
00

Algorithm xxx: Fast and accurate evaluation of a generalized
incomplete gamma function

RÉMY ABERGEL, Université de Paris, MAP5, CNRS, F-75006 Paris - France.
LIONEL MOISAN, Université de Paris, MAP5, CNRS, F-75006 Paris - France.

We present a computational procedure to evaluate the integral
∫ y
x s

p−1 e−µs ds for 0 ≤ x < y ≤ +∞,
µ = ±1, p > 0, which generalizes the lower (x = 0) and upper (y = +∞) incomplete gamma functions. To
allow for large values of x, y, and p while avoiding under/overflow issues in the standard double precision
floating point arithmetic, we use an explicit normalization that is much more efficient than the classical
ratio with the complete gamma function. The generalized incomplete gamma function is estimated with
continued fractions, integrations by parts, or, when x ≈ y, with the Romberg numerical integration algo-
rithm. We show that the accuracy reached by our algorithm improves a recent state-of-the-art method by
two orders of magnitude, and is essentially optimal considering the limitations imposed by the floating point
arithmetic. Moreover, the admissible parameter range of our algorithm (0 ≤ p, x, y ≤ 1015) is much larger
than competing algorithms and its robustness is assessed through massive usage in an image processing
application.

CCS Concepts: rMathematics of computing→ Arbitrary-precision arithmetic; Integral calculus;

Additional Key Words and Phrases: Incomplete gamma function, incomplete gamma integral, continued
fraction, numerical cancellation, Romberg’s method.

ACM Reference Format:
Rémy Abergel and Lionel Moisan, 2019. Algorithm xxx: Fast and accurate evaluation of a generalized in-
complete gamma function. ACM Trans. Math. Softw. 0, 0, Article 00 (xxxx), 26 pages.
DOI: 0

1. INTRODUCTION
In this work, we focus on the computation of a generalized incomplete gamma function
that will be defined below. Let us first recall the definition of Euler’s gamma function,

∀p > 0, Γ(p) =

∫ +∞

0

sp−1 e−s ds . (1)

The lower and upper incomplete gamma functions are respectively obtained by allow-
ing the integration domain to vary in (1),

∀p > 0, ∀x ≥ 0, γ(p, x) =

∫ x

0

sp−1 e−s ds and Γ(p, x) =

∫ +∞

x

sp−1 e−s ds . (2)

The gamma function is usually viewed as an extension of the factorial function since it
satisfies Γ(p) = (p−1)! for any positive integer p. Note that the gamma function can also
be defined for all complex numbers pwith positive real part, using the same convergent
improper integral as in (1), and can be extended by analytic continuation to all complex
numbers except the nonpositive integers, that is, to p ∈ C \ {0,−1,−2,−3, . . . }.

Author’s addresses: Rémy Abergel and Lionel Moisan, Université de Paris, laboratoire MAP5, 45 rue des
Saints-Pères, 75006 Paris, FRANCE.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© xxxx ACM. 0098-3500/xxxx/-ART00 $15.00
DOI: 0

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

00:2 R. Abergel and L. Moisan

These special functions arise in many areas, such as astronomy and astrophysics
[Cannon and Vardavas 1974; Hills 1975; Collins 1989], Rayleigh scattering [Kissel
et al. 1980], quantum gravity [Bleicher and Nicolini 2010], networks [Moreno et al.
2002], financial mathematics [Linetsky 2006], image analysis [Robin et al. 2010], etc.
(see [Chaudhry and Zubair 2001] for more examples). From the mathematical view-
point, the computation of incomplete gamma functions is typically required in applica-
tions involving the evaluation of χ2 distribution functions, exponential integrals, error
functions (erf), cumulative Poisson or Erlang distributions. Their practical numerical
evaluation is still subject to some flourishing research in the modern literature. The
first algorithm dedicated to the numerical evaluation of the incomplete gamma func-
tions was, to the best of our knowledge, proposed in [Bhattacharjee 1970], and later
in [Press et al. 1992]. It evaluates the ratio γ(p, x)/Γ(p) using a series expansion when
0 < p ≤ x < 1 or 0 ≤ x < p, or the ratio Γ(p, x)/Γ(p) using a continued fraction in the
remaining part of the whole domain {x ≥ 0, p > 0}. Note that since

γ(p, x) + Γ(p, x) = Γ(p), (3)

one of the incomplete gamma functions can be deduced from the other as soon as we as-
sume that Γ(p) is known. Gautschi [1979] proposed another computational procedure,
based on Taylor’s series and continued fractions, to evaluate those two functions in the
region {x ≥ 0, p ∈ R} (in fact, for p ≤ 0, Tricomi’s version [Tricomi 1950; Gautschi 1998]
of the lower incomplete gamma function, which remains real for any real numbers x, p,
is considered). The criterion proposed in [Bhattacharjee 1970] to decide which one of
the two integrals should be computed according to the value of (x, p) is refined, and a
more suitable normalization is employed, which slightly extends the range over which
those two functions can be represented within standard double precision arithmetic.
More recently, Winitzki [2003] focused on the computation of the upper incomplete
gamma function and used some series expansions, a continued fraction (due to Legen-
dre), some recurrence relations, or, for large values of x, an asymptotic series. The pre-
cision of the approximation is controlled by estimating the number of terms required
to reach a given absolute precision according to the values of x and p. However, the
study is not considered from a practical point of view, and no algorithm or experimen-
tal validation are provided to assess the numerical stability of the proposed method. In
[Guseinov and Mamedov 2004], the lower and upper incomplete gamma functions are
computed using backward and forward recurrence relations ; however, we experimen-
tally noticed that a faster convergence was achieved with continued fractions. More
recently, Gil et al. [2012] proposed new algorithms to compute the lower and upper
ratios γ(p, x)/Γ(p) and Γ(p, x)/Γ(p), and to solve for x given one of these ratios. The
ratios are computed using Taylor expansions, continued fractions or uniform asymp-
totic expansions, depending on the values of p and x. They claim a relative accuracy of
7.9 · 10−13 on the domain (0, 500]2, which we found a bit optimistic, as we shall see in
Section 2.5.

One difficulty encountered in the numerical evaluation of Gamma functions (incom-
plete or not) is their exponential growth that easily causes numerical overflow. Thus,
before designing an algorithm, it is necessary to choose an appropriate normaliza-
tion to avoid this phenomenon. A classical normalization, used in most of the above-
mentioned algorithms, computes the lower and upper incomplete Gamma function ra-
tios

P (p, x) =
γ(p, x)

Γ(p)
and Q(p, x) =

Γ(p, x)

Γ(p)
. (4)

Since P and Q are nonnegative and satisfy P + Q = 1 (as a consequence of (3)), we
have P,Q ≤ 1 so that no overflow can occur with these ratios. However, this normaliza-

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

Fast and accurate evaluation of a generalized incomplete gamma function 00:3

tion is not really satisfactory either because it produces severe underflow. When one
of p or x is small and the other grows, min(P,Q) rapidly decays far below the smallest
positive floating point number (around 10−308 in IEEE 754 double precision standard
arithmetic), so that the best possible numerical approximation, 0, produces a relative
error of 100%. A simple example is P (200, 1) ' 10−375. In other terms, any algorithm
estimating the gamma integrals (2) from a computation of P and Q in double precision
arithmetic will fail in a subpart of the (p, x) plane. On the domain (0, 500]2, the value of
min(P,Q) is representable for only 90% of the domain. On the domain (0, 105]2, this ra-
tio drops to less than 15%, and rapidly approaches 0% when the domain grows further.
This “underflow region” is represented in Fig. 1 (a).

(a) values of min(P,Q) (b) isovalues of G
and the large “underflow region”

Fig. 1. Comparison between two normalizations of the incomplete gamma function. (a): values
of min(P (p, x), Q(p, x)) (see Equation (4)) as a function of x and p, with values below the smallest positive
double precision floating point number (' 10−308) marked as underflow. (b): isovalues curves of the function
G(p, x) defined in Equation (5), represented on the same domain (0, 1015]2 (log scale). While min(P,Q)
suffers from severe underflow issues as soon as p ≥ 103 or x ≥ 103, G slowly varies in the whole domain,
without any risk of under- or overflow. From a numerical point of view,G is thus a much better normalization
of the incomplete gamma function.

In the present paper, we shall use a different normalization, which considerably
extends the range of admissible values of p and x. More precisely, we consider the
single function

∀x ≥ 0, p > 0, G(p, x) = ex−p log x ×

{
γ(p, x) if x ≤ p;

Γ(p, x) otherwise.
(5)

From G(p, x) and Γ(p) it is straightforward to compute γ(p, x) and Γ(p, x) using (3).
Moreover, we can see in Fig. 1 (b) that G is not subject to underflow or overflow issues
on a very large domain, much larger than the domain (0, 1015]2 here considered. In the
following, it will be useful to extend the definition (5) of G to the case x < 0, p ∈ N∗
with

G(p, x) = ex−p log |x|
∫ |x|

0

sp−1 es ds = ex−p log |x|(−1)pγ(p, x), (6)

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

00:4 R. Abergel and L. Moisan

where γ(p, x) is naturally extended to negative values of x with Equation (2). The
possibility of evaluating the lower incomplete gamma function for negative values of x
is explored by Thompson [2013], but in a situation different to ours, since he focused
on the case p = n + 1

2 , n ∈ Z. Gil et al. [2016] consider the more general case x < 0
and p ∈ R, but since they directly estimate γ(p, x) (without normalization), under- and
overflow issues dramatically restrict the range of admissible values of x and p.

