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Abstract

An EPR spectrum or an EPR sinogram for imaging contains information
about all the paramagnetic species that are in the analyzed sample. When
only one species is present, an image of its spatial repartition can be recon-
structed from the sinogram by using the well-known Filtered Back-Projection
(FBP). However, in the case of several species, the FBP does not allow the re-
construction of the images of each species from a standard acquisition. One
has to use for this spectral-spatial imaging whose acquisition can be very
long. A new approach, based on Total Variation minimization, is proposed
in order to efficiently extract the spatial repartitions of all the species present
in a sample from standard imaging data and therefore drastically reduce the
acquisition time. Experiments have been carried out on Tetrathiatriaryl-
methyl, nitroxide and DPPH.

Keywords: EPR source separation, EPR imaging, variational models, total
variation

1. Introduction

Electron Paramagnetic Resonance Imaging (EPRI) and spectroscopy are
now regarded as unique, noninvasive and versatile approaches for locating,
characterizing and possibly quantifying paramagnetic species. Nowadays,
EPR imaging seems to have potential applications in many kinds of scientific
fields, such as in biomedical sciences [1–4], Li-ion batteries [5] and detec-
tion of defects on material surface [6, 7]. Thus, the detection and measure-
ment of paramagnetic species is crucial for the development of new materials,
new diagnostic methods and treatment perspectives. An EPRI acquisition
is recorded like an EPR spectrum, but using an additional magnetic field



gradient in a set of different orientations around the sample. The acqui-
sition can be expressed as a convolution of the EPR spectrum shape with
the species quantity along the axis of the gradient (namely the convolution
with the Radon transform of the species quantity). A post-processing step
is needed to obtain an image of the species repartition from the acquired
spectra. The classical Filter Back-Projection (FBP) is implemented in com-
mercial spectrometers. This direct two-step method consists in a filtering
(more precisely, a deconvolution) followed by a back-projection. However,
inverse one-step methods are known to better prevent artifacts occurrence.
In particular, recent publications suggest using a variational method based
on Total Variation (TV) [8–10] as it allows recovering noiseless images, with
sharp edges, from a reduced number of projections. An online usable algo-
rithm was recently published [11].

Intrinsically, an EPR spectrum and therefore an EPR image contain all
the paramagnetic species that are observable within the sample, typically the
various radicals present in the sample (for instance, using nitrones spin traps
will lead to the observation of both superoxide and hydroxyl adduct at the
same time). To obtain images of the different species therein, spectral-spatial
imaging can be used [6, 12, 13]. Such experiment is extremely long, especially
in common commercial EPR imagers. This has led to several strategies such
as hardware developpement [14] or data acquisition optimisation [15] being
developped.

Using a TV-based variationnal method to post process acquired data
opens up new perspectives since, by exploiting correlations between neigh-
boring voxels on the reconstructed images, this method allows efficient sep-
aration of multiple source images from reduced data. This article reports
a new approach to obtain the images of several paramagnetic species with-
out acquiring a spectral spatial image, but only standard imaging data. It
consists, first, in extracting the EPR spectrum of each species from the ac-
quired spectrum. Then, these spectra are used, with the acquired sinogram,
to reconstruct the images of the different species using TV-regularized least-
squares. Unlike other methods, it does not need to separate the spectra of
the species at each voxel. Moreover, it requires mainly one easy-to-handle
parameter, and it is implemented in an O(N logN) iterative algorithm which
allows 3D-images to be processed in a reasonable amount of time. The pro-
posed method has been evaluated on paramagnetic species presenting very
different spectrum shapes (Tetrathiatriarylmethyl and nitroxide), and pretty
similar shapes (Tetrathiatriarylmethyl and DPPH). This opens the way to
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faster EPR imaging by a couple of orders of magnitude, and new applications
in any domain dealing with paramagnetic species such as biology, materials
and chemistry.

2. Modeling and discretization of EPR measurements

2.1. Continuous acquisition model
When a sample containing a paramagnetic species X is placed in the

resonance cavity of an EPR spectrometer, it generates a signal which is called
a spectrum and can be modeled as a function hX : R+ → R satisfying

∀B ∈ R+, hX(B) = QX href
X (B) , (1)

where B denotes the intensity of the homogeneous magnetic field applied to
cavity, QX denotes the total amount of species X placed in the resonator
and href

X denotes the reference spectrum of X. The latter can be viewed, for
a set of acquisition parameters, as the EPR signature of the paramagnetic
species X in its molecular environment.

As can be observed in (1), the measured spectrum is not dependent
of the spatial repartition of the species X within the cavity of the instru-
ment. Therefore, no spatial information is embedded in such kind of mea-
surement. To perform EPR imaging, that is, the reconstruction of the spa-
tial repartition of X, some spatialization of the measurements is needed.
This is usually achieved using magnetic gradient coils that generate an ad-
ditional field gradient with intensity varying linearly along a given direction.
Denoting by UX : R3 → R the spatial repartition of the species X, by
e(θ,φ) = (cos θ sinφ, sin θ sinφ, cosφ) the direction of the field gradient pa-
rameterized by two angles θ ∈ [0, 2π] and φ ∈ [0, π] in a spherical coordinate
system, and denoting by µ the field gradient intensity, the acquired signal
Sµ
X satisfies, for all (B, θ, φ) ∈ R+ × [0, 2π]× [0, π],

Sµ
X(B, θ, φ) =

∫
R3

UX(x)hX

(
B +

〈
µe(θ,φ), x

〉)
dx , (2)

where ⟨·, ·⟩ denotes the Euclidean inner product in R3. The signal Sµ
X is

called a sinogram and, for a given field gradient direction (θ, φ), the monodi-
mensional signal B 7→ Sµ

X(B, θ, φ) is called a projection. It has been known
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for a long time that (2) can be reformulated using the Radon transform op-
erator [16–18]. Indeed, for all (B, θ, φ) ∈ R+ × [0, 2π]× [0, π], one can show
that

Sµ
X(B, θ, φ) = (hµ

X ∗Rθ,φ(UX)) (−B/µ) , (3)

where hµ
X : s 7→ hX(−s/µ) represents a dilatation by factor −µ of the spec-

trum of X, R(θ,φ)(UX) is the Radon transform of UX in the direction (θ, φ)
and ∗ denotes the convolution operator (see [11] for the explicit definitions).
Equation (3) explicitly highlights the relationship between the measured sino-
gram Sµ

X and the quantity of interest UX . The reconstruction of UX from
Sµ
X is called an inverse problem and modern ways to address it are based on

variational approaches [8, 9, 11].
If we consider now a sample containing more than one paramagnetic

species, namely X = {X1, X2, . . . , XN}, and in absence of field gradient
applied in the cavity (µ = 0), the measured spectrum hX corresponds to the
summation of each individual species contribution, that is

∀B ∈ R+, hX (B) :=
N∑
i=1

hXi
(B) =

N∑
i=1

QXi
href
Xi
(B) . (4)

In presence of a field gradient (µ > 0), the acquired sinogram Sµ
X also follows

this summation principle and satisfies, for all (B, θ, φ) ∈ R+× [0, 2π]× [0, π],

Sµ
X (B, θ, φ) =

N∑
i=1

(
hµ
Xi
∗Rθ,φ(UXi

)
)
(−B/µ) . (5)

The reconstruction of the spatial repartition UXi
of each individual species Xi

(for 1 ≤ i ≤ N) from the acquired sinogram Sµ
X is a source separation problem

that we can also address using variational approaches. In the following, we
may refer to each Xi as a source instead of a species.

2.2. Discretization
The practical acquisition of EPR measurements is done projection by pro-

jection in a discretized manner. Considering a set {(θp, φp)}1≤p≤Nproj made
of Nproj field gradient orientations, the acquisition of the projection in the
direction (θp, φp) is performed for a finite number (NB) of homogeneous mag-
netic field intensities, yielding a sampling grid (Bn)1≤n≤NB

. The nodes of this
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sampling grid are usually regularly spaced and satisfy

∀n ∈ {1, 2, . . . , NB} , Bn ∈ Bcf +

[
−Bsw

2
,
Bsw

2

]
, (6)

denoting by Bcf and Bsw the usually called center field and sweep-width of
the homogeneous magnetic field used during the acquisition. From now on,
let us denote by sµX the acquired discrete measurements defined by, for all
n ∈ {1, 2, . . . , NB} and for all p ∈ {1, 2, . . . , Nproj},

sµX (n, p) = Sµ
X (Bn, θp, φp) . (7)

In the following, we may refer to sµX as a discrete sinogram. We will also refer
to Dfov = Bsw

µ
as the field-of-view of the acquisition.

