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Abstract Discretization schemes commonly used for

total variation regularization lead to images that are

difficult to interpolate, which is a real issue for applica-

tions requiring subpixel accuracy and aliasing control.

In the present work, we reconciliate total variation with

Shannon interpolation and study a Fourier-based esti-

mate that behaves much better in terms of grid invari-

ance, isotropy, artifact removal, and sub-pixel accuracy.

We show that this new variant (called Shannon total

variation) can be easily handled with classical primal-

dual formulations, and illustrate its efficiency on several

image processing tasks, including deblurring, spectrum

extrapolation, and a new aliasing reduction algorithm.

Keywords total variation, image interpolation,

Shannon theory, Legendre-Fenchel duality, aliasing,

image restoration.

1 Introduction

Since total variation (TV) regularization was proposed

by Rudin, Osher and Fatemi for image denoising [62],

it has proven extremely useful for many applications

(and beyond image data, for that matter) like image

deblurring [70,19], inpainting [20], interpolation [36],

spectral extrapolation [60], image decomposition [69],

super-resolution [5], stereovision [48], and much more

(see [15] and references therein for more examples). In

the last decade, the development of dual and primal-

dual formulations [13,6,72,31,17] and graph-cuts meth-

ods [24] has provided efficient algorithms for TV-based

minimization problems, thus increasing even further the

popularity of TV regularization.

Université Paris Descartes, MAP5 (CNRS UMR 8145), Sor-
bonne Paris Cité, France.

A modern way to explain the efficiency of TV is to

see it as a sparsity-promoting model: being defined by

a L1 norm (of the gradient), TV minimization tends to

favor solutions whose gradient is sparse (that is, often

takes the value 0), which corresponds to the so-called

cartoon images. Of course, real-life photographs are not

cartoons, but outside textured regions (which can be

ignored in many image analysis tasks) they are close

to that. Another explanation of the usefulness of TV is

its ability to penalize oscillations (which is typically the

kind of structures one wants to avoid when solving an

ill-posed inverse problem) while allowing discontinuities

at the same time.

When it comes to implementing an optimization

problem involving a TV regularization term, like, e.g.,

TV denoising of an image u0 by

argmin
u
‖u− u0‖2 + λTV(u), (1)

(where λ > 0 is a positive parameter selecting the de-

sired amount of regularization), the issue of TV dis-

cretization arises. Most algorithms choose to approxi-

mate the continuous TV by a sum (over all pixels) of

the `2 norm of a discrete finite-difference estimate of

the image gradient, that is,

TVd(u) =
∑

(k,l)∈Ω

√
(∂1u(k, l))2 + (∂2u(k, l))2 (2)

where

{
∂1u(k, l) = u(k + 1, l)− u(k, l),

∂2u(k, l) = u(k, l + 1)− u(k, l),
(3)

and u : Ω → R is a discrete gray-level image defined on

the finite domain Ω ⊂ Z2 (we purposely ignore bound-

ary issues here, as they are not related to our discus-

sion). In the following, we shall refer to (2) as the dis-

crete TV. In some situations, an anisotropic scheme (`1
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norm) may be used [14,43,1], leading to the anisotropic

discrete TV

TVd
ani(u) =

∑
(k,l)∈Ω

|∂1u(k, l)|+ |∂2u(k, l)|.

Curiously enough, as popular as they are, these numeri-

cal schemes present strong drawbacks in terms of image

quality at pixel and subpixel scales. Indeed, an image

obtained by minimizing TVd-based energies is very dif-

ficult to interpolate, or, said differently, badly sampled

according to Shannon theory. In practice, this means

that trying to interpolate such an image will result in

the appearance of undesired artifacts (see Fig. 1), gen-

erally a mix between blockiness and ringing depend-

ing on the interpolation method. This strongly limits

the possibility of exploiting an image delivered by a

TVd-based scheme, as usual operations like geometric

transformations, registration, sub-pixel shape match-

ing, derivative estimates (not to mention others) re-

quire well-interpolable images. New discrete schemes

have been recently proposed [16,23] to improve the iso-

tropy of the discrete TV, but they do not solve (nor

address) the interpolability issue we consider here.