The aim of this paper is to propose a numerical algorithm to efficiently and accu-
rately compute the generalized incomplete gamma function

Iµ,px,y =

∫ y

x

sp−1 e−µs ds (7)

for 0 ≤ x < y ≤ +∞, µ = ±1 and p > 0. When µ = −1, we also impose the restriction
that y 6= +∞ and p is an integer in order to ensure that the integral is real and finite.
Notice that for more general values of µ ∈ R∗, we have∫ y

x

sp−1 e−µs ds = |µ|−p Iε,p|µ|x,|µ|y, with ε =
µ

|µ|
, (8)

hence the hypothesis µ = ±1 does not cause any loss of generality.
The numerical evaluation of the integral Iµ,px,y has found applications in the field of

astronomy, for instance, in [Hills 1975], where its computation was needed to model
the dynamical evolution of stellar clusters. It is also needed as a renormalization factor
as soon as the truncated version gamma (or Erlang) distribution is considered (see, for
example, [Verbelen et al. 2015], [Philippe 1997] and the references therein). It was
also recently needed in the field of image processing in [Abergel et al. 2015], where
the accurate computation of Iµ,px,y for a large range of parameters was at the heart of a
denoising algorithm for the restoration of images corrupted with Poisson noise.

The generalized incomplete gamma function (7) was actually previously introduced
in [Fullerton 1972] under the slightly different form

Jpx1,x2
= ex1

∫ x2

x1

|s|p−1 e−s ds , for (x1, x2) ∈ R2 and p > 0 . (9)

The integrals I and J are closely related since

∀x, y, 0 < x < y, ∀p > 0, Iµ,px,y =

{
e−xJpx,y if µ = 1 ,

eyJp−y,−x if µ = −1 .
(10)

Unfortunately, Fullerton’s algorithm, which was not validated for a large range of pa-
rameters, presents several weaknesses. As pointed out in [Schoene 1978], for some
values of the parameters, the algorithm suffers from numerical instabilities, yielding
for instance, a computed integral with incorrect sign, or zero digits of precision. We
also observed some overflow issues when we tested the algorithm on a higher range
of parameters (typically when p ≈ 102 or higher, but also for many other parameter
settings).

Note also that a function dedicated to the evaluation of I1,p
x,y, Gamma[p,x,y], is avail-

able in the scientific computing software MathematicaTM (see [Wolfram Research Inc
1988], and [Wolfram Research Inc 1998] for the online evaluation of I1,p

x,y). Unfortu-
nately, Mathematica’s algorithms are not currently disclosed to the public.

It is possible to estimate Iµ,px,y from the classical incomplete gamma functions, since
for µ = 1 one has

Iµ,px,y = γ(p, y)− γ(p, x) = Γ(p, x)− Γ(p, y) = Γ(p)− γ(p, x)− Γ(p, y), (11)

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

Fast and accurate evaluation of a generalized incomplete gamma function 00:5

while for µ = −1,

Iµ,px,y = (−1)p
(
γ(p,−y)− γ(p,−x)

)
. (12)

However, the effective computation of Iµ,px,y using (11) or (12) raises several numerical
issues:

(1) For some values of the parameters, the lower and upper incomplete gamma func-
tions cannot be well approximated in the computer floating point arithmetic be-
cause they take values outside admissible bounds (about 10±308 for IEEE 754).
This is why it is important to choose an appropriate normalization, as we discussed
earlier. In the present work, we will use the function G defined in Equation (5). In
practice, because Iµ,px,y itself may not be directly representable, we will represent it
under a mantissa-exponent form ρ · eσ, where ρ and σ are floating point numbers
with double precision;

(2) Computing G(p, x) efficiently depends on the values of p and x. We shall present a
simple division of the plane (p, x) into 3 regions and, in each region, a numerical
procedure based on a continued fraction or on recursive integration by part;

(3) When Iµ,px,y is computed as the difference A − B, the result may be inaccurate if A
and B are close to each other (the well-known cancellation effect in floating-point
arithmetic), which happens in (11)-(12) when x and y are very close to each other. In
that case, the integral Iµ,px,y will be computed using Romberg’s recursive numerical
integration algorithm.

Note that the issue (1) detailed above is of great importance when some integrals of the
kind Iµ,px,y appear in more complicated mathematical expressions, such as in [Abergel
et al. 2015], where the computation of a ratio of sums of generalized incomplete gamma
functions is involved, with a numerator and a denominator that may both exceed the
highest representable double floating point number, although the ratio itself is repre-
sentable in the standard computer floating-point arithmetic.

This paper is organized as follows. In Section 2, we describe a new algorithm to eval-
uate the functionG(p, x). It is based on a partition of the parameter plane, which drives
three different numerical procedures using continued fractions or recursive integra-
tions by parts. We systematically evaluate the precision of this algorithm on a large do-
main, and show that it generally outperforms Gil et al. [2012] algorithm by two orders
of magnitude, independently of the normalization issues encountered in the latter. We
then consider in Section 3 the computation of the (un-normalized) incomplete gamma
functions, and derive a theoretical accuracy bound from the limited precision of dou-
ble precision floating point numbers associated with the required mantissa-exponent
representation of these integrals. We then show that our estimates essentially achieve
this optimal bound. We also compare several algorithms used for the evaluation of the
(complete) Gamma function, which may be required by our algorithm. In Section 4,
the more general case of the integral Iµ,px,y is considered, and we describe an algorithm
based on differences or on Romberg’s numerical integration method (and an automatic
selection of the most appropriate method). This algorithm is compared on several ex-
amples with Fullerton’s algorithm in Section 5, and its robustness is tested through
massive usage in a recent image denoising application in Section 6.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

00:6 R. Abergel and L. Moisan

2. NUMERICAL COMPUTATION OF THE FUNCTION G
2.1. Series expansions
If p denotes a positive integer, writing the Taylor series expansion of the exponential
function, with order p− 1 and integral remainder, we get

ex =

p−1∑
k=0

xk

k!
+

∫ x

0

(x− t)p−1

(p− 1)!
et dt =

s=x−t
ex −

+∞∑
k=p

xk

k!
+

ex

(p− 1)!

∫ x

0

sp−1 e−s ds .

For x ≤ p, we deduce that

G(p, x) =

+∞∑
k=0

Γ(p) · xk

Γ(k + p+ 1)
, (13)

and this formula remains valid for non-integer values of p > 0. Although the power
series (13) defined above has an infinite radius of convergence, its convergence can be
quite slow and numerically unstable depending on the values of p and x. It is suggested
in [Press et al. 1992] that the lower ratio P should be evaluated using the series expan-
sion as long as |x|

p+1 < 1; however, according to our experiments, a better convergence
rate can be obtained for the function G by using a continued fraction. Thus, we shall
not use (13) in the algorithm we propose.

2.2. Continued fractions
We describe here several formulations of our function G based on continued fractions
taken from the literature. First, we focus on the computation of G in the domain x ≤ p.
Let us consider the confluent hypergeometric function M , defined by

M(a, b, z) =

+∞∑
n=0

a(n)

b(n)

zn

n!
, where α(0) = 1 and α(n) = α(α+1) · · · (α+n−1) for n ≥ 1.

Since for any (b, z) we have M(0, b, z) = 1, when x ≤ p, we can rewrite (13) as

G(p, x) =
M(1, p+ 1, x)

p ·M(0, p, x)
. (14)

As detailed in [Olver et al. 2010; DLMF 2015; Cuyt et al. 2008; Jones and Thron 1980],
the ratio M(a,b,z)

M(a+1,b+1,z) can be continued for any z ∈ C, as long as a 6∈ Z \N and a− b 6∈ N.
Under this assumption (which will be satisfied here, since we will consider the setting
a = 0, b = p > 0), and using the usual notation for continued fractions,

α1

β1+

α2

β2+

α3

β3+
· · · = α1

β1 + α2

β2+
α3

β3+...

,

we get

M(a, b, z)

M(a+ 1, b+ 1, z)
= 1 +

u1

1+

u2

1+

u3

1+
. . . ,

with

∀n ≥ 0, u2n+1 =
(a− b− n)z

(b+ 2n)(b+ 2n+ 1)
and u2n =

(a+ n)z

(b+ 2n− 1)(b+ 2n)
.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

Fast and accurate evaluation of a generalized incomplete gamma function 00:7

Writing the inverse ratio (with a = 0 and b = p), and after basic manipulations of the
continued fraction, we obtain

M(1, p+ 1, x)

p ·M(0, p, x)
=

a1

b1+

a2

b2+

a3

b3+
. . . ,

where a1 = 1 and ∀n ≥ 1, a2n = −(p − 1 + n) · x, a2n+1 = n · x and bn = p − 1 + n.
Therefore, Equation (14) becomes

G(p, x) =
a1

b1+

a2

b2+

a3

b3+
. . . (15)

The evaluation of G(p, x) in the domain x ≤ p using the continued fraction (15) can
be performed using the modified Lentz’s method [Lentz 1976; Thompson and Barnett
1986], which we recall in Algorithm 1 for the reader’s convenience, with a slight adap-
tation of the initialization process since we observed some instabilities when using the
implementation described in [Press et al. 1992] (see note in Algorithm 1).

The continued fraction (15) converges for any value of x, but leads to numerical in-
stabilities (due to the fact that its value becomes huge) when x is chosen too large com-
pared to p. However, since we restrict its use to x ≤ p, this instability does not arise in
our algorithm. The convergence of (15) in the domain x ≤ p is fast as it requires in gen-
eral less than 20 approximants to converge (the number of iterations being estimated
automatically). The number of required approximants may be higher when x ≈ p, or
when x < 0 and p is small. For the latter case, we will switch to a faster estimation
method based on recursive integration by parts (Section 2.3).

ALGORITHM 1: Modified1 Lentz’s method for continued fractions evaluation.

Input: Two real-valued sequences {an}n≥1 and {bn}n≥1, with b1 6= 0.