To complete the discretization process, we need to introduce a discrete
representation of the images to be reconstructed. A discretization procedure
relying on Shannon sampling Theory was thoroughly described in [11]. Given
a source index i ∈ {1, 2, . . . , N} and an image size M ∈ N, let us consider
the discrete image ui : Ω→ R with domain Ω = {0, 1, . . . ,M − 1}3 obtained
by sampling the continuous image UXi

with spatial sampling step (or pixel
size) δ = Dfov

M
over the field-of-view domain, leading to

∀(k, ℓ,m) ∈ Ω , ui(k, ℓ,m) = UXi
(kδ, ℓδ,mδ) . (8)

Following the same methodology as in [11], we can link the acquired discrete
sinogram sµX to the discrete source images (ui)1≤i≤N yielding, for all (n, p) ∈
{1, 2, . . . , NB} × {1, 2, . . . , Nproj},

sµX (n, p) =
N∑
i=1

Aµ
i ui(n, p) + ε(n, p) , (9)

where each Aµ
i is a linear operator such as Aµ

i ui models the sinogram that
would have been acquired if only a single source Xi were present in the cavity.
The term ε = sµX −

∑N
i=1A

µ
i ui formally represents the mismatch between the

measured sinogram sµX and the synthetic sinogram
∑N

i=1A
µ
i ui generated from

the discretized source images (ui)1≤i≤N . This term ε aggregates all modeling
errors (caused by the approximations that occurred in the various stages of
the modeling process, from the physics of the acquisition to the mathematical
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discretization of the equations) as well as the instrumental noise corrupting
the measurements. In the following, we will neglect the contribution to ε of
the modeling errors and assume that ε is fully made of the instrumental noise
corrupting the measurement. Besides, we will also assume that {ε(n, p)}n,p is
a family of independent and identically distributed centered Gaussian random
variables.

3. Inverse problem of source separation

In presence of a single source X, one of the most common method to
address EPR image reconstruction from a sinogram acquisition sequentially
combines deconvolution and backprojection. Standard deconvolution tech-
niques (such as Wiener filtering) are used to eliminate, inter alia, the contri-
bution of the (dilated) spectrum hµ

X involved in each projection of the sino-
gram Sµ

X (see (3)). Then backprojection can be used to compute UX from the
deconvolved sinogram. In the continuous setting, provided an infinite num-
ber of measurements and in absence of noise corrupting those measurements,
backprojection provides exact reconstruction of UX . In practice, interpola-
tion techniques and filtering are used to handle discrete measurements and
noise. Although this image reconstruction technique remains largely used
nowadays [3, 19, 20], variational models have been proven to be more effi-
cient at handling noise, especially when the signal-to-noise ratio is low or
when few measurements are available [9, 11, 21, 22]. Besides, conventional
filtered backprojection is restricted to single source image reconstruction and
is not relevant to address source separation.

In the literature of CW-EPR, the source separation problem is usually ad-
dressed using spectral-spatial methods [6, 23]. The latter consist in acquiring
sinograms for numerous values of field gradient intensities {µj}1≤j≤Nµ , yield-
ing a large set {sµj

X }1≤j≤Nµ of sinogram measurements. Then, the dataset
is processed to compute an intermediate four-dimensional image (three spa-
tial dimensions and an additional spectral one) containing an EPR spectrum
within each voxel. Source separation can then be addressed voxelwise us-
ing monodimensional spectrum-based source separation techniques, as done
in [6, 24, 25]. The main drawback of this approach is that it requires a
large number of samples along the spectral dimension of the intermediate 4D
image, and thus large datasets (with typical values of several hundred for
Nµ) and long acquisition times. However, it is worth mentioning that some
recent developments in spectral spatial image reconstruction from a limited
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number of spectral angles (i.e. reduced values of Nµ), as well as optimiza-
tion of the projection directions can be helpful to shorten acquisition times
(see [26, 27]). Nevertheless, such a voxelwise spectral processing strategy is
suboptimal because it does not take into account the spatial coherence of
the source images to reconstruct, which is a source of information that can
be used to drastically reduce the number of measurements. The variational
model that we shall describe below attempts to address the source separa-
tion problem globally from drastically less measurements than usual spectral
spatial based source separation approaches. This variational model was first
proposed in Kerebel’s Ph.D. [10] and was experimentally validated in the 2D
setting using spectrally well separated species (namely, TAM and TEMPO).
In the following, we shall present a more in-depth methodological and exper-
imental study of this source separation technique including its extension to
the 3D framework and we shall propose a generalization of the variational
model enabling the successful separation of spectrally close species (that are,
species with close EPR reference spectra).

3.1. Variational formulation of the source separation problem
To reconstruct the discrete source images (ui)1≤i≤N from a sinogram sµX

we use the regularized least-squares approach proposed in [10]. For a given
λ > 0, we would like to compute

argmin
u=(u1,u2,...,uN )∈(RΩ)N

Eλ(u) :=
1

2

∥∥∥∥∥
N∑
i=1

Aµ
i ui − sµX

∥∥∥∥∥
2

2

+ λ
N∑
i=1

TV(ui) , (10)

where TV(ui) denotes the total variation of the discrete image ui. The latter
is defined as

TV(ui) =
∑

(k,ℓ,m)∈Ω

∥∇dui(k, ℓ,m)∥2 , (11)

where ∇d denotes the standard forward finite differences scheme defined by
∇dui = (∇d

xui,∇d
yui,∇d

zui) and, for all (k, ℓ,m) ∈ Ω,

∇d
xui(k, ℓ,m) =

{
ui(k + 1, ℓ,m)− ui(k, ℓ,m) if (k + 1, ℓ,m) ∈ Ω

0 otherwise,

∇d
yui(k, ℓ,m) =

{
ui(k, ℓ+ 1,m)− ui(k, ℓ,m) if (k, ℓ+ 1,m) ∈ Ω

0 otherwise,

7



∇d
zui(k, ℓ,m) =

{
ui(k, ℓ,m+ 1)− ui(k, ℓ,m) if (k, ℓ,m+ 1) ∈ Ω

0 otherwise.

We can remark that the energy Eλ to minimize in (10) can be decomposed
into the sum of two terms using

∀u ∈ (RΩ)N , Eλ(u) = Fµ(u) + λG(u) , (12)

where Fµ(u) = ∥
∑N

i=1 A
µ
i ui − sµX∥22 represents a least-squares data-fidelity

term and G(u) =
∑N

i=1TV(ui) is a total variation based regularity term.
During the minimization of Eλ(u) with respect to u, the data-fidelity term
Fµ(u) will enforce the adequacy between the measured sinogram sµX and the
synthetic one generated from the source images (ui)1≤i≤N while the regu-
larity term G(u) will promote the choice of spatially regular source images
(ui)1≤i≤N . The λ parameter controls the relative weight of the regularity
term G with respect to the data-fidelity term Fµ in the energy Eλ to be min-
imized. In practice, this parameter can be used to control the desired level
of spatial regularity in the source images to reconstruct. The reader shall
keep in mind that low λ values yield noisy reconstructions while too large λ
values yield over-regularized cartoon looking images, so that a tradeoff must
be found to achieve satisfactory reconstructions (see for instance [11]).

As we shall see in the following, in challenging situations the acquisition
of multiple sinograms at different field gradient intensities provides valuable
informations to improve the separation. Considering from now on several
sinogram acquisitions

{
s
µj

X
}
1≤j≤Nµ

obtained using several values of field gra-
dient intensities {µj}1≤j≤Nµ , we can generalize the variational problem (10)
to globally address the reconstruction of the source images (ui)1≤i≤N from
the measured sinograms by computing

argmin
u=(u1,u2,...,uN )∈(RΩ)N

1

2

Nµ∑
j=1

∥∥∥∥∥
N∑
i=1

A
µj

i ui − s
µj

X

∥∥∥∥∥
2

2

+ λ
N∑
i=1

TV(ui) . (13)

The variational problem (13) simply amounts to replace the data-fidelity
term Fµ(u) involved in (12) by F (u) :=

∑Nµ

j=1 Fµj
(u), that is, the sum of

all individual data-fidelity terms Fµj
associated to each acquired sinogram

s
µj

X (for 1 ≤ j ≤ Nµ). Notice that the field gradient intensity being the
only experimental parameter to be changed from one acquisition to another,
the level of the noise (that is, the noise standard deviation) corrupting all
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sinogram acquisitions should be the same. Therefore, uniform weighting
of the individual data-fidelity terms Fµj

(u) is a relevant way to obtain the
global data-fidelity term F (u). For more complicated design of experiments
where the sinograms {sµj

X }1≤j≤Nµ would be acquired with various settings of
acquisition parameters from one acquisition to another (for instance, with
different integration time constants), the sinogram acquisitions may exhibit
different noise levels and an appropriate weighting of the contribution of
each sinogram to the global data-fidelity term would be necessary. We won’t
consider such kind of experimental design in the following.

3.2. Numerical resolvant scheme
Many efficient optimization algorithms dedicated to convex and nondif-

ferentiable minimization problems like (10) and (13) have been developed
during the last two decades (a recent review can be found in [28]). Those al-
gorithms have found many applications in the field of image processing. The
algorithms recently proposed in [29–32] are particularly well suited to the
source separation problem (13) since the latter efficiently take advantage of
the presence of a Lipschitz differentiable (i.e. differentiable with Lipschitz-
continuous gradient) term in the energy to minimize. As we shall discuss
below, this will be of crucial importance for deriving practically tractable
(and computationally efficient) numerical schemes.

