∈Rp

C(β) subject to L ν
q (β, η(k+1)) ≤ t .

(67a)

(67b)

Thanks to Proposition 6, (67a) admits η(k+1) = |β(k)|ν−q as unique solution. As
we did before, we implicitly assume here that (67b) admits some solutions so that
this scheme iteration is well defined. One can easily check that the constraint
set in (67b) is closed and bounded, and thus, compact. Therefore, the existence
of solutions for (67b) is ensured when C is continuous. In the following, we set

∀η ∈ Rp+ , E ν
q (η, t) =

{
β ∈ Rp , L ν

q (β, η) ≤ t
}

(68)

so that the constraint L ν
q (β, η) ≤ t is equivalent to β ∈ E ν

q (η, t) and (67) boils
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down to setting β(0) ∈ Bq(t
1
q ) and iterating, for k ≥ 0,

η(k+1) = |β(k)|ν−q

β(k+1) ∈ argmin
β∈Rp

C(β) subject to β ∈ E ν
q (η(k+1), t) .

(69a)

(69b)

Now let us show that the iterates
(
β(k)

)
k≥0

generated using (69) satisfy the

energy decrease property.

Proposition 7. The iterates (β(k))k≥0 generated using (69) are all included in
Bq(t) and the sequence

(
C(β(k))

)
k≥0

is decreasing, i.e.,

∀k ≥ 0 , β(k) ∈ Bq(t
1
q ) and C(β(k+1)) ≤ C(β(k)) .

Besides, if C is bounded from below, then the sequence
(
C(β(k))

)
k≥0

converges.

In order to prove Proposition 7, we need the following Lemma.

Lemma 3. For all k ≥ 0, the set E ν
q (η(k+1), t) is a nonempty subset of Bq(t

1
q )

that contains β(k), i.e.,

∀k ≥ 0 , E ν
q (η(k+1), t) ⊂ Bq(t

1
q ) and β(k) ∈ E ν

q (η(k+1), t) . (70)

Proof. Let k ≥ 0 and β ∈ E ν
q (η(k+1), t), thanks to Proposition 6, we have

‖β‖qq = min
η∈Rp+

L ν
q (β, η) ≤ L ν

q (β, η(k+1)) ≤ t ,

the right-hand side inequality L ν
q (β, η(k+1)) ≤ t coming from β ∈ E ν

q (η(k+1), t).

It follows that β ∈ Bq(t
1
q ), showing the inclusion E ν

q (η(k+1), t) ⊂ Bq(t
1
q ).

Therefore, (69b) necessarily generates β(k+1) ∈ Bq(t
1
q ). Since we initialized

the scheme using β(0) ∈ Bq(t
1
q ), all the sequence (β(`))`≥0 lies in Bq(t

1
q ). In

particular, we have β(k) ∈ Bq(t
1
q ), and thus, using again Proposition 6, we have

t ≥ ‖β(k)‖qq = min
η∈Rp+

L ν
q (β(k), η) = L ν

q (β(k), |β(k)|ν−q) = L ν
q (β(k), η(k+1))

showing that β(k) ∈ E ν
q (η(k+1), t), which ends the proof.

Proof of Proposition 7. The inclusion in Bq(t
1
q ) of all the iterates

(
β(k)

)
k≥0

was already established in the proof of Lemma 3. Let k ≥ 0. From Lemma 3,
we have β(k) ∈ E ν

q (η(k+1), t). Therefore, (69b) necessarily generates an iterate

β(k+1) such as C(β(k+1)) ≤ C(β(k)), as announced.

Remark 5. Assuming that, for k ≥ 0, we can find j ∈ {1, 2, . . . , p} such as

β
(k)
j = 0, then (69a) yields η

(k+1)
j = 0 and one can easily check that we have

∀β ∈ Rp , L ν
q (β, η(k+1)) ≤ t ⇒ βj = 0
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since L ν
q (β, η(k+1)) = +∞ when βj 6= 0. Consequently, the constraint set

E ν
q (η(k+1), t) involved in (69b) imposes β

(k+1)
j = 0.

Remark 5 points out that, similarly to Scheme (19), the vanishing coordinates
of an iterate β(k) generated by (69) will remain vanishing in all later iterations.
As done in the AR and IRLS schemes, we can avoid the persitence of vanishing
coordinates by introducing a parameter δ > 0 within the `q penalty term. More
precisely, instead of considering (63), one can consider the problem of finding

β̃ ∈ argmin
β∈Rp

C(β) subject to ‖|β|ν + δν‖q/νq/ν ≤ t . (71)

For the sake of completeness, we explain in Appendix D how (71) can be ad-

dressed by setting β(0) such that ‖|β(0)|ν + δν‖q/νq/ν ≤ t, and iterating, for k ≥ 0,
η(k+1) =

(
|β(k)|ν + δν

) ν−q
ν

β(k+1) ∈ argmin
β∈Rp

C(β) subject to β ∈ E ν,δ
q (η(k+1), t) ,

(72a)

(72b)

where, for all η ∈ (R∗+)p, we have set

E ν,δ
q (η, t) =

β ∈ Rp ,
q

ν
·
p∑
j=1

|βj |ν + δν

ηj
+
ν − q
ν
·
p∑
j=1

η
q

ν−q
j ≤ t

 . (73)

This scheme can be viewed as another (constrained) variant of the AR or IRLS
schemes. We easily get the following result.

Proposition 8. Given β(0) such as ‖|β(0)|ν+δν‖q/νq/ν ≤ t, the sequence (β(k))k≥0

generated using (72) satisfies

∀k ≥ 0 , ‖|β(k)|ν + δν‖q/νq/ν ≤ t and C(β(k+1)) ≤ C(β(k)) .