In the present paper, we study a new formulation

of the discrete TV, which reconciliates TV minimiza-

tion and Shannon theory. This variant, which we shall

name Shannon Total Variation (STV), first appeared

in [44], and was later explicitly considered in [49] and

then used in [30,56] under the name Spectral Total Vari-

ation (but we shall not keep this name since it would

introduce a confusion with [34]). The STV variant con-

sists in estimating the true total variation of the ex-

act (continuous) total variation of the Shannon inter-

polate of u by using a Riemann sum approximation

of the associated integral. We show that STV success-

fully addresses the above-mentioned issues and delivers

images on which the discrete sinc and spline interpola-

tions behave nicely, while preserving the desired proper-

ties of TV regularization. The lack of isotropy observed

with classical finite difference schemes is also naturally

avoided with STV. This comes at the expense of a few

Fourier Transforms at each iteration of the optimization

process, which is, in most applications, an affordable

cost considering the strong benefits in terms of image

quality.

The paper is organized as follows. In Section 2, we

present the discrete sinc interpolation as a consequence

of Shannon sampling Theorem, and discuss in partic-

ular the (generally overlooked) difficulties encountered

with Nyquist frequencies in the case of even image di-

mensions. We also give an independent justification of

discrete sinc interpolation as the unique linear inter-

polation that defines invertible subpixellic translations,

(a) TV-restored (b) resampling of (a)

(c) spectrum of (a) (d) original, resampled

Fig. 1 Discrete TV produces aliasing. An image de-
noised with a classical discrete implementation of TV denois-
ing (a) is improperly sampled, as attested by the aliasing
artifact appearing in its Fourier spectrum ((c), red arrow),
which is responsible for the undesired oscillating patterns that
appear when magnifying the image using Shannon interpola-
tion (b). Note that this artifact is not present on the original
image (d). This experiment illustrates the difficulty of manip-
ulating images at a subpixel scale after a processing involving
the discrete TV.

and discuss the link with B-spline interpolation. In Sec-

tion 3, we define STV and discuss the choice of the up-

sampling factor used to discretize the continuous TV

integral into a Riemann sum. We then show in Sec-

tion 4 that STV-based algorithms can be efficiently im-

plemented by deriving a dual formulation which can be

used in the powerful Chambolle-Pock optimization pro-

cedure. In Section 5, we illustrate the use of STV reg-

ularization in the case of several classical applications

(denoising and more general inverse problems like de-

blurring, image magnification with spectrum extrapola-

tion, tomography). We then present a new STV-based

image restoration model involving a weight function in

Fourier domain, which leads to interesting applications

in terms of de-aliasing and can be viewed as an “image

Shannonizer” as it provides a way to approximate a

given image by a well-sampled one according to Shan-

non interpolation (Section 6). We finally conclude in

Section 7 and present some perspectives.
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2 Shannon interpolation

We here propose a self-contained and detailed expo-

sition of what we shall refer as “discrete Shannon in-

terpolation” (that is, the Shannon interpolation of a

discrete signal or image in a periodic setting), which is

the starting point of the Shannon Total Variation pre-

sented in Section 3. The general form has been known

and used for a long time, and most results reported

here are not new (see, e.g., [45,63,12]), but several of-

ten neglected details (like, in particular, the treatment

of Nyquist frequencies in the case of even dimensions)

are here clarified and discussed to yield non-ambiguous

definitions. We also give a new justification of Shannon

interpolation that does not rely on Shannon Sampling

Theorem, discuss the link with B-spline interpolation,

and show how Shannon interpolation can be combined

with B-spline interpolation to implement geometrical

transformations of images with efficiency and strong ac-

curacy.

2.1 Shannon Sampling Theorem

A classical way to understand the relation between a (d-

dimensional) continuous signal and its sampled version

is Shannon Sampling Theorem, which can be consid-

ered in some way as the foundation of the digital era. It

has been formulated in different contexts by Whittaker

[74] and Shannon [64], and also independently by Kotel-

nikov [40]. In the following, we write 〈x,y〉 =
∑d
i=1 xiyi

the canonical Euclidean inner product between two vec-

tors x = (xi) and y = (yi) of Rd.