Given u0 = (u0
1, u

0
2, . . . , u

0
N) ∈ (RΩ)N , p0 = (p01, p

0
2, . . . , p

0
N) ∈ (RΩ ×RΩ ×

RΩ)N and two parameters τ > 0 and σ > 0, the closely related Condat and
Vu algorithms [29, 32], that were further generalized in [30], boil down to
setting u(0) = u0 and to iterating, for n ≥ 0,

pn+1 = Π(pn + σλKun)

un+1 = un − τ
(
∇F (un) + λK∗pn+1

)
un+1 = 2un+1 − un

(14a)
(14b)
(14c)

where K : u = (u1, u2, . . . , uN) 7→ (∇du1,∇du2, . . . ,∇duN), K∗ denotes
the adjoint of K (see Appendix A.1) and where Π :

(
RΩ × RΩ × RΩ

)N →(
RΩ × RΩ × RΩ

)N is defined by, for all p ∈
(
RΩ × RΩ × RΩ

)N ,

∀(k, ℓ,m) ∈ Ω , Π(p)(k, ℓ,m) =

(
pi(k, ℓ,m)

max(1, ∥pi(k, ℓ,m)∥2)

)
1≤i≤N

.
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One can easily show that the term ∇F (un) involved in (14b) satisfies

∇F (un) =

(
Nµ∑
j=1

(
N∑
i=1

A
µj
r

∗
A

µj

i un
i

)
− A

µj
r

∗
s
µj

X

)
1≤r≤N

. (15)

The quantity
(∑Nµ

j=1 A
µj
r

∗
s
µj

X

)
1≤r≤N

remains the same along the scheme it-

erations and can, therefore, be computed once and for all. We refer to [11]
(see Algorithm 4 therein) for details about the efficient computation of each
term A

µj
r

∗
s
µj

X (for 1 ≤ r ≤ N and 1 ≤ j ≤ Nµ). As regard the computation
of the terms

(
A

µj
r

∗
A

µj

i un
i

)
r,i,j

involved in (15), it must be noted that, thanks
to the underlying Shannon Sampling Theory based discretization schemes
of the operators, each A

µj
r

∗
A

µj

i operator exhibits a Toeplitz circulant struc-
ture [10, 11]. Consequently, rather than computing each term A

µj
r

∗
A

µj

i un
i by

computing A
µj

i ui then applying A
µj
r

∗ to the resulting signal, one can efficiently
compute each term A

µj
r

∗
A

µj

i un
i as a whole by means of a circular convolution

between the image un
i and a three-dimensional kernel Ψµj

r,i. Computationally
speaking, this operation can be done efficiently through the Fourier domain,
using Fast Fourier Transform libraries [33].

More details about the practical computation of the scheme iterations (14a)
and (14b), including convergence analysis of the numerical scheme (14) to-
wards a solution of (13) and a pseudocode implementation of the proposed
source separation algorithm are provided in Appendix A. One can refer to
[29, 32] for an in-depth description of this iterative scheme and its conver-
gence properties. More general insights about the notions of duality and the
role of the dual variable p involved in (14a) can be found in [34, 35].

3.3. Two-dimensional imaging and source separation
The acquisition of one or several 3D sinograms using commercial EPR

imagers may involve long acquisition times, not to mention the large compu-
tational ressources and the long offline computation times needed to achieve
the reconstructions, which can be an issue for practical applications. For
those reasons, the user may be interested in reducing the number of ac-
quired projections by constraining the magnetic field gradient to lie in a
two-dimensional plane (e.g by imposing a fixed value for θ or φ during the
acquisition). In such situation, 3D images cannot be efficiently computed due
to the too severe lack of measurements. However, one can efficiently perform
the reconstruction of the 2D images corresponding to the summation of the

10



3D images in the direction orthogonal to the magnetic field gradient (more
details can be found for instance in [11]). The mathematical operators and
reconstruction models described above, as well as the source separation nu-
merical scheme (14), can be easily adapted to this particular setting.

4. Experiments

The following experiments were performed using a Bruker®E540 CW-
EPR spectrometer operated in L-band frequencies and controlled using the
Xepr© software. The typical working ranges for the acquisition parameters
used in our experiments are provided in Table 1. In the case of 3D exper-
iments, we sampled the sphere using independant and uniform sampling of
both spherical angles, using Nθ angle nodes in [0, 2π] for the polar angle and
Nφ nodes in [0, π] for the azimuthal angle. This yields Nproj = NθNφ as
total number of acquired projection for a given 3D experiment. This acquisi-
tion setting corresponds to the standard angular sampling acquisition condi-
tions using Bruker® spectrometers. However other more advanced sampling
strategies can be considered, as for instance those proposed in [26, 36]. In-
deed, the source separation model proposed in Section 3 does not impose any
constraint on the set of projection directions (θℓ, φℓ)1≤ℓ≤Nproj . Regarding the
reconstruction process, a multiscale optimization strategy may be occasion-
ally considered in order to speed up the reconstruction. This means that, a
first low-resolution source separation will be performed (for a large value of
pixel-size δ). The obtained low-resolution reconstructions will be then up-
scaled and used as initializers for Scheme (14) to perform source separation
at a higher resolution (i.e., for smaller values of pixel-size δ). This numerical
trick significantly reduces the computation time required for the reconstruc-
tion. We shall explicitly state when such multiscale strategy is being used in
the experiments presented below.

In this section, two different kinds of experiments will be carried. In
Section 4.1, we will focus on the separation of two species with substan-
tially different EPR spectra, namely a TAM (Tetrathiatriarylmethyl tris -
(8 - carboxyl - 2, 2, 6, 6 - tetramethylbenzo - [1, 2 - d ; 4, 5 - d’]bis[1, 3] dithiol - 4 -
yl)methyl sodium salt, obtained according to [37]) and a TEMPO (4 -Hydroxy -
2, 2, 6, 6 - tetramethylpiperidine - 1 - oxyl, obtained from sigma Aldrich). Then,
in Section 4.2, we will shift our focus towards the more challenging separation
of species with closer EPR spectra, a TAM and a DPPH (2, 2 - diphenyl - 1 -
picrylhydrazyl, Bruker® imaging test sample).
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name description value or typical range unit

– conversion time 20.48 ms
– time constant 20.48 ms
– microwave frequency 1 ∼ 1.2 GHz
– microwave power 20.05 mW
– power attenuation 13 dB
– magnetic field amplitude modulation 0.6 G
– magnetic field frequency modulation 100 kHz
µ magnetic field gradient intensity 5 ∼ 40 G/cm
Nµ number of acquired sinograms 1 or 2 –
Bcf center-field 400 G
Bsw sweep-width 52 ∼ 208 G
NB number of sample per projection 500 ∼ 2000 –
Nθ number of azimuthal angles 50 –
Nφ number of polar angles 1 ∼ 50 –

Nproj
number of acquired projections

NθNφ –per acquired sinogram

δ pixel size 0.1 ∼ 1.3 mm
λ TV weight in (13) 106 ∼ 109 –

niter number of iterations for Scheme (14) 104 ∼ 106 –

Table 1: Main acquisition parameters used for data acquisitions. Top : acquisi-
tion parameters. Bottom : reconstruction parameters. Precisions about the exact setting
of those parameters will be provided for each experiment.
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4.1. Separation of spectrally distant species (TAM and TEMPO)
In this section, we focus the separation of TAM and TEMPO. Our ex-

perimental sample is made of two test tubes containing 500 µL of either a 2
mmol L−1 TAM solution or 5 mmol L−1 TEMPO solution. The tubes were
placed in the cavity roughly a centimeter apart (see Figure 1). The sample
as a whole (i.e., the two tubes) may be refered as a TAM-TEMPO mixture
in the following, although the two solutions are not mixed together.

Figure 1: TAM and TEMPO imaging sample. Left-hand side: pictures of the
imaging sample made of two tubes. One tube is filled with a TAM solution and the second
one is filled with a TEMPO solution. The two tubes are maintained together using a
plastic holder (see middle picture). Right-hand side: schematic representation of the
tubes placed in the cavity of the EPR imager. The goal of the source separation problem is
to compute the image of each tube separately although the two tubes are placed together
in the cavity of the EPR imager during the acquisition.

The acquisition protocol for the TAM and TEMPO compound is straight-
forward, a single spectrum of the TAM-TEMPO mixture is acquired and
then, a single sinogram acquisition is performed (see first row of Figure 2).
However, in order to reconstruct a repartition map for each source using the
source separation model proposed in Section 3, we need the reference spec-
trum of each source present in the sample (here TAM and TEMPO). Indeed,
the contribution of the reference spectrum hXi

of each source Xi (say for
instance here X1 for the TAM and X2 for the TEMPO) is mathematically
involved in the Aµ

i operators involved in (9), and are thus needed to compute
the solution of (13) using Scheme (14). In our experiments, we used the tool-
box EasySpin [38] to extract the spectrum of TAM and that of TEMPO from
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the acquired spectrum of their mixture (see second row of Figure 2). This
toolbox relies on a parameterized model and requires only basic molecular
information such as the species’s spin system and acquisition parameters.

(a) TAM and TEMPO mixture (b) 2D sinogram

(c) extracted TAM spectrum (d) extracted TEMPO spectrum

Figure 2: TAM and TEMPO dataset acquisition and pre-processing (2D exper-
iment). We display in (a) and (b) the reference spectrum and the sinogram acquisition
of the sample containing a tube filled with TAM and a tube filled TEMPO. The setting of
the acquisition parameters was (NB , Bsw, Bcf, Nθ, Nφ, µ) = (1200, 130, 400, 50, 1, 10) and
the acquisition process lasted roughly 20 minutes. We used EasySpin to separate from (a)
the reference spectra of the two sources, yielding in (c) the spectrum of TAM and in (d)
that of TEMPO (with the relation (a) ≈ (c) + (d)). Those two separated spectra will be
needed to perform the image source separation of both species.