Proof. The proof is given in Appendix D.

We would like to point out that Scheme (72) has been proposed and studied
very recently in [52] in the case where C : β 7→ ‖y−β‖22 and using a dynamic up-
dating strategy for parameter δ along the scheme iterations. Some other closely
related schemes were also recently studied in [50, 51].

5.3. Numerical implementation

In this section, given a matrix X ∈ Rn×p and a vector y ∈ Rn, we focus on
the numerical implementation of the scheme (69) in the case where C : β 7→
‖y − Xβ‖22. Since the η update step (69a) is explicit in this scheme, our main
goal is to achieve the numerical computation of (69b), that is, for k ≥ 0,

β(k+1) ∈ argmin
β∈Rp

‖y −Xβ‖22 subject to β ∈ E ν
q (η(k+1), t) (74)
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given η(k+1) = |β(k)|ν−q computed from the previous iterate β(k). In order to
compute β(k+1), we need the following Lemma.

Lemma 4. Given β̃ ∈ Bq(t
1
q ) and setting η̃ = |β̃|ν−q, we have

E ν
q (η̃, t) = D(η̃

1
ν ) Bν(zνq (η̃, t)) :=

{
D(η̃

1
ν ) ξ̃ , ξ̃ ∈ Bν(zνq (η̃, t))

}
(75)

where

zνq (η̃, t) =

ν
q

t− ν − q
ν

p∑
j=1

η̃
q

ν−q
j

 1
ν

(76)

and where we recall that D(η̃
1
ν ) = diag(η̃

1
ν
1 , η̃

1
ν
2 , . . . , η̃

1
ν
p ) and that Bν(z) denotes

the `ν ball with zero center and radius z, i.e., Bν(z) = {ξ ∈ Rp , ‖ξ‖ν ≤ z}.

Proof. The proof is given in Appendix E.

Remark 6 (shape of the constraint set). From (75), we can see that E ν
q (η̃, t) is

nothing but a `ν ball (with radius zνq (η̃, t)) dilated along each axis by the diagonal

rescaling matrix D(η̃
1
ν ). In particular, E ν

q (η̃, t) is an ellipsoid when ν = 2 and
a diamond when ν = 1.

Corollary 1. For k ≥ 0, denoting Dk+1 = D((η(k+1))
1
ν ), the solutions of (74)

are the vectors β(k+1) = Dk+1 ξ
(k+1) such as

ξ(k+1) ∈ argmin
ξ∈Rp

‖y −XDk+1 ξ‖22 subject to ξ ∈ Bν(zνq (η(k+1), t)) . (77)

This result is a straightforward consequence of Lemma 4 applied to β̃ = β(k)

which is an element of Bq(t
1
q ) (see Proposition 7).

Remark 7. When β(k) admits a vanishing coordinate, i.e., β
(k)
j = 0 for a given

j ∈ {1, 2, . . . , p}, we have η
(k+1)
j = 0. In this case, the matrix XDk+1 is rank

deficient and (77) admits an infinite number of solutions as long as t > 0.
However, whatever the considered solution ξ(k+1) of (77) in this situation, by

setting afterwards β(k+1) = Dk+1 ξ
(k+1), we necessarily end up with β

(k+1)
j = 0.

Therefore, noting Jk the support of β(k), i.e.,

Jk = {j ∈ {1, 2, . . . , p}, β(k)
j 6= 0} ,

one may prefer considering instead of (77) the constrained problem

ξ(k+1) ∈ argmin
ξ∈Rp

‖y −XDk+1 ξ‖22 subject to

{
ξ ∈ Bν(zνq (η(k+1), t))

∀j 6∈ Jk , ξj = 0
(78)

and retrieve again the minimizers of (74) by computing β(k+1) = Dk+1 ξ
(k+1).

In particular, we can show that the constrained problems (74) and (77) both
admit a unique solution if and only if the matrix Xk obtained by removing from
X the columns with index j 6∈ Jk is of full rank.
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Thanks to Corollary 1, the scheme (69) is equivalent to setting β(0) ∈ Bq(t
1
q )

and iterating for k ≥ 0,

η(k+1) = |β(k)|ν−q

Dk+1 = D((η(k+1))
1
ν )

zk+1 =

ν
q

t− ν − q
ν

p∑
j=1

(
η

(k+1)
j

) q
ν−q

 1
ν

ξ(k+1) ∈ argmin
ξ∈Rp

‖y −XDk+1 ξ‖22 subject to ξ ∈ Bν(zk+1)

β(k+1) = Dk+1 ξ
(k+1) .

(79a)

(79b)

(79c)

(79d)

(79e)

In this scheme, steps (79a), (79b), (79c) and (79e) are explicit. It remains to
compute a solution of the constrained problem (79d). Fortunately, this kind of
problem can be easily addressed using proximal algorithms. In particular, for
any k ≥ 0, using the dual identity

∀ξ ∈ Rp , ‖y −XDk+1 ξ‖22 = max
γ∈Rn

2 〈XDk+1 ξ, γ〉 − ‖γ + y‖22 + ‖y‖22

in (79d) and removing the constant term ‖y‖22 that does not change the argmin,
we can reformulate (79d) into the primal-dual problem of computing

ξ(k+1) ∈ argmin
ξ∈Rp

max
γ∈Rn

2 〈XDk+1 ξ, γ〉 − ‖γ + y‖22 s.t. ξ ∈ Bν(zk+1) . (80)

