
A Review on the Adaptive-Ridge Algorithm with

several extensions

Rémy Abergel1*, Olivier Bouaziz1 and Grégory Nuel2

1*Université Paris Cité, CNRS, MAP5, F-75006 Paris, France.
2LPSM, CNRS 8001, Sorbonne University, Campus Pierre et Marie

Curie, 4 place Jussieu, 75005 Paris - France.

*Corresponding author(s). E-mail(s): Remy.Abergel@u-paris.fr;
Contributing authors: Olivier.Bouaziz@u-paris.fr; Nuel@math.cnrs.fr;

Abstract

The Adaptive Ridge Algorithm is an iterative algorithm designed for variable
selection. It is also known under the denomination of Iteratively Reweighted
Least-Squares Algorithm in the communities of Compressed Sensing and Sparse
Signals Recovery. Besides, it can also be interpreted as an optimization algo-
rithm dedicated to the minimization of possibly nonconvex ℓq penalized energies
(with 0 < q < 2). In the literature, this algorithm can be derived using various
mathematical approaches, namely Half Quadratic Minimization, Majorization-
Minimization, Alternating Minimization or Local Approximations. In this work,
we will show how the Adaptive Ridge Algorithm can be simply derived and ana-
lyzed from a single equation, corresponding to a variational reformulation of the
ℓq penalty. We will describe in detail how the Adaptive Ridge Algorithm can
be numerically implemented and we will perform a thorough experimental study
of its parameters. We will also show how the variational formulation of the ℓq

penalty combined with modern duality principles can be used to design an inter-
esting variant of the Adaptive Ridge Algorithm dedicated to the minimization of
quadratic functions over (nonconvex) ℓq balls.

Keywords: adaptive ridge, iteratively reweighted algorithms, majorize-minimize
algorithms, variable selection, sparse minimization

1

1 Introduction

In statistical applications, variable selection is often a desirable goal. It allows to iden-
tify relevant predictors and at the same time may enhance the prediction performance
of the model. There is a large literature on this topic that can be roughly separated in
two main approaches: stepwise selection and penalized models. The first one encom-
passes the best subset selection method and the forward-backward stepwise selection
methods. They either explore exhaustively all possible subsets (defined by all possible
combinations of covariates) or find a good path through these subsets by sequentially
adding or removing variables into the model. A criterion that can be based on a sta-
tistical test or on criterions such as AIC or BIC is used at each step to compare the
models among themselves (see [1] for a review on these methods). On the other hand,
penalized models estimate the regression coefficients by constraining their size. They
were popularized with the ridge estimator [2], the LASSO estimator [3] and its exten-
sions such as the adaptive lasso [4] or the elastic-net [5]. In this paper, we provide a
review on one of these methods, the adaptive-ridge proposed in [6], which is an itera-
tive weighted penalized algorithm. In the following, we start by rewriting the variable
selection problem as a ℓ0 penalized criterion. The aim of this work is to make the
connection between the adaptive-ridge algorithm and this variable selection problem.

Given a positive integer p, a data-fidelity (usually a log-likelihood or a least-squares
criterion) function C : Rp → R∪{+∞} such as dom(C) := {β ∈ Rp , C(β) < +∞} ≠
∅, and a regularity (or penalty) parameter λ > 0, most variable selection models boil
down to computing

β ∈ argmin
β∈Rp

(Eλ(β) := C(β) + λL0(β)) (1)

where L0(β) denotes the number of nonzero entries of β, that is,

L0(β) := #{j ∈ {1, 2, . . . , p}, βj ̸= 0} ,

denoting by # the cardinality. Notice that the argmin in (1) can be restricted to
dom(C) without changing the set of its minimizers. Allowing C to take the value
+∞ over Rp is a simple and common way in optimization to integrate constraints
(for instance nonnegativity) in the optimization problem (1). In the general case,
the nonconvexity and the nonsmoothness of the L0 penalty make the optimization
problem (1) difficult to handle [7, 8]. A common alternative to (1) consists in replacing
the L0 penalty by smoother approximations [4, 8–12]. For instance, given q > 0, one
can consider the ℓq approximation of the L0 penalty (see e.g. [12] and Fig. 1 (a)),

L0(β) ≈ ∥β∥qq :=

p∑
j=1

|βj |q , (2)

2

(a) ℓq penalty (b) square-log penalty

Fig. 1 Smooth approximations of the L0-penalty. We display the graphs of several approxi-
mations of the L0 penalty in the monodimensional setting. The graph of the ℓq penalty, that is the
function β 7→ |β|q , is displayed in (a) for several positive values of q. The graph of the log-square
penalty, that is the function β 7→ log

(
1 + (β/δ)2

)
/ log

(
1 + δ−2

)
, is displayed in (b) for several pos-

itive values of δ. The L0 penalty (not represented here) satisfies L0(0) = 0 and L0(β) = 1 for any
β ̸= 0 and is therefore discontinuous at 0. Both the ℓq and the log-square penalties are continuous
over R and can be viewed as smooth approxmimations of the L0 penalty that get more accurate as
their parameters q > 0 and δ > 0 decrease. However, taking q = 0 would yield |β|q = 1 for any
β ∈ R, which is not a satisfactory approximation of L0(β) anymore. Similarly, the setting δ = 0 is
not allowed for the square-log penalty. Therefore, both parameters must be kept positive in practice.

leading to the ℓq-penalized problem of finding

β̃ ∈ argmin
β∈Rp

(
Eλ,q(β) := C(β) + λ ∥β∥qq

)
. (3)

Alternatively, given δ > 0, one can consider the square-log approximation of the L0

penalty (see [13, 14] and Fig. 1 (b)),

L0(β) ≈
p∑

j=1

log
(
1 + (βj/δ)

2
)

log (1 + δ−2)
(4)

and look for a solution of the square-log penalized problem

β̃ ∈ argmin
β∈Rp

(
Fλ,δ(β) := C(β) + λ

p∑
j=1

log
(
1 + (βj/δ)

2
)

log (1 + δ−2)

)
. (5)

Both the ℓq penalized energy Eλ,q and the square-log penalized energy Fλ,δ can
be viewed as smooth approximations of the targeted L0 penalized energy Eλ. As
illustrated in Fig. 1, the smaller the parameters q and δ are, the better accurate those
approximations are. Notice that, in general, Fλ,δ is nonconvex, and so is Eλ,q when
q < 1. Thus, handling (3) and (5) remains a difficult task. Several algorithms designed
to approach some (at least local) minimizers of energies like Eλ,q or Fλ,δ can be found
in the literature. Those come from various communities, such as statistics [6, 11, 15–
17], sparse signal recovery and compressed sensing [9, 18–20], optimization [21–24] and
image processing [25–30]. The Adaptive-Ridge (AR) Algorithm is one of those which

3

was proposed in [6] and comes from a long line of optimization algorithms. Given
w(0) ∈ (R∗

+)
p, δ > 0, q ∈ [0, 2) and γ > 0, the AR scheme, to which we may refer

below as ARδ,γ
λ,q, consists in iterating, for k ≥ 0,

β(k+1) ∈ argmin
β∈Rp

C(β) +
λ

2

p∑
j=1

w
(k)
j β2

j

w(k+1) =
(
|β(k+1)|γ + δγ

) q−2
γ

,

(6a)

(6b)

having set |z|a = (|z1|a, |z2|a, . . . , |zp|a) for all a ∈ R and all z ∈ Rp.
Since its presentation in [6], the Adaptive-Ridge scheme (6) has been further

studied in [31, 32] and was recently implemented to address various applications in [33–
41]. Prior to [6], many numerical schemes closely related to (6) have been proposed
in the literature. They can be described using different mathematical approaches,
including locally quadratic or linear approximations [11, 16, 17], majorize-minimize
schemes [15, 16], iteratively reweighted algorithms [18, 23, 42], half-quadratic regular-
ization [21, 22, 27]. Those scheme and their properties remain a topical and fruitful
research subject [14, 20, 43, 44] covering a wide range of applications beyond the single
problem of variable selection.

In this work, we will perform a review of the Adaptive-Ridge Algorithm, from its
mathematical design to its numerical implementation, including a thorough experi-
mental analysis of its parameters and its general behavior. We will enlighten the links
between this algorithm and other closely related schemes and we will propose several
extensions. This work is organized as follows. In Section 2, we will firstly provide a
variational formulation of the ℓq penalty (2) and use it to build up some iteratively
reweighting schemes designed for solving (3). We will show how the Adaptive-Ridge
Algorithm can be identified to a particular instance of those schemes and we will
demonstrate, using noticeably simple arguments, its ability to decrease the ℓq penal-
ized cost function Eλ,q involved in (3) along the scheme iterations. We will also show
how other mathematical constructions of the scheme based on majorize-minimize or
alternating minimization strategies can be derived naturally from the above men-
tioned variational formulation of the ℓq penalty. Links with other existing instances or
closely related variant of the Adaptive-Ridge that can be found in the literature will
be also presented. Section 3 will be dedicated to the particular setting q = 0 in (6)
where the Adaptive-Ridge Algorithm will be interpreted as a locally linear approxima-
tion scheme dedicated to the minimization of the square-log penalized energy involved
in (5). In Section 4, we will focus on two numerical implementations of the Adaptive-
Ridge Algorithm, a particular care will be taken to ensure robustness of the proposed
implementations with respect to numerical errors. Then, we will present a thorough
experimental study of the Adaptive-Ridge Algorithm over synthetic datasets. Finally,
in Section 5, we will propose and study a variant of the Adaptive-Ridge Algorithm
dedicated to the minimization of a quadratic cost over a ℓq ball constraint set.

4

2 Iteratively reweighted algorithms for ℓq penalized
selection

2.1 Variational formulation of the ℓq penalty

The mathematical construction of iteratively reweighted algorithms dedicated to ℓq

penalized optimization problems like (3) can be explained in various ways, leading to
different interpretations of very closely related numerical schemes. We found that a
quite simple and elegant description of such numerical scheme could be derived using
a variational reformulation of the ℓq penalty described in Lemma 1 in dimension one
and extended to Rp in Proposition 1.

Lemma 1. For all β ∈ R, for all q > 0 and for all ν > q, we have

|β|q = inf
η∈R∗

+

(
ℓνq (β, η) :=

q

ν
· |β|

ν

η
+

ν − q

ν
· η

q
ν−q

)
, (7)

where R∗
+ denotes the set (0,+∞). Besides, when β ̸= 0, the infimum (7) is attained

at η = |β|ν−q.

Proof. Let β ∈ R, q > 0 and ν > q. When β = 0, both sides of (7) are equal to 0
(note that the infimum is not attained). When β ̸= 0, denoting f = η 7→ ℓνq (β, η), one
easily checks that f assumes η∗ = |β|ν−q as unique critical point over R∗

+ and that
f ′(η) ≥ 0 if and only if η ≥ η∗. Therefore, f achieves its minimum over R∗

+ at η∗ and

we can finally check that f(η∗) = |β|q(qν + ν−q
ν) = |β|q.

Proposition 1 (variational reformulation of the ℓq penalty term). For all β =
(β1, β2, . . . , βp) ∈ Rp, for all q > 0 and for all ν > q, we have

∥β∥qq = inf
η=(η1,η2,...,ηp)∈(R∗

+)
p

(
Lν

q (β, η) :=

p∑
j=1

q

ν
· |βj |ν

ηj
+

ν − q

ν
· η

q
ν−q

j

)
, (8)

and, when β ∈ (R∗)p, the infimum is attained at η = |β|ν−q.

Proof. Let β = (β1, β2, . . . , βp) ∈ Rp, q > 0, and ν > q. By additive separability of
Lν

q (β, η) =
∑p

j=1 ℓ
ν
q (βj , ηj) with respect to (η1, η2, . . . , ηp), we can interchange infimum

and sum in the right-hand side of (8). Thus, using Lemma 1, we get

inf
η=(η1,η2,...,ηp)∈(R∗

+)
p
Lν

q (β, η) =

p∑
j=1

inf
ηj∈R∗

+

ℓνq (βj , ηj) =

p∑
j=1

|βj |q = ∥β∥qq ,

as announced.

The variational formulation (7) with the setting ν = 2 and q ∈ (0, 2) can be found
in [22] where ℓ2q is referred as half-quadratic since it is quadratic with respect to β but
not with respect to η. The relation (7) can also be found in [45] for the more particular
setting q = 1 and ν = 2 but in a slightly disputable form since the infimum (7) is

5

taken over R+ instead of R∗
+ in [45, Section 5.4] although the function η 7→ ℓνq (β, η)

involved in (7) is not defined for η = 0. A closely related (but non equivalent) result
as (8) with the setting ν = 2 and q ∈ (0, 2) can be found in [46, Lemma 3.1] and seems
also, as formulated, slightly contestable due to an infimum taken over Rp

+ instead of
(R∗

+)
p. Notice that the methodology described in [21, Section II], which was initiated

in [30] and applies to more general penalty terms than the ℓq penalty considered
here, can be used to derive (7) and (8) in the case ν = 2 and q ∈ (0, 2). Besides, a
very interesting link between the variational formulation (8) and the Legendre-Fenchel
conjugate was pointed out in [21]. Another interesting methodology relying on the
notion of Legendre pairs for obtaining similar (but non equivalent) variational (in
fact half-quadratic) formulations of a large class of penalty terms was initiated in [29]
and further developed for image processing applications in [24–27]. We could not find
explicit references to (7) and (8) for ν ̸= 2 (in particular, for ν = 1) in the literature
but we believe that those relations are probably well known as they can be used to
derive some classical iteratively reweighted algorithms in a very natural way, as we
shall see now.

2.2 The majorize-minimize strategy

In all the following and unless explicitly mentioned otherwise, ν and q denote two real
numbers such as ν > q > 0. A straightforward consequence of Proposition 1 is that,
for any η ∈

(
R∗

+

)p
, we have the upper-bound

∀β ∈ Rp , Eλ,q(β) ≤ Sν
λ,q(β, η) := C(β) + λLν

q (β, η) . (9)

Besides, when β ∈ (R∗)p (and only in this case), this large inequality becomes an
equality for η = |β|ν−q, i.e.,

∀β ∈ (R∗)p , Eλ,q(β) = Sν
λ,q(β, |β|ν−q) . (10)

Therefore, if we consider an initial guess β(0) ∈ (R∗)
p
for the optimization problem (3),

then S0 : β 7→ Sν
λ,q(β, |β(0)|ν−q) bounds Eν

λ,q from above over Rp and both functions

coincide at point β = β(0). More precisely, we have

∀β ∈ Rp , Eλ,q(β) ≤ S0(β) and Eλ,q(β
(0)) = S0(β(0)) . (11)

Now, assuming that we are able to compute a minimizer of S0, denoting β(1) such a
minimizer, we obtain

Eλ,q(β
(1)) ≤ S0(β(1)) ≤ S0(β(0)) = Eλ,q(β

(0)) . (12)

Assuming that β
(1)
j ̸= 0 for all j, we can repeat the process replacing S0 by S1 : β 7→

Sν
λ,q(β, |β(1)|ν−q), look for a minimizer β(2) of S1, and so on. This yields the so-called

6

majorize-minimize iterations, which amounts to computing

∀k ∈ N , β(k+1) ∈ argmin
β∈Rp

Sν
λ,q(β, |β(k)|ν−q) , (13)

or, equivalently, to setting η(0) = |β(0)|ν−q and iterating β(k+1) ∈ argmin
β∈Rp

Sν
λ,q(β, η

(k))

η(k+1) = |β(k+1)|ν−q .

(14a)

(14b)

Finally, removing from Sν
λ,q the constant terms that do not change the value of the

argmin (14a), we obtain
β(k+1) ∈ argmin

β∈Rp
C(β) +

λq

ν

p∑
j=1

|βj |ν

η
(k)
j

η(k+1) = |β(k+1)|ν−q .

(15a)

(15b)

It is important to note that the majorize-minimize scheme (15) is valid as long as
its iterates (η(k))k≥0 remain in (R∗

+)
p, or equivalently, as long as its iterates (β(k))k≥0

remain in (R∗)p. Under this assumption, the scheme (15) guarantees the monotonic
decrease of the energy sequence (Eλ,q(β

(k)))k≥0, as stated in Proposition 2.

Proposition 2. Assuming that η(0) = |β(0)|ν−q ∈ (R∗
+)

p and that the iterates

(β(k))k≥0 generated using (15) lie in (R∗)p, we have

∀k ∈ N , Eλ,q(β
(k+1)) ≤ Eλ,q(β

(k)) . (16)

Consequently, if C is bounded from below, then, the sequence
(
Eλ,q(β

(k))
)
k≥0

is also

bounded from below and, thus, converges.

Proof. Let k ∈ N. By construction in (15), we have η(k) = |β(k)|ν−q and, by assump-
tion, we have η(k) ∈ (R∗

+)
p. Then, thanks to (9) and (15a), we have Eλ,q(β

(k+1)) ≤
Sν
λ,q(β

(k+1), η(k)) ≤ Sν
λ,q(β

(k), η(k)) = Eλ,q(β
(k)), the right-hand side equality coming

from (10).

Interestingly enough, one can see that, when ν = 2, the scheme (15) is closely
related to the Adaptive-Ridge scheme (6), as we detail in Remark 1.

7

Remark 1 (link between (15) and the ARδ,γ
λ,q scheme (6)). Taking ν = 2 in (15) and

denoting w
(k)
j = 1

η
(k)
j

, we obtain

β(k+1) ∈ argmin

β∈Rp
C(β) +

λq

2

p∑
j=1

w
(k)
j β2

j

w
(k+1)
j = |β(k+1)

j |q−2 for all j ∈ {1, 2, . . . , p} ,

(17a)

(17b)

which corresponds to the ARδ,γ
λ′,q scheme (6) provided that we set δ = 0, γ ̸= 0 and

λ′ = λq. Since we explained that (15) (and thus (17)) is suited to the minimization

of Eλ,q, we can see that the ARδ,γ
λ,q scheme described in [6] is in fact suited to the

minimization of Eλ
q ,q (instead of that of Eλ,q, as was announced in [6]).

Despite the nice energy decrease property (16) provided by Scheme (15), this
scheme is only valid when all the iterates (β(k))k≥0 remain in (R∗)p, which is not
guaranteed. In fact, if we keep in mind that the ℓq penalty is used in (3) to promote
sparsity, we precisely expect a minimizer of Eλ,q to assume zero entries. Consequently,
it is likely that, at some point k0 of the iteration process, we will obtain an iterate
β(k0+1) with zero entries so that (15b) yields η(k0+1) ̸∈ (R∗

+)
p and Scheme (15) can-

not be iterated for k ≥ k0 due to the presence of indefinite terms
|βj |ν
0 in (15a). A

way to tackle this issue and keep iterating Scheme (15) when β
(k0)
j = 0 consists in

imposing β
(k)
j = 0 for the next iterations k ≥ k0. This modification of the scheme

can be formally stated by replacing the terms
|βj |ν
ηj

in (15a) by r(|βj |ν , ηj), denoting
r : R2 → R ∪ {+∞} the function defined by

∀(x, y) ∈ R2 , r(x, y) =

0 if x = y = 0

+∞ if x ̸= 0 and y = 0
x
y otherwise.