Theorem 1 (Shannon Sampling Theorem [64])

Consider a positive real number δ and an absolutely in-

tegrable function f : Rd → R whose Fourier Transform

f̂(ξ) =

∫
Rd
f(x) e−i〈x,ξ〉 dxdy (4)

satisfies ∀ξ 6∈
[
−π
δ
,
π

δ

]d
, f̂(ξ) = 0. (5)

Then, f is continuous and uniquely determined by its

values on δZd, as for any x ∈ Rd,

f(x) =
∑
k∈Zd

f(δ k)sinc
(x

δ
− k

)
(6)

where the cardinal sine function is defined on Rd by

sinc(x) =

d∏
i=1

sin(πxi)

πxi
(7)

with the continuity-preserving convention sin(0)
0 = 1.

In the present paper, we will focus on one-dimensio-

nal signals (d = 1) and two-dimensional images (d = 2),

but the extension to higher dimensions is straightfor-

ward. Apart from establishing a clear correspondence

between the support of the Fourier spectrum of the

bandlimited function f and the critical sampling step δ

permitting its exact reconstruction from discrete sam-

ples, Shannon Sampling Theorem provides with Equa-

tion 6 (for δ = 1) an interpolation formula that extends

to Rd a discrete signal initially defined on Zd. However,

this formula cannot be used as such in practice since it

involves an infinite number of samples. We first discuss

that issue in the simpler case d = 1.

2.2 Discrete Shannon interpolation of 1-D signals

Let us consider a discrete signal s : IM → R where

M ∈ N∗ and IM = {0, 1, . . .M − 1}. In order to define

the Shannon interpolate S : R → R of s using (6), we

first need to extend s into an infinite signal s̃ : Z→ R,

so that

S(x) =
∑
k∈Z

s̃(k) sinc(x− k). (8)

Extending s with 0 in Z \ IM would be a poor solu-

tion, as it would interpolate a constant discrete signal

s by an oscillating function. Instead, the classical so-

lution consists in extending s as a M -periodic function

s̃(k) = s(k mod M). Using such a periodic extension is

not completely straightforward as it does not fit the hy-

potheses of Shannon Sampling Theorem (a M -periodic

s̃ : Z → R cannot be the sampled version of an ab-

solutely integrable bandlimited function), but we can

formally write

S(x) =
∑
k∈Z

s̃(k) sinc(x− k)

=
∑
p∈Z

∑
k∈IM

s(k) sinc(x− k − pM)

=
∑
k∈IM

s(k)

∑
p∈Z

sinc(x− k − pM)

 ,

and the factor of s(k) can be explicitly computed with

Proposition 1 (discrete cardinal sine) Define the

discrete cardinal sine of order M as the M -periodization

of the cardinal sine function, that is,

sincdM (x) := lim
n→+∞

n∑
p=−n

sinc(x− pM). (9)
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Then, one has

sincdM (x) =


sin(πx)

M sin
(
πx
M

) if M is odd,

sin(πx)

M tan
(
πx
M

) if M is even,

(10)

where the indeterminate forms 0/0 are solved by conti-

nuity, that is, sincdM (x) = 1 for any x ∈MZ.

The proof is given in Appendix A. In view of Propo-

sition 1, we can rewrite the interpolation of s as

S(x) =
∑
k∈IM

s(k) sincdM (x− k). (11)

Note that the kernel defined in (10) has been known for

a long time (see for example [77,41]). For small values of

|x| (more precisely, when |x| �M), we haveM sin πx
M '

M tan πx
M ' πx, so that sincdM (x) ' sinc(x), which

formally shows the asymptotic equivalence between sinc

and sincdM interpolation as M → +∞.

In practice, (11) is barely used, since there is an

equivalent (but numerically more efficient) formulation

due to the fact that sincdM is a trigonometric polyno-

mial.

Proposition 2 The function sincdM is a trigonomet-

ric polynomial, which can be written

sincdM (x) = Re

 1

M

∑
α∈ÎM

e2iπ
αx
M

 (12)

where ÎM =
[
−M2 ,

M
2

)
∩ Z and the real part in (12) is

required only if M is even.