The primal-dual problem (80) can be efficiently handled using modern proximal
algorithms, such as those proposed in [6, 7, 14, 11]. For instance, Chambolle-
Pock Algorithm [6] applied to (80) boils down to setting (ξ0, ξ0, γ0) ∈ Rp×Rp×
Rn, τ > 0, σ > 0, and to iterating for ` ≥ 0,

γ`+1 =
γ` + 2σXDk+1ξ` − 2σy

1 + 2σ

ξ`+1 = ΠBν(zk+1)

(
ξ` − 2τDk+1X

tγ`+1

)
ξ`+1 = 2 ξ`+1 − ξ`

(81a)

(81b)

(81c)

denoting by ΠBν(zk+1) the orthogonal projection onto the convex set Bν(zk+1).
The convergence of (81) towards a solution of (80) (and thus, a solution of (79d))
is ensured as long as the primal and dual steps (τ, σ) satisfy τσ < |||2XDk+1|||2,
denoting by ||| · ||| the `2 induced norm (see [6, Theorem 1]). Therefore, from any
upper bound Lk+1 ≥ |||2XDk+1|||, one can, for instance, set τ = σ = 0.99/Lk+1

to ensure the convergence of (81) toward a solution of (79d). In practice, the
closer to |||2XDk+1||| the upper bound Lk+1 is, the faster the convergence is.
Notice that (81b) involves a projection onto the convex ball Bν(zk+1). When
ν = 2, this projection is explicit, and we simply have

∀ξ ∈ Rp , ∀z ≥ 0 , ΠB2(z)(ξ) =
z ξ

max (z, ‖ξ‖2)
. (82)
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When ν = 1, the projection onto the `1 ball B1(zk+1) can be efficiently com-
puted in O(p log p) operations using the method described in [15] and that we
summarize in Algorithm 4 for the sake of completeness. The numerical evalua-
tion of (79d) using Chambolle-Pock Algorithm is summarized in Algorithm 5.
Finally, the computation of (63) with C : β 7→ ‖y −Xβ‖22 using Scheme (79) is
summarized in Algorithm 6.

Remark 8. Scheme (79) can be easily generalized to address the approached (or
δ regularized) `q constrained problem (71) through the alternating scheme (72).
For any δ ≥ 0, one simply needs to replace (79a) by (72a) and (79c) by

zk+1 =

ν
q

t− q

ν

p∑
j=1

r(δν , η
(k+1)
j )− ν − q

ν

p∑
j=1

(
η

(k+1)
j

) q
ν−q

 1
ν

. (83)

When δ = 0, (83) is exactly the same as (79c), since r(0, y) = 0 for any y ∈ R.
Those modifications can be easily implemented in Algorithm 6 (line 5 and line 7)
to expand its scope to (71) with δ ≥ 0.

Algorithm 4: orthogonal projection onto B1(z) [15].

Inputs : a vector ξ ∈ Rp and a scalar z ≥ 0.

Output: ΠB1(z)(ξ), the orthogonal projection of ξ onto the `1 ball with radius z.

1 if ‖ξ‖1 > z then

2 µ← (|ξ1|, |ξ2|, . . . , |ξp|)
3 sort µ in descending order (µ1 ≥ µ2 ≥ · · · ≥ µp)

4 ρ← max

j ∈ {1, 2, . . . , p} , µj − 1

j

 j∑
r=1

µr − z

 > 0


5 θ ←

1

ρ

 ρ∑
j=1

µj − z


6 w ← max (|ξ| − θ, 0) · sign(ξ) // coordinate-wise operations (see below)

7 else w ← ξ

8 return w

In line 6, for all j ∈ {1, 2, . . . , p}, we set wj ← max(|ξj |− θ, 0) · sign(ξj), where sign(t) = t/|t| when
t 6= 0 and sign(0) = 0.

5.4. Experiments

In this section, we will illustrate the behavior of Algorithm 6 over synthetic
datasets. First of all, we focus on the the two-dimensional framework (p =
2) since this simplified setting opens the door for easy understanding of the
algorithmic procedure. In Fig. 11 we display and comment the first iterations
of Algorithm 6 used with ν = 2 over a synthetical dataset.
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Algorithm 5: solver for Problem (79d) (primaldual module) [6].

Input : a matrix M ∈Mn,p(R) (equal to the matrix product XDk+1 involved
in (79d)), the vector y ∈ Rn, the parameter ν > 0 and the `ν ball radius
zk+1 ≥ 0 involved in (79d), some initial values for the primal and dual

variables (ξ0, ξ0, γ0) ∈ Rp × Rp × Rn of the scheme (81), two steps τ > 0
and σ > 0 such that τσ < |||2M |||2 and a tolerance parameter ε > 0.

1 `← 0
2 repeat

3 γ`+1 ←
(
γ` + 2σMξ` − 2σy

)
/(1 + 2σ)

4 ξ`+1 ← ΠBν(zk+1)

(
ξ` − 2τMtγ`+1

)
// see note below.

5 ξ`+1 ← 2 ξ`+1 − ξ`
6 `← `+ 1

7 until ‖y −Mξ`‖22 − ‖y −Mξ`−1‖22 ≤ ε · ‖y −Mξ`−1‖22
8 return (ξ`, γ`)

Line 4: the projection over Bν(zk+1) can be done using (82) when ν = 2 or using Algorithm 4
when ν = 1. Line 7: we used again an energy-based stopping criterion but other kind of criteria
(e.g., based on the so-called duality gap [6]) can also be considered. Line 8: ξ` is the estimated
minimizer of ξ 7→ ‖y −Mξ‖22 over Bν(zk+1), the dual variable γ` is also returned to be used as a
dual initializer in the next iteration of the scheme (79).