(18)

This yields the iterations
β(k+1) ∈ argmin

β∈Rp
C(β) +

λq

ν

p∑
j=1

r(|βj |ν , η(k)j)

η(k+1) = |β(k+1)|ν−q .

(19a)

(19b)

One can see that, when β
(k)
j = 0, we have η

(k)
j = 0 and the only way to avoid

the sum taking the value +∞ in (19a) is to impose the constraint βj = 0 in (19a).
Therefore, when (19) generates an iterate with vanishing entries, the same entries will
remain equal to zero in all later iterations. As pointed out in [18], the persistence of
vanishing entries may be problematic. For instance, assuming that (3) admits a unique

8

solution β∗, if one iteration of (19) produces β
(k)
j = 0 while β∗

j ̸= 0, then (19) has no
longer chance to converge towards β∗. Despite this limitation, (19) remains interesting
because of Proposition 3.

Proposition 3. Assuming that C(β(0)) is finite, the iterates (β(k))k≥0 generated
using (19) satisfy the energy decrease property (16).

Proof. The proof is given in Appendix A.

Another way to tackle the issue of vanishing iterates in the majorize-minimize
scheme (15) consists in imposing nonzero entries for the η(k) iterates. This can be done
by introducing a numerical parameter δ > 0, and replacing for instance (15b) by

η(k+1) =
(
|β(k)|ν + δν

) ν−q
ν

, (20)

leading to the iterations
β(k+1) ∈ argmin

β∈Rp
C(β) +

λq

ν

p∑
j=1

|βj |ν

η
(k)
j

η(k+1) =
(
|β(k+1)|ν + δν

) ν−q
ν

.

(21a)

(21b)

Thanks to the presence of the positive parameter δ in (21b), the entries of the η(k)

iterates cannot vanish anymore, so that we can safely perform the iterations (21).
However, the energy decrease property (16) is not guaranteed anymore. Indeed, look-
ing at (21) and denoting Sk : β 7→ Sν

λ,q(β, η
(k)), from (9) and (21a), we have

Eλ,q(β
(k+1)) ≤ Sk(β(k+1)) ≤ Sk(β(k)) but Sk(β(k)) ̸= Eλ,q(β

(k)) since, for β = β(k)

and η = η(k) ̸= |β(k)|ν−q, the large inequality (9) is in fact a strict inequality. For that
reason, in the general case, we won’t have Eλ,q(β

(k+1)) ≤ Eλ,q(β
(k)) using (21). Nev-

ertheless, we show in Proposition 4 that, instead of Eλ,q, a slightly modified energy
decreases along the iterations of (21). Besides, Scheme (21) corresponds to an instance
of the Adaptive-Ridge Algorithm, as pointed out in Remark 2.

Lemma 2. Let δ > 0, ν > q and Eν,δ
λ,q : Rp → R the energy defined by

∀β ∈ Rp , Eν,δ
λ,q(β) = C(β) + λ

∥∥|β|ν + δν
∥∥q/ν
q/ν

. (22)

Then, we have

∀β ∈ Rp , Eν,δ
λ,q(β) = min

η∈(R∗
+)p

(
Sν,δ
λ,q(β, η) := C(β) + λLν,δ

q (β, η)
)
, (23)

denoting Lν,δ
q (β, η) =

∑p
j=1

q
ν ·

|βj |ν+δν

ηj
+ ν−q

ν · η
q

ν−q

j . Besides, the minimum in (23)

is attained at η = (|β|ν + δν)
ν−q
ν .

9

Proof. This result is a simple consequence of Proposition 1 after remarking that
Lν,δ

q (β, η) = L1
q
ν
(|β|ν + δν , η). The proof is detailed in Appendix B.

Proposition 4. Let δ > 0, ν > q, β(0) ∈ Rp and η(0) =
(
|β(0)|ν + δν

) ν−q
ν . Then, the

sequence of iterates (β(k))k≥0 generated using (21) satisfies

∀k ∈ N , Eν,δ
λ,q(β

(k+1)) ≤ Eν,δ
λ,q(β

(k)) . (24)

Consequently, if C is bounded from below, then, the sequence
(
Eν,δ

λ,q(β
(k))
)
k≥0

is also

bounded from below and, thus, converges.

Proof. Let k ∈ N. By construction, we have η(k) = (|β(k)|ν + δν)
ν−q
ν ∈ (R∗

+)
p. Thus,

from (23), we have Eν,δ
λ,q(β

(k+1)) ≤ Sν,δ
λ,q(β

(k+1), η(k)). Besides, since the iterate β(k+1)

computed using (21a) is a minimizer of β 7→ Sν,δ
λ,q(β, η

(k)), we get Sν,δ
λ,q(β

(k+1), η(k)) ≤
Sν,δ
λ,q(β

(k), η(k)) and, from Lemma 2, we have Sν,δ
λ,q(β

(k), η(k)) = Eν,δ
λ,q(β

(k)). Finally, we

obtain Eν,δ
λ,q(β

(k+1)) ≤ Eν,δ
λ,q(β

(k)) as announced.

Remark 2 (link between (21) and the ARδ,γ
λ,q scheme (6)). Using again the variable

change w
(k)
j = 1/η

(k)
j and setting ν = 2 in (21) yields exactly the ARδ,γ

λ′,q scheme with
with γ = 2 (which is the setting recommended by the authors of [6]) and λ′ = λq.

2.3 The alternating minimization strategy

In Section 2.2, we used Proposition 1 to derive numerical schemes for the minimization
of Eλ,q using the majorize-minimize framework. Interestingly enough, Proposition 1
can also be used to interpret those schemes in terms of alternating minimization
framework. Indeed, from Proposition 1 we have

∀β ∈ Rp , Eλ,q(β) = inf
η∈(R∗

+)p
Sν
λ,q(β, η) (25)

were Sν
λ,q : (β, η) 7→ C(β) + λLν

q (β, η) is the function defined in (9). Therefore, the
optimization problem (3) is equivalent to

argmin
β∈Rp

inf
η∈(R∗

+)p
Sν
λ,q(β, η) . (26)

If the infimum in (26) was systematically attained, it could be replaced by a minimum,
and we could implement the alternating minimization scheme

β(k+1) ∈ argmin
β∈Rp

Sν
λ,q(β, η

(k))

η(k+1) ∈ argmin
η∈(R∗

+)p
Sν
λ,q(β

(k+1), η) .

(27a)

(27b)

10

Assuming that β(k+1) ∈ (R∗)p, then, problem (27b) admits η(k+1) = |β(k+1)|ν−q as
unique solution and (27) is exactly the same as (14) or (15). Of course, (27) exhibits the
same limitation as (14) and (15), that is, it cannot be iterated anymore when one of the
iterates β(k+1) admits vanishing entries. An alternative to (26) can be obtained using
function r defined in (18) to reformulate (25) as a minimum, thanks to Proposition 5.

Proposition 5. For any ν > q and for any β ∈ Rp, we have

Eλ,q(β) = min
η∈Rp

+

S̃ν
λ,q(β, η) , (28)

denoting S̃ν
λ,q(β, η) = C(β)+

∑p
j=1

λq
ν ·r(|βj |ν , η)+λν−q

ν ·η
q

ν−q

j . Besides, the minimum

in (28) is attained at η = |β|ν−q, whatever the value of β.

Proof. The proof is given in Appendix C.

From Proposition 5, we can reformulate the optimization problem (3) as

argmin
β∈Rp

min
η∈Rp

+

S̃ν
λ,q(β, η) , (29)

so that an alternating minimization scheme for (29) can be obtained by replacing

Sν
λ,q by S̃ν

λ,q in (27), yielding exactly (19). As mentioned before, a limitation of such
scheme is that any vanishing entry that it generates won’t change anymore in all later
iterations.

Instead of the minimization of the energy Eλ,q, one can consider the minimization

of the modified energy Eν,δ
λ,q defined in (22). From Lemma 2, finding a minimizer of

Eν,δ
λ,q is equivalent to computing

argmin
β∈Rp

min
η∈(R∗

+)p
Sν,δ
λ,q(β, η) . (30)

An alternating minimization scheme for (30) can be obtained by replacing Sν
λ,q by

Sν,δ
λ,q in (27) yielding exactly (21).

2.4 The local approximation based strategy

Another very interesting way to address optimization problems like (3) is based on
local approximations of the energy to minimize. Such approach was proposed in [11] in
a slightly different framework than (3) since the authors focus on a variable selection
model that boils down to the minimization of an energy Jλ : Rp → R of the type

∀β ∈ Rp , Jλ(β) = C(β) + λ

p∑
j=1

pj(|βj |) , (31)

11

where λ > 0 and where each pj is a coordinate-wise penalty function from R+ to
R. The iterative local approximation framework proposed in [11] is the following.
Assuming that we are able to design a function Gλ : Rp × Rp → R such that, for all
(β, β′) ∈ Rp × Rp,

β ≈ β′ ⇒ Jλ(β) ≈ Gλ(β, β
′) and Jλ(β

′) = Gλ(β
′, β′) (32)

and such that Gλ(β, β
′) can be easily minimized over Rp with respect to β, then, from

an initial guess β(0) ∈ Rp, one can iterate

β(k+1) ∈ argmin
β∈Rp

Gλ(β, β
(k)) . (33)

Remark 3. We can notice that, if β 7→ Gλ(β, β
(k)) bounds Jλ from above, then (33)

is a majorize-minimize scheme. Otherwise, we must hope that, at each step of (33),
β(k+1) is close to β(k), so that the approximation (32) is accurate and the minimization
of β 7→ Gλ(β, β

(k)) is roughly related to that of Jλ in the vicinity of β(k).

The authors of [11] designed Gλ by combining a second order Taylor approximation
of C (assuming C twice continuously differentiable) with a local quadratic approxi-
mation (LQA) for each coordinate-wise penalty term. For all j ∈ {1, 2, . . . , p}, given
β
(k)
j ∈ R∗ and assuming pj differentiable overs R∗

+, the proposed LQA is

∀βj ∈ R , βj ≈ β
(k)
j ⇒ pj(|βj |) ≈ pj(|β(k)

j |) +
1

2

p′(|β(k)
j |)

|β(k)
j |

(
β2
j − β

(k)
j

2)
︸ ︷︷ ︸

:=lqaj(βj ,β
(k)
j)

, (34)

which can be derived using a first order Taylor expansion of pj at |β(k)
j |, followed by

the approximation

|βj | − |β(k)
j | =

|βj |2 − |β(k)
j |2

|βj |+ |β(k)
j |

≈
β2
j − β

(k)
j

2

2 |β(k)
j |

when βj ≈ β
(k)
j .

The authors of [11] handle the computation of (33) using the Newton-Raphson Algo-
rithm. Besides, when (33) generates an iterate β(k+1) with vanishing entry (or an
entry smaller than a given threshold), they propose to keep this entry vanishing in all
later iterations, not without mentioning the limitations of such strategy as we did in
Sections 2.2 and 2.3.

In terms of optimization, unless when β 7→ Gλ(β, β
(k)) bounds Jλ from above, a

relation like (32) does not ensure the relevance of (33) regarding the minimization of
Jλ since, as stated in Remark 3, we must have β(k+1) ≈ β(k) at each iteration to keep
the approximation of Jλ by β 7→ Gλ(β, β

(k)) accurate. In fact, the local approxima-
tion scheme (33) is probably efficient mostly in situations where it boils down to a

12

majorize-minimize scheme. In [15, Proposition 3.1], some sufficient conditions on the
coordinate-wise penalty functions (pj)1≤j≤p are given to ensure that each function

βj 7→ lqaj(βj , β
(k)
j) bounds βj 7→ pj(|βj |) from above. One of those conditions is that

each pj is piecewise differentiable over R∗
+ and that p′j(|βj |) admits a (finite) limit as

βj → 0. We can remark that if we set pj(|βj |) = |βj |q in order to have Jλ = Eλ,q, then
the limit of p′j(|βj |) as βj → 0 is infinite as soon as q < 1 and [15, Proposition 3.1]
cannot be applied in this situation.

The local approximation framework was further studied and extended in [16] where
the authors propose, as an alternative to the LQA (34), to consider a locally linear

approximation (LLA). Assuming each pj differentiable over R+ and given β
(k)
j ∈ R,

the proposed LLA is given by

∀βj ∈ R , βj ≈ β
(k)
j ⇒ pj(|βj |) ≈ pj(|β(k)

j |) + p′j(|β
(k)
j |)

(
|βj | − |β(k)

j |
)

︸ ︷︷ ︸
:=llaj(βj ,β

(k)
j)

, (35)

and can be derived from a simple first order Taylor approximation of pj at point |β(k)
j |.

In [16, Theorem 1], the authors provide sufficient conditions to ensure that βj 7→
llaj(βj , |β(k)

j |) bounds βj 7→ pj(|βj |) from above and they derive further majorize-
minimize schemes. However, the differentiability of each pj at zero is required to
apply [16, Theorem 1] and also to compute (35). Therefore, the choice pj(|βj |) = |βj |q
with q < 1 seems again problematic.

Let us focus back on the problem (3) and link the schemes presented in sections 2.2
and 2.3 to those local approximation based algorithms. First, remark that both the

LQA and the LLA can be unified using a single formula, using, for βj ≈ β
(k)
j ,

pj(|βj |) ≈ gνj (βj , β
(k)
j) := pj(|β(k)

j |) +
1

ν

p′j(|β
(k)
j |)

|β(k)
j |ν−1

(
|βj |ν − |β(k)

j |
ν
)
, (36)

which boils down to the LQA (34) for ν = 2 (and β
(k)
j ̸= 0), and to the LLA (35) for

ν = 1. Thus, defining

∀β ∈ Rp , Gλ(β, β
′) = C(β) + λ

p∑
j=1

gνj (βj , β
′
j) (37)

yields a LQA (for ν = 2 and β′ ∈ (R∗)p) or a LLA (for ν = 1 and β′ ∈ Rp) of Jλ that

satisfies (32). Now, let us set pj(|βj |) = |βj |q and ν ∈ {1, 2}. Assuming β
(k)
j ̸= 0, (36)

13

yields

∀βj ∈ R , gνj (βj , β
(k)
j) = |β(k)

j |
q +

q

ν
|β(k)

j |
q−ν

(
|βj |ν − |β(k)

j |
ν
)

=
q

ν
|β(k)

j |
q−ν |βj |ν +

ν − q

ν
|β(k)

j |
q

= ℓνq (βj , η
(k)
j)

(38)

denoting η
(k)
j = |β(k)

j |ν−q and recognizing the function ℓνq defined in (7). Thus, when
q < ν, using Lemma 1, we get

∀βj ∈ R , gνj (βj , β
(k)
j) = ℓνq (βj , |β(k)

j |
ν−q) ≥ |βj |q = pj(|βj |) ,

so that the local approximation βj 7→ gνj (βj , β
(k)
j) does indeed bound βj 7→ |βj |q

from above. Besides, using gνj (βj , β
(k)
j) = ℓνq (βj , |β(k)

j |ν−q) in (37) yields Gλ(β, β
(k)) =

Sν
λ,q(β, |β(k)|ν−q) and Scheme (33) is indeed a majorize-minimize scheme which is

nothing more than (13), although the sufficient conditions given in [15, Proposition 3.1]
and [16, Theorem 1] are not fulfilled by (pj)1≤j≤p. Imposing, as done in [11], vanishing

entries β
(k)
j = 0 to be kept unchanged in later iterations yields exactly Scheme (19).

Instead of addressing the minimization of Eλ,q, one can focus on that of Eν,δ
λ,q for

a given δ > 0 by setting pj(|βj |) = (|βj |ν + δν)
q
ν . In this case, both [15, Proposition

3.1] and [16, Theorem 1] can be applied to show that gνj bounds βj 7→ pj(|βj |) from
below. However, as we shall see now, this result can be proven very simply using the
variational formulation of the ℓq penalty presented in Section 2.1. Indeed (36) yields

gνj (βj , β
(k)
j) =

(
|β(k)

j |
ν + δν

) q
ν

+
q

ν

(
|β(k)

j |
ν + δν

) q−ν
ν
(
|βj |ν − |β(k)

j |
ν
)

and is well defined whatever the values of βj ∈ R and β
(k)
j ∈ R. Using

|βj |ν − |β(k)
j |

ν =

(
|βj |ν + δν

)
−
(
|β(k)

j |
ν + δν

)
,

and setting η
(k)
j =

(
|β(k)

j |ν + δν
) ν−q

ν

, we obtain

gνj (βj , β
(k)
j) =

q

ν

|βj |ν + δν

η
(k)
j

+

(
ν − q

ν

)(
η
(k)
j

) q
ν−q

= ℓ1r(|βj |ν + δν , η
(k)
j) where r =

q

ν
.

(39)

14

Thus, from Lemma 1, we get gνj (βj , β
(k)
j) ≤ (|βj |ν + δν)

r
= pj(|βj |) as announced.

Besides, using (39) in (37) yields Gλ(β, β
(k)) = Sν,δ

λ,q(β, η
(k)) where Sν,δ

λ,q was defined
in (23). Consequently, (33) is the same as (21) in this situation.

2.5 Links with other algorithms

In addition to the Adaptive-Ridge Algorithm, the numerical schemes derived above can
be linked to many other algorithms. One of those is the famous Iteratively Reweighted
Least Squares (IRLS) Algorithm proposed in [18] to address, given a matrixX ∈ Rn×p,
a vector y ∈ Rn, and for q ∈ (0, 1], the constrained minimization problem

argmin
β∈Rp

∥β∥qq subject to Xβ = y . (40)

Problem (40) is equivalent to (3) provided that we set C = {β ∈ Rp , Xβ = y} and

∀β ∈ Rp, C(β) = δC(β) :=

{
0 if β ∈ C

+∞ otherwise.
(41)

The IRLS Algorithm described in [18] corresponds to (21) with ν = 2 and with, in
addition to (21a) and (21b), a clever update of the δ parameter (which is not fixed
anymore and decreases along the iterations) depending on the value of the coordinate
residuals (|yj − (Xβ)j |)1≤j≤p and the assumed number of nonzero elements in the
search for solution of (40). We refer to [18] (see also [20]) for more details about the
IRLS Algorithm.