Once the spectra of TAM and TEMPO are extracted from the spectrum
of their mixture using EasySpin, they can be used as inputs for our source
separation imaging method. An example of 2D image source separation
(performed from the dataset in Figure 2 (b)) is presented in Figure 3. Since
this experiment was performed in 2D, we only reconstruct here 2D images
corresponding to the sum of the 3D volume along the longitudinal direction of
the tubes (Z-axis in Figure 1). Therefore, we expect each of the two unmixed
sources to be roughly made of a single disk. We can see in Figure 3 that this
is indeed what we get using the proposed source separation algorithm.
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(a) TAM (b) TEMPO (c) TEMPO + TAM

Figure 3: Separation of TAM and TEMPO filled tubes (2D experiment). We
display in (a) and (b) the two unmixed sources obtained by iterating until convergence
the numerical scheme (14). The algorithm parameters used to achieve this reconstruction
are (λ, δ, niter) = (109, 0.181, 105). As expected, we can see that in (a) and (b) two disks
with disjoint supports representing respectively the 2D repartition maps of the TAM and
the TEMPO solutions in the resonance cavity (the latter is indicated using a dashed red
line). We display in (c) a merging of those two unmixed sources, where (a) is used as the
red channel, (b) is used as the green channel, and the blue channel is set to zero. We can
see in this experiment that we could successfully compute the repartition maps of each
individual species from a single sinogram acquisition.

When a 3D sinogram acquisition is available, the problem of 3D image
source separation can also be addressed using the same algorithm. In this
case, the 3D sinogram (see Figure 4 (a)) as well as the extracted spectra of
TAM and TEMPO (see Figure 2 (c) and (d)) can be used as inputs of the
source separation method to compute two 3D images, each corresponding to
the 3D repartition maps of an individual source, as we illustrate in Figure 4
(second row).
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(a) 3D sinogram acquisition of the TAM-TEMPO mixture

(b) reconstructed (c) reconstructed (d) TEMPO + TAM
TAM source TEMPO source merging

Figure 4: Separation of TAM and TEMPO filled tubes (3D experiment). We
display in (a) a 3D sinogram containing 1521 projections acquired using various field gradi-
ent directions in the spherical coordinate system (we used Nθ = Nφ = 39 angular nodes in
both the polar and the azimuthal direction, yielding a total of Nproj = NθNφ = 1521 field
gradient orientations). The other acquisition parameters (NB , Bsw, Bcf, µ) were kept iden-
tical to those presented in Figure 2. Using the 3D sinogram (a) and the reference spectra
of TAM and TEMPO presented in Figure 2 (c) and (d) as inputs of our image source sepa-
ration algorithm, we were able to reconstruct the 3D images of the two individual sources.
We performed the 3D image source separation using (λ, δ, niter) = (108, 1.3, 5 · 104) as
reconstruction parameters. An isosurface of each reconstructed image is displayed in (b)
and (c). The reconstructed shapes match well with the shape of a the tubes content. A
merging of the two is presented in (d) and enables the visualization of the relative positions
of the two tubes in the cavity.

In practice, the different species may not be as clearly separated as the
two tubes presented the above experiments. In Figure 5, we addressed the
separation of a sample made of a TAM insert immersed into a TEMPO
solution. The sample is displayed in Figure 5 (a) and is made of a small
eppendorf filled with a 12.5 mM L−1 solution of TAM which was placed inside
a larger eppendorf filled with a 14 mM L−1 solution of TEMPO. A 3D source
separation was carried out using our aglorithm, and resulted in a successful
separation of the two species, as illustrated in Figure 5. This experiment was
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carried out in the 3D mode of the imaging device, therefore we expect to see
for the TAM reconstruction a smaller eppendorf-shaped volume contained
inside the larger eppendorf-shaped volume representing the TEMPO.
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(c) 3D reconstructions of TAM and TEMPO (d) slice of 3D reconstructions

Figure 5: 3D separation of a TAM insert placed into a solution of TEMPO.
We present the experimental setup and the 3D sinogram in panels (a) and (b), re-
spectively. The acquisition parameters for the sinogram depicted in (b) were set as
(NB , Bsw, Bcf, Nθ, Nφ, µ) = (1600, 173, 400, 370, 20, 20). Utilizing the sinogram from Fig-
ure (a) in conjunction with TAM and TEMPO spectra extracted from an acquired mixture
spectrum, we performed the reconstruction of two 3D images employing the parameters
(λ, δ, niter) = (5 · 10−7, 0.8, 104). In Figure (c), we present a superposition of two isosur-
faces: the TEMPO isosurface is shown in green, with only a half-space displayed, while
the complete TAM isosurface is depicted in red. Figure (d) provides a cross-sectional view
of Figure (c) at y = 1 mm.

In Figure 5 (c), we observe the recovery of an eppendorf of a TAM embed-
ded within an eppendorf of TEMPO in the overlaid images. This distinction
becomes even more evident in Figure 5 (d), where there is no detectable sig-
nal from TEMPO within the TAM eppendorf, and vice versa. Notably, the
black region in Figure 5 (d) corresponds to the lid of the TAM eppendorf.

Those experiments make us confident in the fact that, for spectrally dis-
tinct enough species, the source separation can be done efficiently from a
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single sinogram acquisition (Nµ = 1), and thus, from drastically less data
samples than those needed to achieve spectral-spatial reconstructions.

4.2. Separation of spectrally close species (TAM and DPPH)
In this section, we will consider the problem of separation of two species

with close EPR spectra. We consider here TAM and DPPH which both have a
single-line EPR spectrum with roughly the same g-factor. The experimental
sample is made of an eppendorf filled with a solution of TAM at 17 µmol/L
and a Bruker® test sample, made of 8 crystals of DPPH located at the
vertices of a cube. A synthetic illustration of the sample is displayed in
Figure 6 (a).

(a) TAM and DPPH (b) reference spectrum of the (c) 2D sinogram acquisition
sample (top view) TAM-DPPH mixture (µ = 20G/cm)

Figure 6: TAM and DPPH sample. We display in (a) a schematic representation of the
TAM-DPPH sample which is made of an eppendorf filled with a TAM solution and crystals
of DPPH. We display in (b) and (c) a spectrum and a 2D sinogram acquisition of this
sample made using (NB , Bsw, Bcf, Nθ, Nφ, µ) = (2000, 104, 400, 50, 1, 20). The spectrum
displayed in (b) is a mixture of the spectrum of TAM and that of DPPH. Since the EPR
spectrum of DPPH has a single line which roughly coincides with the main line of the
spectrum of TAM, the contribution of the DPPH crystals to this sample is difficult to
detect from (b).

In the following, we will consider EPR datasets acquired from this TAM-
DPPH sample and perform the source separation afterward. The acquisition
scheme is similar to that presented in the previous section. A single EPR
spectrum of the mixture of TAM and DPPH is first acquired (see Figure 6 (b))
and further processed using EasySpin in order to extract from it the reference
spectra of each individual species. Then, the acquisition of one (or more)
sinogram(s) is performed. We will first consider a dataset containing a single
sinogram (Nµ = 1) and then another dataset containing Nµ = 2 sinograms.

18



(a) hX1 : extracted TAM spectrum (b) hX2 : extracted DPPH spectrum

Figure 7: TAM and DPPH spectra separation from the spectrum of their
mixture. We display here the spectrum of TAM (a) and that of DPPH (b) extracted using
Easyspin from the spectrum of the TAM-DPPH mixture (Figure 6 (b)). We experimentally
validated this separation by comparing the sum (a) + (b) to the spectrum of the TAM-
DPPH mixture (comparison not displayed here), yielding a root mean square error of only
0.4% of the peak-to-peak amplitude of the acquired TAM-DPPH mixture spectrum. As we
can see, the contribution of the TAM spectrum (a) dominates that of the DPPH crystals
(b) in the spectrum of the whole TAM-DPPH mixture.

4.2.1. TAM and DPPH separation from Nµ = 1 sinogram
We first considered a dataset containing the reference spectrum of the

TAM and DPPH mixture (see Figure 6 (b)) and a single 2D sinogram ac-
quisition (see Figure 6 (c)). The individual spectra of TAM and DPPH
extracted using EasySpin from the spectrum of their mixture are displayed
in Figure 7. Those two spectra and the sinogram were used as inputs of our
source separation algorithm, yielding the images displayed in Figure 8. As
we can see in Figure 8, we were not able to achieve a correct TAM and DPPH
image separation from this dataset. We believe that the use of only Nµ = 1
sinogram does not provide sufficient information to separate spectrally close
species like TAM and DPPH. Even though we showed that, despite the larger
number of unknowns than measurements, the use of the total variation as
regularizer of the source separation problem (10) (or (13) with Nµ = 1) en-
ables the accurate separation of spectrally different species such as TAM and
TEMPO, the complexity of the problem drastically increases as we consider
species with similar spectra, yielding ineffective separation when Nµ = 1.