Requirements: εmachine (machine precision, 2.22 · 10−16 in double precision)

Output: Accurate estimate f of the continued fraction a1
b1+

a2
b2+

a3
b3+
· · ·

Initialization:
dm ← 10−300 // Number near the minimal floating-point value

f ← a1
b1

; C ← a1
dm

; D ← 1
b1

; n← 2 // see note1 below

repeat
D ← D · an + bn
if D = 0 then D ← dm
C ← bn + an

C

if C = 0 then C ← dm
D ← 1

D

∆← C ·D
f ← f ·∆
n← n+ 1

until |∆− 1| < εmachine

return f

1 In the initialization step, we manually performed the first pass n = 1 of the modified Lentz’s algorithm,
since we observed some instabilities with the initialization f = C = dm, D = 0, presented in [Press et al.
1992]. Indeed, the setting C = dm may yield C = +∞ after the pass n = 1 (when a1/dm exceed the
highest representable number), and then ∆ = f = +∞, which propagates through the next iterations. By
computing the first pass manually, even when the initialization C = a1/dm yields C = +∞, the pass n = 2
yields C = b2 + a2/C = b2, which has a finite value.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

00:8 R. Abergel and L. Moisan

In the domain x > p, the evaluation ofG(p, x) can be performed using another contin-
ued fraction. Indeed, as detailed in [Abramowitz and Stegun 1964; Press et al. 1992],
for x > p, we can write G(p, x) as

G(p, x) =
α1

β1+

α2

β2+

α3

β3+
· · · , (16)

with α1 = 1, αn = −(n−1) ·(n−p−1) for any n > 1, and βn = x+2n−1−p for any n ≥ 1.
The continued fraction (16) can also be evaluated numerically using Algorithm 1.

2.3. Recursive integrations by parts
In the domain x < 0, we observed that the use of (15) to compute G(p, x) may lead to
long computation times for small values of p. Since in the case x < 0 we restricted the
study of G(p, x) to integer values of p, we can consider, as an alternative to (15), the use
of a recursive integration by parts closed-form formula to compute G(p, x). We remark
that a similar approach is adopted by [Guseinov and Mamedov 2004] who make use of
backward and forward recurrence relations to evaluate the standard lower incomplete
gamma function, γ(p, x), for positive values of x. Considering the case x < 0 and p
integer, we obtain

G(p, x) =
1

x

(
(p− 1)! ex

xp−1
−
p−1∑
k=0

(p− 1)!

(p− 1− k)!
x−k

)
. (17)

Although the computation of (17) is not efficient in general, it happens to be faster
than (15) for small values of p. We must however be careful when computing the al-
ternating sum (17) since, as usual with alternating sums, it may suffer from dramatic
errors caused by cancellation. In the following, we set t = −x > 0 and we rewrite (17)
as

G(p, x) =
t=−x

1

t

(
(−1)p(p− 1)! e−t

tp−1
+ s(t)

)
, where s(t) =

p−1∑
k=0

(−1)k
(p− 1)! t−k

(p− 1− k)!
. (18)

By grouping the consecutive terms in pairs with indexes k = 2l and k = 2l + 1 of the
alternating sum s(t), we get

s(t) = s̃(t) :=

bp−2
2 c∑
l=0

(p− 1)! t−(2l+1)

(p− 1− 2l)!
(t− (p− 1− 2l)) + εp(t) , (19)

where bzc denotes the integer part of z, and the residual term εp(t) is defined by

εp(t) =

{
(p− 1)! t−(p−1) if p is odd

0 otherwise.

Let us now assume that t ≥ max (1, p− 1). First, using t ≥ p−1, we see that all terms in
the sum s̃(t) are nonnegative, so that we can evaluate the alternating sum (19) without
any cancellation. It follows that, when p is even, (18) becomes

G(p, x) =
1

t

(
(p− 1)!e−t

tp−1
+ s̃(t)

)
,

which is a sum of positive terms, so that no cancellation can occur. When p is odd, (18)
yields

G(p, x) =
1

t

(
− (p− 1)!e−t

tp−1
+ s̃(t)

)
. (20)

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

Fast and accurate evaluation of a generalized incomplete gamma function 00:9

Noting α(t) = (p−1)!e−t

tp−1 and using the fact that t ≥ 1, we get

s̃(t)

α(t)
≥ εp(t)

α(t)
= exp (t) ≥ exp (1) ,

which ensures that no cancellation occurs when computing the difference between s̃(t)
and α(t), involved in (20). Finally, we are able to evaluate (18) without cancellation in
the region t ≥ max (1, p− 1).

Last, from t > p− 1, we infer that the sequence {ak(t)}k≥0 defined by

∀k ≥ 0, ak(t) =

{
(p−1)! t−k

(p−1−k)! if k ≤ p− 1

0 otherwise,

is nonincreasing, with limit 0. It follows that the remainder rn(t) =
∑+∞
k=n+1(−1)kak(t)

of the alternating series s(t) =
∑+∞
k=0(−1)kak(t) satisfies |rn(t)| ≤ an+1(t), so that we

can numerically estimate s(t) with the partial sum sn(t) =
∑n
k=0(−1)kak(t) as soon as

an+1(t) ≤ |sn(t)| · εmachine , (21)

εmachine being the machine precision, 2.22·10−16 in double precision floating point arith-
metic (IEEE 754 standard). Note that (21) may occur for n < p−1, with a possible sav-
ing in computation time. In practice, we compute s(t) = s̃(t) with (19) instead of (18),
but this stopping criterion can be easily evaluated at each iteration of the summa-
tion procedure. Indeed, noting that the sequence {a2l(t) − a2l+1(t)}l≥0 is positive and
nonincreasing (because t > p− 1), we obtain

∀l ∈ N, a2l+2(t) ≤ a2l(t)− a2l+1(t) + a2l+3(t) ≤ a2l(t)− a2l+1(t) ,

so that

∀l ∈ N, |r2l+1(t)| ≤ a2l+2(t) ≤ |a2l(t)− a2l+1(t)| .
This yields Algorithm 2.

2.4. Numerical computation of the function G
We estimated G(p, x) using (15) in the domain x ≤ p, using (16) in the domain x > p,
and using (17) in the domain {x < 0; |x| > max(1, p − 1)}, for a large range of parame-
ters, namely

x ∈ [−1000, 1000] ∩ Z, p ∈ [1, 1000] ∩ Z .
For each tested value of (x, p) and each evaluation method, we com-
pared the computed value of G(p, x) to the one computed with MapleTM

(version 17), with 30 significant decimal digits (which requires large
amounts of memory and a long computation time), using the code

sigma:=evalf(x-p*log(abs(x)));
evalf(Int(s^(p-1)*exp(-sign(x)*s),s=0..abs(x),digits=30)*exp(sigma));
evalf(Int(s^(p-1)*exp(-s),s=x..infinity,digits=30)*exp(sigma));

the last line only being computed for positive values of x. The values computed with
MapleTM were then used as reference values to evaluate the relative accuracy of
our estimate. After measuring the computation time and relative error for the two
concurrent methods in the domain {x < 0} (continued fraction versus recursive
integration by parts), we designed a nearly optimal boundary to divide the domain
{x < 0} into two regions that select the most appropriate method. This results in a

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

00:10 R. Abergel and L. Moisan

ALGORITHM 2: Accurate evaluation of G(p, x) using (17).

Input: A negative real number x < 0 and a positive integer p satisfying |x| > max (1, p− 1).

Output: An accurate estimate of G(p, x) computed using (17).

Initialization: t← −x; c← 1

t
; d← p− 1; s← c · (t− d); l← 1

repeat

c← d(d− 1)

t2
d← d− 2
∆← c(t− d) // now ∆ = a2l(t)− a2l+1(t)

s← s+ ∆ // now s = s2l+1(t) =

2l+1∑
k=0

(−1)kak(t)

l← l + 1

until l > bp− 2

2
c or ∆ < s · εmachine

if (∆ ≥ s · εmachine) and (p is odd) then s← s+
d c

t
// add the term εp(t) = (p− 1)! t−(p−1)

return 1

t

(
(−1)p · e−t+log (p−1)!−(p−1) log(t) + s

)
partition of the whole admissible domain into three regions (see Fig. 2) delimited by
the explicit boundary

∀x ∈ R ∪ {+∞}, plim(x) =

 5
√
|x| − 5 if x < −9 ,
0 if − 9 ≤ x ≤ 0 ,
x otherwise,

(22)

from which Algorithm 3 follows.

ALGORITHM 3: Fast and accurate evaluation of G(p, x).

Input1: a number x ∈ R ∪ {+∞} and a positive real number p.

if p ≥ plim(x) then compute G(p, x) using (15) and Algorithm 1
else if x ≥ 0 then compute G(p, x) using (16) and Algorithm 1
else compute G(p, x) using (17) and Algorithm 2

1 Recall that in the case x < 0, p must be an integer.

2.5. Numerical validation and comparison to [Gil et al. 2012]
The purpose of our paper is to provide an efficient numerical algorithm to estimate
quantities derived from incomplete gamma integrals (be it the integrals γ(p, x) and
Γ(p, x) themselves, or their logarithms, or the ratios G(p, x), P (p, x) and Q(p, x), or
their logarithms, etc.). In this section, we focus on the relevance of considering G(p, x)
as an alternative function to the more standard ratios P (p, x) and Q(p, x) for that par-
ticular purpose. In our comparisons, we will compute G(p, x) using Algorithm 3 and
min (P (p, x), Q(p, x)) using the recent state-of-the-art algorithm proposed by Gil et al.
[2012] (the higher ratio is deduced from the smaller using the relation P + Q = 1).
Beyond any numerical experiment, Figure 1 (a) alone already attests that, for most
values of (p, x), the incomplete gamma integrals γ(p, x) and Γ(p, x) cannot be reliably

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

Fast and accurate evaluation of a generalized incomplete gamma function 00:11

1000

900

800

700

600

500

400

300

200

-900 -800 -700 -600 -500 -400 -300 -200 -100 1000900800700600500400300200100

100

-1000

1

-9 0-50 50

Fig. 2. Partition of the (x, p) domain for the evaluation of G(p, x). The normalized incomplete gamma
functionG defined in Equation (5) is numerically evaluated using Algorithm 3, which selects the appropriate
formula among (15), (16), and (17) according to the location of (p, x) in the partition of the domain delimited
by the red curve.