A variant of IRLS, usually referred as the IRL1 Algorithm, was proposed in [9] and
further studied in [19]. This algorithm is equivalent to iterating Scheme (21) with the
setting C = δC , ν = 1 and provided that each iteration of (21) is done asymptotically
for q → 0+. As for the IRLS Algorithm, an iterative update of the δ parameter is
proposed in [9] although the use of a fixed value for δ is also considered. Notice that the
authors of [6] remarked that the weight update of IRL1, that is, step (21b) with ν = 1
and q = 0, is similar to step (6b) of their algorithm with the setting γ = 1 and q = 1.
However, the comparison cannot be led any further because, under these settings, the
steps (21a) and (6a) remain sensibly different and both algorithms probably do not
address the minimization of the same energy. In particular, we are not able to identify
the underlying energy minimization addressed by the ARδ,γ

λ,q scheme for γ ̸= 2.
Another algorithm, namely the Adaptive Lasso Algorithm, was proposed in [4]

for the purpose of variable selection. The Adaptive-Lasso Algorithm is a two steps
algorithm. Given λ′ > 0, the first step consists in computing a solution β̂ of the LASSO
problem, i.e.,

β̂ ∈ argmin
β∈Rp

∥y −Xβ∥22 + λ′ ∥β∥1 . (42)

15

Then, the second step consists in finding

β ∈ argmin
β∈Rp

∥y −Xβ∥22 + λ′
p∑

j=1

r(|βj |, |β̂j |γ) , (43)

where γ > 0 is an hyperparameter that must be set by the user. Assuming the unique-
ness of the minimizer β of (43) to simplify the discussion, we can remark that β
corresponds to the first iterate β(1) generated by Scheme (19) with the setting ν = 1,

q < ν, λ = λ′/q, C : β 7→ ∥y − Xβ∥22 and the initialization η(0) = |β̂|γ . Assuming
a Gaussian distribution for the (yi)1≤i≤n, the authors of [4] provide sufficient con-
ditions for λ′ and γ to ensure the consistency of selection and the normality of the
Adaptive-Lasso estimate β as n→ +∞ (see [4, Theorem 2] for more details).

3 Adaptive-Ridge and square-log penalized selection

As explained in Section 1, the ℓq penalized energy Eλ,q (for q > 0) involved in (3)
can be viewed as an approximation of the sparsity promoting L0-penalized energy Eλ
defined in (1). In Section 2, we showed how the minimization of Eλ,q or its approxima-

tion Eδ,ν
λ,q (for ν = 2), defined in (22), could be handled using the ARδ,γ

λq,q Algorithm (see
Remark 1 and Remark 2). However, other smooth approximations of Eλ, such as the
square-log penalized energy Fλ,δ (for δ > 0) defined in (5), can also be considered.
The LQA methodology that we recalled in Section 2.4 can be used to address the
minimization of Fλ,q. Indeed, given δ > 0 and letting

∀ρ ∈ R+ , pδ(ρ) =
log
(
1 + (ρ/δ)2

)
log (1 + δ−2)

,

the LQA of pδ given by (34) yields, for all (ρ, ρ̃) ∈ R2
+,

ρ ≈ ρ̃ ⇒ pδ(ρ) ≈
log
(
1 + (ρ̃/δ)2

)
log (1 + δ−2)

+
1

log (1 + δ−2)
· ρ

2 − ρ̃2

δ2 + ρ̃2︸ ︷︷ ︸
:=lqa(ρ,ρ̃)

. (44)

Since pδ is continuously differentiable, nondecreasing and concave over R+, from [15,

Proposition 3.1], we have, for all β ∈ Rp, for all β̃ ∈ (R∗)p and for all j ∈ {1, 2, . . . , p},

pδ (|βj |) ≤ lqa
(
|βj |, |β̃j |

)
and pδ

(
|β̃j |
)
= lqa

(
|β̃j |, |β̃j |

)
. (45)

One can easily check that (45) is in fact also valid for any β̃ ∈ Rp (i.e., without the

restriction β̃ ∈ (R∗)p). Thus, letting

∀(β, β̃) ∈ Rp × Rp , Gλ(β, β̃) = C(β) + λ

p∑
j=1

lqa
(
|βj |, |β̃j |

)
,

16

we obtain a majorize-minimize scheme for Fλ,δ by choosing β(0) ∈ Rp and iterating
for k ≥ 0,

β(k+1) ∈ argmin
β∈Rp

Gλ(β, β
(k)) . (46)

Using (44) and removing from Gλ the terms that do not depend on β (and thus do
not change the argmin in (46)), the majorize-minimize scheme (46) is equivalent to

setting η(0) = β(0)2 + δ2 and iterating for k ≥ 0
β(k+1) ∈ argmin

β∈Rp
C(β) +

λ

log (1 + δ−2)

p∑
j=1

β2
j

η
(k)
j

η(k+1) =
(
β(k+1)

)2
+ δ2 .

(47a)

(47b)

We can see that (47) corresponds exactly to the ARδ,γ
λ′,q Algorithm with the setting

γ = 2, q = 0 and λ′ = 2λ/ log (1 + δ−2). Notice that the ability of the Adaptive-Ridge
Algorithm to handle the minimization of the square-log penalized energy Fλ,δ using
the majorize-minimize strategy was already pointed out in [13]. Note also that the LLA
methodology could also be used to handle the minimization of Fλ,δ and would also
yield a majorize-minimize scheme since pδ satisfies the conditions of [16, Theorem 1].

4 Several implementations of the Adaptive-Ridge
Algorithm

In this Section, given a matrix X ∈ Rn×p and an element y ∈ Rn, we focus on practical
implementations of the AR scheme in the case where C(β) = 1

2∥y − Xβ∥22. We will
restrict our study to the case γ = 2, since, as mentionned in Section 2.5, we could not
derive a satisfactory interpretation of the AR scheme in terms of energy minimization
for other settings of γ. Given q ∈ [0, 2), δ > 0 and λ′ > 0, the ARγ,δ

λ′,q scheme (with

γ = 2) boils down to setting w(0) ∈ (R∗
+)

p and to iterating, for k ≥ 0,
β(k+1) ∈ argmin

β∈Rp

1

2
∥y −Xβ∥22 +

λ′

2

p∑
j=1

w
(k)
j β2

j

w(k+1) =
(
|β(k+1)|2 + δ2

) q−2
2

.

(48a)

(48b)

One can easily check that, when δ > 0, problem (48a) admits a unique solution (by
continuity, strict convexity and coercivity of the function to minimize). However, we
will also extend the study to the case δ = 0 and comment on our implementations in
this situation.

17

4.1 System inversion based implementation

Given any vector z ∈ Rp, we set D(z) = diag(z1, z2, . . . , zp). When δ > 0, we can
easily check that all iterates (w(k))k≥1 generated using (48b) lie in (R∗

+)
p. In this

situation, (48a) can be written

β(k+1) ∈ argmin
β∈Rp

1

2
∥y −Xβ∥22 +

λ′

2
∥D((w(k))1/2)β∥22 (49)

and admits as unique solution that of the linear system(
XtX + λ′D(w(k))

)
β(k+1) = Xty . (50)

Solving (50) is formally possible but can be numerically difficult because the matrix
XtX + λ′D(w(k)) can be badly conditioned, especially when δ is small. For instance,

if we assume that the iterate β(k) generated using (48a) satisfies β
(k)
j = 0 and β

(k)
j′ =

α ̸= 0 for two indexes j ̸= j′, then, we have w
(k)
j = δq−2 and w

(k)
j′ = (|α|2 + δ2)

q−2
2 . It

follows that the condition number in ℓ2 norm of D(w(k)) is larger than (δ2

|α|2+δ2)
q−2
2 ,

and thus, becomes arbitrary large as δ → 0+. Although, in the general case, the bad
conditioning of the matrix D(w(k)) does not necessarily imply a bad conditioning
for the matrix XtX + λ′D(w(k)), we observed in practice that such situation does
make (50) ill-conditioned. To tackle this numerical difficulty we suggest to consider,
instead of (50), the preconditioned system

D(r(k))
(
XtX + λ′D(w(k))

)
β(k+1) = D(r(k))Xty (51)

where r(k) corresponds to the vector made of the inverse of the diagonal elements of
the matrix XtX + λ′D(w(k)), i.e.,

∀j ∈ {1, 2, . . . , p} , r
(k)
j =

1

vj + λ′w
(k)
j

denoting vj = (XtX)jj =

n∑
i=1

X2
ij . (52)

Notice that using vj ≥ 0 and w
(k)
j > 0 in (52) yields r

(k)
j > 0. Thus, the diagonal

matrix D(r(k)) involved in (51) is invertible and, therefore, (51) is equivalent to (50).
The inverse of D(r(k)), that is the diagonal matrix made with the diagonal elements of
XtX+λ′D(w(k)), corresponds to the so-called Jacobi preconditioner of the system (50).
The advantage of considering (51) instead of (50) in terms of system conditioning will
be experimentally illustrated in Section 4.3.7.

Another practical advantage of (51) compared to (50) is that the matrix of sys-
tem (51) remains finite as δ → 0+, which is not necessarily true for that of system (50).

18

Indeed from (48b), for all j ∈ {1, 2, . . . , p}, we have

lim
δ→0
δ≥0

w
(k)
j = lim

δ→0
δ≥0

(
|β(k)

j |
2 + δ2

) q−2
2

=

{
|β(k)

j |q−2 if β
(k)
j ̸= 0

+∞ otherwise.
(53)

Therefore, as long as β
(k)
j = 0, the j-th diagonal element of the matrix of system (50)

diverges to infinity as δ → 0+. As we shall see now, this is not the case for system (51).

Setting z
(k)
j = r

(k)
j w

(k)
j for all j ∈ {1, 2, . . . , p}, we can write (51) as(
D(r(k))XtX + λ′D(z(k))

)
β(k+1) = D(r(k))Xty . (54)

Besides, when β
(k)
j = 0, from (52) and (53), we have

lim
δ→0
δ≥0

r
(k)
j = 0 and lim

δ→0
δ≥0

z
(k)
j =

1

λ′ (55)

so that the j-th diagonal element of the matrix of sytem (54) (or (51)) remains finite
as δ → 0+. Practically speaking, the setting δ = 0 can be allowed in numerical
implementations provided that we evaluate r(k) and z(k) using

∀j ∈ {1, 2 . . . , p}, r
(k)
j =

η
(k)
j

vjη
(k)
j + λ′

and z
(k)
j =

1

vj η
(k)
j + λ′

, (56)

denoting η(k) = (|β(k)|2+δ2)
2−q
2 (as we did in Section 2). Thus, assuming that β

(k)
j = 0

and δ = 0, we obtain η
(k)
j = 0, r

(k)
j = 0 and z

(k)
j = 1

λ′ in (56). Notice that, in such

situation, D(r(k)) is not invertible. Therefore, (51) (or (54)) and (50) are not equivalent
anymore and we can wonder how the solution of (54) can be linked to (48a). In fact,

in such situation, the j-th row of (54) simply yields β
(k+1)
j = 0 and we can easily

show that the iterates β(k+1) generated by inversion of (54) are exactly the same as
those generated using Scheme (19) with λ = λ′/q and ν = 2. Finally, the system
inversion based implementation of the AR algorithm is summarized in Algorithm 1.
Notice that an energy based criterion is used in Algorithm 1 to stop the iterations but
other stopping criteria may be considered (for instance, one may be more interested
in controling the convergence of the iterates (β(k))k≥0 themselves rather than that of
the targeted energy).

4.2 Conjugate-Gradient based implementation

The system inversion based implementation of the Adaptive-Ridge Algorithm
described in Section 4.1 relies on the inversion of a p× p sized linear system like (54)
at each iteration (see Algorithm 1 line 7). Even though optimized solvers are available

19

Algorithm 1: system inversion based implementation of the Adaptive-Ridge
(aridge sysinv module).

Inputs : a number q ∈ [0, 2), a penalty parameter λ′ > 0, a smoothing parameter
δ ≥ 0 (δ = 0 is allowed only when q > 0), a matrix X ∈Mn,p(R), a vector

y ∈ Rp, an initial guess β(0) ∈ Rp, a tolerance parameter ε.
Output: an estimate of a local minimizer of the targeted energy, that is, of

E : β 7→ 1

2
∥y−Xβ∥22 +

λ′

q

∑p
j=1(β

2
j + δ2)

q
2 if q ̸= 0

λ′

2

∑p
j=1 log

(
1 + (βj/δ)

2
)

if q = 0 (and δ ̸= 0) .

1 v ← vector made of the diagonal elements of XtX
2 k ← 0
3 repeat

4 η(k) ←
(
|β(k)|2 + δ2

) 2−q
2

5 z ←
(
v · η(k) + λ′

)−1

6 r ← η(k) · z
7 β(k+1) ← solution of

(
D(r)XtX + λ′D(z)

)
β = D(r)Xty

8 k ← k + 1

9 until E(β(k−1))− E(β(k)) ≤ ε · E(β(k−1)) // energy-based stopping criterion

10 return β(k)

Lines 5 and 6: the dot product refers to the coordinatewise mutliplication between two vectors.
Line 7: it is recommended to solve the linear sysem in the least-squares sense rather than by
direct matrix inversion, this can be done using standard librairies such as LAPACK [47] (the
latter being natively used in popular scientific programming langages such as R, Matlab or
Octave).

through standard libraries, the latter usually involve matricial manipulations (e.g., sin-
gular values decompositions, orthogonal factorization, QR decomposition, ...) which
are computationally expensive, both in terms of time and memory (their typical com-
plexity is Θ(p3) of Θ(p4) depending on the method). The Conjugate Gradient (CG)
Algorithm is a famous iterative algorithm for solving symmetric and positive defi-
nite systems. The latter only requires matrix-vector multiplications (and thus Θ(p2)
operations) at each iteration. The convergence rate of the CG Algorithm depends
on the spectral properties of the matrix of the system [48–50]. In many situations,
it reveals faster and computationally less expensive than the previously mentioned
methods. We shall describe now how the CG Algorithm can be used to implement the
Adaptive-Ridge scheme (48). Notice that the idea of using the CG Algorithm within
IRLS procedures is not new and was proposed in [51] (see also [20, Chapter 4]) in the
framework of compressed sensing and sparse reconstruction.

Let us assume that δ > 0. As we discussed in Section 4.1, solving (48a) is equiv-
alent to solving the symmetric and positive definite linear system (50). To avoid bad
conditioning issues with (50), we considered (54) in Section 4.1 as an equivalent pre-
conditioned system, but the matrix of this system is not symmetric so that it cannot
be addressed using the CG Algorithm. Another similar way to precondition (50) is the
following. Let k ≥ 0, let us keep the notations r(k) and z(k) defined in (56) and let us

20

set s(k) = (r(k))
1
2 . The assumption δ > 0 ensures that the entries of r(k) are positive

(see Section 4.1), and so are those of s(k). Thus, we can consider the bijective change
of variables

β(k+1) = D(s(k)) β̃(k+1) , (57)

and reformulate (50) into the equivalent form(
XtX + λ′D(w(k))

)
D(s(k)) β̃(k+1) = Xty . (58)

Left-multiplying (58) by D(s(k)) and using D(s(k))D(w(k))D(s(k)) = D(z(k)), we
reformulate (58) into the equivalent linear system(

D(s(k))XtXD(s(k)) + λ′D(z(k))
)
β̃(k+1) = D(s(k))Xty , (59)

which is a symmetric and positive definite system. Thus, the CG Algorithm can be
used to approach the solution β̃(k+1) of (59). Afterwards, one can retrieve the solution
of (50) simply using (57). The CG Algorithm is summarized in Algorithm 2, and
the CG based implementation of the Adaptive-Ridge Algorithm is summarized in
Algorithm 3.

Algorithm 2: Conjugate Gradient Algorithm (cg module)

Inputs : a symmetric and positive definite matrix A with order p, a vector
b ∈ Rp, an initial guess x0 ∈ Rp, a maximal number of iterations
Niter and a tolerance parameter εcg.

Output: an estimate of the solution of the linear system Ax = b

1 r0 ← b−Ax0

2 π0 ← r0

3 k ← 0

4 while ∥rk∥2 > εcg · ∥b∥2 and k < Niter do

5 α← ∥rk∥2
2

πt
kAπk

6 xk+1 ← xk + α · πk

7 rk+1 ← rk − α ·Aπk

8 πk+1 ← rk+1 +
∥rk+1∥2

2

∥rk∥2
2
· πk

9 k ← k + 1

10 end
11 return xk

Convergence of the Conjugate Gradient Algorithm is theoretically ensured after at most p
iterations. In practice, more than p iterations may be needed due to numerical error propa-
gation (mainly round-off and cancellation errors). Line 7: in the absence of numerical errors,
we would have rk+1 = b−Axk+1 at each iteration k ≥ 0.

21

Algorithm 3: Conjugate Gradient based implementation of the Adaptive-Ridge
(aridge cg module).

Inputs : a number q ∈ [0, 2), a penalty parameter λ′ > 0, a smoothing
parameter δ ≥ 0 (δ = 0 is allowed only when q > 0), a matrix
X ∈Mn,p(R), a vector y ∈ Rp, an initial guess β(0) ∈ Rp, two
tolerance parameters ε and εcg.

Output: an estimate of a local minimizer of the targeted energy, that is, of

E : β 7→ 1

2
∥y−Xβ∥22 +

{
λ′

q

∑p
j=1(β

2
j + δ2)

q
2 if q ̸= 0

λ′

2

∑p
j=1 log

(
1 + (βj/δ)

2
)
if q = 0 (and δ ̸= 0) .

1 v ← vector made of the diagonal elements of XtX

2 k ← 0

3 repeat

4 η(k) ←
(
|β(k)|2 + δ2

) 2−q
2

5 z ←
(
v · η(k) + λ′)−1

6 s←
(
η(k) · z

) 1
2

7 β̃(k+1) ← cg
(
D(s)XtXD(s) + λ′D(z),D(s)Xty,D(s)†β(k), p, εcg

)
8 β(k+1) ← D(s)β̃(k+1)

9 k ← k + 1

10 until E(β(k−1))− E(β(k)) ≤ ε · E(β(k−1))

11 return β(k)

Lines 5 and 6: the dot product refers to the coordinatewise mutliplication between two vectors.

Line 7 : D(s)† denotes the Moore-Penrose pseudoinverse of the diagonal matrix D(s), that is,
the diagonal matrix obtained by inverting each nonzero diagonal term of D(s) and keeping all

zero-values in place. One can check that, at each iteration k ≥ 1, we have D(s)†β(k) = β̃(k).

At iteration k = 0, the initial guess D(s)†β(0) used in the cg module is a rescaling of β(0)

sharing the same support as β(0).

Remark 4. One can easily check that the matrix of system (59) remains finite when
δ = 0. However, when δ = 0, we have, for all

j ∈ {1, 2, . . . , p} β
(k)
j = 0⇔ r

(k)
j = 0⇔ s

(k)
j = 0 .

When s(k) admits vanishing entries, the change of variables (57) is not bijective any-
more so that we loose the equivalence between system (50) and the preconditioned

system (59). Note also that s
(k)
j = 0 yields β̃

(k+1)
j = 0 in (59) and β

(k+1)
j = 0 in (57).

Finally, one can easily check that the iterates (β(k))k≥0 generated by Algorithm 3 with
δ = 0 are exactly the same as those generated using Scheme (19) with λ = λ′/q and
ν = 2.

22

4.3 Numerical experiments

This section aims to illustrate the behavior of the Adaptive-Ridge Algorithm as well
as the influence of its parameters (λ′, q, δ) on the computed output. To facilitate the
study, we will focus on synthetic datasets generated using a simple and standard
simulation scheme that we shall now describe.

4.3.1 Simulation scheme

Given (n, p) ∈ N2, a synthetic dataset (X,β⋆, y) ∈ Rn×p × Rp × Rn is obtained as
follows.

1. We compute a random matrix X̃ ∈ Rn×p made of independant and uniformly dis-
tributed random entries X̃ij ∼ U[0,1]. Then, we apply a columnwise normalization
(to impose zero-mean and unitary ℓ2 norm of the columns) using

∀(i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , p} , Xij =
X̃ij − µj

nj
,

where µj =
∑n

i=1 X̃ij and n2
j =

∑n
i=1(X̃ij − µj)

2.