Algorithm 6: `q constrained minimization using Scheme (79)

Input : Some parameters t ≥ 0, q > 0, ν > q, a matrix X ∈Mn,p(R), an initial

guess β(0) ∈ Bq(t
1
q ) and a tolerance parameter ε > 0.

Output: an estimate of a local minimizer of E : β 7→ ‖y −Xβ‖22 over Bq(t
1
q )

1 k ← 0

2 γ(0) ← 0 // zero vector in Rn

3 ξ(0) ← 0 // zero vector in Rp
4 repeat

5 η(k+1) ← |β(k)|ν−q

6 Dk+1 ← D((η(k+1))
1
ν )

7 zk+1 ←
[
ν
q

(
t− ν−q

ν

∑p
j=1

(
η
(k+1)
j

) q
ν−q

)] 1
ν

8 (τ, σ)← two positive parameters such as τσ < |||2XDk+1|||2

9 (ξ(k+1), γ(k+1))← primaldual(XDk+1, y, ν, zk+1, (ξ
(k), ξ(k), γ(k)), τ, σ, ε)

10 β(k+1) ← Dk+1 ξ
(k+1)

11 k ← k + 1

12 until E(β(k))− E(β(k−1)) ≤ ε · E(β(k−1))

13 return β(k)

Line 8 : given an upper bound LX ≥ |||X|||, one can use |||2XDk+1||| ≤ Lk+1 := 2·LX ·‖η(k+1)‖1/ν∞ .

Thus, when Lk+1 > 0, one can set τ = σ = 0.99/Lk+1 to ensures that τσ < |||2XDk+1|||2 is

fulfilled. Otherwise, when Lk+1 = 0 (and assuming that X 6= 0), we have η(k+1) = 0, meanings that

β(k) = 0. In this case, the scheme iterations can be immediately stopped since we will necessarily

get β(`) = 0 in all later iterations ` > k. Remark that in the simulation scheme described in
Section 4.3.1, the unitary `2 norm of the columns of X ensures that |||X||| ≤ √p, so that one can

use Lk+1 = 2
√
p‖η(k+1)‖1/ν∞ in this case.
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Fig 11. `q constrained minimization using Algorithm 6 with ν = 2. In this experiment,
we consider a synthetic dataset (X,β?, y) with dimensions (n = 5, p = 2) generated using
the simulation scheme described in Section 4.3.1 excepting that β? was randomly sampled
according to a uniform distribution in [−1, 1]2, leading here to β? ≈ (0.94, 0.62)t. We used
Algorithm 6 with ν = 2, q = 0.7 and t = 1 to process this dataset and we display here its
first 30 iterates. In all those graphs, the blue curve represents the boundaries of the con-
straint set involved in (63), that is, the `q ball with radius t1/q = 1. Some level lines of the
quadratic function C : β 7→ ‖y − Xβ‖22 are displayed using lightgray dotted-lines, while the

minimizer of C over Bq(t1/q) is represented using a green disk. Top-left: a gray diamond
mark indicates the scheme initializer β(0) and a pink dotted line indicates the boundaries of
the first constraint set E νq (η(1), t) appearing in (69b). The latter is an elipsoid because of the

setting ν = 2. The minimization of C over Eνq (η(1), t) leads to the next iterate β(1), which is

indicated using a pink diamond mark. Top-right: the next iteration yields η(2) = |β(1)|ν−q
and the pink dotted line represents the boundaries of the updated constraint set E νq (η(2), t).

Minimizing C over this set yields the next iterate β(2) displayed with a pink diamond mark
(previous iterates or constraint sets are displayed in gray). Bottom-left and bottom-right:
third and thirtieth scheme iterations (we use the same displaying rules as described above).
We can observe here the convergence of the scheme towards the green disk, that is, towards
the (here unique) solution of (63).
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The same dataset as that used in Fig. 11 was processed using Algorithm 6
with the setting ν = 1. The scheme iteration process is illustrated and com-
mented in Fig. 12.

Fig 12. `q constrained minimization using Algorithm 6 with ν = 1). We display (with the
same displaying rules as in Fig.11) the first five iterates generated by Algorithm 6 with ν = 1
applied to the same dataset as that considered in Fig. 11. While in Fig. 11 the setting ν = 2
yielded elipsoid shaped constraint sets E νq (η(k+1), t), the setting ν = 1 yields diamond shaped
constraint sets. We can see that, as in Fig. 11, the numerical scheme seems to sucessfully
converges toward the solution of (63) (green disk). We can also notice that, over this dataset,
the setting ν = 1 yields a faster convergence than the setting ν = 2 (see Fig. 11). Our
experiments in larger dimensions (not shown here) tend to confirm that ν = 1 yields a
significantly higher convergence rate than the setting ν = 2.

In the experiments presented in Fig. 11 and Fig. 12, We were able to efficiently
estimate the solution of the nonconvex problem (63) using Algorithm 6. How-
ever, the existence of local minima for problem (63) makes the latter sensitive to
the choice of the initializer, as we already pointed out for the AR Algorithm. An
example of convergence of Algorithm 6 towards a local minimum is presented
in Fig. 13.
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Fig 13. Convergence of Algorithm 6 towards a local minimum of (63). A synthetic
dataset (X,β?, y) with dimensions (n = 5, p = 2) was processed using Algorithm 6 with t = 1
and ν = 1 (left) or ν = 2 (right). The same initializer β(0) was used in both simulations
(see the gray diamond marks indicated with a black arrow). The first five iterations of the
algorithm are shown for both settings of ν ∈ {1, 2}. We can see that, in both cases, the iterates
β(k) seem to be attracted by a point different from the actual minimizer of C over Bν

q (t1/q)
(indicated with a green disk). In fact, with the help of the displayed level lines of C, we can see
that this point corresponds to a local minimizer of C over Bν

q (t1/q). In practice, Algorithm 6

can be, as the AR Algorihtm, very sensitive to the choice of the initializer β(0).