computed from estimates in double precision of P (p, x) or Q(p, x), because in most
situations, the quantity min (P (p, x), Q(p, x)) will underflow (that is, smaller than the
smallest double precision positive number which is about 10−308), so that one will com-
pute min (P (p, x), Q(p, x)) = 0 and thus obtain a result with 0% relative accuracy. This
remark does not question the accuracy of the computation of P (p, x) and Q(p, x) using
Gil et al. [2012] algorithm (or even any concurrent algorithm), but simply highlights
the inadequacy of the ratios P (p, x) and Q(p, x) for the purpose of computing accurate
estimates of quantities derived from the incomplete gamma integrals. Besides, since
G(p, x), P (p, x) and Q(p, x) are not the same quantities, it is difficult to compare the
algorithms dedicated to their evaluation. Of course, one can use G(p, x) to compute
P (p, x) and Q(p, x), or use P (p, x) and Q(p, x) to compute G(p, x) using

∀x ≥ 0 ,∀p > 0 , G(p, x) · e−x+p log x−log Γ(p) =

{
P (p, x) if x ≤ p
Q(p, x) otherwise . (23)

In that process, the accuracy of the desired quantity may strongly depend on the accu-
racy of the computed rescaling factor e−x+p log x−log Γ(p). In Fig. 3, we can see that it is
indeed the case, since the rescaled quantities (G(p, x) computed from Gil et al. [2012]
algorithm, and min(P (p, x), Q(p, x)) computed from Algorithm 3) exhibit the same dis-
tribution of relative errors, better than 5·10−13 for 90% of the tested parameters. In fact,
this corresponds to the precision obtained for the rescaling factor e−x+p log x−log Γ(p),
which is the limiting factor in the process. In Fig. 3 (b) (blue curve), we can observe
that the precision obtained for G using Algorithm 3 is better than 10−15 for 90% of the
tested parameters. This is substantially better than the precision obtained by Gil et al.
[2012] in their evaluation of min (P,Q), which is close to 10−13 for 90% of the tested pa-
rameters (see Fig. 3 (a), red curve). This means that improving the estimation of the
rescaling factor up to 10−15 would result in a better estimation of min (P,Q) using the
rescaled value of G than using the algorithm of Gil et al. [2012]. For that reason, we
believe that it is interesting to compare the relative precision of the normalized quan-

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

00:12 R. Abergel and L. Moisan

10-15 10-14 10-1110-12 10-1010-13

using [Gil et al. 2012]
using Algorithm 3

10-15 10-14 10-1110-12 10-1010-13

using [Gil et al. 2012]
using Algorithm 3

10-300 10-250 10-200 10-150 10-100 10-50 1
10-16

10-15

10-14

10-13

10-12

10-11

10-10

measured error
anounced error

(a) evaluation of min (P,Q) (b) evaluation of G (c) relative errors observed using the
algorithm of Gil et al. [2012]

Fig. 3. Relative accuracy of Algorithm 3 and Gil et al. [2012] algorithm. Left (a): over the domain
(p, x) ∈ {1, 2, . . . , 1000}2 ∩ S (recall that S = {(p, x) , min (P (p, x), Q(p, x)) ≥ 10−300}), we systematically
computed (using MapleTM as a reference) the relative error observed for min (P (p, x), Q(p, x) when using
Gil et al. [2012] algorithm and when using G(p, x) (computed with Algorithm 3) with the rescaling (23).
We display the proportion of relative errors smaller than r as a function of r in both cases. Middle (b):
Symmetrically, over the same domain, we computed the relative error observed when evaluating G(p, x)
using Algorithm 3 or using min (P (p, x), Q(p, x)) (computed using the algorithm of Gil et al. [2012]) with the
rescaling (23). Again, we display the proportion of relative errors smaller than r as a function of r in both
cases. Right (c): we evaluated the relative error of Gil et al. [2012] over the domain (x, p) ∈ {1, 2, . . . , 500}2∩
S. The maximum over the domain {(x, p); min(P (x, p), Q(x, p)) ≥ α} is displayed as a function of α. We
can see that the accuracy of 7.9 · 10−13 (red dashed line) claimed by Gil et al. [2012] after 107 random
trials on that domain is not systematically attained, and that many larger errors appear for estimated
values of min(P,Q) that are far from underflow (10−308), for example P (1, 51) = 2.41819039187902807E-67
(1.3 · 10−12 relative error) or P (1, 99) = 3.98167886822098022E-157 (4.8 · 10−12 relative error).

tities, keeping aside the accurate computation of the rescaling factor which could be
the topic of another study. Moreover, in the scope of this paper, which is to compute
quantities derived from the incomplete gamma integrals accurately, the comparison
of the normalized quantities is a fair choice (for instance, we could have compared
the estimates of γ(p, x), log γ(p, x), or logP (p, x), but no particular choice would impose
itself).

In this paper, all evaluations of Gil et al. [2012] algorithm were made using the For-
tran implementation publicly available at the address http://personales.unican.es/gila/
incgam.zip, which is the link given in Gil et al. [2012]. With this implementation, we
noticed some failure cases for parameter values that should produce a correct value
of max(P,Q) and raise an error (underflow) flag for min(P,Q). An example is given for
(p, x) = (4000, 7000), for which the code returns P = 0, Q = 1 and no error flag (instead
of P = 1, Q = 0 and an error flag indicating underflow for Q). This failure case is rela-
tively frequent for large values of p and x. We conclude this section with Table I, which
shows that Algorithm 3 and Gil et al. [2012] algorithm exhibit comparable statistics in
terms of computation time.

Table I. Comparison of the execution time between the algorithm of Gil et al. [2012] and Algorithm 3.

Execution times (ns) minimum median average maximum

G (using Algorithm 3) 288 ns 529 ns 442 ns 2038 ns
P and Q (using [Gil et al. 2012]) 378 ns 1010 ns 1450 ns 3456 ns

Both algorithms were evaluated in the range (x, p) ∈ {0, . . . , 1000} × {1, . . . , 1000}. For each tested
value of (x, p), the value of G(p, x) and that of (P (p, x), Q(p, x)) were computed as many times as
possible during 10 ms. Dividing 10 ms by the number of achieved evaluations, we get an accurate
estimate of the computation time for a single evaluation. In this Table, for each algorithm, we report
the minimal, median, average and maximum execution time observed in the tested range of parameters.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

Fast and accurate evaluation of a generalized incomplete gamma function 00:13

3. NUMERICAL COMPUTATION OF THE NON-NORMALIZED LOWER AND UPPER
INCOMPLETE GAMMA INTEGRALS

3.1. Mantissa-exponent representation of the incomplete gamma integrals
When the evaluation of the non-normalized lower and upper incomplete gamma inte-
grals γ(p, x) and Γ(p, x) is needed, we can compute

∀x ≥ 0 , ∀p > 0 , G(p, x)× e−x+p log x =

{
γ(p, x) if x ≤ p
Γ(p, x) otherwise

(24)

and, by subtracting G(p, x)×e−x+p log x from the complete gamma function Γ(p), we can
also retrieve the lower and upper incomplete gamma integrals on the complementary
domains:

∀x ≥ 0 , ∀p > 0 , Γ(p)−G(p, x)× e−x+p log x =

{
Γ(p, x) if x ≤ p
γ(p, x) otherwise.

(25)

Notice that no cancellation can occur in the subtraction (25) since G(p, x)×e−x+p log x is
at most roughly equal to 0.5 ·Γ(p) . Moreover, Equations (24) and (25) naturally provide
a kind of mantissa-exponent representation of the type I = ρ · eσ for the incomplete
gamma functions, as{

γ(p, x) = ρ1 · eσ1

Γ(p, x) = ρ2 · eσ2
if 0 ≤ x ≤ p, and

{
γ(p, x) = ρ2 · eσ2

Γ(p, x) = ρ1 · eσ1
if x > p, (26)

with σ1 = −x+ p log |x|, ρ1 = G(p, x), (27)

and σ2 = log Γ(p), ρ2 = 1− e−x+p log x−log Γ(p)G(p, x). (28)

Note that when x < 0, we also have a similar representation for the lower incomplete
gamma function, that is, γ(p, x) = (−1)pρ1 · eσ1 .

Such a mantissa-exponent representation considerably extends the range over
which the integrals γ(p, x) and Γ(p, x) can be represented (in comparison with a di-
rect evaluation of those integrals in double precision), since both the mantissa ρ and
the exponent σ are computed in double precision floating-point (thus, with range
[10−308, 10308]) and we can explicitly format the quantity ρ · eσ in scientific notation
(that is ρ · eσ = a · 10b, where a ∈ [1, 10) and b ∈ Z) using

a = 10c−bcc , b = bcc , where c =
σ

log (10)
+ log10 (ρ) . (29)

Notice, however, that the relative accuracy of the mantissa-exponent representation
strongly depends on the magnitude of the exponent, as∣∣∣∣∆(ρ · eσ)

ρ · eσ

∣∣∣∣ ≈ ∣∣∣∣∆ρρ
∣∣∣∣+

∣∣∣∣∆(eσ)

eσ

∣∣∣∣ =

∣∣∣∣∆ρρ
∣∣∣∣+ |∆σ| =

∣∣∣∣∆ρρ
∣∣∣∣+ |σ| ·

∣∣∣∣∆σσ
∣∣∣∣ := E (30)

where |∆X| and |∆X/X| respectively denote the absolute and relative errors between
the actual value of X and its computed value. As |σ| increases, since ρ and σ are at best
estimated at machine precision (i.e., |∆ρ/ρ| = |∆σ/σ| = εmachine), we have

E ≈ (1 + |σ|) · εmachine . (31)

For instance, when σ ≈ 4503.5, the best relative accuracy that can be expected is
E ≈ 4504.5 × 2.22 · 10−16 = 10−12 with double precision floating point arithmetic.
Therefore, we can predict approximate bounds for the relative error E achievable when

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

00:14 R. Abergel and L. Moisan

1000

900

800

700

600

500

400

300

200

-900 -800 -700 -600 -500 -400 -300 -200 -100 1000900800700600500400300200100

100

-1000

1

Fig. 4. Relative accuracy associated with the computation of the generalized lower and up-
per incomplete gamma functions. We estimated the relative accuracy of the incomplete gamma func-
tions given by e−x+p log |x|G(p, x) (see Equations (5) and (6)) on the domain (x, p) ∈ {−1000, . . . , 1000} ×
{1, . . . , 1000}. The relative error is smaller than 10−11 everywhere. The blue points, corresponding to the
parameters (x, p) for which the relative accuracy is larger than 10−12, reveal perceptible boundaries whose
form is predicted by Equation (31), from which the red curves are obtained. This shows that the main source
of error is due to the mantissa-exponent representation and that our estimates can be considered as nearly
optimal with respect to this representation. In terms of execution time for the computation of G(x, p) over
this tested range of parameters (x, p), we measured an average computation time of 0.49 microseconds, a
median execution time of 0.45 microseconds, and 2.1 microseconds as highest execution time (using a 3.1GHz
IntelTM i7-7920HQ processor).

computing γ(p, x) or Γ(p, x) under the form ρ · eσ using (26)-(28). We can see in Fig. 4
that formatting the estimated values of the incomplete gamma functions in scientific
notation using (29) yields a relative error similar to that predicted in (31).