2. We compute a random sparse reference signal β⋆ ∈ Rp (referred as ground-truth
in the following) using

∀j ∈ {1, 2, . . . , p} , β⋆
j =

{
1 if δj > 0.95
0 otherwise

where {δj}1≤j≤p are independant and uniformly distributed random variables. By
construction, in average 95% of the entries of β⋆ are zero, the 5% remaining are
equal to one.

3. We compute a random observation y ∈ Rn using

∀i ∈ {1, 2, . . . , n} , yi = (Xβ⋆)i + σεi (60)

where σ = 0.2 and {εi}1≤i≤n are independant Gaussian random variables following
a normal distribution and (Xβ⋆)i denotes the i-th entry of Xβ⋆.

Unless explicitly mentioned, we will consider the setting n = 300 and p = 150 in
our simulations. We experimentally checked that both Algorithm 1 and Algorithm 3
returned the same output (up to machine precision) when applied to the same dataset
with the same setting for their parameters (q, λ′, δ, ε) and taking εcg = 10−16 in
Algorithm 3. This is not surprising since both algorithms implement the same numer-
ical scheme (48). However, they both differ in terms of execution time, as it will be
illustrated in Section 4.3.5.

23

4.3.2 First examples of AR estimates

Examples of estimates produced by the Adaptive-Ridge Algorithm applied to a syn-
thetical dataset (X,β⋆, y) with the two settings (q = 0.2, δ = 0, λ′ = 0.1) and
(q = 0, δ = 10−5, λ′ = 0.1) are displayed in Fig 2. The two settings of (q, δ) yield two
different estimates, since the AR scheme (48) addresses the minimization of two differ-
ent energies: a ℓq penalized energy (when q > 0 and δ ≥ 0), or a log-square penalized
energy (when q = 0 and δ > 0).

(a) estimated (local) minimizer of the ℓq penalized energy

(b) estimated (local) minimizer of the log-square penalized energy

Fig. 2 Example of estimates produced by the AR algorithm. A simulated dataset (X,β⋆, y)
was processed using Algorithm 3 with the setting λ′ = 0.1, ε = εcg = 10−16, a random initial guess
β(0) (with i.i.d. entries following a uniform distribution), and the two settings (q = 0.2, δ = 0) and
(q = 0, δ = 10−5). We display with blue plain stems in (a) the estimate obtained using (q = 0.2, δ = 0)
and with orange plain stems in (b) the estimate obtained using (q = 0, δ = 10−5). The ground-truth
β⋆ is displayed in both graphs using yellow dotted stems. Those two settings yield two different
estimates that are both close to β⋆, which gives first comforting insights on the ability of those
optimization models to be useful for variable selection. In fact, with q = 0.2 ̸= 0, Algorithm 3
addresses the minimization of a ℓq penalized energy, while with q = 0, a log-square penalized energy
minimization is performed. The reason why the estimates displayed in (a) and (b) are different from
β⋆ is simply that the ground truth β⋆ is not the minimizer of the considered energies (at least for the
considered settings of q, δ and λ′). The ability of Algorithm 3 to efficiently address the minimization
of those energy (independantly from the quality of the produced estimate) is illustrated in Fig. 3.

24

4.3.3 Energy decrease

In Remark 4, we pointed out that the iterates (β(k))k≥0 generated using Algorithm 3
with q > 0 and δ = 0 are the same as those generated using Scheme (19) (with λ = λ′/q
and ν = 2). Since C : β 7→

∑n
i=1(yi − (Xβ)i)

2 is finite over Rp, from Proposition 3,
the sequence of ℓq penalized energies

(
Eλ,q(β

(k))
)
k≥0

decreases along the scheme iter-

ations. This result was experimentally highlighted in Fig. 3 (a). Similarly, when q = 0
and δ > 0, Algorithm 3 ensures the decrease of the log-square penalized energy Fλ,δ

(with λ = λ′ log (1 + δ−2)/2), as explained in Section 3 and experimentally illustrated
in Fig. 3 (b).

(a) ℓq penalized energy (b) log-square penalized energy

Fig. 3 Energy decrease along with the AR iterations. We consider exactly the same dataset
and experiments as those presented in Fig. 2. We display in (a) the evolution of the ℓq penalized
energy k 7→ Eλ,q(β

(k)) (with q = 0.2, λ = λ′/q = 0.5 and 1 ≤ k ≤ 35), denoting β(k) the k-th iterate
computed using Algorithm 3 with the setting (q = 0.2, δ = 0). We display in (b) the evolution of the
log-square penalized energy k 7→ Fλ,δ(β

(k)) (with δ = 10−5 and λ = λ′ log (1 + δ−2)/2 ≈ 1.1513),

where β(k) denotes this time the k-th iterate computed using Algorithm 3 with the setting (q = 0, δ =
10−5). In both cases, we can see that the considered energy decreases along with the AR iterations,
as showed in Proposition 3 or in Section 3.

4.3.4 Sensitivity to the choice of the initializer

Addressing the minimization of non-convex energies is a difficult task, partly due to
the presence of local extrema in the energy to minimize, which makes most non-convex
optimization algorithms sensitive to the choice of the initializer. This is also the case
for the Adaptive-Ridge scheme (48). For a given dataset (X,β⋆, y), the output of algo-
rithms 1 and 3, as well as the achieved value of the energy to minimize, may be strongly
dependent on the choice of the initializer β(0). This is especially true for small values
of q, as illustrated in Fig. 4. Interestingly enough, the sensitivity of the Adaptive-
Ridge scheme to the choice of the initializer seems to decrease as q increases from 0
to 1, with no meaningful variability observed when q = 1. In fact, when q = 1 the

25

(a) module aridge cg with q = 0.1 and δ = 0

(b) module aridge cg with q = 0.3 and δ = 0

(c) module aridge cg with q = 0.8 and δ = 0

Fig. 4 Variability of the estimated local minimizers with respect to the initialization. We
executed Algorithm 3 over a single dataset (X,β⋆, y) using 104 random initial guesses β(0) (simulated
using a uniform distribution), and setting λ′ = 0.1, ε = εcg = 10−16, δ = 0 and q ∈ {0.1, 0.3, 0.8}.
For each value of q, we display above using blue plain stems the median estimate computed among
the 104 simulations (one simulation per initial guess β(0)), and we indicate with red error bars the
first and last decile estimate values of each entry except for entries where no variability was observed
(in this case no error bar is displayed). We can see that most of the vanishing entries remained stable
(i.e., remained vanishing whatever the initial guess) in this simulation. However, one can remark that
some non vanishing entries exhibit a large variability with respect to the choice of the initializer. This
is especially true for small values of q (see (a) and (b)) and this variability decreases as q gets close
to 1 (see (c)). The sensitivity of the AR scheme to the choice of the initializer is a consequence of the
nonconvexity (when q < 1) of the energy to minimize. However, when q = 1 the energy is convex and
does not assume local minima. This experiments illustrates that the influence of local minima of the
ℓq penalized energy on the estimate produced by the AR scheme decreases as q increases.

26

underlying ℓ1 penalized energy to minimize is convex and admits a unique minimizer
(since X is of full rank in our simulation scheme). However, for q < 1, the number
of local minima of the ℓq penalized energy probably increases as q decreases, and as
a result, the scheme becomes more sensitive to the choice of the initializer. This can
also be observed in Table 1 where we study the sensitivity of the energy of the final
iterate produced by Algorithm 3 with respect to the choice of the initializer. Looking
at the last column of Table 1, we can see that this sensitivity decreases as q increases
from zero to one (with no quantitatively meaningful variability observed for q = 1).

Table 1 Sensitivity of the AR scheme to the initialization. As in Fig. 4. We considered

one single (X,β⋆, y) dataset and 104 random initial guesses β(0). We provide here some
statistics on the energy of the estimate returned by Algorithm 3 with respect to the
choice of the initial guess β(0) of the AR scheme (other parameters for Algorithm 3:
λ′ = 0.1, ε = εcg = 10−16).

Setting
energy of the Adaptive-Ridge output estimate

min first decile median last decile max max−min
median

q = 0 δ = 10−5 9.128 11.29 12.73 13.87 14.51 42%

q = 0.2 δ = 0 8.56 9.076 9.353 9.694 9.958 15%

q = 0.4 δ = 0 7.332 7.409 7.466 7.658 8.043 9.5%

q = 0.6 δ = 0 6.58 6.582 6.591 6.664 7.044 7%

q = 0.8 δ = 0 5.928 5.93 5.932 5.936 6.018 1.5%

q = 1 δ = 0 5.197 5.197 5.197 5.197 5.197 5.2 · 10−9

Another interesting point is that the variability of the output estimate with respect
to the choice of the initializer seems to be restricted to some coordinates only. Indeed,
we can observe in Fig. 4 that most vanishing coordinates of the estimates remained
stable (i.e. they remained vanishing) in all our simulations. This means that the sensi-
tivity of the scheme with respect to the initializer may not equally affect all entries of
the estimator. However, this observation may also be a consequence of the restricted
range of initializers considered in our simulations.

4.3.5 Execution time

As mentioned before, Algorithm 1 and Algorithm 3 both implement the same scheme,
and thus, they both produce the same estimate (up to numerical rounding errors) when
applied to the same dataset and using the same input parameter values. However,
since those two algorithms are implemented in different ways, they exhibit different
performances in terms of computation time. Algorithm 1 relies on the direct inversion
of a linear system at each iteration, while, with Algorithm 3, the system is symmetrized
and its inversion is specifically handled using the CG Algorithm (as explained in
Section 4.2). The evolution of the computation time for both algorithms with respect
to the dimension p of the problem is studied in Fig. 6. Unsuprisingly, we found that
Algorithm 3 becomes significantly faster than Algorithm 1 for large values of p.

27

Fig. 5 Execution time. We measured the execution time of Algorithm 1 and Algorithm 3 applied
to simulated datasets (X,β⋆, y) with matrix X of size n × p for n = 500 and various values of
p between 100 and 1000. We performed 103 simulations per tested value of p and executed both
algorithms using q = 0.1, δ = 0, λ′ = 0.1, ε = 10−5 (and εcg = 10−16 for Algorithm 3). For each
simulation, a given β(0) (randomly sampled according to a uniform distribution) was used as initial
guess for both algorithms. For each value of p, we display using a blue bar the median execution
time obtain with Algorithm 1 among the 103 simulations, and using an orange bar that obtained
using Algorithm 3. Error bars indicate the first and last decile of the computation times measured
among the 103 simulations. We can see that, the execution time of both algorithms is comparable
for p < 300. However, we can see that as p increases, Algorithm 3 becomes significantly faster than
Algorithm 3. This is not surprising since Algorithm 3 exhibits a Θ(p2) temporal complexity while
that of Algorithm 1 is in Θ(p3). Notice that the same study was led for n = 100 and n = 1000 and
yielded the same conclusion (results not shown).

4.3.6 Convergence of the scheme iterates

Results of convergence for the iterates generated by the IRLS Algorithm in the con-
strained framework (40) can be found in [18] and references therein (we recall that
the link between the IRLS and AR algorithms in this constrained framework was dis-
cussed in Section 2.5). In [18, Theorem 5.3], convergence with a linear rate (that is,
exponential decay of the distance between the scheme iterates and their limit) of the
sequence generated by the IRLS scheme toward a solution of (40) is shown for q = 1.
In the setting 0 < q < 1, convergence with a superlinear rate of the IRLS scheme
toward a (local) solution of (40) is established in [18, Theorem 7.9]. However, the AR
scheme (48) considered in our experimental section does not address the constrained
problem (40) but the minimization of a ℓq penalized energy which can be viewed as
a relaxed variant of the constrained problem (40). Some variants of the IRLS scheme
in such relaxed framework are described in [43, 44, 51] and boil down to the same
scheme as the AR scheme (48) provided that an appropriate update of the δ param-
eter is done at each iteration. Convergence results are also established in this relaxed
framework but in a weaker sense (only the existence of accumulation points of the
sequence of the IRLS iterates is shown, see [51, Theorem 5] and references therein).
In this work, we performed an empirical study of the convergence of the AR scheme.
It seems that a linear convergence rate is achieved for 0 < q ≤ 1 and that this rate
improves as q decreases, as illustrated in Fig. 6.

28

(a) Algorithm 3 with q = 1 (b) Algorithm 3 with q = 0.1

Fig. 6 Convergence of the AR scheme. We simulated 104 synthetic datasets (X,β⋆, y). Each
dataset was processed using Algorithm 3 with λ′ = 0.1, q ∈ {0.1, 1} and a random initial guess. For
each simulation, we comptuted the relative distance between the iterate β(k) and β(1000000) (denoted
β(∞)). We display here the first, median and last deciles of this relative error as functions of k. For
both q = 0.1 and q = 1, we can observe a relatively slow decrease rate of the relative error in O(1/k)
during the first iterations, followed by a faster decrease rate in O(e−αk) for a given α > 0. This rate is
much more faster for q = 0.1 than for q = 1. Interestingly enough, the same behavior was pointed out
in [52] for another class of convex minimization algorithms (the so-called Forward-Backward splitting
algorithms).

4.3.7 Systems conditioning

In Section 4.1, we pointed out that some care should be taken when addressing the
numerical computation of step (48a) of the AR scheme. Indeed, if computing (48a) is
formally equivalent to solving the linear system (50), we explained that the latter may
exhibit bad conditioning, especially for small values of δ. This phenomenon is indeed
illustrated in Table 2, where we report some statistics on the condition number (in ℓ2

norm) of all matrices (50) obtained when implementing the AR scheme (with q = 0.1,
λ′ = 0.1 and several values of δ) to process 104 simulated datasets (X,β⋆, y). We can

Table 2 Condition numbers for systems (50) generated

using scheme (48) over 104 random datasets (X,β⋆, y).

Setting
Condition numbers for systems (50)

first decile median last decile

δ = 10−1 11 12 14

δ = 10−5 6.6 · 107 3.3 · 108 3.7 · 108

δ = 10−10 4.9 · 108 4.6 · 1018 5.2 · 1020

see in Table 2 that large enough values of δ (such as δ = 0.1 in our experiments, but,
as we will discuss in the next section, this setting is not scale invariant) yield well
conditioned systems. However, as δ decreases, we rapidely observe extremely badly
conditioned systems. This means that, for small values of δ, even small errors on the
input observation y may be dramatically amplified during the inversion process. Notice
that the authors of [6] recommend the setting δ = 10−5. However, as we will observe

29

in the next section, in practical situations this setting turns out to be equivalent to
the setting δ = 0 (provided that bad conditioning issues are properly handled).

Repeating the same experiment as in Table 2 but considering the preconditioned
linear systems (51) involved in Algorithm 1 or the preconditioned and symmetrized
linear systems (54) involved in Algorithm 3, we observed condition numbers of at
most 9 among all simulations, for δ ∈ {10−10, 10−5, 10−1} and even for δ = 0. This
empirically confirms the benefit of those preconditioning operations regarding the
numerical implementation of the AR scheme.

4.3.8 Influence of the δ parameter

In Fig. 7, we display a simple example of estimates produced by the AR scheme with
q = 0.1, λ′ = 0.1 and δ ∈ {0, 0.05, 0.1}.

(a) module aridge cg with δ = 0 or δ = 0.1

(b) module aridge cg with δ = 0 or δ = 0.05

Fig. 7 Influence of the δ parameter. We processed a single synthetic dataset (X,β⋆, y) using
Algorithm 3 with λ′ = 0.1, q = 0.1 and various settings of δ. The estimate obtained using δ = 0 is
displayed using blue plain stems in both (a) and (b). The estimate obtained using δ = 0.1 is displayed
using orange dashed stems in (a) and that obtained using δ = 0.05 is displayed using green dashed
stems in (b). We can see in (a) that the settings δ = 0 and δ = 0.1 yield sensibly different estimates.
However, one can see in (b) that setting δ = 0.05 yields an estimate closer to that obtained for
δ = 0. More comments on this experiments are given in the text below. Besides, a more exhaustive
comparison between the estimates obtained using δ = 0 and δ > 0 is proposed in Fig. 8.

30

In Fig. 7 (a), we can see that the estimate computed with δ = 0.1 is sensibly
different from that obtained using δ = 0. Decreasing the value of δ yields closer
estimates, as illustrated in Fig. 7 (b) with δ = 0.05, and more exhaustively highlighted
in Fig. 8.

Fig. 8 Distance between estimates obained with δ = 0 and δ > 0. In this experiment,
we simulated 104 synthetic datasets (X,β⋆, y). Each dataset was processed by Algorithm 3 using a
random inital guess β(0) and setting λ′ = 0.1, q ∈ [0.1, 1], ε = εcg = 10−16 and δ ∈ [0, 1]. After each
experiment, we computed the Euclidean distance between the estimate produced using δ = 0 and
δ > 0. For each setting of (q, δ), we computed the median distances observed over the 104 simulations
and we display here, using false colors and level lines, the evolution of this distance as a function of
(q, δ). We can see that, the estimates obtained using δ > 0 gets rapidly significantly close to that
obtained for δ = 0 as δ decreases.

The proximity observed in Fig. 8 between the estimates computed using small
enough values of δ and that computed using δ = 0 was somehow expected since the
underlying energies to be minimized, i.e. Eν,δ

λ,q (with ν = 2 and λ = λ′/q) when setting
δ > 0 in Algorithm 3 and Eλ,q when setting δ = 0 in Algorithm 3, are asymptotically
the same as δ → 0. However, we observed that a noticeable difference remains between
the estimates produced using δ = 0 and δ > 0: those obtained using δ = 0 are sparse,
while those obtained using δ > 0 exhibit no vanishing entries. Since producing sparse
estimates is the initial motivation for addressing ℓq penalized minimization, when the
setting δ > 0 is considered, a natural idea is to hard threshold the produced estimate
using δ as threshold parameter. This means that at the end of the execution of the
AR scheme, the entries of the produced estimate with absolute values less than δ are
replaced by 0. As illustrated in Fig. 7, we observe that, as long as δ is small enough, this
thresholding operation produces estimates with the same support as those obtained
using δ = 0.

In [6], the authors recommend the setting δ = 10−5 claiming that δ = 0 would be
more attractive but would cause numerical instabilities. We have several objections
about this recommendation. First, the setting δ = 10−5 is not scale invariant. If we

31

multiply by a given scalar number the ground-truth β⋆ in the simulation scheme, the δ
parameter will also need to be rescaled accordingly. Second, thanks to preconditioning,
the AR scheme does no longer suffer from numerical instabilities caused by the setting
δ = 0 (nor by small values of δ). Besides, as far as we could observe in our simulations,
the setting δ ≤ 10−5 yields estimates with no substantial differences compared to those
computed using δ = 0 (as long as the initial guess β(0) does not assume vanishing
entries). From a practical viewpoint, the setting δ = 0 avoids the tuning of δ, the scale
invariance issues, and produces estimates that can assume vanishing entries so that no
further thresholding operation is necessary. For sure, the choice δ = 0 also comes with
drawbacks that we already discussed before. More advanced schemes with adaptive
setting of the δ parameter can be found in the field of compressed sensing with IRLS
algorithms [18, 20, 51] although the uptade of δ also raises some numerical issues, as
pointed out in [20, Section 2.4.1.2] and [51].