Proof The set ÎM is made of M consecutive integer

values, and can thus be written

ÎM = {a, a+ 1, . . . a+M − 1},

where a = −bM2 c and bM2 c denotes the (lower) integer

part of M
2 . Thus, if x 6∈MZ we have

∑
α∈ÎM

e2iπ
αx
M =

a+M−1∑
α=a

(
e2iπ

x
M

)α
= e2iπ

ax
M · 1− e2iπx

1− e2iπ x
M

= eiπx
2a+M−1

M · sin(πx)

sinπ x
M

.

If M is odd, 2a+M − 1 = 0 and we get

1

M

∑
α∈ÎM

e2iπ
αx
M =

sin(πx)

M sinπ x
M

= sincdM (x)

as expected. If M is even, 2a+M−1 = −1 and we now

obtain

Re

 1

M

∑
α∈ÎM

e2iπ
αx
M

 =
sin(πx)

M sinπ x
M

· Re(e−i
πx
M )

=
sin(πx)

M tanπ x
M

= sincdM (x)

as well. ut

A consequence of Proposition 2 is that the Shannon

interpolation formula (11) can be rewritten using the

Discrete Fourier Transform recalled below.

Definition 1 The discrete Fourier Transform (DFT)

of a signal s : IM → R is the M -periodic complex-

valued signal ŝ defined by

∀α ∈ Z, ŝ(α) =
∑
k∈IM

s(k)e−2iπ
αk
M .

Proposition 3 The discrete Shannon interpolation of

a signal s : IM → R can be written

S(x) = Re

 1

M

∑
α∈ÎM

ŝ(α) e2iπ
αx
M

 , (13)

and the real part is required only if M is even.

Proof Thanks to Proposition 2, the Shannon interpo-

late of s defined by (11) can be rewritten

S(x) =
∑
k∈IM

s(k) Re

 1

M

∑
α∈ÎM

e2iπ
α(x−k)
M


= Re

 1

M

∑
α∈ÎM

(∑
k∈IM

s(k)e−2iπ
αk
M

)
e2iπ

αx
M


from which (13) directly follows. ut

Note that if x ∈ IM , the function α 7→ ŝ(α) e2iπ
αx
M

is M -periodic, and since ÎM is an interval of M consec-

utive values, we have

1

M

∑
α∈ÎM

ŝ(α) e2iπ
αx
M =

1

M

∑
α∈IM

ŝ(α) e2iπ
αx
M = s(x)

as we recognize the inverse DFT of ŝ. As expected, the

Shannon interpolation defined by (13) is exact (that is,

the restriction of S to IM is exactly s).

Also remark that when M is even, we need a real

part to cancel the imaginary part of the term α = −M2
in the sum (13) since the conjugate term (which would

correspond to α = M
2 ) is not present in the sum. The

real part can be avoided when ŝ(−M2 ) = 0, or by con-

sidering instead a sum with M + 1 terms, as stated by
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Proposition 4 Define, for integer M ,

εM (α) =

{
1/2 if |α| = M

2 ,

1 otherwise.
(14)

The discrete Shannon interpolate of a signal s : IM →
R can be written

S(x) =
1

M

∑
α∈Z

−M2 ≤α≤
M
2

εM (α) · ŝ(α) e2iπ
αx
M . (15)

Note that if M is odd, εM is identically equal to 1.

This asymmetry between the case M odd and M even

can be simply explained. Let us define as TM the real

vector space of real-valued trigonometric polynomials

that can be written as complex linear combinations of

(x 7→ e2iπ
αx
M )−M2 ≤α≤

M
2

. If M is odd, dimTM = M

and there is a unique element S of TM that exactly

interpolates s, and it is given by (13). If M is even,

dimTM = M + 1 and any element of TM that exactly

interpolates s can be written under the form S(x) +

λ sin(πx) with λ ∈ R, and the interpolation formula

(13) corresponds to the implicit (minimal norm) choice

λ = 0.