It is interesting to notice that this limitation on the achievable relative error is not
fundamentally due to the mantissa-exponent representation, but to the fact that the
derivatives of the incomplete gamma functions grow rapidly with p and x. When ap-
proximating a function f(x), the minimum achievable relative error is∣∣∣∣∆f(x)

f(x)

∣∣∣∣ =

∣∣∣∣∆f(x)

∆x

∣∣∣∣ · ∣∣∣∣∆xx
∣∣∣∣ · ∣∣∣∣ x

f(x)

∣∣∣∣ ' ∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ · εmachine. (32)

In the case of the lower incomplete Gamma function f(x) = γ(p, x) (with p fixed and
x ≤ p), one easily checks that xf ′(x)/f(x) = 1/G(x, p), so that the relative error due
to the limited representation of x is about εmachine/G(x, p). From Fig. 1 (b), we observe
that G(x, p) ' 1/x, which means that independently of the representation of the result,
evaluating the lower incomplete gamma function for x ≥ 1016 does not make much
sense when x is stored as a double precision floating point number (roughly speaking,
the first digit of γ(p, x) result depends on the last digit of x).

3.2. Discussion on the evaluation of the complete gamma function
The computation of the complete gamma function Γ(p) for p ∈ N, R or C constitutes
in itself a wide area of research. The object of this section is to compare several meth-
ods from the literature and derive a practical efficient algorithm for computing the
quantity log Γ(p), which is needed to compute ρ2 and σ2 in Equation (28). Note that the
relative error on Γ is, when small enough, numerically equal to the absolute error on

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

Fast and accurate evaluation of a generalized incomplete gamma function 00:15

log Γ(p), since

|∆ log Γ(p)| = | log(Γ(p) + ∆Γ(p))− log Γ(p)| =
∣∣∣∣log

(
1 +

∆Γ(p)

Γ(p)

)∣∣∣∣ ≈ ∣∣∣∣∆Γ(p)

Γ(p)

∣∣∣∣ . (33)

Consequently, since the absolute error on log Γ(p) is at best εmachine · log Γ(p), the mini-
mum achievable relative error on Γ(p) is also εmachine · log Γ(p) when Γ(p) is represented
by its logarithm.

When p is a positive integer, we have Γ(p) = (p− 1)! and thus

log Γ(p) =

p−1∑
k=1

log k .

However, the numerical computation of this sum becomes rapidly inaccurate when p is
large, because of the accumulation of small numerical errors made at each step of the
summation. Besides, we do not want to be limited to integer values of p.

The first evaluation method that we will consider was proposed in [Lanczos 1964],
and uses a Stirling formula-like approximation:

∀p > 0, Γ(p) =
√

2π
(
p+ γ − 1

2

)p− 1
2 e−(p+γ− 1

2) (Aγ(p− 1) + εγ) , (34)

where γ > 0 is a numerical parameter (different from the Euler-Mascheroni constant),
Aγ(p− 1) is a truncated rational fraction that can be written

Aγ(p− 1) = c0(γ) +

Nγ∑
k=1

ck(γ)

p− 1 + k
, (35)

and Nγ and the coefficients {ck(γ)}0≤k≤Nγ depend on the value of γ. In the case γ = 5,
Lanczos claims that the relative error |ε5| associated with (34) satisfies |ε5| < 2 · 10−10,
and this claim was confirmed by our numerical experiments. In the case γ = 5, we
have Nγ = 6 and the numerical values of the coefficients {ck(γ)}0≤k≤Nγ are available
in [Lanczos 1964]. These values are refined to double floating-point precision in [Press
et al. 1992], so we used them in our implementation of (34).

A more recent computation method (see [Char 1980; Olver et al. 2010; Cuyt et al.
2008] and references therein), also based on a Stirling approximation, consists in com-
puting

∀p > 0, Γ(p) =
√

2π e−p pp−
1
2 eJ(p), where J(p) =

a0

p+

a1

p+

a2

p+
· · · , (36)

where some numerical approximations, to 40 decimal digits of precision, of the coeffi-
cients {ak}0≤k≤40 of the continued fraction J(p) are given in [Char 1980].

The last approximation we present is a refinement of the Lanczos formula (34), pro-
posed by Pugh [2004]:

∀p > 0, Γ(p) ≈ 2

√
e

π

(
p+ r − 1

2

e

)p− 1
2
[
d0 +

Nr∑
k=1

dk
p− 1 + k

]
, (37)

where r is again a numerical parameter. Pugh studied the accuracy of the approxima-
tion (37) for different values of r. In the case r = 10.900511, he sets Nr = 11, and gives
the numerical values of the coefficients {dk}0≤k≤10 to 20 significant decimal digits (see
Table II). According to Pugh, this setting yields a relative error less than 10−19, which
is effectively what we observed when computing (37) with MapleTM for p ∈ {1, 2, . . . 103}
in multiprecision (30 digits).

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

00:16 R. Abergel and L. Moisan

Table II. Coefficients {dk}0≤k≤10 of Equation (37) with 20 significant decimal digits [Pugh 2004].

k d3k d3k+1 d3k+2

0 2.48574089138753565546E-05 1.05142378581721974210E+00 -3.45687097222016235469E+00
1 4.51227709466894823700E+00 -2.98285225323576655721E+00 1.05639711577126713077E+00
2 -1.95428773191645869583E-01 1.70970543404441224307E-02 -5.71926117404305781283E-04
3 4.63399473359905636708E-06 -2.71994908488607703910E-09

ALGORITHM 4: Accurate computation of log Γ(p) using Pugh’s method .

Input: A real number p > 0.

Output: An accurate estimation of log Γ(p).

Require: Coefficients {dk}0≤k≤10 defined in Table II.

return log
(

2
√

e
π

[
d0 +

∑10
k=0

dk
p−1+k

])
−
(
p− 1

2

)
+
(
p− 1

2

)
log
(
p+ 10.900511− 1

2

)
In order to select which method will be used in our algorithms, we computed log Γ(p)

for 1 ≤ p ≤ 104, using the three approximations (34), (36), and (37). The accuracy was
evaluated using MapleTM, and the results (restricted to 1 ≤ p ≤ 5000) are displayed in
Fig. 5. It follows from this experiment that the best estimate is obtained with Pugh’s
method (37). The continued fraction (36) yields similar results for most values of p,
but is quite inaccurate for very small values of p. Note also that, except for small
values of p, these two methods are roughly optimal, since they deliver an absolute
error approaching the theoretical limit εmachine · log Γ(p) mentioned earlier. In the end,
we selected Pugh’s method for the numerical evaluation of log Γ(p) in (28) because of
its superior accuracy, its simplicity and the nice theoretical study provided in [Pugh
2004]. Our implementation is described in Algorithm 4.

4. EVALUATION OF THE GENERALIZED INCOMPLETE GAMMA FUNCTION
As stated above, the accurate evaluation of Iµ,px,y raises several issues. First, this in-
tegral can be estimated using the difference A − B between two terms A ≥ B ≥ 0
involving the evaluation of the generalized upper and lower incomplete gamma func-
tions using the relations (11)-(12). In that case, we must select one of these relations, in
function of the parameters µ, x, y, p, to obtain the best possible estimate. This selection
process is discussed in Section 4.1. Second, we must be aware that the accurate evalu-
ation of A and B is not sufficient to guarantee an accurate evaluation of the difference
A−B, because errors caused by cancellation arise when A and B are too close to each
other, which happens in practice when x ≈ y. In that case, we propose to approximate
the integral Iµ,px,y using Romberg’s numerical integration method, as discussed in Sec-
tion 4.2. Last, we need a criterion to decide, in function of the parameters µ, x, y, p,
which of the difference or Romberg’s method will be used. This is the purpose of Sec-
tion 4.3, where the resulting Algorithm 5, computing Iµ,px,y with a mantissa-exponent
representation, is explicitly described.