4.3.9 Regularization paths

The quality of the estimates produced by the AR Algorithm largely depends on the
setting of the q and λ′ parameters, as well as on the sparsity of the targeted β⋆

vector involved in our simulation scheme. In the statistics community, this aspect is
usually studied through the so-called regularization paths. The latter correspond to the
evolution of each entry of the AR estimate as a function of q and λ′ (2D regularization
paths), or as a function of λ′ for a fixed value of q (1D regularization paths). An
example of 2D regularization path is displayed and commented in Fig. 9. The 1D
regularization paths for q ∈ {0.1, 1, 1.9} extracted from this 2D regularization path
are displayed in Fig. 10 (first column).

(a) view from one side (b) view from the other side

Fig. 9 Two-dimensional regularization paths. We synthetized a random dataset (X,β⋆, y)
with dimensions (n = 300, p = 50) and such as ∥β⋆∥0 = 5. We used Algorithm 3 to process this
dataset for a large range of parameters (q, λ′) ∈ [0.01, 1.99]× [10−8, 102], using δ = 0 and ε = εcg =

10−16. Denoting β̂q,λ′
the estimate produced using (q, λ′) as input parameters, we display using two

dimensional surfaces the evolution of each coordinate β̂q,λ′

j (for 1 ≤ j ≤ p) as a function of (q, λ′).

The five coordinates corresponding to active coordinates in the ground truth signal β⋆, (i.e., the
coordinates j such as β⋆

j ̸= 0) are drawn in yellow color, while we used blue color for the other

coordinates. Correct support identification (that is non-zero values for the yellow surfaces and zero-
values for the blue ones) seems difficult to obtain for 1 < q < 2 but easier for q ≤ 1 (see also the first
column of Fig. 10).

32

highly sparse dataset weakly sparse dataset
(90% of zero entries in β⋆) (42% of zero entries in β⋆)

Fig. 10 Mono-dimensional regularization paths. First column : we display the 1D regulariza-
tion paths extracted from the 2D regularization path of Fig. 9 for q = 1.9 (first row), q = 1 (second
row) and q = 0.1 (last row). We used plain curves to display the five coordinates that are active in
the ground truth signal β⋆, and dashed curves to display the others. We can see that, provided that
λ′ lies in an appropriate interval (delimited by dotted red lines in the second and last rows), perfect
support identification is possible for q = 1 and q = 0.1, which is not the case for q = 1.9. Second
column: we reproduced the same experiment using a dataset (X,β⋆, y) generated with ∥β⋆∥0 = 21
(instead of ∥β⋆∥0 = 5). We can see that perfect support identification is no longer possible for this
dataset when q = 1 but remains possible for q = 0.1.

33

The first column of Fig. 10 illustrate how ℓq penalization, for 0 < q ≤ 1, can pro-
vide efficient support identification (i.e., provide an estimate with same support as the
ground thruth signal β⋆) provided that the λ′ parameter lies into an approriate range.
This observation was confirmed by many simulations operated in the same conditions
(that is, using n = 300, p = 50 and a ground truth β⋆ with an average of 90% of zero-
valued entries). As surprising as it might seem, the ability of the convex ℓ1 regularizer
to perform as well as the nonconvex ℓ0 regularizer in terms of support identification
(and under sufficient conditions on X, β⋆ and y) is in fact a flagship result of com-
pressed sensing [53, 54]. In this situation, convex ℓ1 minimization can be preferred
to nonconvex (and in general NP-hard) ℓ0 minimization, or to its ℓq (for 0 < q < 1)
or log-square based approximations, because powerful algorithms can be used in the
first case. Indeed, despite the nondifferentiability of the ℓ1 norm, the minimization of
ℓ1 regularized energies can be efficiently handled using modern proximal algorithms
based on Legendre-Fenchel duality [55, 56], such as the celebrated Chambolle-Pock
Algorithm [57], or its recent generalization [58] which can efficiently benefit from the
presence of terms with Lipschitz gradient (e.g., a quadratic least squares term) in
the energy to be minimized (see also closely related algorithms in [59–61]). Those
algorithms are fast and come with strong mathematical garantees regarding the con-
vergence of the sequence of their iterates toward a minimizer of the targeted energy
(which is not the case of the AR scheme). However, ℓ1 minimization may also fail
to provide efficient support identification. This typically occurs when dealing with
datasets generated from weakly sparse signals β⋆, as illustrated in the second column
of Fig. 10. In this situation, ℓq minimization with 0 < q < 1 should be considered and
the AR Algorithm (and more generally the IRLS algorithms) definitely provides an
efficient scheme to address those nonconvex problems.

Let us end this experimental section by discussing the setting n < p. In this
situation, the estimation of the p entries (β⋆

j)1≤j≤p from the n observations (yi)1≤i≤n

provided by (60) is, unsurprisingly, more challenging than when n ≥ p. In practice,
the ability to accurately recover the value of β⋆ strongly depends on two factors: the
level of sparsity of β⋆ and the level of noise σ corrupting the measurement vector y.
If we denote by K the number of nonzero entries of β⋆ (that is, K = L0(β

⋆)), one
can reformulate the problem of estimating β⋆ into the problem of finding its support
(K unknowns) and the values of its nonzero entries (another K unknowns), leading
to a total of 2K unknowns. Therefore, one can hope to efficiently tackle this problem
as long as n ≥ 2K. In Fig. 11, we display some regularization paths computed using
Algorithm 3 from a dataset (X,β⋆, y) synthetized with n = 25, p = 50, and only five
nonzero entries in β⋆. Contrary to the results shown in Fig. 10 (with n > p), we can
see in Fig. 11 that, even with 90% of vanishing entries in β⋆, the accurate recovery
of the support of β⋆ is unsuccessful with the setting q = 1 of Algorithm 3. However,
considering lower settings for q can lead to exact support identification. Also, as the
level of noise σ increases, the setting of q allowing exact support recovery decreases,
which illustrates one more time the advantage of considering ℓq penalization with
0 < q < 1, despite the numerical challenges caused, among others, by the nonconvexity
of the problem.

34

Low noise level (σ = 0.05) Higher noise level (σ = 0.1)

Fig. 11 Sparse vector recovery from low number of measurements (n = 25, p = 50). We
considered a dataset (X,β⋆, y) synthetized using n = 25 and p = 50. The ground-truth vector β⋆ used
in this experiment contains five nonzero entries. The measurement vector y was synthetized according
to (60) using either σ = 0.05 (left column) or σ = 0.1 (right column). Finally, the two resulting
datasets were processed using Algorithm 3 to compute regularization paths for various settings of
q ∈ {0.5, 0.75, 1}. We used the same display conventions (plain/dashed/dotted curves) as in Fig. 10.
On the left column (σ = 0.05), we can see that despite the high sparsity level of β⋆ (which contains
90% of vanishing entries), correct support recovery is not achievable for q = 1, but remains possible
for q = 0.75 and q = 0.5. On the right column (σ = 0.1), we can see that exact support identification
is achieved only for q = 0.5. This experiment illustrates that, even when n < p, the recovery of the
exact support of β⋆ from the measurement y remains possible. However, one may need to set q < 1
to achieve correct support identification, and consider especially low values of q as the level of noise
corrupting the measurements y increases.

35

5 Extension to ℓq constrained selection

5.1 Principles and motivations

In previous sections, we mostly focused on the ℓq regularized problem (3) as an approx-
imation of the L0 penalized problem (1) that we write again below for the reader
convenience:

argmin
β∈Rp

C(β) + λL0(β) . (61)

The parameter λ > 0 involved in (61) controls the relative importance of L0 with
respect to C in the minimization process. Since the L0 regularizer promotes sparse
signals, as λ increases, we expect the sparsity of the minimizers of (61) to increase as
well. Nevertheless, predicting the sparsity level (that is, the number of nonzero entries)
of the solutions of (61) depending on the calibration of λ is in general not possible.

In situations when we have insights about the sparsity level of the signal to com-
pute, or when we need to precisely control the sparsity level of the signal to compute,
we may prefer to address the constrained problem of computing

β̃ ∈ argmin
β∈Rp

C(β) subject to L0(β) ≤ t (62)

for a given t ≥ 0 which represents the maximal sparsity level allowed for the signal β̃. In
practice, this t parameter plays in (62) a similar role to that of parameter λ in (61) but
with inverse variation (the larger t is, the less sparsity is promoted in (62), while the
inverse phenomenon occurs with λ in (61)). In fact, (61) can be interpreted as a relaxed
version of the constrained problem (62). Similarly, the cost function involved in (61)
can be interpreted as the Lagrangian (see for instance [62, Chapter 5]) associated
to the constrained problem (62). When the functionals involved in the minimization
problems (cost functions and inequality constraints) are convex and differentiable, the
so-called Karush-Kuhn-Tucker conditions can be used to characterize the solutions of
the constrained problem and provide a form of equivalence between the constrained
and relaxed problems (see [62, Section 5.5.3]). However, problems (61) and (62) involve
nonconvex and nondifferentiable functions, so that formal equivalence between those
two problems is not ensured here [7, 63]. Apart from those considerations, a practical
advantage of the constrained formulation (62) is that the parameter t has a much
more tangible interpretation than the parameter λ involved in (61). Consequently, the
calibration of t may be noticeably easier than that of λ in practical applications.

For sure, the constrained problem (62) remains very challenging due to the presence
of the nonconvex and nondifferentiable L0 term defining the constraint set. For that
reason, we will use again the ℓq norm as an approximation of the L0 penalty, leading
to the ℓq constrained problem of computing

β̃ ∈ argmin
β∈Rp

C(β) subject to ∥β∥qq ≤ t . (63)

In this framework, we are going to show how the variational formulation of the ℓq

norm presented in Proposition 1 can be used to design an alternating minimization

36

scheme for (63). As we shall see, the structure and some properties of this scheme will
be similar to that of the AR scheme.

5.2 An alternating minimization scheme and its properties

From now, let us consider q > 0, a sparsity level t ≥ 0, and let us focus on the ℓq

constrained problem (63). Notice that, when the cost function C is continuous, since
the constraint set

Bq(t
1
q) =

{
β ∈ Rp , ∥β∥q ≤ t

1
q

}
(64)

is compact (as a closed and bounded subset of Rp), the existence of solutions for (63)
is ensured. The continuity of C is not a necessary condition to ensure the existence of
solutions for (63), but it happens to be satisfied in most practical applications (e.g.,
when C : β 7→ ∥y −Xβ∥22, as in Section 4).

In order to figure out a numerical scheme for solving (63), let us establish a slight
variant of Proposition 1 involving the generalized ratio function r defined in (18).

Proposition 6. For all β ∈ Rp, for all q > 0 and for all ν > q, we have

∥β∥qq = min
η∈Rp

+

(
Lν
q (β, η) :=

q

ν
·

p∑
j=1

r(|βj |ν , ηj) +
ν − q

ν
·

p∑
j=1

η
q

ν−q

j

)
(65)

and the minimum is attained at η = |β|ν−q.

Proof. Let us show this result in the unidimensional case (p = 1). Let β ∈ R. If
β = 0, for all η > 0, we have Lν

q (|β|ν , η) > Lν
q (|β|ν , 0) = 0. Therefore, (65) is true

for β = 0 and the minimum is attained at η = 0 = |β|ν−q as announced. Now, if
β ̸= 0, then, for all η > 0, we have Lν

q (|β|ν , η) < Lν
q (|β|ν , 0) = +∞. Therefore, the

minimum in (65) can be restricted to η > 0 so that (65) is nothing more than (8),
and the minimum is indeed attained at η = |β|ν−q thanks to Proposition 1. This ends
the proof of Proposition 6 for p = 1. Finally, this result can be extended to higher
dimension (p ≥ 1) for any β ∈ Rp thanks to the additive separability of η 7→ Lν

q (β, η)
with respect to (η1, η2, . . . , ηp).

Thanks to Proposition 6, the ℓq constrained problem (63) is equivalent to
computing

β̃ ∈ argmin
β∈Rp

C(β) subject to min
η∈Rp

+

Lν
q (β, η) ≤ t . (66)

An interesting alternating minimization strategy to address (66) consists in setting
β(0) ∈ Bq(t) and iterating for k ≥ 0,

η(k+1) ∈ argmin
η∈Rp

+

Lν
q (β

(k), η)

β(k+1) ∈ argmin
β∈Rp

C(β) subject to Lν
q (β, η

(k+1)) ≤ t .

(67a)

(67b)

37

Thanks to Proposition 6, (67a) admits η(k+1) = |β(k)|ν−q as unique solution. As we
did before, we implicitly assume here that (67b) admits some solutions so that this
scheme iteration is well defined. One can easily check that the constraint set in (67b) is
closed and bounded, and thus, compact. Therefore, the existence of solutions for (67b)
is ensured when C is continuous. In the following, we set

∀η ∈ Rp
+ , Eνq (η, t) =

{
β ∈ Rp , Lν

q (β, η) ≤ t
}

(68)

so that the constraint Lν
q (β, η) ≤ t is equivalent to β ∈ Eνq (η, t) and (67) boils down

to setting β(0) ∈ Bq(t
1
q) and iterating, for k ≥ 0,

η(k+1) = |β(k)|ν−q

β(k+1) ∈ argmin
β∈Rp

C(β) subject to β ∈ Eνq (η(k+1), t) .

(69a)

(69b)

Now let us show that the iterates
(
β(k)

)
k≥0

generated using (69) satisfy the energy

decrease property.

Proposition 7. The iterates (β(k))k≥0 generated using (69) are all included in Bq(t)
and the sequence

(
C(β(k))

)
k≥0

is decreasing, i.e.,

∀k ≥ 0 , β(k) ∈ Bq(t
1
q) and C(β(k+1)) ≤ C(β(k)) .

Besides, if C is bounded from below, then the sequence
(
C(β(k))

)
k≥0

converges.

In order to prove Proposition 7, we need the following Lemma.

Lemma 3. For all k ≥ 0, the set Eνq (η(k+1), t) is a nonempty subset of Bq(t
1
q) that

contains β(k), i.e.,

∀k ≥ 0 , Eνq (η(k+1), t) ⊂ Bq(t
1
q) and β(k) ∈ Eνq (η(k+1), t) . (70)

Proof. Let k ≥ 0 and β ∈ Eνq (η(k+1), t), thanks to Proposition 6, we have

∥β∥qq = min
η∈Rp

+

Lν
q (β, η) ≤ Lν

q (β, η
(k+1)) ≤ t ,

the right-hand side inequality Lν
q (β, η

(k+1)) ≤ t coming from β ∈ Eνq (η(k+1), t). It

follows that β ∈ Bq(t
1
q), showing the inclusion Eνq (η(k+1), t) ⊂ Bq(t

1
q). Therefore, (69b)

necessarily generates β(k+1) ∈ Bq(t
1
q). Since we initialized the scheme using β(0) ∈

Bq(t
1
q), all the sequence (β(ℓ))ℓ≥0 lies in Bq(t

1
q). In particular, we have β(k) ∈ Bq(t

1
q),

and thus, using again Proposition 6, we have

t ≥ ∥β(k)∥qq = min
η∈Rp

+

Lν
q (β

(k), η) = Lν
q (β

(k), |β(k)|ν−q) = Lν
q (β

(k), η(k+1))

38

showing that β(k) ∈ Eνq (η(k+1), t), which ends the proof.

Proof of Proposition 7. The inclusion in Bq(t
1
q) of all the iterates

(
β(k)

)
k≥0

was

already established in the proof of Lemma 3. Let k ≥ 0. From Lemma 3, we have
β(k) ∈ Eνq (η(k+1), t). Therefore, (69b) necessarily generates an iterate β(k+1) such as

C(β(k+1)) ≤ C(β(k)), as announced.

Remark 5. Assuming that, for k ≥ 0, we can find j ∈ {1, 2, . . . , p} such as β
(k)
j = 0,

then (69a) yields η
(k+1)
j = 0 and one can easily check that we have

∀β ∈ Rp , Lν
q (β, η

(k+1)) ≤ t ⇒ βj = 0

since Lν
q (β, η

(k+1)) = +∞ when βj ̸= 0. Consequently, the constraint set Eνq (η(k+1), t)

involved in (69b) imposes β
(k+1)
j = 0.

Remark 5 points out that, similarly to Scheme (19), the vanishing coordinates of
an iterate β(k) generated by (69) will remain vanishing in all later iterations. As done
in the AR and IRLS schemes, we can avoid the persitence of vanishing coordinates by
introducing a parameter δ > 0 within the ℓq penalty term. More precisely, instead of
considering (63), one can consider the problem of finding

β̃ ∈ argmin
β∈Rp

C(β) subject to ∥|β|ν + δν∥q/νq/ν ≤ t . (71)

For the sake of completeness, we explain in Appendix D how (71) can be addressed

by setting β(0) such that ∥|β(0)|ν + δν∥q/νq/ν ≤ t, and iterating, for k ≥ 0,
η(k+1) =

(
|β(k)|ν + δν

) ν−q
ν

β(k+1) ∈ argmin
β∈Rp

C(β) subject to β ∈ Eν,δq (η(k+1), t) ,

(72a)

(72b)

where, for all η ∈ (R∗
+)

p, we have set

Eν,δq (η, t) =

{
β ∈ Rp ,

q

ν
·

p∑
j=1

|βj |ν + δν

ηj
+

ν − q

ν
·

p∑
j=1

η
q

ν−q

j ≤ t

}
. (73)

This scheme can be viewed as another (constrained) variant of the AR or IRLS
schemes. We easily get the following result.

Proposition 8. Given β(0) such as ∥|β(0)|ν + δν∥q/νq/ν ≤ t, the sequence (β(k))k≥0

generated using (72) satisfies

∀k ≥ 0 , ∥|β(k)|ν + δν∥q/νq/ν ≤ t and C(β(k+1)) ≤ C(β(k)) .

39

Proof. The proof is given in Appendix D.

We would like to point out that Scheme (72) has been proposed and studied very
recently in [64] in the case where C : β 7→ ∥y − β∥22 and using a dynamic updat-
ing strategy for parameter δ along the scheme iterations. Some other closely related
schemes were also recently studied in [65, 66].

5.3 Numerical implementation

In this section, given a matrix X ∈ Rn×p and a vector y ∈ Rn, we focus on the
numerical implementation of the scheme (69) in the case where C : β 7→ ∥y −Xβ∥22.
Since the η update step (69a) is explicit in this scheme, our main goal is to achieve
the numerical computation of (69b), that is, for k ≥ 0,

β(k+1) ∈ argmin
β∈Rp

∥y −Xβ∥22 subject to β ∈ Eνq (η(k+1), t) (74)

given η(k+1) = |β(k)|ν−q computed from the previous iterate β(k). In order to compute
β(k+1), we need the following Lemma.