2.3 Shannon interpolation of 2-D images

Let u : IM × IN → R be a discrete M × N image. Its

2-dimensional DFT û : Z2 → C is defined by

û(α, β) =
∑
k∈IM
l∈IN

u(k, l)e−2iπ(αkM + βl
N ), (16)

and the natural extension of (11) is

Definition 2 The discrete Shannon interpolate of an

image u : IM × IN → R is U : R2 → R defined by

U(x, y) =∑
k∈IM
l∈IN

u(k, l) sincdM (x− k) sincdN (y − l). (17)

As in the 1-D case, Definition 2 can be reformulated in

the Fourier domain.

Proposition 5 The discrete Shannon interpolate of an

image u : IM × IN → R can be written

U(x, y) =
1

MN
×

∑
α,β∈Z

−M2 ≤α≤
M
2

−N2 ≤β≤
N
2

εM (α)εN (β) · û(α, β)e2iπ(αxM + βy
N ), (18)

where εM and εN are defined in (14).

Proof Simply remark that (12) can be rewritten

sincdM (x) =
1

M

∑
−M2 ≤α≤

M
2

εM (α)e2iπ
αx
N (19)

and (18) follows quite directly from (16) and (17). ut

Note that if both M and N are odd, (18) boils down

to

U(x, y) =
1

MN

∑
α∈ÎM
β∈ÎN

û(α, β)e2iπ(αxM + βy
N ), (20)

which is exactly the definition of the inverse DFT of û

for integer values of x and y. Thus, one could wonder

whether in the general case (M , N even or odd) the

generalization of (13), that is,

U ′(x, y) = Re

 1

MN

∑
α∈ÎM
β∈ÎN

û(α, β) e2iπ(αxM + βy
N )

 , (21)

would be an equivalent definition of U as in the 1-D

case. In fact, (17) and (21) both define bivariate trigono-

metric polynomials of TM⊗TN that exactly interpolate

u in IM × IN , but they differ when both M and N are

even. In that case, U ′(x, y) can still be rewritten in a

form similar to (18), but we have to change the coeffi-

cient εM (α)εN (β) into

ε′M,N (α, β) =


1
2 if (α, β) = ±(M2 ,

N
2 ),

0 if (α, β) = ±(−M2 ,
N
2 ),

εM,N (α, β) otherwise.

(22)

Thus, one easily shows that

U ′(x, y) = U(x, y)− û
(
M

2
,
N

2

)
sin(πx) sin(πy). (23)

Even if this difference is expected to be small for nat-

ural images (the Fourier coefficients of a natural image

decrease rather quickly as the frequency increases), the

true interpolate U is to be preferred to U ′ as it is sep-

arable and more invariant; in particular, the transform

u 7→ U ′ does not commute with the plane transforms

(x, y) 7→ (−x, y) and (x, y) 7→ (x,−y).

In the literature, most papers involving 2-D discrete

Shannon interpolation either do not mention this issue

[33,44], or restrict their study to odd numbers of sam-

ples [45,65]. In some other papers (see, e.g., the first

version of [10]), the slightly incorrect variant U ′ is used

in place of U , probably because taking the real part is

the most simple way to get rid of the imaginary part

that naturally appears when Nyquist frequencies are

not carefully handled.
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2.4 Dealing with periodization artifacts

Using discrete Shannon interpolation requires a careful

handling of edge effects, as the implicit periodization of

the image may produce interpolation artifacts (that is,

undesired oscillations) near the boundary of the image

domain if the intensity values on the opposite edges of

the image domain do not match well. This issue is dis-

cussed in detail in [50], and an efficient solution is pro-

posed that consists in decomposing the original image

into the sum of a periodic image and a smooth image.

Other solutions exist like symmetrization or apodiza-

tion using an appropriate weight function (e.g., a Ham-

ming window), but they appear to be less efficient in

general. In all the experiments presented throughout

this paper (and in particular in Section 5 and 6), the

periodic plus smooth decomposition of [50] will system-

atically be used.