To address this issue, we suggest to enrich the measured dataset by con-
sidering the acquisition of multiple sinograms (i.e., using Nµ ≥ 2) with dif-
ferent field gradient intensity values. A mathematical justification of how
such multiple sinogram acquisition provides additional information for the
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(a) TAM (b) DPPH

Figure 8: Failed separation of TAM and DPPH from Nµ = 1 sinogram. We
display the images of TAM (a) and DPPH (b) separated from only Nµ = 1 sinogram ac-
quisition of the mixture (that displayed in Figure 6 (c)) using (λ, niter, δ) = (1011, 105, 0.1)
as set of reconstruction parameters. Due to the nature of the TAM-DPPH sample, the
ideal separation would be an image of TAM containing only the TAM solution present in
the eppendorf, and an image of DPPH containing only the DPPH crystals. This is clearly
not the case here, since we can see shapes coming from the eppendorf and the crystals in
both (a) and (b). Besides, we can notice that (a) and (b) have different dynamics (the
pixel values of (b) are almost one order of magnitude below those of (a)), so that most of
the EPR signal was wrongly reconstructed into the TAM source. The TAM and DPPH
species being spectrally close to each other, we believe that their separation is intrinsically
more difficult than that of TAM and TEMPO, and that Nµ = 1 sinogram does not provide
enough relevant information to perform an accurate separation of those two species.

source separation problem is proposed in Appendix B. Notice that such
mutliple sinogram acquisition process is similar to that used for spectral-
spatial imaging purpose. However, as mentionned before, the computation
of a spectral-spatial image involves the acquisition of a large number of sino-
grams (Nµ ≫ 1) with many different values of field gradient intensities. In
our approach, we will consider drastically less measurements and focus on
the source separation problem from only Nµ = 2 sinograms. We shall demon-
strate now the relevance of this approach over a synthetic dataset first, before
illustrating and discussing its efficiency over the real TAM and DPPH source
separation experiment.

4.2.2. Separation of synthetic species from Nµ = 1 or Nµ = 2 sinograms
In this section, we consider a synthetic dataset generated from a sheep-

logan phantom using synthetic spectra of two artificial species X1 and X2
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with similar shapes as those of TAM and DPPH considered before (see Fig-
ure 9). The synthetic sheep-logan phantom was decomposed into the sum of
two sub-images (displayed in the last column of Figure 10), each one repre-
senting the repartition maps of X1 and X2. This synthetic dataset was used
to generate two synthetic sinograms of the mixture of X = (X1, X2), acquired
using two different field gradient intensities (µ1 and µ2 with µ1 < µ2).

(a) synthetic spectra (b) first sinogram (c) second sinogram

Figure 9: Synthetic dataset. We display in (a) the spectra of two synthetic species X1

and X2 generated using a Gaussian derivative model of the form hXi
(B) = −2 ci B ·e−ciB

2

,
using c1 = 0.02, c2 = 0.001. The ratio of the linewidths of those two synthetic spectra
is close to 4.5 which is roughly the same linewidths ratio as that of the spectra of TAM
and DPPH that we presented in Figure 8. We used two synthetic repartition maps for X1

and X2 (displayed in the last column of Figure 10) and generated two synthetic sinograms
of the mixture of X = (X1, X2) corresponding to synthetic acquisitions using a low (b)
and a large (c) field gradient intensity. Both sinograms were corrupted by a synthetic
additive Gaussian noise with same standard deviation. By construction, we obtain in (b)
a synthetic sinogram blurrier but with better SNR than that displayed in (c), which is
consistent with real-life acquisition.

We used our source separation algorithm to separate the two synthetical
species using either Nµ = 1 sinogram (see the first row of Figure 10 for the
resulting separation) or Nµ = 2 sinograms (see the second row of Figure 10).
Similarly to what we already observed on our real experiment using TAM
and DPPH, our algorithm fails to perform the separation of the two species
from Nµ = 1 sinogram. However, the use of Nµ = 2 sinograms yields to
a satisfactory separation. The reconstructions displayed in Figure 10 were
obtained using a mutliscaled strategy in order to speed-up the computation.
A first separation was done at a coarse scale using (λ, niter) = (500, 105).
This coarse scaled image separation was obtained in about 1 minute using a
standard laptop. Then, we performed a scale refinement process : the coarse
images were upscaled by a factor two (using bilinear interpolation) and used
as initializers of scheme (14) to perform image separation at a (twice) thiner
scale. This second pass was done using (λ, niter) = (250, 105). A final third

21



pass was done using (λ, niter) = (50, 3.5 · 103). The whole image separation
process eventually ended in around 10 minutes.
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first column : second column : third column :
obtained using obtained using ground truth

Nµ = 1 sinogram Nµ = 2 sinograms

Figure 10: Source separation using one or two sinograms. The repartition maps
of the two artificial species X1 and X2 that we considered in our synthetic experiment
are made of ellipses (extracted from a sheep-logan phantom). They are represented in
the third column of this figure (top : X1, bottom : X2) and correspond to the ideal
source images that we would like to reconstruct from the synthetical dataset presented in
Figure 9. We display in the left column the two source images reconstructed using only
Nµ = 1 sinogram (that displayed in Figure 9 (b)), and we display in the middle column
that reconstructed using Nµ = 2 sinograms. We can see in the first column that the
reconstruction of source X1 is substantially different from the ground truth, especially due
to the presence in the reconstructed image of a large (outer) ellipse that belongs in fact to
source X2. This artifact in the reconstruction is drastically diminished when looking at
the middle column, where both reconstructed source images X1 and X2 better match the
ground truth images. This experiment illustrates how the addition of another sinogram to
the dataset may substencially improve the quality of the source separation of spectrally
close species.

4.2.3. TAM and DPPH separation from Nµ = 2 sinograms
From now, let us focus back on the TAM-DPPH real experiment and

try to achieve a better image separation than that obtained in Section 4.2.1
by considering a dataset containing Nµ = 2 (instead of Nµ = 1) sinograms.
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The acquisition of such a dataset involves slight changes in the whole ac-
quisition protocol that we designed as follows. The acquisition of the two
sinograms (sµ1

X , sµ2

X ) using two different field gradient intensities (µ1 and µ2,
with µ1 < µ2) is made sequentially. To ease the data acquisition and the
image reconstruction processes, we decided to keep constant the number of
acquired samples per projection (NB), the center-field (Bcf), the conversion
time, the time constant, as well as the field-of-view diameter during both
sinogram acquisitions. This means that if a given sweep-width B

(1)
sw is used

for the acquisition of the first sinogram sµ1

X , we need to perform the acquisi-
tion of the second sinogram sµ2

X using a sweep-width of

B(2)
sw =

µ2

µ1

B(1)
sw .

Notice that sinogram sµ2

X will exhibit a lower signal-to-noise ratio than sino-
gram sµ1

X (because µ2 > µ1). This however is taken into account in the model
in (13) where each data fidelity term Fµj

are weighted equally. In our experi-
ments, along the acquisition of each sinogram s

µj

X (1 ≤ j ≤ 2), we performed
the acquisition of a spectrum h

(j)
X of the TAM-DPPH mixture using the same

sampling grid as that used for the acquisition of sµj

X (i.e., using B
(j)
sw as sweep-

width). Therefore, at the end of the acquisition process, we end up with a
set of two reference spectra of the TAM-DPPH mixture (h

(1)
X , h

(2)
X ) and a set

of two associated sinograms (sµ1

X , sµ2

X ), as displayed in Figure 11.
Before using our algorithm to perform the image source separation, we

need to compute for each acquired sinogram, the reference spectra of the
different species (here TAM and DPPH) sampled over the same sampling grid
as the sinogram. Theoretically, one could use only one reference spectrum
acquisition of the TAM-DPPH mixture, let us say for instance h

(1)
X , perform

the extraction of TAM and DPPH spectra from this acquisition, and use
Easyspin to generate the spectra of the two species using either B(1)

sw of B(2)
sw as

sweep-width. Although we did considered this approach, we found that, using
our Bruker® spectrometer, the single change of the sweep-width from one
acquisition to another yielded slightly modified spectral shapes (we observed
slight line shifts and amplitude changes in the acquired spectra, as illustrated
in Figure 12), making the spectra extracted from h

(1)
X somehow inconsistent

with those actually involved in the second sinogram sµ2

X ).
Unfortunately, this can negatively impact the image separation. In order

to address this issue, we used EasySpin to extract at once from the whole

23



sµ1

X : first sinogram acquisition sµ2

X : second sinogram acquisition

h
(1)
X : first spectrum acquisition h

(2)
X : second spectrum acquisition

Figure 11: Acquisition of a dataset made of Nµ = 2 sinograms and two as-
sociated reference spectra of the TAM-DPPH mixture. In the first column, we
display (top) the sinogram acquired using a low field gradient intensity (µ1 = 20G/cm,
Bsw = 104G) and (bottom) the associated spectrum acqusition h

(1)
X of the TAM-DPPH

mixture. In the second column, we display (top) a sinogram acquired using a higher field
gradient intensity (µ2 = 40G/cm, Bsw = 208G) and (bottom) the associated spectrum
acquisition h

(2)
X of the TAM-DPPH mixture. The other acquisition parameters were set

to (NB , Bcf, Nθ) = (2000, 400, 50) for this experiment. Although the spectra h
(1)
X and h