Lemma 4. Given β̃ ∈ Bq(t
1
q) and setting η̃ = |β̃|ν−q, we have

Eνq (η̃, t) = D(η̃
1
ν)Bν(zνq (η̃, t)) :=

{
D(η̃

1
ν) ξ̃ , ξ̃ ∈ Bν(zνq (η̃, t))

}
(75)

where

zνq (η̃, t) =

[
ν

q

(
t− ν − q

ν

p∑
j=1

η̃
q

ν−q

j

)] 1
ν

(76)

and where we recall that D(η̃ 1
ν) = diag(η̃

1
ν
1 , η̃

1
ν
2 , . . . , η̃

1
ν
p) and that Bν(z) denotes the ℓν

ball with zero center and radius z, i.e., Bν(z) = {ξ ∈ Rp , ∥ξ∥ν ≤ z}.

Proof. The proof is given in Appendix E.

Remark 6 (shape of the constraint set). From (75), we can see that Eνq (η̃, t) is nothing
but a ℓν ball (with radius zνq (η̃, t)) dilated along each axis by the diagonal rescaling

matrix D(η̃ 1
ν). In particular, Eνq (η̃, t) is an ellipsoid when ν = 2 and a diamond when

ν = 1.

Corollary 1. For k ≥ 0, denoting Dk+1 = D((η(k+1))
1
ν), the solutions of (74) are

the vectors β(k+1) = Dk+1 ξ
(k+1) such as

ξ(k+1) ∈ argmin
ξ∈Rp

∥y −XDk+1 ξ∥22 subject to ξ ∈ Bν(zνq (η(k+1), t)) . (77)

This result is a straightforward consequence of Lemma 4 applied to β̃ = β(k) which is

an element of Bq(t
1
q) (see Proposition 7).

40

Remark 7. When β(k) admits a vanishing coordinate, i.e., β
(k)
j = 0 for a given

j ∈ {1, 2, . . . , p}, we have η
(k+1)
j = 0. In this case, the matrix XDk+1 is rank deficient

and (77) admits an infinite number of solutions as long as t > 0. However, whatever
the considered solution ξ(k+1) of (77) in this situation, by setting afterwards β(k+1) =

Dk+1 ξ
(k+1), we necessarily end up with β

(k+1)
j = 0. Therefore, denoting Jk the support

of β(k), i.e.,

Jk =
{
j ∈ {1, 2, . . . , p}, β

(k)
j ̸= 0

}
,

one may prefer considering instead of (77) the constrained problem

ξ(k+1) ∈ argmin
ξ∈Rp

∥y −XDk+1 ξ∥22 subject to

{
ξ ∈ Bν(zνq (η(k+1), t))

∀j ̸∈ Jk , ξj = 0
(78)

and retrieve again the minimizers of (74) by computing β(k+1) = Dk+1 ξ
(k+1). In

particular, we can show that the constrained problems (74) and (77) both admit a
unique solution if and only if the matrix Xk obtained by removing from X the columns
with index j ̸∈ Jk is of full rank.

Thanks to Corollary 1, the scheme (69) is equivalent to setting β(0) ∈ Bq(t
1
q) and

iterating for k ≥ 0,

η(k+1) = |β(k)|ν−q

Dk+1 = D((η(k+1))
1
ν)

zk+1 =

[
ν

q

(
t− ν − q

ν

p∑
j=1

(
η
(k+1)
j

) q
ν−q

)] 1
ν

ξ(k+1) ∈ argmin
ξ∈Rp

∥y −XDk+1 ξ∥22 subject to ξ ∈ Bν(zk+1)

β(k+1) = Dk+1 ξ
(k+1) .

(79a)

(79b)

(79c)

(79d)

(79e)

In this scheme, steps (79a), (79b), (79c) and (79e) are explicit. It remains to compute
a solution of the constrained problem (79d). Fortunately, this kind of problem can be
easily addressed using proximal algorithms. In particular, for any k ≥ 0, using the
dual identity

∀ξ ∈ Rp , ∥y −XDk+1 ξ∥22 = max
γ∈Rn

2 ⟨XDk+1 ξ, γ⟩ − ∥γ + y∥22 + ∥y∥22

in (79d) and removing the constant term ∥y∥22 that does not change the argmin, we
can reformulate (79d) into the primal-dual problem of computing

ξ(k+1) ∈ argmin
ξ∈Rp

max
γ∈Rn

2 ⟨XDk+1 ξ, γ⟩ − ∥γ + y∥22 s.t. ξ ∈ Bν(zk+1) . (80)

41

The primal-dual problem (80) can be efficiently handled using modern proximal
algorithms, such as those proposed in [57–59, 61]. For instance, Chambolle-Pock Algo-
rithm [57] applied to (80) boils down to setting (ξ0, ξ0, γ0) ∈ Rp × Rp × Rn, τ > 0,
σ > 0, and to iterating for ℓ ≥ 0,

γℓ+1 =
γℓ + 2σXDk+1ξℓ − 2σy

1 + 2σ

ξℓ+1 = ΠBν(zk+1)

(
ξℓ − 2τDk+1X

tγℓ+1

)
ξℓ+1 = 2 ξℓ+1 − ξℓ

(81a)

(81b)

(81c)

denoting by ΠBν(zk+1) the orthogonal projection onto the convex set Bν(zk+1). The
convergence of (81) towards a solution of (80) (and thus, a solution of (79d)) is ensured
as long as the primal and dual steps (τ, σ) satisfy τσ < |||2XDk+1|||2, denoting by
||| · ||| the ℓ2 induced norm (see [57, Theorem 1]). Therefore, from any upper bound
Lk+1 ≥ |||2XDk+1|||, one can, for instance, set τ = σ = 0.99/Lk+1 to ensure the
convergence of (81) toward a solution of (79d). In practice, the closer to |||2XDk+1|||
the upper bound Lk+1 is, the faster the convergence is. Notice that (81b) involves a
projection onto the convex ball Bν(zk+1). When ν = 2, this projection is explicit, and
we simply have

∀ξ ∈ Rp , ∀z ≥ 0 , ΠB2(z)(ξ) =
z ξ

max (z, ∥ξ∥2)
. (82)

When ν = 1, the projection onto the ℓ1 ball B1(zk+1) can be efficiently computed in
O(p log (p)) operations using the method described in [67] and that we summarize in
Appendix F for the sake of completeness. The numerical evaluation of (79d) using
Chambolle-Pock Algorithm is summarized in Algorithm 4. Finally, the computation
of (63) with C : β 7→ ∥y −Xβ∥22 using Scheme (79) is summarized in Algorithm 5.

Remark 8. Scheme (79) can be easily generalized to address the approached (or δ
regularized) ℓq constrained problem (71) through the alternating scheme (72). For any
δ ≥ 0, one simply needs to replace (79a) by (72a) and (79c) by

zk+1 =

[
ν

q

(
t− q

ν

p∑
j=1

r(δν , η
(k+1)
j)− ν − q

ν

p∑
j=1

(
η
(k+1)
j

) q
ν−q

)] 1
ν

. (83)

When δ = 0, (83) is exactly the same as (79c), since r(0, y) = 0 for any y ∈ R. Those
modifications can be easily implemented in Algorithm 5 (line 5 and line 7) to expand
its scope to (71) with δ ≥ 0.

5.4 Experiments

In this section, we will illustrate the behavior of Algorithm 5 over synthetic datasets.
First of all, we focus on the the two-dimensional framework (p = 2) since this simplified

42

Algorithm 4: solver for Problem (79d) (primaldual module) [57].

Input : a matrix M ∈Mn,p(R) (equal to the matrix product XDk+1 involved
in (79d)), the vector y ∈ Rn, the parameter ν > 0 and the ℓν ball radius
zk+1 ≥ 0 involved in (79d), some initial values for the primal and dual
variables (ξ0, ξ0, γ0) ∈ Rp × Rp × Rn of the scheme (81), two steps τ > 0
and σ > 0 such that τσ < |||2M |||2 and a tolerance parameter ε > 0.

1 ℓ← 0
2 repeat

3 γℓ+1 ←
(
γℓ + 2σMξℓ − 2σy

)
/(1 + 2σ)

4 ξℓ+1 ← ΠBν(zk+1)

(
ξℓ − 2τM tγℓ+1

)
// see note below.

5 ξℓ+1 ← 2 ξℓ+1 − ξℓ
6 ℓ← ℓ+ 1

7 until ∥y −Mξℓ∥22 − ∥y −Mξℓ−1∥22 ≤ ε · ∥y −Mξℓ−1∥22
8 return (ξℓ, γℓ)

Line 4: the projection over Bν(zk+1) can be done using (82) when ν = 2 or using Algorithm 6 when ν = 1.
Line 7: we used again an energy-based stopping criterion but other kind of criteria (e.g., based on the so-
called duality gap [57]) can also be considered. Line 8: ξℓ is the estimated minimizer of ξ 7→ ∥y − Mξ∥2

2
over Bν(zk+1), the dual variable γℓ is also returned to be used as a dual initializer in the next iteration of
the scheme (79).

Algorithm 5: ℓq constrained minimization using Scheme (79)

Input : Some parameters t ≥ 0, q > 0, ν > q, a matrix X ∈Mn,p(R), an initial

guess β(0) ∈ Bq(t
1
q) and a tolerance parameter ε > 0.

Output: an estimate of a local minimizer of E : β 7→ ∥y −Xβ∥22 over Bq(t
1
q)

1 k ← 0

2 γ(0) ← 0 // zero vector in Rn

3 ξ(0) ← 0 // zero vector in Rp

4 repeat

5 η(k+1) ← |β(k)|ν−q

6 Dk+1 ← D((η(k+1))
1
ν)

7 zk+1 ←
[
ν
q

(
t− ν−q

ν

∑p
j=1

(
η
(k+1)
j

) q
ν−q

)] 1
ν

8 (τ, σ)← two positive parameters such as τσ < |||2XDk+1|||2

9 (ξ(k+1), γ(k+1))← primaldual(XDk+1, y, ν, zk+1, (ξ
(k), ξ(k), γ(k)), τ, σ, ε)

10 β(k+1) ← Dk+1 ξ
(k+1)

11 k ← k + 1

12 until E(β(k))− E(β(k−1)) ≤ ε · E(β(k−1))

13 return β(k)

Line 8 : given an upper bound LX ≥ |||X|||, one can use |||2XDk+1||| ≤ Lk+1 := 2·LX ·∥η(k+1)∥1/ν
∞ . Thus,

when Lk+1 > 0, one can set τ = σ = 0.99/Lk+1 to ensures that τσ < |||2XDk+1|||2 is fulfilled. Otherwise,

when Lk+1 = 0 (and assuming that X ̸= 0), we have η(k+1) = 0, meanings that β(k) = 0. In this case, the

scheme iterations can be immediately stopped since we will necessarily get β(ℓ) = 0 in all later iterations
ℓ > k. Remark that in the simulation scheme described in Section 4.3.1, the unitary ℓ2 norm of the columns

of X ensures that |||X||| ≤ √
p, so that one can use Lk+1 = 2

√
p∥η(k+1)∥1/ν

∞ in such situation.

43

setting opens the door for easy understanding of the algorithmic procedure. In Fig. 12
we display and comment the first iterations of Algorithm 5 used with ν = 2 over a
synthetical dataset.

Fig. 12 ℓq constrained minimization using Algorithm 5 with ν = 2. In this experiment, we
consider a synthetic dataset (X,β⋆, y) with dimensions (n = 5, p = 2) generated using the simulation
scheme described in Section 4.3.1 excepting that β⋆ was randomly sampled according to a uniform
distribution in [−1, 1]2, leading here to β⋆ ≈ (0.94, 0.62)t. We used Algorithm 5 with ν = 2, q = 0.7
and t = 1 to process this dataset and we display here its first 30 iterates. In all those graphs, the
blue curve represents the boundaries of the constraint set involved in (63), that is, the ℓq ball with
radius t1/q = 1. Some level lines of the quadratic function C : β 7→ ∥y − Xβ∥22 are displayed using

lightgray dotted-lines, while the minimizer of C over Bq(t1/q) is represented using a green disk. Top-
left: a gray diamond mark indicates the scheme initializer β(0) and a pink dotted line indicates the
boundaries of the first constraint set Eν

q (η
(1), t) appearing in (69b). The latter is an elipsoid because

of the setting ν = 2. The minimization of C over Eνq (η(1), t) leads to the next iterate β(1), which is

indicated using a pink diamond mark. Top-right: the next iteration yields η(2) = |β(1)|ν−q and the
pink dotted line represents the boundaries of the updated constraint set Eν

q (η
(2), t). Minimizing C

over this set yields the next iterate β(2) displayed with a pink diamond mark (previous iterates or
constraint sets are displayed in gray). Bottom-left and bottom-right: third and thirtieth scheme
iterations (we use the same displaying rules as described above). We can observe here the convergence
of the scheme towards the green disk, that is, towards the (here unique) solution of (63).

44

The same dataset as that used in Fig. 12 was processed using Algorithm 5 with the
setting ν = 1. The scheme iteration process is illustrated and commented in Fig. 13.

Fig. 13 ℓq constrained minimization using Algorithm 5 with ν = 1). We display (with the
same displaying rules as in Fig.12) the first five iterates generated by Algorithm 5 with ν = 1 applied
to the same dataset as that considered in Fig. 12. While in Fig. 12 the setting ν = 2 yielded elipsoid
shaped constraint sets Eν

q (η
(k+1), t), the setting ν = 1 yields diamond shaped constraint sets. We

can see that, as in Fig. 12, the numerical scheme seems to sucessfully converges toward the solution
of (63) (green disk). We can also notice that, over this dataset, the setting ν = 1 yields a faster
convergence than the setting ν = 2 (see Fig. 12). Our experiments in larger dimensions (not shown
here) tend to confirm that ν = 1 yields a significantly higher convergence rate than the setting ν = 2.

In the experiments presented in Fig. 12 and Fig. 13, We were able to efficiently
estimate the solution of the nonconvex problem (63) using Algorithm 5. However, the
existence of local minima for problem (63) makes the latter sensitive to the choice

45

of the initializer, as we already pointed out for the AR Algorithm. An example of
convergence of Algorithm 5 towards a local minimum is presented in Fig. 14.

Fig. 14 Convergence of Algorithm 5 towards a local minimum of (63). A synthetic dataset
(X,β⋆, y) with dimensions (n = 5, p = 2) was processed using Algorithm 5 with t = 1 and ν = 1 (left)
or ν = 2 (right). The same initializer β(0) was used in both simulations (see the gray diamond marks
indicated with a black arrow). The first five iterations of the algorithm are shown for both settings of
ν ∈ {1, 2}. We can see that, in both cases, the iterates β(k) seem to be attracted by a point different
from the actual minimizer of C over Bν

q (t
1/q) (indicated with a green disk). In fact, with the help of

the displayed level lines of C, we can see that this point corresponds to a local minimizer of C over
Bν
q (t

1/q). In practice, Algorithm 5 can be, as the AR Algorihtm, very sensitive to the choice of the

initializer β(0).

In the experiments presented in Fig. 12, Fig. 13 and Fig. 14, the limit of the scheme
iterations seemed to be the same whatever the setting of ν ∈ {1, 2}. In Fig. 15, we
show that the limit of the scheme may actually depend from ν. Indeed, we can see in
Fig. 15 (a) that the iterate β(2) generated by Algorithm 5 with ν = 1 is lying in the first

orthan (i.e., β
(2)
2 = 0), and so as the further iterates (because of Remark 5). However,

we can see in Fig. 15 (b) that, when Algorithm 5 is used with ν = 2 to process the
same dataset, the coordinates of the generated iterates do not vanish. Actually, when
ν = 2, the computation of an iterate β(k+1) assuming vanishing coordinates is unlikely
to occur (at least in our experimental setting) because of the ellipsoid shape of the
constraint sets Eνq (η(k+1), t) involved in (69b). However, when Algorithm 5 is used with

ν = 1, the diamond shape of the constraint sets Eνq (η(k+1), t) promotes sparse iterates
at each iteration, and vanishing coordinates are likely to be computed. Notice that, as
we will shall illustrate at the end of this section, Algorithm 5 with ν = 2 is in practice,
exactly as the AR Algorithm, able to generate outputs with vanishing coordinates.
In fact, during the scheme iterations, the amplitude of the iterate coordinates may
become smaller than the smallest floating point number (so as the corresponding
semi-axes of the ellipsoid constraint set), yielding numerically vanishing coordinate.

However, when the algorithm is used with ν = 1, vanishing coordinates β
(k+1)
j = 0

46

can be computed even when β
(k)
j is far from zero, making the coordinates vanishing

process much faster than for ν = 2.

(a) Algorithm 5 with ν = 1 (b) Algorithm 5 with ν = 2
Fig. 15 Noticeable difference between ν = 1 and ν = 2. In this experiment, we processed
a synthetic dataset using Algorithm 5 with t = 1, q = 0.7 and with ν = 1 (a) or ν = 2 (b). We

can see in (a) that iterate β(2) is lying in the first orthan (β
(2)
2 = 0), so as the next iterates (see

Remark 5). We can see in (b) that with the setting ν = 2, the coordinates of the iterates produced by
Algorithm 5 never vanish. As for the AR Algorithm, the regularization of the ℓq norm by the mean of
a parameter δ (see (71)) can be helpful to avoid the persistence of vanishing coordinates (see Fig. 16).
Nevertheless, one can notice that the setting ν = 1 yields here convergence towards the solution of
the targeted L0 constrained problem (62), while the setting ν = 2 yields convergence towards the
solution its ℓq approximation, that is, the ℓq constrained problem (63).

Interestingly enough, in the experiment presented in Fig. 15, the setting ν = 1
yields convergence towards the solution of the L0 constrained problem (62), while
the setting ν = 2 yields convergence towards the solution of the ℓq constrained prob-
lem (63). On the one hand, interpreting problem (63) as an approximation of the
targeted problem (62), the setting ν = 1 is more efficient than the setting ν = 2 in this
experiment. On the other hand, the setting ν = 1 also fails to compute (63) although
Algorithm 5 was designed for achieving this task. Besides, the persistence of vanishing
coordinates along the scheme iterations may be an even more important issue when
ν = 1 since this setting precisely promote vanishing coordinate at each iteration. As
we explained at the end of Section 5.2, this issue can be easily addressed by consider-
ing the δ-regularized problem (71) (through Scheme (72)) instead of (63). According
to Remark 8, Algorithm 5 can be easily modified to implement Scheme (72) for any
δ ≥ 0, provided that we replace its line 5 by

ηk+1 ←
(
|β(k)|ν + δν

) ν−q
ν

47

and its line 7 by

zk+1 ←

[
ν

q

(
t− q

ν

p∑
j=1

r(δν , η
(k+1)
j)− ν − q

ν

p∑
j=1

(
η
(k+1)
j

) q
ν−q

)] 1
ν

.

In Fig. 16 we display and comment the iterates generated by this modified Algorithm
when applied to the same dataset as in Fig. 15.