4.1. Computing Iµ,px,y as a difference of generalized incomplete gamma functions
Given µ, x, y, p, we can estimate G(p, µx) and G(p, µy) with Algorithm 3. Then, con-
sidering the definition of G in Equation (5), there is only one relation from (11)-(12)
that allows us to compute Iµ,px,y , in combination (or not) with Γ(p). The corresponding
formulae are given in table III. In each case, a mantissa-exponent representation of
Iµ,px,y = A−B can be obtained from a mantissa-exponent representation of A = mA · enA

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

Fast and accurate evaluation of a generalized incomplete gamma function 00:17

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-16

-15

-14

-13

-12

-11

-10

-9

-8 Lanczos method (Eq. (31))
continued fraction (Eq. (33))
Pugh's method (Eq. (34))
theoretical bound

Fig. 5. Comparison of three algorithms estimating log Γ(p). We display the absolute error (estimated
with MapleTM) made on the estimation of log Γ(p) by the approximations (34), (36) and (37) as a function of
p ∈ {1, 2, . . . , 5000}. To ease the interpretation, the curves were smoothed by replacing the error for p by the
maximum error on the range {p − 20, . . . , p + 20}. We can observe that the best approximation is obtained
with Pugh’s formula (37) (blue curve), and that except for small values of p, it delivers an absolute error
close to the theoretical limit εmachine · log Γ(p) (black curve).

and B = mB · enB with

A−B = ρdiff · eσdiff , where ρdiff = mA −mB e
nB−nA , σdiff = nA . (38)

Table III. Computing Iµ,px,y as the difference A−B.

case values of A and B

(a) µ = −1 A = G(p,−y) ey+p log y , B = G(p,−x) ex+p log x

(b) µ = 1, p < plim(x) A = G(p, x) e−x+p log x , B = G(p, y) e−y+p log y

(c) µ = 1, plim(x) ≤ p < plim(y) A = Γ(p) , B = G(p, x) e−x+p log x +G(p, y) e−y+p log y

(d) µ = 1, plim(y) ≤ p A = G(p, y) e−y+p log y , B = G(p, x) e−x+p log x

In the cases (a,b,d), the mantissa-exponent representations of A and B are straight-
forward. In the case (c), the mantissa-exponent representation of A = Γ(p) is mA = 1,
nA = log Γ(p). For B = G(p, x)e−x+p log x +G(p, y)e−y+p log y, we choose the largest expo-
nent and write nB = max(−x + p log x,−y + p log y), then mB = G(p, x)e−x+p log x−nB +
G(p, y)e−y+p log y−nB . These formulae can be seen as the main part of Algorithm 5,
which is written in the more general (and straightforward) case µ ∈ R∗.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

00:18 R. Abergel and L. Moisan

4.2. Computing Iµ,px,y using Romberg’s method
The computation of Iµ,px,y using a difference Idiff = A − B described in Section 4.1 is
not efficient when x and y are too close to each other due to errors caused by cancel-
lation. Hopefully, in the case x ≈ y the integral Iµ,px,y can be efficiently estimated using
the Romberg’s methods [Romberg 1955], which is a recursive numerical integration
scheme that achieves a fast convergence rate. Using this method, the definite integral

I :=

∫ y

x

f(s) ds (39)

of a smooth function f is estimated by setting R(0, 0) = y−x
2 ·(f(x) + f(y)) and iterating

for n ≥ 1 the recursion
R(n, 0) =

1

2
R(n− 1, 0) + hn

2n−1∑
j=1

f (x+ (2j − 1)hn) where hn =
y − x

2n

R(n,m) =
4mR(n,m− 1)−R(n− 1,m− 1)

4n − 1
for m ∈ {1, 2, . . . , n} .

(40)

In practice, the scheme (40) is stopped when

|R(n, n)−R(n, n− 1)|
|R(n, n)|

≤ α · εmachine , (41)

where α > 0 denotes a tolerance parameter, or after a maximal number of iterations
has been reached. Then, the integral (39) is estimated by R(n, n). We implemented
Romberg’s method to a normalized version of Iµ,px,y , that is for

f(s) = sp−1 exp (−µs+ µy − p log y),

so that Iµ,px,y can be computed under a mantissa-exponent representation Iµ,px,y ≈ ρ · eσ
where σ = −µy + p log y and ρ denotes the output of the Romberg’s approximation
scheme.

4.3. Selection of the approximation method for the generalized incomplete gamma function
We saw in Sections 4.1 and 4.2 that the generalized incomplete gamma function Iµ,px,y

could be estimated using a difference Idiff = A − B or with Romberg’s numerical in-
tegration method. We must now decide which approximation method should be used
according to the values of x, y, µ, p. When A and B are too close to each other, the com-
putation of the difference A − B suffers from cancellations. Indeed, for A ≥ B ≥ 0, a
simple first order study of the relative accuracy of A−B yields∣∣∣∣∆(A−B)

A−B

∣∣∣∣ ≤ 2 · |∆A|
A−B

≤ 2

1−B/A
· εmachine .

Thus, we can see that we lose k digits of precision as soon as 1−B/A < 2 · 10−k. Based
on this observation, we propose to avoid the approximation of Iµ,px,y by Idiff as soon as
more than one digit of precision is lost, that is, as soon as 1−B/A < 0.2. Based on the
same criterion, we decided to set the tolerance factor α equal to 10 in (41) in order to
stop the Romberg iteration when the accuracy of the estimate is roughly 10 · εmachine.
This selection criterion was numerically tested, the resulting precision is displayed in
Table IV. Finally, we describe in Algorithm 5 our computation method dedicated to the
evaluation of Iµ,px,y .

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

Fast and accurate evaluation of a generalized incomplete gamma function 00:19

Table IV. Control of maximum and mean relative errors associated to the computation of Iµ,px,y

δr = y−x
y

log10 of the maximal log10 of the mean average execution median execution
relative error relative error time (microseconds) time (microseconds)

10−2 −11.2 −12.5 0.8 µs 0.7 µs
10−3 −11.1 −12.3 1.0 µs 0.7 µs
10−4 −11.8 −12.6 1.5 µs 1.7 µs
10−5 −11.7 −12.5 1.5 µs 1.3 µs
10−6 −11.8 −12.6 1.4 µs 1.3 µs
10−7 −11.7 −12.5 1.4 µs 1.3 µs
10−8 −11.8 −12.6 1.4 µs 1.3 µs
10−9 −11.7 −12.5 1.4 µs 1.7 µs
10−10 −11.7 −12.5 1.3 µs 1.2 µs
10−11 −11.8 −12.5 1.3 µs 1.2 µs
10−12 −11.7 −12.5 1.3 µs 1.2 µs
10−13 −11.7 −12.5 0.9 µs 0.9 µs
10−14 −11.7 −12.6 0.9 µs 0.9 µs
10−15 −11.7 −12.5 0.8 µs 0.8 µs

For several values of δr , we computed Iµ,px,y using Algorithm 5 for a large range of parameters (µ = ±1, p
integer in [1, 1000], y integer in [1, 1000], and x being the floating-point number closest to y (1 − δr)). For
each value of δr , we display the maximal (second column) and the average (third column) relative errors
observed over all computed values of Iµ,px,y . We see that the relative error reached by Algorithm 5 over those
simulations is quite low, in particular the approximation errors due to cancellation are avoided, thanks to
the ability of Algorithm 5 to select automatically the most appropriate estimation method (difference or
Romberg) according to the values of the parameters (x, y, µ, p). Note that a maximum relative error of 10−11

is roughly what we could at best expect considering the impact of the limited machine precision on the
mantissa-exponent representation of the incomplete gamma functions, as discussed in Fig. 4. In columns four
and five, we display the average and median execution time corresponding to the computation of Iµ,px,y over
the whole range of tested parameters (computation was done using a a 3.1GHz intelTM i7-7920HQ processor).

5. COMPARISON WITH ALGORITHM 435
In this section we compare Algorithm 5 with Algorithm 435, proposed in [Fullerton
1972] for the evaluation of the generalized incomplete gamma function Iµ,px,y . As far as
we know, Fullerton’s algorithm is the most recent work dedicated to the computation
of an approximation to the I-integral. More precisely, Fullerton focused on the integral
Jpx,y, defined in (9), which is slightly different from Iµ,px,y . However, the computation of
Iµ,px,y using Jpx,y, or conversely of Jpx,y using Iµ,px,y , is straightforward, as we explained in
Section 1.

Fullerton proposed an algorithm for the numerical evaluation of

γ′(p, x) =

∫ x

0

|s|p−1 e−s ds, −∞ < x ≤ +∞ ,

and thence the integral Jpx,y using the difference

Jpx,y = ex
∫ y

x

|s|p−1 e−s ds = ex (γ′(a, y)− γ′(a, x))

when 1 ≤ p ≤ 2, and using a forward (when p > 2) or backward (when p < 1) recurrence
relation, for approximating Jqx,y with 1 ≤ q ≤ 2. In the case 1 ≤ p ≤ 2, the evaluation of
γ′(p, x) relies on different approximation methods (such as continued fractions, Cheby-
shev polynomials, or asymptotic expansions), depending to the value of x.

As already reported in [Schoene 1978], Algorithm 435 suffers from numerical insta-
bilities, when p > 2. We indeed observed in our own numerical experiments, presented
in Tables V and VI, computed values with very low accuracy, or incorrect sign, typi-
cally when p ≥ 10, or when x ≤ p ≤ y. We also also observed some overflow issues,

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

00:20 R. Abergel and L. Moisan

ALGORITHM 5: Accurate computation of Iµ,px,y =
∫ y
x
sp−1 e−µs ds .

Input: Three numbers µ ∈ R∗, x ∈ R+, y ∈ R+ ∪ {+∞} such as y ≥ x, and a positive real
number p > 0. Recall that the value y = +∞ is allowed only when µ > 0, and p must be
an integer if µ < 0.

Output: Two numbers ρ ∈ R and σ ∈ R ∪ {−∞} such as Iµ,px,y ≈ ρeσ.

Requirements: the function plim : R ∪ {+∞} → R ∪ {+∞} defined in (22).

if x = y to machine precision then (ρ, σ)← (0,−∞)
else

mx ← G(p, µx) // using Algorithm 3
my ← G(p, µy) // using Algorithm 3
nx ← −µx+ p log x
if y < +∞ then

ny ← −µy + p log y
else

ny ← −∞
// Evaluate (mA, nA), (mB , nB) and (ρdiff, σdiff), mantissa-exponent
// representations of A, B and Idiff, such that A = mA e

nA, B = mB e
nB,

// Idiff = ρdiff e
σdiff = A−B, and Iµ,px,y ≈ Idiff .

if µ < 0 then
(mA, nA)← (my, ny)
(mB , nB)← (mx, nx)

else if µ > 0 then
if p < plim(µx) then

(mA, nA)← (mx, nx)
(mB , nB)← (my, ny)

else if plim(µx) ≤ p < plim(µy) then
(mA, nA)← (1, log Γ(p))
nB ← max (nx, ny)
if nB = −∞ then mB ← 0 // may happen when x = 0 and y = +∞
else mB ← mx e

nx−nB +my e
ny−nB

else
(mA, nA)← (my, ny)
(mB , nB)← (mx, nx)

(ρdiff, σdiff)←
(
mA −mB · enB−nA , nA

)
// Check whether or not the estimation of Iµ,px,y by Idiff = A−B involves a
// significant loss of precision. If 1−B/A < 0.2, estimate Iµ,px,y using
// Romberg’s method instead of the difference Idiff

if y < +∞ and ρdiff/mA < 0.2 then
set σ = −µy + p log y and compute an estimate ρ of the normalized integral Iµ,px,y · e−σ
using Romberg’s method described in Section 4.2.

else (ρ, σ)← (ρdiff, σdiff)

return (ρ, σ)

for instance when working with p ≥ 100, which is of course not to be considered as a
failure of Algorithm 435 since this algorithm was developed in single precision.