2.5 Shannon interpolation and reversible transforms

As we saw earlier, Shannon Sampling Theorem provides

a nice theoretical framework that establishes a one-

to-one correspondence between continuous bandlimited

and discrete images, which naturally leads to the dis-

crete Shannon interpolation we just presented. Inter-

estingly, there is another justification for Shannon in-

terpolation, that does not explicitly refer to Shannon

Sampling Theorem: basically, it is the only linear inter-

polation that defines invertible subpixellic translations

(in a periodic setting). In the following, we assume for

simplicity that M is an odd integer, and write S the

space of M -periodic signals s : Z→ R.

Theorem 2 There exists a unique family of linear op-

erators (Tz)z∈R on S such that :

(i) z 7→ Tz is continuous,

(ii) ∀k, z ∈ Z, Tzs(k) = s(k − z),

(iii) ∀w, z ∈ R, Tw+z = Tw ◦ Tz,

(iv) lim
z→0

|z|−1‖Tz − id‖2 is minimal.

It is defined by

Tzs(k) = S(k − z), (24)

where S is the discrete Shannon interpolate of s defined

in (11) or equivalently in (13).

The Proof is given in Appendix B. Theorem 2 re-

mains true for M even, provided that we define S in

this case by

S =

{
s : IM → R,

∑
k∈IM

(−1)ks(k) = 0

}
. (25)

(Note that it is equivalent to assume ŝ(M/2) = 0). This

restriction is needed to exclude from S the alternated

signal k 7→ (−1)k, which clearly cannot be translated

in a way compatible with Hypotheses (ii) and (iii).

Theorem 2 shows that the only minimal continu-

ous semi-group extending the integer (periodic) trans-

lations is given by Shannon interpolation. This result

is interesting in the sense that it brings another justi-

fication to Shannon interpolation without referring to

Shannon Sampling Theorem (or to the Fourier Trans-

form, for that matter): among linear interpolation meth-

ods, only Shannon interpolation is able to translate im-

ages without information loss.

From Equation (74), we can see that a subpixellic

translation with Shannon interpolation can be imple-

mented with two DFTs, as

T̂zs(α) = e−2iπαz/M ŝ(α). (26)

Moreover, Tz is a linear isometry (‖Tzs‖2 = ‖s‖2),

which is another way to explain that no information

loss occurs.

Signal and image magnification is also very easy to

perform with discrete Shannon interpolation, as it es-

sentially boils down to a zero-padding in the Fourier

domain (for even dimensions, it is also necessary to

split the coefficients corresponding to Nyquist frequen-

cies α = ±M2 or β = ±N2 ). More surprisingly, image

rotation can also be implemented efficiently with the

DFT (see [75]), thanks to the following factorization of

a rotation matrix into a product of shear matrices:(
cos θ − sin θ

sin θ cos θ

)
=

(
1 −t
0 1

)(
1 0

sin θ 1

)(
1 −t
0 1

)
(27)

with t = tan θ
2 . As a shear transform like

v(x, y) = u(x− ty, y) (28)

consists in applying 1-D translations to each line of u,

a 2-D rotation can be decomposed as a combination

of 1-D translations, which can be implemented in the

Fourier domain. For that reason, image rotation with

discrete Shannon interpolation is a linear isometry, and

can thus be considered as a lossless transform.

2.6 Link with spline interpolation

A popular alternative to Shannon interpolation is spline

interpolation. Without going too much into details (see

[67,66] and the references therein), it is worth mention-

ing the relation between spline and Shannon interpola-

tion, and to understand how they can be combined to



The Shannon Total Variation 7

yield what is probably the most accurate and efficient

linear interpolation of bandlimited signals.

The spline interpolation of order n (n ∈ N) of a

signal s ∈ `2(Z) can be written

Sn(x) =
∑
k∈Z

c(k)βn(x− k), (29)

where βn : R → R is the spline of order n defined

by induction by β0 = 1[− 1
2 ,

1
2 )

and βk+1 = βk ∗ β0 for

all k ∈ N. It can be shown that the signal c : Z →
R is uniquely defined by the interpolation constraint

Sn(k) = s(k), k ∈ Z. When n ∈ {0, 1}, one has c = s

and spline interpolation corresponds to piecewise con-

stant (n = 0) or piecewise affine (n = 1) interpolation.