(a) Scheme (72) with δ = 10−5 (b) Scheme (72) with δ = .05

Fig. 16 δ-regularized ℓq constrained minimization model (71). We processed the same dataset
as in Fig. 15 using Scheme (72) with δ ∈ {10−5, 0.05}, t = 1, q = 0.7 and ν = 1. We display the

boundaries of the constraint set Bν,δ
q (tν/q) := {β ∈ Rp , ∥|β|ν+δν∥q/ν

q/ν
≤ t} involed in (71) using a red

thick line while the dotted thick lines here represent the boundaries of the δ-regularized constraint sets

Eν,δ
q (η(k+1), t) involved in (72b). We can see in (a) that, for δ = 10−5, the constraint set Bν,δ

q (tν/q)

almost coincides with Bq(t1/q). We can see also that the first iterates of (72) are roughly the same
as those in Fig. 15 (a). However, the use of δ = 10−5 allows here the iterates to escape from the first
orthan after iteration k = 2 and converge toward to solution of (71). In (b), we increase the value of

δ and we can see that the δ-regularized constraint set Bν,δ
q (tν/q) (red thick line) is now substantially

different from the ℓq-ball Bν
q (t

1/q) (blue thick line). Finally, Scheme (72) sucessfully converges towards
the solution of (71), although the latter is significantly different from that of (63). Last, we can remark
in (b) that the use of δ > 0 with ν = 1 is not incompatible with convergence towards a sparse output.
This contrasts with the AR Algorithm (and also with Scheme (72) with ν = 2) since we showed that,
with δ > 0, the latter generally converges towards points with no vanishing coordinates.

Finally, we display in Fig. 17 some examples of outputs returned by Algorithm 5
with ν ∈ {1, 2} applied to a synthetic dataset with larger dimensions (n = 300, p =
150).

48

Fig. 17 ℓq constrained minimization in high dimension (n = 300, p = 150). We used
Algorithm 5 to process a synthetical dataset (X,β⋆, y) with dimensions n = 300 and p = 150. The
ground-truth vector β⋆ is displayed above using yellow dotted stems. As can be seen above, β⋆ has ten
nonzero entries (L0(β⋆) = 10) which encourages us to set t = 10 in problem (62). Thus, Algorithm 5
was run using t = 10, q = 0.7, δ = 0 and ν = 1 (top) or ν = 2 (bottom). In this experiment,
Algorithm 5 was initialized using a random initial guess β(0) lying in the constraint set Bq(t1/q). We
can see that both settings of ν yielded an output with L0 norm close to t = 10 (that is, nine for
ν = 1 and thirteen for ν = 2). The setting ν = 1 yields here slightly sparser output (blue plain stems)
than that obtained using ν = 2 (orange plain stems), which is a general observation that we also
made on many other simulations. As mentioned above, this behavior is probably due to the sparsity-
promoting diamond shapes (when ν = 1) of the constraint sets in (69b). Besides, we could observe
that convergence of the iterates was roughly fifteen times faster with ν = 1 than with ν = 2 on this
datasest. More generally significantly faster convergence was achieved with ν = 1 than with ν = 2 in
all our the experiments that we made.

49

6 Conclusion

In this work, we performed a careful and thorough study of the Adaptive-Ridge Algo-
rithm. It is worth noticing that all our mathematical descriptions of this algorithm
and its properties were simply built from the variational formulation of the ℓq penalty
term presented in Proposition 1. We found the latter very inspirational to understand,
interpret and extend the AR scheme. In this review paper, we pointed out the existing
links between this algorithm and many others coming from the literature. In partic-
ular, we showed that, when used with its recommended setting, the AR Algorithm
corresponds to a particular instance of the so-called IRLS class of algorithms that
is still the subject of active and fruitful researchs in the field of Compressed Sens-
ing, Sparse Signal Recovery and Nonconvex Optimization. Then, we discussed about
the practical implementation of the AR Algorithm, with a particular focus on the
handling of numerical errors related to matrix conditioning issues. We performed an
in-depth experimental study of the AR Algorithm that may hopefully benefit to its
potential users, by providing some useful insights about its behavior and parameter
tuning in practical situations. Last, using again the variational formulation of the ℓq

penalty, we extended the AR Algorithm to address the problem of minimization of a
functional C over nonconvex ℓq balls. Depending on the setting of the ν parameter in
Proposition 1, the derived scheme boils down to iterating operations of minimizations
of C over elipsoid (ν = 2) or diamond (ν = 1) convex constraint sets. As for the AR
scheme, we found out that the underlying variational formulation of the ℓq penalty
yielded a very natural and simple derivation of this scheme and its mathematical
properties. An implementation of this scheme, based on modern proximal algorithms,
was proposed in the case where C is a quadratic function. Thanks to the considerable
advances made in the field of convex and nonsmooth optimization within the two last
decades, this algorithm can be easily extended to handle more complex functionals C
(e.g., ℓ1 or Poisson log-likelihood functionals). More importantly, we believe that non-
convex ℓq-ball constrained minimization opens very interesting alternative to the more
commonly considered ℓq penalized minimization framework, especially because the
hyperparameter setting seems greatly simplified in the constrained case. As pointed
out in [65, Section 1.1], the literature dedicated to this topic is very limited and we
believe that the underlying ℓq-ball constrained minimization model opens up perspec-
tives of interesting advances both in terms of mathematical analysis and numerical
algorithm development.

50

Appendix A Proof of Proposition 3

Let β(0) ∈ Rp such that C(β(0)) < +∞, let η(0) = |β(0)|ν−q, and let
(
β(k)

)
k>0

be the

sequence of iterates generated using (19). First, let us show that

∀k ≥ 0 , C(β(k)) < +∞ . (A1)

This result can be easily shown by induction. Indeed, (A1) is true for k = 0. Now, let
us assume that (A1) holds for a given k ≥ 0. From (19a), we have

C(β(k+1)) +
λq

ν

p∑
j=1

r(|β(k+1)
j |ν , η(k)j) ≤ C(β(k)) +

λq

ν

p∑
j=1

r(|β(k)
j |

ν , η
(k)
j) . (A2)

Besides, we assumed that C(β(k)) < +∞ and, since η(k) = |β(k)|ν−q, we have

∀j ∈ {1, 2, . . . , p} , r(|β(k)
j |

ν , η
(k)
j) = r(|β(k)

j |
ν , |β(k)

j |
ν−q) =

{
0 if β

(k)
j = 0

|β(k)
j |q otherwise.

Therefore, the right-hand side term in (A2) is finite, leading to

C(β(k+1)) +
λq

ν

p∑
j=1

r(|β(k+1)
j |ν , η(k)j) < +∞. (A3)

Finally, (A3) necessarily implies C(β(k+1)) < +∞, which ends the proof of (A1). Now,
let us consider an index k ≥ 0 and let us show that

Eλ,q(β
(k+1)) ≤ Eλ,q(β

(k)) . (A4)

Let Jk =
{
j ∈ {1, 2, . . . , p} , β

(k)
j ̸= 0

}
be the support of β(k), and, for any β ∈ Rp,

let us denote by πk(β) the vector of Rp made of the entries

∀j ∈ {1, 2, . . . , p} , (πk(β))j =

{
βj if j ∈ Jk
0 otherwise.

Writting again (A3), we necessarily have

∀j ∈ {1, 2, . . . , p} , r(|β(k+1)
j |ν , η(k)j) < +∞ . (A5)

Since η(k) = |β(k)|ν−q, the vectors η(k) and β(k) share the same support Jk. Besides,
since r(t, 0) is finite (and vanishes) if and only if t = 0, (A5) necessarily leads to

∀j ̸∈ Jk , β
(k+1)
j = 0 .

51

Therefore, (19a) is equivalent to
β(k+1) = πk(β

(k+1))

β(k+1) ∈ argmin
β∈Rp

C(πk(β)) +
λq

ν

p∑
j∈Jk

|βj |ν

η
(k)
j

.
(A6)

It follows that

Eλ,q(β
(k+1)) = C(β(k+1)) + λ

p∑
j=1

|β(k+1)
j |q

= C(πk(β
(k+1))) + λ

∑
j∈Jk

|β(k+1)
j |q

≤ C(πk(β
(k+1))) +

λq

ν

∑
j∈Jk

|β(k+1)
j |ν

η
(k)
j

+ λ
ν − q

ν

∑
j∈Jk

(
η
(k)
j

) q
ν−q

where the last inequality was obtained by applying Lemma 1 to all terms

(|β(k+1)
j |q)j∈Jk

involved above. Thus, using the optimality of β(k+1) provided by (A6),
we get

Eλ,q(β
(k+1)) ≤ C(πk(β

(k))) +
λq

ν

∑
j∈Jk

|β(k)
j |ν

η
(k)
j

+ λ
ν − q

ν

∑
j∈Jk

(
η
(k)
j

) q
ν−q

︸ ︷︷ ︸
=λ

∑
j∈Jk

|β(k)
j |q thanks to Lemma 1

. (A7)

Last, using πk(β
(k)) = β(k), and λ

∑
j∈Jk

|β(k)
j |q = λ ∥β(k)∥qq, we can see that the

right-hand side of (A7) is none other than Eλ,q(β
(k)), so that the energy decrease

property (A4) is satisfied.

Appendix B Proof of Lemma 2

Thanks to Proposition 1, we have, for all r ∈ (0, 1) and for all z ∈ (R∗)p,

∥z∥rr = inf
η∈(R∗

+)
p
L1

r(z, η) = inf
η∈(R∗

+)
p
r

p∑
j=1

|zj |
ηj

+ (1− r)

p∑
j=1

η
r

1−r

j (B8)

and this infimum is in fact a minimum (since z ∈ (R∗)p) which is attained at η = |z|1−r.
Let β ∈ Rp, ν > q and δ > 0, taking r = q

ν and z = |β|ν + δν in (B8) yields

∥∥|β|ν + δν
∥∥q/ν
q/ν

= min
η∈(R∗

+)
p

q

ν

p∑
j=1

|βj |ν + δν

ηj
+

ν − q

ν

p∑
j=1

η
q

ν−q

j , (B9)

52

with the minimum attained at η = (|β|ν + δν)
ν−q
ν . Remarking that we have Eν,δ

λ,q :

β 7→ C(β) + λ ∥|β|ν + δν∥q/νq/ν and using (B9) yields (23) as announced.

Appendix C Proof of Proposition 5

First, let us consider the unidimensional case. For all ν > q, let us show that

∀β ∈ R , |β|q = min
η≥0

q

ν
· r(|β|, η) + ν − q

ν
· η

q
ν−q , (C10)

and that that minimum is attained at η = |β|ν−q.
For β = 0, we have r(|β|, η) = 0 for any η ≥ 0. Therefore, the minimum in (C10)

is attained at η = 0 = |β|ν−q and both sides of (C10) vanish.

For β ̸= 0, r(|β|, η) takes the value +∞ for η = 0 and takes the (finite) value |β|
η

for η > 0. Therefore the minimum over R+ in (C10) can be restricted to R∗
+, and the

right-hand side of (C10) becomes

min
η>0

q

ν
· |β|
η

+
ν − q

ν
· η

q
ν−q .

which is equal to |β|q (with the minimum attained at η = |β|ν−q) as stated in Lemma 1.
In higher dimension, for all β ∈ Rp and for all ν > q, using (C10) and the additive

separability of the ℓq penalty, we get

∥β∥qq =

p∑
j=1

|βj |q = min
η∈Rp

+

q

ν

p∑
j=1

r(|βj |, ηj) +
ν − q

ν

p∑
j=1

η
q

ν−q

j , (C11)

with the minimum attained at η = |β|ν−q, from which (28) follows.

Appendix D Details about Scheme (72) and proof
of Proposition 8

Let δ > 0, q ∈ (0, 2) and ν > q. Using Proposition 1, we have

∀β ∈ Rp , ∥|β|ν + δν∥q/νq/ν = min
η∈(R∗

+)p
L1

q/ν(|β|
ν + δν , η) (D12)

and the minimum in (D12) is attained at η = (|β|ν + δν)
ν−q
ν . Thus, an alternating

minimization approach to address (71) can be implemented by setting β(0) such as

53

∥|β(0)|ν + δν∥q/νq/ν ≤ t and iterating, for k ≥ 0,
η(k+1) =

(
|β(k)|ν + δν

) ν−q
ν

β(k+1) ∈ argmin
β∈Rp

C(β) subject to L1
q/ν(|β|

ν + δν , η(k+1)) ≤ t .

(D13a)

(D13b)

Since (73) satisfies

∀η ∈ (R∗
+)

p , Eν,δq (η, t) =
{
β ∈ Rp , L1

q/ν(|β|
ν + δν , η) ≤ t

}
,

the scheme iteration (72) is none other than (D13).
Now, let us prove Proposition 8 by following exactly the same steps as in the proof

of Proposition 7. Let k ≥ 0, and β ∈ Eν,δq (η(k+1), t). From (D12), we have

∥|β|ν + δν∥q/νq/ν = min
η∈(R∗

+)p
L1

q/ν(|β|
ν , η) ≤ L1

q/ν(|β|
ν , η(k+1)) ≤ t .

Therefore, we have,

∀k ≥ 0 , Eν,δq (η(k+1), t) ⊂ Bν,δq (t
1
q) :=

{
β ∈ Rp , ∥|β|ν + δν∥q/νq/ν ≤ t

}
.

Since we imposed β(0) ∈ Bν,δq (t
1
q), and since (D13b) ensures that, for all k ≥ 0,

β(k+1) ∈ Eν,δq (η(k+1), t) ⊂ Bν,δq (t
1
q), it follows that the sequence (β(k))k≥0 has all its

elements in Bν,δq (t
1
q), as announced in Proposition 8. Let k ≥ 0, from β(k) ∈ Bν,δq (t

1
q)

and, using again (D12), we get

t ≥ ∥|β(k)|ν + δν∥q/νq/ν = min
η∈(R∗

+)p
L1

q/ν(β
(k), η) = L1

q/ν(β
(k), η(k+1))

since η(k+1) =
(
|β(k)|ν + δν

) ν−q
ν . It follows that β(k) ∈ Eν,δq (η(k+1), t). Conse-

quently, (D13b) necessarily generates β(k+1) such as C(β(k+1)) ≤ C(β(k)) which ends
the proof of Proposition 8.

Appendix E Proof of Lemma 4

Let β̃ ∈ Bq(t), let η̃ = |β̃|ν−q and let zνq (η̃, t) the quantity defined in (76). Let us denote

by J = {j ∈ {1, 2, . . . , p} , β̃j ̸= 0} the support of β̃ and by Jc = {1, 2, . . . , p} \ J its
complementary in {1, 2, . . . , p}. The statement

β ∈ D(η̃ 1
ν)Bν(zνq (η̃, t)) (E14)

54

is equivalent to

∃β′ ∈ Bν(zνq (η̃, t)) such that ∀j ∈ {1, 2, . . . , p} , βj = η̃
1
ν
j β′

j . (E15)

Since J is also the support of η̃ (i.e., η̃j ̸= 0 for all j ∈ J and η̃j = 0 for all j ∈ Jc), (E15)
is equivalent to

∃β′ ∈ Bν(zνq (η̃, t)) such that

{
∀j ∈ Jc , βj = 0

∀j ∈ J , βj/η̃
1
ν
j = β′

j

(E16)

and to
∀j ∈ Jc , βj = 0∑
j∈J

|βj |ν

η̃j
≤
(
zνq (η̃, t)

)ν
.

(E17)

For all j ∈ Jc we have η̃j = 0 and, by definition of the generalized ratio function r
(see (18)), we have r(0, 0) = 0. Therefore (E17) implies that

p∑
j=1

r(|βj |ν , η̃j) ≤
(
zνq (η̃, t)

)ν
. (E18)

Reciprocally, (E18) imposes that βj = 0 for all j ∈ Jc (otherwise, the left-hand
side term in (E18) is +∞), and thus ensures that (E17) is fulfilled. Therefore, (E17)
and (E18) are equivalent. Now, using (76), we can see that (E18) is equivalent to

p∑
j=1

r(|βj |ν , η̃j) ≤
ν

q

(
t− ν − q

ν
·

p∑
j=1

η̃
q

ν−q

j

)
, (E19)

and to
q

ν
·

p∑
j=1

r(|βj |ν , η̃j) +
ν − q

q
·

p∑
j=1

η̃
q

ν−q

j ≤ t . (E20)

Last, we can see that (E20) exactly means that Lν
q (β, η̃) ≤ t (see (65)), i.e., that

β ∈ Eνq (η̃, t) (see (68)). Finally, we have shown the equivalence

β ∈ D(η̃ 1
ν)Bν(zνq (η̃, t)) ⇔ β ∈ Eνq (η̃, t)

which was announced in Lemma E.

55

Appendix F Projection on the ℓ1 ball (Algorithm
proposed in [67])

Algorithm 6: orthogonal projection onto B1(z) [67].

Inputs : a vector ξ ∈ Rp and a scalar z ≥ 0.

Output: ΠB1(z)(ξ), the orthogonal projection of ξ onto the ℓ1 ball with
radius z.

1 if ∥ξ∥1 > z then

2 µ← (|ξ1|, |ξ2|, . . . , |ξp|)
3 sort µ in descending order (µ1 ≥ µ2 ≥ · · · ≥ µp)

4 ρ← max

{
j ∈ {1, 2, . . . , p} , µj −

1

j

(
j∑

r=1

µr − z

)
> 0

}

5 θ ← 1

ρ

(
ρ∑

j=1

µj − z

)
6 w ← max (|ξ| − θ, 0) · sign(ξ) // coordinate-wise operations (see below)

7 else w ← ξ

8 return w

In line 6, for all j ∈ {1, 2, . . . , p}, we set wj ← max(|ξj | − θ, 0) · sign(ξj), where sign(t) = t/|t|
when t ̸= 0 and sign(0) = 0.