(2)
X

should theoretically coincide over their common sampling range, we observe in practice
slight differences between those two signals (a close-up view of their central line is dis-
played in Figure 12).

set (h
(1)
X , h

(2)
X ) the reference spectra of the TAM and DPPH over the same

sampling grid as sµ1

X and sµ2

X , taking into account potential shifts and ampli-
tude changes between the two acquisitions. At the end of this process, we
end up with the set of reference spectra

(
h
(j)
Xi

)
(for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 2)

needed in our source separation model. The result of this spectrum sepa-
ration process is displayed in Appendix C. Finally, the source separation
result obtained by processing the two sinograms displayed in Figure 11 using
our source separation algorithm are presented in Figure 13. We again used a
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Figure 12: Close-up view of the two acquired spectra presented in Figure 11.
We display here a close-up view of the spectra h

(1)
X and h

(2)
X displayed in Figure 11. As

we can see, both signals are slightly shifted and exhibit different amplitudes. For that
reason, the TAM and DPPH spectra extracted using EasySpin from h

(1)
X are in practice

inconsistent with those involved into h
(2)
X as well as those involved in modeling of the

sinogram sµ2

X . We found that TAM and DPPH spectra separation should be addressed
from the whole set (h

(1)
X , h

(2)
X ) in order to avoid the apprearance of important artifacts

during the image separation process.

multiscale strategy in order to speed up the image source separation process
starting with a preliminary separation using (λ, niter, δ) = (4 · 1012, 105, 0.52)
followed by a second one using (λ, niter, δ) = (2 · 1012, 107, 0.26) and finally a
last pass using (λ, niter, δ) = (1012, 107, 0.13). The whole source image sepa-
ration process ended in roughly 10 minutes. We can see in Figure 13 that the
image separation process is drastically improved when we consider a dataset
containing Nµ = 2 sinograms instead of Nµ = 1. The separation remains
perfectible, especially because small errors in the separation of the TAM and
DPPH spectra from the spectrum of their mixture can cause artifacts in the
overall image separation.
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(a) TAM (b) DPPH

Figure 13: Separation of TAM and DPPH from Nµ = 2 sinograms. We display
the image of TAM (a) and DPPH (b) separated from the two sinograms presented in
Figure 11. We can clearly see in (a) the TAM solution placed in the eppendorf and we
can see in (b) the DPPH crystals of the Bruker® sample cube. The separation is effective
in the sense that we find no signal coming from the DPPH in (a) and no signal coming
from the TAM in (b). However, we can observe in (a) some spurious signal around the
location of the DPPH crystals. We believe that this kind of artifact is a consequence
of imperfections coming from the separation of the TAM and DPPH spectra from the
spectrum of their mixture. However, this experiments still confirms that, as we observed
using synthetic dataset, the image separation can be dramatically improved by considering
a dataset made of Nµ = 2 (instead of Nµ = 1) sinograms.

5. Conclusion and perspectives

The state-of-the-art approach to tackle the problem of source separation
is spectral-spatial imaging, which involves acquiring a set of sinograms at
different gradient intensities, followed by a voxel-wise separation. However,
this method often requires a lengthy acquisition time due to the sinogram
collection time. To address this limitation, this work proposes a procedure
that aims to reduce the required data volume by employing a variational
formulation of the source separation problem. We’ve shown that for two
paragmanetic species, or sources, with moderately different spectra, here a
TAM and a TEMPO compound, our method yields separate 2D and 3D
repartition maps for both compound using one sinogram acquisition. How-
ever difficulties arise for two sources with similar spectra, such as a TAM
and a DPPH compound, when using only one sinogram. With the addition
of a second sinogram obtained at a different gradient intensity µ the TAM-
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DPPH separation was successfully performed, yielding a clearer separation,
as illustrated in Figure 13. We have demonstrated that, for the separation
of two sources, a maximum of Nµ ≤ 2 is required, whether the sources have
different or similar spectra. This process can be compared to spectral-spatial
acquisition, albeit requiring only a few additional sinograms, at most equal
to the number of sources.

The initial step in the separation method involves extracting the spectra
from the acquired mixture, relying on prior knowledge of the compounds
present, here this step is done with the easyspin toolbox. Mistakes in fitting,
such as when fitting sources that shares the same number of lines, g-factor,
and linewidth, can lead to artifacts during the separation process as observed
in Figure 13. To enhance the accuracy of the fitting step, future research
should consider a better model to incorporate the acquisition filter of the
spectrometer into the methodology. Nevertheless, in the case of using a
spectral-spatial imaging modality, the spectra separation step would need to
be performed for each voxel of the reconstructed image, which would be more
challenging. To address this issue, a possible solution would be to incorporate
the spectra extraction step within the variational formulation of the model
for example using a blind source separation method. This should enable a
more streamlined and efficient separation process, such an approach warrants
further investigation and development in future studies.

The method proposed relies on a single parameter λ which depends on
both the noise level of the acquisition and the characteristics of the object
being imaged. This parameters needs to be fine-tuned, however when the
user doesn’t need to recover fine details the tuning is simplified. Indeed in
such case, setting λ too high is generally less detrimental than setting it too
low, reducing the need for extensive trial and error. To enhance the model
further, an adjustment could be made to consider the differences in shapes of
the objects being imaged. Specifically, during the optimization step, the same
parameter λ is currently applied to all source images (ui)1≤i≤N . However, if
one of the sources represents a larger object, all else being equal its total
variation tends to be higher compared to a smaller object. Consequently,
this can lead to a discrepancy in the reconstruction, favoring smaller objects
more during the optimization process. To address this issue, we can introduce
a regularization parameter (TV Weight) λi for each source ui. It is relatively
straightforward to mathematically incorporate this condition into the model.

This work can be useful in every cases where a spectral-spatial acquisi-
tion is required such as multimodal image registration with different probes
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or radical characterisation [6]. When directly comparing this work and a
classical spectral-spatial acquisition in such use cases the acquisition time
can be shortened by several orders of magnitude.

While our study primarily emphasized separating two sources, it’s im-
portant to highlight that there is no inherent restriction on the number of
sources that can be separated. By accurately modeling spectra and poten-
tially obtaining multiple sinograms while still having Nµ ≤ N , the separation
method can be extended to encompass more than two sources, even when
their spectra share similarities.

Spectral spatial imaging finds its most notable application in oximetry. In
the case of using a TAM compound whose linewidth expands in the presence
of oxygen, one can perceive this as a source separation problem with an
infinite number of sources. Nevertheless, we can consider a TAM with a
linewidth dilation caused by oxygen concentration c1 as a separate source
from another TAM with a linewidth dilation caused by oxygen concentration
c2, enabling us to achieve source separation between these two sources.

The proposed method holds significant potential for direct application.
For instance, it could be effectively employed in pH measurement, exemplified
by the utilization of the HOPE probe [39]. In this context, the probe exists
in both a base and an acid form, each exhibiting a distinct spectra. The
resulting mixture is essentially the combination of these two forms. Moreover,
the method can be readily applied to plant cell imaging, leveraging cPTIO
[40] as a valuable tool in this regard.

We believe that the framework presented here can be applied to open
new perspectives for EPR imaging in science thanks to the speeding up of
the data collection, the simplifying of the post treatement of the separation
and the potential to be used with compounds exhibiting similar spectra.

Appendix A. Numerical details about the proposed source sepa-
ration algorithm

Appendix A.1. Computation of K∗

First, let us recall that, for any u = (u1, u2, . . . , uN), the signal Ku cor-
responds to the stacking of the ∇dui (for 1 ≤ i ≤ N), that is,

Ku = (∇du1,∇du2, . . . ,∇duN) . (A.1)

Consequently, for any p = (p1, p2, . . . , pN) ∈ (RΩ × RΩ × RΩ)N , K∗p is
the stacking of the ∇d∗pi (for 1 ≤ i ≤ N), denoting by ∇d∗ the adjoint
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of the discrete forward differences scheme ∇d. Besides, using the notation
pi = (pxi , p

y
i , p

z
i ) for all i ∈ {1, 2, . . . , N}, we can easily compute ∇∗pi using

∇d∗pi = ∇d
x

∗
pxi +∇d

y

∗
pyi +∇d

z

∗
pzi , (A.2)

and, for all (k, ℓ,m) ∈ Ω,

∇d
x

∗
pxi (k, ℓ,m) =


−pxi (1, ℓ,m) if k = 1

−pxi (k, ℓ,m) + pxi (k − 1, ℓ,m) if 2 ≤ k ≤M − 1

pxi (M − 1, ℓ,m) if k = M

,

∇d
y

∗
pyi (k, ℓ,m) =


−pyi (k, 1,m) if ℓ = 1

−pyi (k, ℓ,m) + pyi (k, ℓ− 1,m) if 2 ≤ ℓ ≤M − 1

pyi (k,M − 1,m) if ℓ = M

,

∇d
z

∗
pzi (k, ℓ,m) =


−pzi (k, ℓ, 1) if m = 1

−pzi (k, ℓ,m) + pzi (k, ℓ,m− 1) if 2 ≤ m ≤M − 1

pzi (k, ℓ,M − 1) if m = M

.