In the experiments presented in Fig. 11, Fig. 12 and Fig. 13, the limit of the
scheme iterations seemed to be the same whatever the setting of ν ∈ {1, 2}.
In Fig. 14, we show that the limit of the scheme may actually depend from ν.
Indeed, we can see in Fig. 14 (a) that the iterate β(2) generated by Algorithm 6

with ν = 1 is lying in the first orthan (i.e., β
(2)
2 = 0), and so as the further

iterates (because of Remark 5). However, we can see in Fig. 14 (b) that, when
Algorithm 6 is used with ν = 2 to process the same dataset, the coordinates of
the generated iterates do not vanish. Actually, when ν = 2, the computation of
an iterate β(k+1) assuming vanishing coordinates is unlikely to occur (at least
in our experimental setting) because of the ellipsoid shape of the constraint sets
E ν
q (η(k+1), t) involved in (69b). However, when Algorithm 6 is used with ν = 1,

the diamond shape of the constraint sets E ν
q (η(k+1), t) promotes sparse iterates

at each iteration, and vanishing coordinates are likely to be computed. Notice
that, as we will shall illustrate at the end of this section, Algorithm 6 with ν = 2
is in practice, exactly as the AR Algorithm, able to generate outputs with van-
ishing coordinates. In fact, during the scheme iterations, the amplitude of the
iterate coordinates may become smaller than the smallest floating point num-
ber (so as the corresponding semi-axes of the ellipsoid constraint set), yielding
numerically vanishing coordinate. However, when the algorithm is used with

ν = 1, vanishing coordinates β
(k+1)
j = 0 can be computed even when β

(k)
j is far

from zero, making the coordinates vanishing process much faster than for ν = 2.
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(a) Algorithm 6 with ν = 1 (b) Algorithm 6 with ν = 2

Fig 14. Noticeable difference between ν = 1 and ν = 2. In this experiment, we processed
a synthetic dataset using Algorithm 6 with t = 1, q = 0.7 and with ν = 1 (a) or ν = 2 (b). We

can see in (a) that iterate β(2) is lying in the first orthan (β
(2)
2 = 0), so as the next iterates

(see Remark 5). We can see in (b) that with the setting ν = 2, the coordinates of the iterates
produced by Algorithm 6 never vanish. As for the AR Algorithm, the regularization of the
`q norm by the mean of a parameter δ (see (71)) can be helpful to avoid the persistence of
vanishing coordinates (see Fig. 15). Nevertheless, one can notice that the setting ν = 1 yields
here convergence towards the solution of the targeted L0 constrained problem (62), while the
setting ν = 2 yields convergence towards the solution its `q approximation, that is, the `q

constrained problem (63).

Interestingly enough, in the experiment presented in Fig. 14, the setting ν = 1
yields convergence towards the solution of the L0 constrained problem (62),
while the setting ν = 2 yields convergence towards the solution of the `q con-
strained problem (63). On the one hand, interpreting problem (63) as an approx-
imation of the targeted problem (62), the setting ν = 1 is more efficient than the
setting ν = 2 in this experiment. On the other hand, the setting ν = 1 also fails
to compute (63) although Algorithm 6 was designed for achieving this task.
Besides, the persistence of vanishing coordinates along the scheme iterations
may be an even more important issue when ν = 1 since this setting precisely
promote vanishing coordinate at each iteration. As we explained at the end of
Section 5.2, this issue can be easily addressed by considering the δ-regularized
problem (71) (through Scheme (72)) instead of (63). According to Remark 8,
Algorithm 6 can be easily modified to implement Scheme (72) for any δ ≥ 0,
provided that we replace its line 5 by

ηk+1 ←
(
|β(k)|ν + δν

) ν−q
ν
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and its line 7 by

zk+1 ←

ν
q

t− q

ν

p∑
j=1

r(δν , η
(k+1)
j )− ν − q

ν

p∑
j=1

(
η

(k+1)
j

) q
ν−q

 1
ν

.

In Fig. 15 we display and comment the iterates generated by this modified
Algorithm when applied to the same dataset as in Fig. 14.

(a) Scheme (72) with δ = 10−5 (b) Scheme (72) with δ = .05

Fig 15. δ-regularized `q constrained minimization model (71). We processed the same
dataset as in Fig. 14 using Scheme (72) with δ ∈ {10−5, 0.05}, t = 1, q = 0.7 and ν = 1.