References

[1] Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction vol. 2. Springer, New York (2009). https:
//doi.org/10.1007/978-0-387-21606-5

[2] Hoerl, A.E., Kennard, R.W.: Ridge Regression: Biased Estimation for Nonorthog-
onal Problems. Technometrics 42(1), 80–86 (2000) https://doi.org/10.1080/
00401706.2000.10485983

[3] Tibshirani, R.: Regression Shrinkage and Selection via the Lasso. Journal of the
Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) https:
//doi.org/10.1111/j.2517-6161.1996.tb02080.x

[4] Zou, H.: The Adaptive Lasso and Its Oracle Properties. Journal of the Ameri-
can Statistical Association 101(476), 1418–1429 (2006) https://doi.org/10.1198/
016214506000000735

56

https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1080/00401706.2000.10485983
https://doi.org/10.1080/00401706.2000.10485983
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1198/016214506000000735

[5] Zou, H., Hastie, T.: Regularization and Variable Selection Via the Elastic Net.
Journal of the royal statistical society: series B (statistical methodology) 67(2),
301–320 (2005) https://doi.org/10.1111/j.1467-9868.2005.00503.x

[6] Frommlet, F., Nuel, G.: An Adaptive Ridge Procedure for L0 Regularization.
PLOS ONE 11(2), 1–23 (2016) https://doi.org/10.1371/journal.pone.0148620

[7] Nikolova, M.: Relationship between the optimal solutions of least squares regu-
larized with ℓ0-norm and constrained by k-sparsity. Applied and Computational
Harmonic Analysis 41(1), 237–265 (2016) https://doi.org/10.1016/j.acha.2015.
10.010

[8] Soubies, E., Blanc-Féraud, L., Aubert, G.: A Continuous Exact ℓ0 Penalty (CEL0)
for Least Squares Regularized Problem. SIAM Journal on Imaging Sciences 8(3),
1607–1639 (2015) https://doi.org/10.1137/151003714

[9] Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing Sparsity by Reweighted ℓ1
Minimization. Journal of Fourier analysis and applications 14(5), 877–905 (2008)
https://doi.org/10.1007/s00041-008-9045-x

[10] Peleg, D., Meir, R.: A bilinear formulation for vector sparsity optimization. Signal
Processing 88(2), 375–389 (2008) https://doi.org/10.1016/j.sigpro.2007.08.015

[11] Fan, J., Li, R.: Variable Selection via Nonconcave Penalized Likelihood and its
Oracle Properties. Journal of the American Statistical Association 96(456), 1348–
1360 (2001) https://doi.org/10.1198/016214501753382273

[12] Foucart, S., Lai, M.-J.: Sparsest solutions of underdetermined linear systems via
ℓq-minimization for 0 < q ≤ 1. Applied and Computational Harmonic Analysis
26(3), 395–407 (2009) https://doi.org/10.1016/j.acha.2008.09.001

[13] Goepp, V., Thalabard, J.-C., Nuel, G., Bouaziz, O.: Regularized bidimensional
estimation of the hazard rate. The International Journal of Biostatistics (2021)
https://doi.org/10.1515/ijb-2019-0003

[14] Goepp, V.: An Iterative Regularized Method for Segmentation with Applications
to Statistics. Theses, Université de Paris / Université Paris Descartes (Paris 5)
(September 2019). https://hal.archives-ouvertes.fr/tel-02473848

[15] Hunter, D.R., Li, R.: Variable selection using MM algorithms. Annals of statistics
33(4), 1617–1642 (2005) https://doi.org/10.1214/009053605000000200

[16] Zou, H., Li, R.: One-step sparse estimates in nonconcave penalized likelihood
models. Annals of statistics 36(4), 1509–1533 (2008) https://doi.org/10.1214/
009053607000000802

[17] Rippe, R.C.A., Meulman, J.J., Eilers, P.H.C.: Visualization of Genomic Changes

57

https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1371/journal.pone.0148620
https://doi.org/10.1016/j.acha.2015.10.010
https://doi.org/10.1016/j.acha.2015.10.010
https://doi.org/10.1137/151003714
https://doi.org/10.1007/s00041-008-9045-x
https://doi.org/10.1016/j.sigpro.2007.08.015
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1016/j.acha.2008.09.001
https://doi.org/10.1515/ijb-2019-0003
https://hal.archives-ouvertes.fr/tel-02473848
https://doi.org/10.1214/009053605000000200
https://doi.org/10.1214/009053607000000802
https://doi.org/10.1214/009053607000000802

by Segmented Smoothing Using an L0 Penalty. PLOS ONE 7(6), 1–14 (2012)
https://doi.org/10.1371/journal.pone.0038230

[18] Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted
least squares minimization for sparse recovery. Communications on Pure and
Applied Mathematics 63(1), 1–38 (2010) https://doi.org/10.1002/cpa.20303

[19] Needell, D.: Noisy signal recovery via iterative reweighted L1-minimization. In:
2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Sys-
tems and Computers, pp. 113–117 (2009). https://doi.org/10.1109/ACSSC.2009.
5470154

[20] Peter, S.: Algorithms for Robust and Fast Sparse Recovery. Dissertation, Tech-
nische Universität München, München (2016). https://mediatum.ub.tum.de/
1295426

[21] Nikolova, M., Chan, R.H.: The Equivalence of Half-Quadratic Minimization and
the Gradient Linearization Iteration. IEEE Transactions on Image Processing
16(6), 1623–1627 (2007) https://doi.org/10.1109/TIP.2007.896622

[22] Chan, R.H., Liang, H.-X.: Half-Quadratic Algorithm for ℓp-ℓq Problems with
Applications to TV-ℓ1 Image Restoration and Compressive Sensing. In: Efficient
Algorithms for Global Optimization Methods in Computer Vision, pp. 78–103.
Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54774-4
4

[23] Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: On Iteratively Reweighted Algo-
rithms for Nonsmooth Nonconvex Optimization in Computer Vision. SIAM
Journal on Imaging Sciences 8(1), 331–372 (2015) https://doi.org/10.1137/
140971518

[24] Idier, J.: Convex half-quadratic criteria and interacting auxiliary variables for
image restoration. IEEE Transactions on Image Processing 10(7), 1001–1009
(2001) https://doi.org/10.1109/83.931094

[25] Aubert, G., Vese, L.: A Variational Method in Image Recovery. SIAM Jour-
nal on Numerical Analysis 34(5), 1948–1979 (1997) https://doi.org/10.1137/
S003614299529230X

[26] Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Two deterministic
half-quadratic regularization algorithms for computed imaging. In: Proceedings
of 1st International Conference on Image Processing, vol. 2, pp. 168–172 (1994).
https://doi.org/10.1109/ICIP.1994.413553

[27] Nikolova, M., Ng, M.K.: Analysis of Half-Quadratic Minimization Methods for
Signal and Image Recovery. SIAM Journal on Scientific Computing 27(3), 937–
966 (2005) https://doi.org/10.1137/030600862

58

https://doi.org/10.1371/journal.pone.0038230
https://doi.org/10.1002/cpa.20303
https://doi.org/10.1109/ACSSC.2009.5470154
https://doi.org/10.1109/ACSSC.2009.5470154
https://mediatum.ub.tum.de/1295426
https://mediatum.ub.tum.de/1295426
https://doi.org/10.1109/TIP.2007.896622
https://doi.org/10.1007/978-3-642-54774-4_4
https://doi.org/10.1007/978-3-642-54774-4_4
https://doi.org/10.1137/140971518
https://doi.org/10.1137/140971518
https://doi.org/10.1109/83.931094
https://doi.org/10.1137/S003614299529230X
https://doi.org/10.1137/S003614299529230X
https://doi.org/10.1109/ICIP.1994.413553
https://doi.org/10.1137/030600862

[28] Black, M.J., Rangarajan, A.: On the Unification of Line Processes, Outlier
Rejection, and Robust Statistics with Applications in Early Vision. Interna-
tional Journal of Computer Vision 19(1), 57–91 (1996) https://doi.org/10.1007/
BF00131148

[29] Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regular-
ization. IEEE Transactions on Image Processing 4(7), 932–946 (1995) https:
//doi.org/10.1109/83.392335

[30] Geman, D., Reynolds, G.: Constrained Restoration and the Recovery of Disconti-
nuities. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(3),
367–383 (1992) https://doi.org/10.1109/34.120331

[31] Dai, L., Chen, K., Sun, Z., Liu, Z., Li, G.: Broken adaptive ridge regression and
its asymptotic properties. Journal of Multivariate Analysis 168, 334–351 (2018)
https://doi.org/10.1016/j.jmva.2018.08.007

[32] Li, N., Peng, X., Kawaguchi, E., Suchard, M.A., Li, G.: A scalable surrogate L0
sparse regression method for generalized linear models with applications to large
scale data. Journal of Statistical Planning and Inference 213, 262–281 (2021)
https://doi.org/10.1016/j.jspi.2020.12.001

[33] Hugelier, S., Eilers, P.H.C., Devos, O., Ruckebusch, C.: Improved superresolution
microscopy imaging by sparse deconvolution with an interframe penalty. Journal
of Chemometrics 31(4), 2847 (2017) https://doi.org/10.1002/cem.2847

[34] Christou, A., Artemiou, A.: Adaptive L0 regularization for sparse support vector
regression. Mathematics 11(13) (2023) https://doi.org/10.3390/math11132808

[35] Wang, H., Li, G.: Extreme learning machine cox model for high-dimensional sur-
vival analysis. Statistics in Medicine 38(12), 2139–2156 (2019) https://doi.org/
10.1002/sim.8090

[36] Hugelier, S., Piqueras, S., Bedia, C., de Juan, A., Ruckebusch, C.: Application
of a sparseness constraint in multivariate curve resolution – alternating least
squares. Analytica Chimica Acta 1000, 100–108 (2018) https://doi.org/10.1016/
j.aca.2017.08.021

[37] Brouillon, J.-S., Fabbiani, E., Nahata, P., Dörfler, F., Ferrari-Trecate, G.:
Bayesian methods for the identification of distribution networks. In: 2021 60th
IEEE Conference on Decision and Control (CDC), pp. 3646–3651 (2021). https:
//doi.org/10.1109/CDC45484.2021.9683503

[38] Goepp, V., van de Kassteele, J.: Graph-based spatial segmentation of areal data.
Computational Statistics & Data Analysis 192, 107908 (2024) https://doi.org/
10.1016/j.csda.2023.107908

59

https://doi.org/10.1007/BF00131148
https://doi.org/10.1007/BF00131148
https://doi.org/10.1109/83.392335
https://doi.org/10.1109/83.392335
https://doi.org/10.1109/34.120331
https://doi.org/10.1016/j.jmva.2018.08.007
https://doi.org/10.1016/j.jspi.2020.12.001
https://doi.org/10.1002/cem.2847
https://doi.org/10.3390/math11132808
https://doi.org/10.1002/sim.8090
https://doi.org/10.1002/sim.8090
https://doi.org/10.1016/j.aca.2017.08.021
https://doi.org/10.1016/j.aca.2017.08.021
https://doi.org/10.1109/CDC45484.2021.9683503
https://doi.org/10.1109/CDC45484.2021.9683503
https://doi.org/10.1016/j.csda.2023.107908
https://doi.org/10.1016/j.csda.2023.107908

[39] Bouaziz, O., Lauridsen, E., Nuel, G.: Regression modelling of interval censored
data based on the adaptive ridge procedure. Journal of Applied Statistics 49(13),
3319–3343 (2022) https://doi.org/10.1080/02664763.2021.1944996

[40] Aydın, D., Ahmed, S.E., Yılmaz, E.: Right-Censored Time Series Modeling by
Modified Semi-Parametric A-Spline Estimator. Entropy 23(12) (2021) https://
doi.org/10.3390/e23121586

[41] Saegusa, T., Ma, T., Li, G., Chen, Y.Q., Lee, M.-L.T.: Variable selection in thresh-
old regression model with applications to HIV drug adherence data. Statistics in
biosciences 12, 376–398 (2020) https://doi.org/10.1007/s12561-020-09284-1

[42] Chartrand, R., Y., W.: Iteratively reweighted algorithms for compressive sensing.
In: IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 3869–3872 (2008). https://doi.org/10.1109/ICASSP.2008.4518498

[43] Voronin, S., Daubechies, I.: An Iteratively Reweighted Least Squares Algorithm
for Sparse Regularization. arXiv (2015). https://doi.org/10.48550/ARXIV.1511.
08970

[44] Lai, M.-J., Xu, Y., Yin, W.: Improved Iteratively Reweighted Least Squares for
Unconstrained Smoothed ℓq Minimization. SIAM Journal on Numerical Analysis
51(2), 927–957 (2013) https://doi.org/10.1137/110840364

[45] Mairal, J., Bach, F., Ponce, J.: Sparse modeling for image and vision process-
ing. Foundations and Trends® in Computer Graphics and Vision 8(2-3), 85–283
(2014) https://doi.org/10.1561/0600000058

[46] Jenatton, R., Obozinski, G., Bach, F.: Structured Sparse Principal Component
Analysis. In: Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp.
366–373. PMLR, Chia Laguna Resort, Sardinia, Italy (2010). https://proceedings.
mlr.press/v9/jenatton10a.html

[47] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.:
LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics,
Philadelphia, PA (1999). ISBN 978-0-898714-47-0

[48] Sluis, A., Vorst, H.A.: The rate of convergence of Conjugate Gradi-
ents. Numerische Mathematik 48(5), 543–560 (1986) https://doi.org/10.1007/
BF01389450

[49] Strakoš, Z.: On the real convergence rate of the conjugate gradient method. Linear
Algebra and its Applications 154-156, 535–549 (1991) https://doi.org/10.1016/
0024-3795(91)90393-B

60

https://doi.org/10.1080/02664763.2021.1944996
https://doi.org/10.3390/e23121586
https://doi.org/10.3390/e23121586
https://doi.org/10.1007/s12561-020-09284-1
https://doi.org/10.1109/ICASSP.2008.4518498
https://doi.org/10.48550/ARXIV.1511.08970
https://doi.org/10.48550/ARXIV.1511.08970
https://doi.org/10.1137/110840364
https://doi.org/10.1561/0600000058
https://proceedings.mlr.press/v9/jenatton10a.html
https://proceedings.mlr.press/v9/jenatton10a.html
https://doi.org/10.1007/BF01389450
https://doi.org/10.1007/BF01389450
https://doi.org/10.1016/0024-3795(91)90393-B
https://doi.org/10.1016/0024-3795(91)90393-B

[50] Notay, Y.: On the convergence rate of the conjugate gradients in presence of
rounding errors. Numerische Mathematik 65(1), 301–317 (1993) https://doi.org/
10.1007/BF01385754

[51] Fornasier, M., Peter, S., Rauhut, H., Worm, S.: Conjugate gradient acceleration
of iteratively re-weighted least squares methods. Computational optimization and
applications 65(1), 205–259 (2016) https://doi.org/10.1007/s10589-016-9839-8

[52] Liang, J., Fadili, J., Peyré, G.: Activity Identification and Local Linear Con-
vergence of Forward–Backward-type Methods. SIAM Journal on Optimization
27(1), 408–437 (2017) https://doi.org/10.1137/16M106340X

[53] Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcom-
plete representations in the presence of noise. IEEE Transactions on Information
Theory 52(1), 6–18 (2006) https://doi.org/10.1109/TIT.2005.860430

[54] Gribonval, R., Nielsen, M.: Highly sparse representations from dictionaries are
unique and independent of the sparseness measure. Applied and Computational
Harmonic Analysis 22(3), 335–355 (2007) https://doi.org/10.1016/j.acha.2006.
09.003

[55] Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Society for
Industrial and Applied Mathematics, Philadelphia (1999). https://epubs.siam.
org/doi/abs/10.1137/1.9781611971088

[56] Rockafellar, R.T.: Convex analysis (Princeton mathematical series). Princeton
University Press 46, 49 (1970) https://doi.org/10.1515/9781400873173

[57] Chambolle, A., Pock, T.: A First-Order Primal-Dual Algorithm for Convex Prob-
lems with Applications to Imaging. Journal of Mathematical Imaging and Vision
40(1), 120–145 (2011) https://doi.org/10.1007/s10851-010-0251-1

[58] Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal–
dual algorithm. Mathematical Programming 159(1), 253–287 (2016) https://doi.
org/10.1007/s10107-015-0957-3

[59] Condat, L.: A Primal–Dual Splitting Method for Convex Optimization Involving
Lipschitzian, Proximable and Linear Composite Terms. Journal of optimiza-
tion theory and applications 158(2), 460–479 (2013) https://doi.org/10.1007/
s10957-012-0245-9

[60] Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive
operators. Advances in Computational Mathematics 38(3), 667–681 (2013) https:
//doi.org/10.1007/s10444-011-9254-8

[61] Drori, Y., Sabach, S., Teboulle, M.: A simple algorithm for a class of nonsmooth

61

https://doi.org/10.1007/BF01385754
https://doi.org/10.1007/BF01385754
https://doi.org/10.1007/s10589-016-9839-8
https://doi.org/10.1137/16M106340X
https://doi.org/10.1109/TIT.2005.860430
https://doi.org/10.1016/j.acha.2006.09.003
https://doi.org/10.1016/j.acha.2006.09.003
https://epubs.siam.org/doi/abs/10.1137/1.9781611971088
https://epubs.siam.org/doi/abs/10.1137/1.9781611971088
https://doi.org/10.1515/9781400873173
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/s10107-015-0957-3
https://doi.org/10.1007/s10107-015-0957-3
https://doi.org/10.1007/s10957-012-0245-9
https://doi.org/10.1007/s10957-012-0245-9
https://doi.org/10.1007/s10444-011-9254-8
https://doi.org/10.1007/s10444-011-9254-8

convex–concave saddle-point problems. Operations Research Letters 43(2), 209–
214 (2015) https://doi.org/10.1016/j.orl.2015.02.001

[62] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge university press,
Cambridge (2004). ISBN 9780521833783

[63] Zhang, N., Li, Q.: On optimal solutions of the constrained ℓ0 regularization and
its penalty problem. Inverse Problems 33(2), 025010 (2017) https://doi.org/10.
1088/1361-6420/33/2/025010

[64] Yang, X., Wang, J., Wang, H.: Towards An Efficient Approach for the Noncon-
vex ℓp Ball Projection: Algorithm and Analysis. Journal of Machine Learning
Research 23(101), 1–31 (2022). http://jmlr.org/papers/v23/21-0133.html

[65] Wang, H., Yang, X., Deng, X.: A Hybrid First-Order Method for Nonconvex ℓp-
ball Constrained Optimization. arXiv (2021). https://doi.org/10.48550/ARXIV.
2104.04400

[66] Wang, H., Yang, X., Jiang, W.: An Iteratively Reweighted Method for Sparse
Optimization on Nonconvex ℓp Ball. arXiv (2021). https://doi.org/10.48550/
ARXIV.2104.02912

[67] Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient Projections onto
the ℓ1-Ball for Learning in High Dimensions. In: Proceedings of the 25th Interna-
tional Conference on Machine Learning. ICML ’08, pp. 272–279. Association for
Computing Machinery, New York, NY, USA. https://doi.org/10.1145/1390156.
1390191

62

https://doi.org/10.1016/j.orl.2015.02.001
https://doi.org/10.1088/1361-6420/33/2/025010
https://doi.org/10.1088/1361-6420/33/2/025010
http://jmlr.org/papers/v23/21-0133.html
https://doi.org/10.48550/ARXIV.2104.04400
https://doi.org/10.48550/ARXIV.2104.04400
https://doi.org/10.48550/ARXIV.2104.02912
https://doi.org/10.48550/ARXIV.2104.02912
https://doi.org/10.1145/1390156.1390191
https://doi.org/10.1145/1390156.1390191

	Introduction
	Iteratively reweighted algorithms for 2144 30833 penalized selection
	Variational formulation of the 2144 30833 penalty
	The majorize-minimize strategy
	The alternating minimization strategy
	The local approximation based strategy
	Links with other algorithms

	Adaptive-Ridge and square-log penalized selection
	Several implementations of the Adaptive-Ridge Algorithm
	System inversion based implementation
	Conjugate-Gradient based implementation
	Numerical experiments
	Simulation scheme
	First examples of AR estimates
	Energy decrease
	Sensitivity to the choice of the initializer
	Execution time
	Convergence of the scheme iterates
	Systems conditioning
	Influence of the parameter
	Regularization paths

	Extension to 2144 30833 constrained selection
	Principles and motivations
	An alternating minimization scheme and its properties
	Numerical implementation
	Experiments

	Conclusion
	Proof of Proposition 3
	Proof of Lemma 2
	Proof of Proposition 5
	Details about Scheme (72) and proof of Proposition 8
	Proof of Lemma 4
	Projection on the 1 ball (Algorithm proposed in duchi2008:projectionl1ball)