In the experiments of Table V and Table VI, we evaluated the integral Iµ,px,y , for sev-
eral sets of parameters x, y, µ, p, using both Fullerton’s Algorithm 435 and Algorithm 5.
The accuracy of the returned result was controlled using the softwares MapleTM (us-

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

Fast and accurate evaluation of a generalized incomplete gamma function 00:21

ing the instruction “evalf(Int(s^(p-1)*exp(-mu*s),s=x..y,digits=30));” to approx-
imate the integral with 30 digits of precision), and MathematicaTM in [Wolfram Re-
search Inc 1998] for the online evaluation of Iµ,px,y . Considering that Fullerton’s algo-
rithm was developed in single precision and in 1972 (more than 10 years before the
IEEE 754 Standard for Floating-Point Arithmetic was established), it is not surpris-
ing to see its accuracy largely outperformed by Algorithm 5. As mentioned earlier, this
comparison is motivated by the fact that Fullerton’s algorithm is the most recent one
focusing on the computation of the I-integral.

Table V. Comparison between Algorithm 435 in [Fullerton 1972] and Algorithm 5, for the computation of Iµ,px,y .

Parameters Algorithm 435 Relative Algorithm 5 Relative
in [Fullerton 1972] error error

(a
)
µ

=
1

x = 9, y = 11, p = 1 1.067081029759719E-04 3 · 10−9 1.0670810329643395E-04 6 · 10−16

x = 9, y = 11, p = 5 9.567113518714904E-01 1 · 10−4 9.5661698023023700E-01 1 · 10−15

x = 9, y = 11, p = 10 1.085447578125000E+05 2 · 10−1 8.9594201765236983E+04 1 · 10−14

x = 9, y = 11, p = 12 1.632943040000000E+08 ≥ 1 8.9310494815538749E+06 3 · 10−15

x = 9, y = 11, p = 14 -2.977905664000000E+10 ≥ 1 9.0203414117080807E+08 2 · 10−15

x = 100, y = 120, p = 1 3.783505853677006E-44 2 · 10−2 3.7200759683531697E-44 5 · 10−15

x = 100, y = 120, p = 5 3.873433252162870E-36 3 · 10−9 3.8734332644314730E-36 4 · 10−15

x = 100, y = 120, p = 10 4.083660502797843E-26 2 · 10−8 4.0836605881700520E-26 8 · 10−15

x = 100, y = 120, p = 20 4.579807864502072E-06 9 · 10−8 4.5798082802928473E-06 2 · 10−14

(b
)
µ

=
−

1

x = 5, y = 10, p = 1 2.187916015625000E+04 5 · 10−5 2.1878052635704163E+04 1 · 10−15

x = 5, y = 10, p = 3 1.803647750000000E+06 3 · 10−7 1.8036471714694066E+06 1 · 10−16

x = 5, y = 10, p = 10 1.129511596851200E+13 4 · 10−8 1.1295115549498505E+13 4 · 10−15

x = 20, y = 25, p = 1 7.151973171200000E+10 3 · 10−8 7.1519734141975967E+10 2 · 10−15

x = 20, y = 25, p = 10 2.068890077987267E+23 3 · 10−2 2.0016822370845540E+23 9 · 10−16

x = 20, y = 25, p = 20 1.821993954177914E+37 2 · 10−1 1.4733948083664500E+37 1 · 10−15

(a) We tested, for µ = 1, (x, y) = (9, 11), and (x, y) = (100, 120), different integer values of p. In the second
column, we display the values of Iµ,px,y returned by Fullerton’s Algorithm, slightly adapted to compute Iµ,px,y

instead of Jµ,px,y . The corresponding relative errors, evaluated using MathematicaTM and MapleTM softwares
(both softwares yield the same relative error), are displayed on the third column. We can see that some
numerical instabilities arise when x ≤ p. Some inaccurate results are also observed for small values of p,
when x = 100, y = 120, p = 1 (but also for many other values of (x, y, p), not represented here). In the fourth
column, we display the values returned by Algorithm 5, using a C implementation with standard double
precision. The relative errors reached by Algorithm 5 (last column) are nearly optimal, as they are close to the
optimality bounds given in (31), which estimate the minimum error achievable with the mantissa-exponent
representation. (b) Same experiment in the case µ = −1. We tested, for (x, y) = (5, 10) and (x, y) = (20, 25),
different values of p. We can observe that Fullerton’s algorithm rapidly delivers inaccurate estimates as p
increases. In contrast, the relative errors reached by Algorithm 5 remain nearly optimal.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

00:22 R. Abergel and L. Moisan

Table VI. Comparison between Fullerton’s algorithm and Algorithm 5, for the computation of Iµ,px,y when x ≈ y.

Parameters setting
Algorithm 435 Relative

Algorithm 5 Method
Relative

in [Fullerton 1972] error error

µ = 1, y = 5, p = 10

x = d(5− 100) 8.598737304687500E+03 2 · 10−8 8.59873716912424243E+03 D 7 · 10−17

x = d(5− 10−1) 1.263989379882812E+03 8 · 10−7 1.26399037064497224E+03 R 7 · 10−17

x = d(5− 10−3) 1.315382766723632E+01 7 · 10−5 1.31547893257499737E+01 R 8 · 10−16

x = d(5− 10−4) 1.317400574684143E+00 1 · 10−3 1.31595263365902881E+00 R 1 · 10−15

x = d(5− 10−5) 1.322335302829742E-01 5 · 10−3 1.31600000919410876E-01 R 5 · 10−16

x = d(5− 10−6) 1.179141830652952E-02 1 · 10−1 1.31600474704078006E-02 R 6 · 10−16

µ = 1, y = 17, p = 17

x = d(17− 100) 3.725839564800000E+12 8 · 10−1 2.05512302507353833E+12 R 5 · 10−16

x = d(17− 10−1) 2.998156984320000E+11 5 · 10−1 2.02029255447054413E+11 R 1 · 10−15

x = d(17− 10−3) 2.941651456000000E+09 5 · 10−1 2.01460227071121573E+09 R 4 · 10−17

x = d(17− 10−4) 2.928078720000000E+08 5 · 10−1 2.01454896181877166E+08 R 8 · 10−16

µ = −1, y = 21, p = 10

x = d(21− 100) 5.859836137154984E+20 5 · 10−2 5.56233779272171979E+20 D 4 · 10−15

x = d(21− 10−1) 1.025911814748488E+20 5 · 10−2 9.76094111440768532E+19 R 1 · 10−16

x = d(21− 10−3) 1.099215584270221E+18 5 · 10−2 1.04676115489678349E+18 R 5 · 10−16

x = d(21− 10−5) 1.045801880623513E+16 2 · 10−3 1.04750154080539440E+16 R 7 · 10−16

In this last experiment, we compute Iµ,px,y in the case x ≈ y. The notation d(s) used in the left column denotes
the double-precision floating-point number that is closest to s. The fifth row (Method) indicate the computation
method that was used in Algorithm 5 to compute the Iµ,px,y integral (R for Romberg approximation and D for
differences). We can see that the relative error reached by Algorithm 435 gets worse as x and y get close to
each other, and as already remarked before, Algorithm 435 is very inaccurate when µx < p < µy. In contrast,
the relative errors observed with Algorithm 5 never exceed 8 · 10−16 (which corresponds to less than one
digit of precision), thanks to the use of Romberg’s numerical integration method which takes over to avoid
cancellations when x and y are very close to each other.

6. APPLICATION TO IMAGE DENOISING
This work was initially motivated by an image processing application presented
in [Abergel et al. 2015], which aims at reconstructing a gray-level image given the
measurement of its intensity values corrupted by a Poisson noise. This kind of image
denoising model is typically interesting for restoring images acquired in low-light con-
ditions, for example astronomical and medical images. The restoration model derived
in [Abergel et al. 2015] results in an iterative scheme which requires the computation,
at each iteration and for each pixel of the image, of a ratio of generalized incomplete
gamma functions. More precisely, from an initial (noisy) image u0 : Ω → R (where
Ω ⊂ Z2 is the discrete image domain and u0(x) represents the intensity of u0 at the
pixel x ∈ Ω), we build a sequence of images un such that

∀n ≥ 0,∀x ∈ Ω, un+1(x) = R(x) :=

5∑
k=1

ck I
µk,u0(x)+2
ak−1,ak

5∑
k=1

ck I
µk,u0(x)+1
ak−1,ak

, (42)

where {ak, ck}1≤k≤5 are some positive coefficients that explicitly depend on the image
at the previous iteration (un) and {µk}1≤k≤5 are nonzero real numbers (see [Abergel
et al. 2015] for more details concerning theses coefficients). Notice that this scheme
involves evaluating a huge number of generalized incomplete gamma functions: if u0

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

Fast and accurate evaluation of a generalized incomplete gamma function 00:23

is a 1000 × 1000 image, 109 evaluations of Iµ,px,y integrals are required to perform 100
iterations of (42).