We display the boundaries of the constraint set Bν,δ
q (tν/q) := {β ∈ Rp , ‖|β|ν + δν‖q/ν

q/ν
≤ t}

involed in (71) using a red thick line while the dotted thick lines here represent the boundaries

of the δ-regularized constraint sets E ν,δq (η(k+1), t) involved in (72b). We can see in (a) that,

for δ = 10−5, the constraint set Bν,δ
q (tν/q) almost coincides with Bq(t1/q). We can see also

that the first iterates of (72) are roughly the same as those in Fig. 14 (a). However, the use
of δ = 10−5 allows here the iterates to escape from the first orthan after iteration k = 2 and
converge toward to solution of (71). In (b), we increase the value of δ and we can see that

the δ-regularized constraint set Bν,δ
q (tν/q) (red thick line) is now substantially different from

the `q-ball Bν
q (t1/q) (blue thick line). Finally, Scheme (72) sucessfully converges towards the

solution of (71), although the latter is significantly different from that of (63). Last, we can
remark in (b) that the use of δ > 0 with ν = 1 is not incompatible with convergence towards
a sparse output. This contrasts with the AR Algorithm (and also with Scheme (72) with
ν = 2) since we showed that, with δ > 0, the latter generally converges towards points with
no vanishing coordinates.

Finally, we display in Fig. 15 some examples of outputs returned by Algo-
rithm 6 with ν ∈ {1, 2} applied to a synthetic dataset with larger dimensions
(n = 300, p = 150).

6. Conclusion

In this work, we performed a careful and thorough study of the Adaptive-Ridge
Algorithm. It is worth noticing that all our mathematical descriptions of this
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Fig 16. `q constrained minimization in high dimension (n = 300, p = 150). We used
Algorithm 6 to process a synthetical dataset (X,β?, y) with dimensions n = 300 and p = 150.
The ground-truth vector β? is displayed above using yellow dotted stems. As can be seen above,
β? has ten nonzero entries (L0(β?) = 10) which encourages us to set t = 10 in problem (62).
Thus, Algorithm 6 was run using t = 10, q = 0.7, δ = 0 and ν = 1 (top) or ν = 2 (bottom).
In this experiment, Algorithm 6 was initialized using a random initial guess β(0) lying in
the constraint set Bq(t1/q). We can see that both settings of ν yielded an output with L0

norm close to t = 10 (that is, nine for ν = 1 and thirteen for ν = 2). The setting ν = 1
yields here slightly sparser output (blue plain stems) than that obtained using ν = 2 (orange
plain stems), which is a general observation that we also made on many other simulations.
As mentioned above, this behavior is probably due to the sparsity-promoting diamond shapes
(when ν = 1) of the constraint sets in (69b). Besides, we could observe that convergence of
the iterates was roughly fifteen times faster with ν = 1 than with ν = 2 on this datasest. More
generally significantly faster convergence was achieved with ν = 1 than with ν = 2 in all our
the experiments that we made.

algorithm and its properties were simply built from the variational formulation
of the `q penalty term presented in Proposition 1. We found the latter very
inspirational to understand, interpret and extend the AR scheme. In this review
paper, we pointed out the existing links between this algorithm and many others
coming from the literature. In particular, we showed that, when used with its
recommended setting, the AR Algorithm corresponds to a particular instance
of the so-called IRLS class of algorithms that is still the subject of active and
fruitful researchs in the field of Compressed Sensing, Sparse Signal Recovery and
Nonconvex Optimization. Then, we discussed about the practical implementa-
tion of the AR Algorithm, with a particular focus on the handling of numerical
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errors related to matrix conditioning issues. We performed an in-depth experi-
mental study of the AR Algorithm that may hopefully benefit to its potential
users, by providing some useful insights about its behavior and parameter tun-
ing in practical situations. Last, using again the variational formulation of the `q

penalty, we extended the AR Algorithm to address the problem of minimization
of a functional C over nonconvex `q balls. Depending on the setting of the ν pa-
rameter in Proposition 1, the derived scheme boils down to iterating operations
of minimizations of C over elipsoid (ν = 2) or diamond (ν = 1) convex con-
straint sets. As for the AR scheme, we found out that the underlying variational
formulation of the `q penalty yielded a very natural and simple derivation of
this scheme and its mathematical properties. An implementation of this scheme,
based on modern proximal algorithms, was proposed in the case where C is a
quadratic function. Thanks to the considerable advances made in the field of
convex and nonsmooth optimization within the two last decades, this algorithm
can be easily extended to handle more complex functionals C (e.g., `1 or Pois-
son log-likelihood functionals). More importantly, we believe that nonconvex
`q-ball constrained minimization opens very interesting alternative to the more
commonly considered `q penalized minimization framework, especially because
the hyperparameter setting seems greatly simplified in the constrained case. As
pointed out in [50, Section 1.1], the literature dedicated to this topic is very lim-
ited and we believe that the underlying `q-ball constrained minimization model
opens up perspectives of interesting advances both in terms of mathematical
analysis and numerical algorithm development.

Appendix A: Proof of Proposition 3

Assume that C : β 7→
∑p
j=1 cj(βj) where cj : R → R for all j ∈ {1, 2, . . . , p}.

Then, Eλ,q is additively separable,

∀β ∈ Rp , Eλ,q(β) =

p∑
j=1

(ej(βj) := cj(βj) + λ |βj |q) .

Thanks to Lemma (1), when ν > q, for all j ∈ {1, 2, . . . , p} and for all ηj ∈ R∗+,
we have the upper-bound

∀βj ∈ R , ej(βj) ≤ sj(βj , ηj) := cj(βj) + λ `νq (βj , ηj) .