Therefore, for any p = (p1, p2, . . . , pN) ∈ (RΩ × RΩ × RΩ)N , one can easily
compute

K∗p = (∇d∗p1,∇d∗p2, . . . ,∇d∗pN) . (A.3)

Appendix A.2. Computation of (14b)
As mentioned in Section 3.2, each term

(
A

µj
r

∗
A

µj

i un
i

)
r,i,j

involved in (15)
can be evaluated by means of a circular convolution between a (fixed) three-
dimensional kernel Ψµj

r,i and the latent source image un
i . This is computation-

ally rather efficient than computing sequentially vni,j := A
µj

i un
i and A

µj
r

∗
vni,j

afterwards. The main reason is that the circular convolution between the
kernel Ψµj

r,i and the source image un
i can be computed efficiently using Fast

Fourier Transform algorithms, while the systematic numerical evalutation of
A

µj

i un
i and that of Aµj

r
∗
vni,j at each iteration n of the numerical scheme (14)

would involve substentially higher intensive computations (based on Noneq-
uispaced Discrete Fourier Transforms or interpolations schemes in the 3D
space, depending on the discretization scheme used for the Radon operator).
For the sake of completeness, we provide below more details about the prac-
tical evaluation the kernels Ψµj

i,j and that of those terms
(
A

µj
r

∗
A

µj

i un
i

)
r,i,j

. All
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formula provided below can be obtained following the same methodology as
in the proof of [11, Proposition 1].

Given a monodimensional signal h : {0, 1, . . . , n − 1} → R, we denote
by DFT(h) the discrete Fourier transform of h, that is, the complex-valued
n-periodical signal defined by

∀α ∈ Z , DFT(h)(α) =
n−1∑
k=0

h(k) e−
2ıπαk

n ,

denoting by ı the imaginary unit (i.e., ı2 = −1), and we denote by IDFT
the inverse of the DFT operator. We shall also consider below the standard
extension of the DFT and IDFT operators to multidimensional signals.

Let us denote by hd
i,j the discrete signal obtained by sampling the reference

spectrum hXi
over the same homogeneous magnetic field sampling grid as the

acquired sinogram s
µj

X . Now, let us set Υ = {0, 1, . . . , 2M − 1}3 and define
Ψ

µj

r,i : Υ→ R by, for all x ∈ Υ,

Ψ
µj

r,i(x) =
δ6

NB

∑
−M

2
≤α<M

2
1≤ℓ≤Nproj

DFT(hd
r,j)(α)DFT(h

d
i,j)(α) e

2ıπ α
M

⟨x , e(θℓ,φℓ)
⟩ , (A.4)

denoting by z the complex conjugate of z ∈ C. Then, one can show that, for
all (i, r) ∈ {1, 2, . . . , N}2 and for all j ∈ {1, 2, . . . , Nµ}, we have

∀(k, ℓ,m) ∈ Ω , A
µj
r

∗
A

µj

i un
i (k, ℓ,m) =

(
Ψ

µj

r,i ⊛ Zun
i

)
(k, ℓ,m), (A.5)

where Zun
i : Υ→ R is the zero-padding extension of un

i over Υ, defined by

∀(k, ℓ,m) ∈ Υ , Zun
i (k, ℓ,m) =

{
un
i (k, ℓ,m) if (k, ℓ,m) ∈ Ω

0 otherwise, (A.6)

and where ⊛ denotes the circular convolution operator which is defined in
the Fourier domain by

∀(u, v) ∈ RΥ × RΥ , ∀α ∈ Υ , DFT(u⊛ v)(α) = DFT(u)(α) ·DFT(v)(α) .

Notice that (A.5) means that the signal Aµj
r

∗
A

µj

i un
i (that lies in RΩ) corre-

sponds to the restriction to Ω of the signal Ψµj

r,i⊛Zun
i (that lies in RΥ). More

precisely, denoting by RΩ : RΥ → RΩ the operator of restriction to Ω (i.e.,
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for all v ∈ RΥ, RΩv denotes the restriction of the signal v to the domain
Ω ⊂ Υ), we have

A
µj
r

∗
A

µj

i un
i = RΩ

(
Ψ

µj

r,i ⊛ Zun
i

)
.

Consequently, by setting Ψr,i :=
∑Nµ

j=1Ψ
µj

r,i and interchanging the sums in (15),
we get

∇F (un) =

(
N∑
i=1

Nµ∑
j=1

RΩ

(
Ψ

µj

r,i ⊛ Zun
i

)
−

Nµ∑
j=1

A
µj
r

∗
s
µj

X

)
1≤r≤N

=

(
N∑
i=1

RΩ (Ψr,i ⊛ Zun
i )−

Nµ∑
j=1

A
µj
r

∗
s
µj

X

)
1≤r≤N

.

(A.7)

The computation of the Ψr,i kernels (for (r, i) ∈ {1, 2, . . . , N}2) as well as
that of the term

∑Nµ

j=1A
µj
r

∗
s
µj

X (for 1 ≤ r ≤ N) can be done once and
for all since those terms remain unchanged during all the scheme iterations
in (14). The precomputation of those terms can be efficiently done using
Nonequispaced Discrete Fourier Transforms libraries, such as [41], before
starting the iterations of Scheme (14).

Appendix A.3. Convergence of (14)
The convergence of (14) towards a solution of (13) is ensured by [30,

Theorem 1] as long as the parameters τ and σ fulfill the condition(
1

τ
− LF

)
1

σ
≥ λ2|||K|||2 , (A.8)

where LF denotes a Lipschitz constant of ∇F and |||K||| denotes the ℓ2-
induced norm of the operator K. First, let us focus on the computation of
a Lipschitz constant of ∇F . Let u ∈ (RΩ)N and v ∈ (RΩ)N , using (A.7), we
get

∥∇F (u)−∇F (v)∥22 =
N∑
r=1

∥∥∥∥∥
N∑
i=1

RΩ (Ψr,i ⊛ (Zui − Zvi))

∥∥∥∥∥
2

2

≤
N∑
r=1

N∑
i=1

∥Ψr,i ⊛ (Zui − Zvi)∥22
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by triangle inequality and using |||RΩ||| = 1. Therefore, using Parseval iden-
tity, we get

∥∇F (u)−∇F (v)∥22 ≤
1

M3

N∑
r=1

N∑
i=1

∥DFT(Ψr,i) ·DFT(Zui − Zvi)∥22

≤ 1

M3

N∑
r=1

N∑
i=1

∥DFT(Ψr,i)∥2∞ · ∥DFT(Zui − Zvi)∥22

Thus, by setting

LF =

√√√√ max
1≤i≤N

N∑
r=1

∥DFT(Ψr,i)∥2∞ (A.9)

we get

∥∇F (u)−∇F (v)∥22 ≤
L2
F

M3

N∑
i=1

∥DFT(Zui − Zvi)∥22 = L2
F∥Zu− Zv∥22 ,

and since ∥Zu− Zv∥2 = ∥u− v∥2, we end up with

∥∇F (u)−∇F (v)∥2 ≤ LF∥u− v∥2

showing that ∇F is LF -Lipschitz. Now that the Lipschitz constant of ∇F
is computed, let us focus on the term |||K||| involved in (A.8). Since we can
easily show that |||∇||| ≤

√
12, it follows that

∀u ∈ (RΩ)N , ∥Ku∥22 =
N∑
i=1

∥∇ui∥22 ≤ 12
N∑
i=1

∥ui∥22 = 12∥u∥22 ,

showing that |||K||| ≤
√
12. Finally, by setting

τ =
1

2LF

and σ =
LF

12λ2
,

we ensure that (A.8) is fulfilled, and that scheme (14) converges towards a
solution of (13).
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Appendix A.4. Pseudocode implementation of the proposed source separation
algorithm

In this section, a pseudocode implementation of the source separation
algorithm is provided. This pseudocode was split into two modules. Al-
gorithm 1 is dedicated to the precomputation of the kernels {Ψr,i}r,i (for
1 ≤ r ≤ N and 1 ≤ i ≤ N) and the constant term

∑
j=1A

µj
r

∗
s
µj

X involved
in the computation of (14b) (see Appendix A.2), as well as the Lipschitz
constant LF of ∇F needed for setting the time steps τ and σ of Scheme (14)
and ensuring its convergence towards a solution of (13) (see Appendix A.3).
Algorithm 2 corresponds to the proposed source separation algorithm and
performs the iterations of Scheme (14) in order to compute the (unmixed)
target source images. Notice that each scheme iteration in Algorithm 2 only
relies on FFT computations, yielding a loglinear complexity for this imple-
mentation of the numerical scheme.
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Algorithm 1: precomputations module

Inputs: a set of discrete 3D sinograms sX = (s
µj

X )1≤j≤Nµ, with
s
µj

X ∈ RNB×Nproj (for 1 ≤ j ≤ Nµ). The associated sequence of angles
A = {(θℓ, φℓ)}1≤ℓ≤Nproj parametrizing the magnetic field gradient
orientations of the sinograms. A set of spectra hd = (hdi,j) (1 ≤ i ≤ N ,
1 ≤ j ≤ Nµ) such that hdi,j ∈ RNB corresponds to the spectrum of the i-th
source (Xi) sampled using the same homogeneous magnetic field intensity
nodes as the input sinogram s

µj

X (see note a below).