The main difficulty encountered when computing (42) is that the ratio R(x) can ex-
hibit a non-representable numerator and denominator (due to underflow or overflow),
although the actual value of the ratio is representable in the floating-point arithmetic.
In practice, this yields dramatic errors when one tries to evaluate the numerator and
the denominator separately in double precision before computing the ratio, as illus-
trated in Fig. 6 (a). This issue cannot be solved by applying the standard normaliza-
tion (division by the complete gamma function) to the numerator and the denomina-
tor, as we showed that such a normalization may produce severe underflow issues.
In contrast, by evaluating all integrals Iµ,px,y using a mantissa-exponent representation
Iµ,px,y = ρ · eσ as in Algorithm 5, we are able to avoid this undesirable behavior (see
more details in [Abergel 2016, Chap. 4]). Similarly, the systematic use of differences
of incomplete gamma functions to evaluate the integrals Iµ,px,y produces instabilities in
the algorithms (Fig. 6 (b)), due to cancellations as discussed in Section 4.3. In contrast,
the association with Romberg’s method proposed in Algorithm 5 leads to accurate Iµ,px,y

estimates and results in stable iterations of the scheme (42) (Fig. 6 (c)).

ACKNOWLEDGMENTS

The authors would like to thank the GDS Mathrice 2754 as well as MathStic and LAGA (Laboratoire Anal-
yse, Géométrie et Applications) at Université Paris 13, for having kindly provided us an access to the com-
puting server GAIA. The authors are also very grateful to the anonymous reviewers and the Editor-in-Chief
for their careful reading of this paper, as well as for their useful suggestions that helped to improve this
paper and the associated algorithm.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

00:24 R. Abergel and L. Moisan

(a) input image u0 (b) naive implementation 1

(c) naive implementation 2 (d) Algorithm 5

Fig. 6. Improper incomplete gamma estimates lead to numerical instabilities. The image u0 dis-
played in (a) corresponds to the simulated low-light observation of a synthetic image. We applied to u0 the
denoising scheme proposed in [Abergel et al. 2015], which amounts to iterate a few hundred times the re-
cursion (42). We implemented this algorithm in three different ways. (b): straightforward implementation
of (42), where each integral Iµ,px,y is computed as the difference of incomplete gamma functions evaluated with
the algorithm proposed in [Press et al. 1992], and the ratio is evaluated directly; (c): similar implementa-
tion, except that a mantissa-exponent representation is used for each integral to avoid underflow/overflow
issues before computing the ratio; (d): Algorithm 5 is used to compute each integral and estimate the ratio.
This requires a huge number of evaluations of the generalized incomplete gamma function which, in turn,
needs the careful handling of underflow/overflow and cancellation issues as provided by Algorithm 5. Failure
to do this leads to the appearance of undesired checkerboard patterns as seen in (b) and (c) which are caused
by numerical instabilities.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

Fast and accurate evaluation of a generalized incomplete gamma function 00:25

REFERENCES

R. Abergel. 2016. Several mathematical models and fast algorithms for image process-
ing. Ph.D. Dissertation. Université Paris Descartes.

R. Abergel, C. Louchet, L. Moisan, and T. Zeng. 2015. Total Variation Restoration of
Images Corrupted by Poisson Noise with Iterated Conditional Expectations. In Scale
Space and Variational Methods in Computer Vision. Springer, 178–190.

M. Abramowitz and I. A. Stegun. 1964. Handbook of mathematical functions: with
formulas, graphs, and mathematical tables. Number 55. Courier Corporation.

G. P. Bhattacharjee. 1970. Algorithm AS 32: The Incomplete Gamma Integral. Journal
of the Royal Statistical Society. Series C (Applied Statistics) 19, 3 (1970), 285–287.

M. Bleicher and P. Nicolini. 2010. Large extra dimensions and small black holes at the
LHC. In Journal of Physics: Conference Series, Vol. 237. IOP Publishing, 012008.

C. J. Cannon and I. M. Vardavas. 1974. The Effect of Redistribution on the Emission
Peaks from Chromospheric-type Stellar Atmospheres. Astronomy and Astrophysics
32 (1974), 85.

B. W. Char. 1980. On Stieltjes’s continued fraction for the gamma function. Math.
Comp. 34, 150 (1980), 547–551.

M. A. Chaudhry and S. M. Zubair. 2001. On a class of incomplete gamma functions
with applications. CRC press.

G. W. Collins. 1989. Fundamentals of Stellar Astrophysics. W. H. Freeman and Co.,
New York, NY.

A. Cuyt, F. Backeljauw, and C. Bonan-Hamada. 2008. Handbook of continued fractions
for special functions. Springer Science & Business Media.

DLMF 2015. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/,
Release 1.0.10. (2015). Online companion to [Olver et al. 2010].

W. Fullerton. 1972. Algorithm 435: Modified Incomplete Gamma
Function [S14]. Commun. ACM 15, 11 (Nov. 1972), 993–995.
DOI:http://dx.doi.org/10.1145/355606.361891

W. Gautschi. 1979. A Computational Procedure for Incomplete Gamma Functions.
ACM Trans. Math. Software 5, 4 (Dec. 1979), 466–481.

W. Gautschi. 1998. The Incomplete Gamma Functions Since Tricomi. In Tricomi’s
Ideas and Contemporary Applied Mathematics, Atti dei Convegni Lincei, Accademia
Nazionale dei Lincei, Vol. 147. 203–237.

A. Gil, D. Ruiz-Antolı́n, J. Segura, and N. M. Temme. 2016. Algorithm 969: Computa-
tion of the Incomplete Gamma Function for Negative Values of the Argument. ACM
Trans. Math. Software 43, 3 (2016).

A. Gil, J. Segura, and N. M. Temme. 2012. Efficient and accurate algorithms for the
computation and inversion of the incomplete gamma function ratios. SIAM Journal
on Scientific Computing 34, 6 (2012), A2965–A2981.

I. I. Guseinov and B. A. Mamedov. 2004. Evaluation of Incomplete Gamma Func-
tions Using Downward Recursion and Analytical Relations. Journal of Mathemati-
cal Chemistry 36, 4 (Aug. 2004), 341–346.

J. G. Hills. 1975. Effect of binary stars on the dynamical evolution of stellar clusters.
II-Analytic evolutionary models. The Astronomical Journal 80 (1975), 1075–1080.

W. B. Jones and W. J. Thron. 1980. Continued fractions: analytic theory and appli-
cations. Number 11 in Encyclopedia of mathematics and its applications. Addison-
Wesley Pub. Co, Reading, Mass.

L. Kissel, R. H. Pratt, and S. C. Roy. 1980. Rayleigh scattering by neutral
atoms, 100 eV to 10 MeV. Phys. Rev. A 22 (Nov 1980), 1970–2004. Issue 5.
DOI:http://dx.doi.org/10.1103/PhysRevA.22.1970

C. Lanczos. 1964. A precision approximation of the gamma function. Journal of the

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

00:26 R. Abergel and L. Moisan

Society for Industrial and Applied Mathematics, Series B: Numerical Analysis 1, 1
(1964), 86–96.

W. J. Lentz. 1976. Generating Bessel functions in Mie scattering calculations using
continued fractions. Applied Optics 15, 3 (1976), 668–671.

V. Linetsky. 2006. Pricing equity derivatives subject to bankruptcy. Mathematical
Finance 16, 2 (2006), 255–282.

Y. Moreno, R. Pastor-Satorras, and A. Vespignani. 2002. Epidemic outbreaks in com-
plex heterogeneous networks. The European Physical Journal B-Condensed Matter
and Complex Systems 26, 4 (2002), 521–529.

F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Eds.). 2010. NIST Hand-
book of Mathematical Functions. Cambridge University Press, New York, NY. Print
companion to [DLMF 2015].

Anne Philippe. 1997. Simulation of right and left truncated gamma distributions by
mixtures. Statistics and Computing 7, 3 (1997), 173–181.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 1992. Numerical
recipes in C: the art of scientific computing (2nd ed.). Cambridge University Press,
Cambridge ; New York.

G. R. Pugh. 2004. An analysis of the Lanczos gamma approximation. Ph.D. Disserta-
tion. University of British Columbia.

A. Robin, L. Moisan, and S. Le Hégarat-Mascle. 2010. An a-contrario approach for sub-
pixel change detection in satellite imagery. IEEE Transactions on Pattern Analysis
and Machine Intelligence 32, 11 (2010), 1977–1993.

W. Romberg. 1955. Vereinfachte numerische integration. Det Kongelige Norske Viden-
skabers Selskab Forhandlinger 28, 7 (1955), 30–36.

A. Y. Schoene. 1978. Remark on “Algorithm 435: Modified Incomplete Gamma
Function [S14]”. ACM Trans. Math. Softw. 4, 3 (Sept. 1978), 296–304.
DOI:http://dx.doi.org/10.1145/355791.355803

I. Thompson. 2013. Algorithm 926: Incomplete Gamma Functions with Negative
Arguments. ACM Trans. Math. Software 39, 2, Article 14 (Feb. 2013), 9 pages.
DOI:http://dx.doi.org/10.1145/2427023.2427031

I. J. Thompson and A. R. Barnett. 1986. Coulomb and Bessel functions of complex
arguments and order. J. Comput. Phys. 64, 2 (1986), 490–509.

F. G. Tricomi. 1950. Sulla funzione gamma incompleta. Annali di Matematica Pura ed
Applicata 31, 1 (1950), 263–279.

Roel Verbelen, Lan Gong, Katrien Antonio, Andrei Badescu, and Sheldon Lin. 2015.
Fitting mixtures of Erlangs to censored and truncated data using the EM algorithm.
ASTIN Bulletin: The Journal of the IAA 45, 3 (2015), 729–758.

S. Winitzki. 2003. Computing the Incomplete Gamma Function to Arbitrary Precision.
In Proceedings of the 2003 International Conference on Computational Science and
Its Applications: Part I (ICCSA’03). Springer-Verlag, Berlin, Heidelberg, 790–798.

Wolfram Research Inc. 1988. Generalized incomplete gamma function. (1988). http:
//reference.wolfram.com/language/ref/Gamma.html (documentation page).

Wolfram Research Inc. 1998. Generalized incomplete gamma function. (1998). http:
//functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=Gamma3
(online evaluation page).

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: xxxx.