Besides, when βj 6= 0, we have the equality ej(βj) = sj(βj , |βj |ν−q). Now, given

k ≥ 0, since η
(k)
j = |β(k)

j |ν−q and thanks to the additive separability of C, (19a)
yields, for all j ∈ {1, 2, . . . , p},

β
(k+1)
j ∈ argmin

βj∈Rp
fj(βj) := cj(βj) +

λq

ν
r(βj , |β(k)

j |
ν−q). (84)

When β
(k)
j = 0, fj(βj) is finite for βj = 0 and takes the value +∞ otherwise,

leading to β
(k+1)
j = 0. When β

(k)
j 6= 0, the minimizers of fj are the same as
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those of βj 7→ sj(βj , |β(k)
j |ν−q) since, in that case, fj(βj) = sj(βj , |β(k)

j |ν−q).
Finally, (84) yields

β
(k+1)
j = 0 if β

(k)
j = 0

β
(k+1)
j ∈ argmin

βj∈Rp
sj(βj , |β(k)

j |
ν−q) otherwise.

Therefore, when β
(k)
j = 0, we have ej(β

(k+1)
j ) = ej(β

(k)
j ). Otherwise, when

β
(k)
j 6= 0, we have

ej(β
(k+1)
j ) ≤ sj(β(k+1)

j , |β(k)
j |

ν−q) ≤ sj(β(k)
j , |β(k)

j |
ν−q) = ej(β

(k)
j ) .

Finally, we get ej(β
(k+1)
j ) ≤ ej(β

(k)
j ) whatever the value of β

(k)
j ∈ R and, sum-

ming for j ∈ {1, 2, . . . , p}, we obtain Eλ,q(β
(k+1)) ≤ Eλ,q(β(k)) as announced.

Appendix B: Proof of Lemma 2

Thanks to Proposition 1, we have, for all r ∈ (0, 1) and for all z ∈ (R∗)p,

‖z‖rr = inf
η∈(R∗+)

p
L1
r(z, η) = inf

η∈(R∗+)
p
r

p∑
j=1

|zj |
ηj

+ (1− r)
p∑
j=1

η
r

1−r
j (85)

and this infimum is in fact a minimum (since z ∈ (R∗)p) which is attained at
η = |z|1−r. Let β ∈ Rp, ν > q and δ > 0, taking r = q

ν and z = |β|ν + δν in (85)
yields

∥∥|β|ν + δν
∥∥q/ν
q/ν

= min
η∈(R∗+)

p

q

ν

p∑
j=1

|βj |ν + δν

ηj
+
ν − q
ν

p∑
j=1

η
q

ν−q
j , (86)

with the minimum attained at η = (|β|ν + δν)
ν−q
ν . Remarking that we have

Eν,δλ,q : β 7→ C(β) + λ ‖|β|ν + δν‖q/νq/ν and using (86) yields (23) as announced.

Appendix C: Proof of Proposition 5

First, let us consider the unidimensional case. For all ν > q, let us show that

∀β ∈ R , |β|q = min
η≥0

q

ν
· r(|β|, η) +

ν − q
ν
· η

q
ν−q , (87)

and that that minimum is attained at η = |β|ν−q.
For β = 0, we have r(|β|, η) = 0 for any η ≥ 0. Therefore, the minimum

in (87) is attained at η = 0 = |β|ν−q and both sides of (87) vanish.
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For β 6= 0, r(|β|, η) takes the value +∞ for η = 0 and takes the (finite) value
|β|
η for η > 0. Therefore the minimum over R+ in (87) can be restricted to R∗+,

and the right-hand side of (87) becomes

min
η>0

q

ν
· |β|
η

+
ν − q
ν
· η

q
ν−q .

which is equal to |β|q (with the minimum attained at η = |β|ν−q) as stated in
Lemma 1.

In higher dimension, for all β ∈ Rp and for all ν > q, using (87) and the
additive separability of the `q penalty, we get

‖β‖qq =

p∑
j=1

|βj |q = min
η∈Rp+

q

ν

p∑
j=1

r(|βj |, ηj) +
ν − q
ν

p∑
j=1

η
q

ν−q
j , (88)

with the minimum attained at η = |β|ν−q, from which (28) follows.

Appendix D: Details about Scheme (72) and proof of Proposition 8

Let δ > 0, q ∈ (0, 2) and ν > q. Using Proposition 1, we have

∀β ∈ Rp , ‖|β|ν + δν‖q/νq/ν = min
η∈(R∗+)p

L1
q/ν(|β|ν + δν , η) (89)

and the minimum in (89) is attained at η = (|β|ν + δν)
ν−q
ν . Thus, an alternating

minimization approach to address (71) can be implemented by setting β(0) such

as ‖|β(0)|ν + δν‖q/νq/ν ≤ t and iterating, for k ≥ 0,
η(k+1) =

(
|β(k)|ν + δν

) ν−q
ν

β(k+1) ∈ argmin
β∈Rp

C(β) subject to L1
q/ν(|β|ν + δν , η(k+1)) ≤ t .

(90a)

(90b)

Since (73) satisfies

∀η ∈ (R∗+)p , E ν,δ
q (η, t) =

{
β ∈ Rp , L1

q/ν(|β|ν + δν , η) ≤ t
}
,

the scheme iteration (72) is none other than (90).
Now, let us prove Proposition 8 by following exactly the same steps as in the

proof of Proposition 7. Let k ≥ 0, and β ∈ E ν,δ
q (η(k+1), t). From (89), we have

‖|β|ν + δν‖q/νq/ν = min
η∈(R∗+)p

L1
q/ν(|β|ν , η) ≤ L1

q/ν(|β|ν , η(k+1)) ≤ t .