Output: constant quantities needed in scheme (14) (those remain
unchanged during all the scheme iterations).

Core of the module:
/* compute kernels (Ψr,i)r,i (see Appendix A.2) */
for 1 ≤ r ≤ N and 1 ≤ i ≤ N do

Ψr,i ←
Nµ∑
j=1

Ψ
µj

r,i // using (A.4) and an NFFT library

Ψ̂r,i ← DFT(Ψr,i)

Ψ̂←
(
Ψ̂r,i

)
1≤r≤N
1≤i≤N

/* compute a Lipschitz constant of ∇F (see Appendix A.3) */

Lf ←

(
max
1≤i≤N

N∑
r=1

∥∥∥Ψ̂r,i

∥∥∥2
∞

)1/2

/* compute the constant offset term of (15) */
for 1 ≤ r ≤ N do

∆r ←
Nµ∑
j=1

A
µj
r

∗
s
µj

X // using [11, Algorithm 4]

∆← (∆1,∆2, . . . ,∆N)

return
(
∆, Ψ̂, Lf

)
a The spectra hd

i,j (1 ≤ i ≤ N , 1 ≤ j ≤ Nµ) used as inputs of this algorithm can be extracted from an
EPR spectrum acquisition of the sample containing the mixture of species, using for instance EasySpin
software [38], as explained in Section 4.1.
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Algorithm 2: EPR source separation Algorithm
Inputs: the same input set of sinograms sX , associated angles A
and set of reference spectra hd, as in Algorithm 1. A regularity
parameter λ and a number of iterations niter.

Output: the reconstructed source images u = (u1, u2, . . . , uN).

Core of the module:
/* Precompute kernels, initialize scheme sequences and descent
parameters */

(∆, Ψ̂, Lf )← precomputations(sX , hd,A) // see Algorithm 1
for 1 ≤ i ≤ N do

u0
i ← 0Ω // zero-valued image in RΩ

u0
i ← 0Ω // zero-valued image in RΩ

p0i ← (0Ω, 0Ω, 0Ω) // zero-valued signal in RΩ × RΩ × RΩ

(τ, σ)←
(

1
2Lf

,
Lf

12λ2

)
/* Main loop: iterations of Scheme (14) */
for 0 ≤ n < niter do

// compute the N entries of ∇F (un)

for 1 ≤ r ≤ N do
v̂r ←

∑N
i=1 Ψ̂r,i ·DFT(Zun

i ) // Zun
i is defined in (A.6)

vr ← the restriction of IDFT(v̂r) to Ω
wr ← vr −∆r // wr corresponds to the r-th entry of ∇F (un)

gradF← (w1, w2, . . . , wN) // this signal corresponds to ∇F (un)

// perform one iteration of Scheme (14)
pn+1 ← Π(pn + σλKun) // see (A.1) and Section 3.2
un+1 ← un − τ (gradF+ λK∗pn+1) // see (A.2)
un+1 ← 2un+1 − un

return un+1
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Appendix B. Details of the information brought by the acquisi-
tion of multiple sinograms.

In this section, we provide mathematical insights about how the acquisi-
tion of multiple sinograms (with different field gradient intensities) instead
of a single one simplifies the source separation task. For that purpose, let
us focus on the separation of two sources X1 and X2 from two sinograms
recorded at different gradient intensity µ1 and µ2 ̸= µ1. In the following,
for any signal f ∈ L1(Rn) (and any n ≥ 1), we denote by F(f) the Fourier
transform of f which is defined by

∀ξ ∈ RN , F(f)(ξ) =
∫
RN

f(x)e−ı⟨x,ξ⟩dx.

In presence of two species X = (X1, X2), the acquisition process described
in (5) yields, for all (B, θ, φ) ∈ R+ × [0, 2π]× [0, π], Sµ1

X (B, θ, φ) =
(
hµ1

X1
∗Rθ,φ(UX1) + hµ1

X2
∗Rθ,φ(UX2)

)
(−B/µ1)

Sµ2

X (B, θ, φ) =
(
hµ2

X1
∗Rθ,φ(UX1) + hµ2

X2
∗Rθ,φ(UX2)

)
(−B/µ2) .

(B.1)

In the following, let us set for all (i, j) ∈ {1, 2} and for all ξ ∈ R,

ai,j(ξ) = F(h
µj

Xi
)(ξ) and Y θ,φ

i (ξ) = F(Rθ,φ(UXi
))(ξ) .

Then, taking the Fourier transform with respect to B of (B.1) at a given
point ξ ∈ R yields F(S

µ1

X (·, θ, φ))(ξ) = µ1(a1,1 · Y θ,φ
1 )(−µ1ξ) + µ1(a2,1 · Y θ,φ

2 )(−µ1ξ)

F(Sµ2

X (·, θ, φ))(ξ) = µ2(a1,2 · Y θ,φ
1 )(−µ2ξ) + µ2(a2,2 · Y θ,φ

2 )(−µ2ξ) .
(B.2)

Remarking that, for any (i, j) ∈ {1, 2}2, we have

ai,j(−µjξ) =
1

µj

F(hXi
)(ξ) ,

and by setting ai(ξ) = F(hXi
)(ξ) (for i ∈ {1, 2}), we get F(S

µ1

X (·, θ, φ))(ξ) = a1(ξ)Y
θ,φ
1 (−µ1ξ) + a2(ξ)Y

θ,φ
2 (−µ1ξ)

F(Sµ2

X (·, θ, φ))(ξ) = a1(ξ)Y
θ,φ
1 (−µ2ξ) + a2(ξ)Y

θ,φ
2 (−µ2ξ) .

(B.3)
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Rescaling in (B.3) the first equation by a factor − 1
µ1

and the second one by
a factor − 1

µ2
, we end up with, for any ξ ∈ R, F(S
µ1

X (·, θ, φ))(−ξ
µ1
) = a1(

−ξ
µ1
)Y θ,φ

1 (ξ) + a2(
−ξ
µ1
)Y θ,φ

2 (ξ)

F(Sµ2

X (·, θ, φ))(−ξ
µ2
) = a1(

−ξ
µ2
)Y θ,φ

1 (ξ) + a2(
−ξ
µ2
)Y θ,φ

2 (ξ) .
(B.4)

Therefore, for each frequency value ξ ∈ R, (B.4) corresponds to linear a
system made of two equations and two unknowns (Y θ,φ

1 (ξ), Y θ,φ
2 (ξ)). We

recall that thanks to Slice Central Theorem, we have

Y θ,φ
1 (ξ) = F(UX1)(ξe(θ,φ)) and Y θ,φ

2 (ξ) = F(UX2)(ξe(θ,φ)) ,

so that solving (B.4) for any ξ would provide the Fourier coefficients of the
source images (and thus, the two source images after inverse Fourier trans-
formation).

Considering a dataset made of only one sinogram acquisition amounts
to removing one row from System (B.4), leading to an ill-posed problem.
Although we illustrated that the use of TV regularization in the inversion
process can lead to successful separation when the two species to separate
are spectrally distant enough, we also showed that the separation from one
sinogram fails when the two species exhibit similar EPR signals. In that
situation, the use of a second sinogram can make the system (B.4) well-posed
and the separation possible (although TV-regularization remains necessary
during the inversion process in order to correctly handle the noise corrupting
the measurements).

Appendix C. TAM and DPPH spectra extraction for the dataset
presented in Figure 11

We provide in Figure C.14 the results of the extraction of TAM and
DPPH spectra from the two measured spectra (h

(1)
X , h

(2)
X ) of their mixture

presented in Figure 11 (see also Figure 12 for a close-up view). The set
of spectra (h

(1)
X , h

(2)
X ) was processed as a whole using EasySpin to perform

the fitting of those measurements using TAM and DPPH molecular systems.
We configured the fitting process to take into account possible shifts and
intensity rescaling between h

(1)
X and h

(2)
X . We end up with two spectra of

TAM and DPPH that are both consistent with the acquisition h
(1)
X (first
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row of Figure C.14) and two spectra of TAM and DPPH that are both
consistent with the acquisition h

(2)
X (second row of Figure C.14). Consistency

of the spectra with respect to the species is also guaranteed by our extraction
procedure. Indeed, both extracted TAM spectra (left column) exhibit the
same peak to peak linewidth (here 0.3G) and similarly for the extracted
DPPH spectra (right column) with a peak to peak linewidth equal to 0.95G.

(a) TAM spectrum extracted from h
(1)
X (b) DPPH spectrum extracted from h

(1)
X

(c) TAM spectrum extracted from h
(2)
X (d) DPPH spectrum extracted from h

(2)
X

Figure C.14: EasySpin extraction of TAM and DPPH spectra from two EPR
spectra of their mixture. First row: spectra of TAM and DPPH being consistent
with the acquisition h

(1)
X , in the sense that (a)+(b) ≈ h

(1)
X . Second row: spectra of TAM

and DPPH being consistent with the acquisition h
(2)
X , in the sense that (c) + (d) ≈ h

(2)
X .

The displayed sweep-width was reduced to the range B ∈ [390, 410] (G) to improve the
display.

There is certainly room for improvement in this spectra separation pro-
cess, notably around the inner carbon signal of TAM which deviates from
the experimental one.
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