Therefore, we have,

∀k ≥ 0 , E ν,δ
q (η(k+1), t) ⊂ Bν,δ

q (t
1
q ) :=

{
β ∈ Rp , ‖|β|ν + δν‖q/νq/ν ≤ t

}
.
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Since we imposed β(0) ∈ Bν,δ
q (t

1
q ), and since (90b) ensures that, for all k ≥ 0,

β(k+1) ∈ E ν,δ
q (η(k+1), t) ⊂ Bν,δ

q (t
1
q ), it follows that the sequence (β(k))k≥0 has

all its elements in Bν,δ
q (t

1
q ), as announced in Proposition 8. Let k ≥ 0, from

β(k) ∈ Bν,δ
q (t

1
q ) and, using again (89), we get

t ≥ ‖|β(k)|ν + δν‖q/νq/ν = min
η∈(R∗+)p

L1
q/ν(β(k), η) = L1

q/ν(β(k), η(k+1))

since η(k+1) =
(
|β(k)|ν + δν

) ν−q
ν . It follows that β(k) ∈ E ν,δ

q (η(k+1), t). Conse-

quently, (90b) necessarily generates β(k+1) such as C(β(k+1)) ≤ C(β(k)) which
ends the proof of Proposition 8.

Appendix E: Proof of Lemma 4

Let β̃ ∈ Bq(t), let η̃ = |β̃|ν−q and let zνq (η̃, t) the quantity defined in (76).

Let us denote by J = {j ∈ {1, 2, . . . , p} , β̃j 6= 0} the support of β̃ and by
Jc = {1, 2, . . . , p} \ J its complementary in {1, 2, . . . , p}. The statement

β ∈ D(η̃
1
ν )Bν(zνq (η̃, t)) (91)

is equivalent to

∃β′ ∈ Bν(zνq (η̃, t)) such that ∀j ∈ {1, 2, . . . , p} , βj = η̃
1
ν
j β
′
j . (92)

Since J is also the support of η̃ (i.e., η̃j 6= 0 for all j ∈ J and η̃j = 0 for all
j ∈ Jc), (92) is equivalent to

∃β′ ∈ Bν(zνq (η̃, t)) such that

{
∀j ∈ Jc , βj = 0

∀j ∈ J , βj/η̃
1
ν
j = β′j

(93)

and to 
∀j ∈ Jc , βj = 0∑
j∈J

|βj |ν

η̃j
≤
(
zνq (η̃, t)

)ν
.

(94)

For all j ∈ Jc we have η̃j = 0 and, by definition of the generalized ratio function
r (see (18)), we have r(0, 0) = 0. Therefore (94) implies that

p∑
j=1

r(|βj |ν , η̃j) ≤
(
zνq (η̃, t)

)ν
. (95)

Reciprocally, (95) imposes that βj = 0 for all j ∈ Jc (otherwise, the left-hand
side term in (95) is +∞), and thus ensures that (94) is fulfilled. Therefore, (94)
and (95) are equivalent. Now, using (76), we can see that (95) is equivalent to

p∑
j=1

r(|βj |ν , η̃j) ≤
ν

q

t− ν − q
ν
·
p∑
j=1

η̃
q

ν−q
j

 , (96)
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and to
q

ν
·
p∑
j=1

r(|βj |ν , η̃j) +
ν − q
q
·
p∑
j=1

η̃
q

ν−q
j ≤ t . (97)

Last, we can see that (97) exactly means that L ν
q (β, η̃) ≤ t (see (65)), i.e., that

β ∈ E ν
q (η̃, t) (see (68)). Finally, we have shown the equivalence

β ∈ D(η̃
1
ν )Bν(zνq (η̃, t)) ⇔ β ∈ E ν

q (η̃, t)

which was announced in Lemma E.
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versité Paris Descartes (Paris 5) https://hal.archives-ouvertes.fr/

tel-02473848.
[24] Goepp, V., Thalabard, J.-C., Nuel, G. and Bouaziz, O. (2021). Reg-

ularized Bidimensional Estimation of the Hazard Rate. The International
Journal of Biostatistics. https://doi.org/10.1515/ijb-2019-0003.

[25] Gribonval, R. and Nielsen, M. (2007). Highly sparse representations
from dictionaries are unique and independent of the sparseness measure.
Applied and Computational Harmonic Analysis 22 335-355. https://doi.
org/10.1016/j.acha.2006.09.003.

[26] Hastie, T., Tibshirani, R. and Friedman, J. H. (2009). The elements
of statistical learning: data mining, inference, and prediction 2. Springer
https://doi.org/10.1007/978-0-387-21606-5.

[27] Hoerl, A. E. and Kennard, R. W. (2000). Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics 42 80–86. https:
//doi.org/10.1080/00401706.2000.10485983.

[28] Hunter, D. R. and Li, R. (2005). Variable selection using MM algo-
rithms. Annals of statistics 33 1617-1642. https://doi.org/10.1214/

009053605000000200.
[29] Idier, J. (2001). Convex half-quadratic criteria and interacting auxiliary

variables for image restoration. IEEE Transactions on Image Processing 10
1001-1009. https://doi.org/10.1109/83.931094.

[30] Jenatton, R., Obozinski, G. and Bach, F. (2010). Structured Sparse
Principal Component Analysis. In Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics (Y. W. Teh
and M. Titterington, eds.). Proceedings of Machine Learning Re-
search 9 366–373. PMLR, Chia Laguna Resort, Sardinia, Italy. https:

//proceedings.mlr.press/v9/jenatton10a.html.
[31] Lai, M. J., Xu, Y. and Yin, W. (2013). Improved Iteratively Reweighted

Least Squares for Unconstrained Smoothed ` q Minimization. SIAM
Journal on Numerical Analysis 51 927-957. https://doi.org/10.1137/
110840364.

[32] Liang, J., Fadili, J. and Peyré, G. (2017). Activity Identifica-
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