When n > 1, c depends linearly on s and can be ef-

ficiently computed using recursive filtering [67]. As re-

marked in [68], spline interpolation achieves an optimal

trade-off between complexity (the support of βn is an

interval with length n + 1) and asymptotic accuracy

(rate of convergence towards the unsampled signal as

the sampling step tends to 0). How does spline inter-

polation compare with Shannon interpolation? Indeed,

(29) can be rewritten as

Sn(x) =
∑
k∈Z

s(k)βncard(x− k), (30)

where βncard : R → R is the cardinal spline of order n

defined in the Fourier domain by

β̂ncard(ξ) =

(
sinc ξ

2π

)n+1

∑
k∈Z β

n(k)e−ikξ
. (31)

This provides a nice interpretation of spline interpola-
tion in the Fourier domain, as the Fourier transform of

(30) yields

Ŝn(α) = ŝ(α)β̂ncard(α), (32)

where ŝ(α) =
∑
k∈Z s(k)e−ikα is the Fourier Transform

of the discrete signal s. Thus, if S is a bandlimited

signal (supp Ŝ ⊂ [−π, π]) and s(k) = S(k) for all k ∈
Z, the Fourier transform of Sn is deduced from Ŝ by

periodization and multiplication by β̂ncard. This is to be

compared to Shannon interpolation, that recovers the

exact signal S since

Ŝ(α) = ŝ(α)1[−π,π]. (33)

In fact, β̂ncard → 1[−π,π] as n → +∞ [2] (or, equiva-

lently, βncard → sinc), which means that spline interpo-

lation can be viewed as an approximation of Shannon

interpolation (the equivalence being asymptotically ob-

tained for n = +∞). For finite n however, the effect of

-0.2

0

0.2

0.4

0.6

0.8

1

-8 -6 -4 -2 0 2 4 6 8

order 9
order 3
order 1

sinc

Fig. 2 Cardinal splines in the Fourier domain. The
Fourier transform of the interpolation kernels βncard is rep-
resented for n = 1, 3, 9. As n increases, they get closer to
the ideal low-pass filter obtained with the sinc kernel. The
approximation is responsible for blur (attenuation of known
frequencies) and aliasing (creation of high frequencies dupli-
cated from existing low frequencies) on spline-interpolated
images.

spline interpolation in the Fourier domain is question-

able: it creates high frequencies aliases (by spectrum

periodization), and then attenuates the whole spectrum

(the known part [−π, π] included) by an apodization

function that is a smooth approximation of 1[−π,π].

This apodization function (that is, β̂ncard) is represented

in Fig. 2 for various values of n.

On the one hand, spline interpolation is computa-

tionally efficient, and also versatile: it can be used to

magnify an image by an arbitrary factor, or to apply an

homography or a non-rigid transform to an image. On

the other hand, Shannon interpolation is very accurate,

as it does not attenuate known Fourier coefficients or

create high-frequency aliases. Getting the best of the

two worlds (that is, the accuracy of exact Shannon in-

terpolation and the efficiency of spline interpolation) is

easy: magnify the original image by a small factor (e.g.

2), and then use spline interpolation on the magnified

image. Fig. 3 illustrates the interest of such a combina-

tion in the case of a homographic transform.

In this section, we gave a precise definition of Shan-

non interpolation (with a careful treatment of Nyquist

frequencies in the case of even dimensions), and saw

how it provides a nice framework for interpolating ban-

dlimited images with a high degree of accuracy. It is

particularly useful for imaging sciences that require an

accurate treatment of subpixel scales and a strict con-

trol of artifacts (in particular, satellite imaging). As we

shall see in the next sections, Shannon interpolation can

be made compatible with total variation regularization,

provided that we use what we shall call the Shannon to-

tal variation.
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(a) original image ( c©CNES) (b) order 3 spline

(c) order 9 spline (d) Shannon + order 3 spline

Fig. 3 High quality homographic transforms using
a combination of Shannon and spline interpolations.
Applying an homographic transform to an image (a) requires
the use of an interpolation scheme. Spline kernels are inter-
esting but may produce undesired artifacts (the slight super-
imposed line hatch patterns in b,c) due to the creation of
spurious high frequencies. Applying the same transform with
Shannon interpolation alone would be computationally very
expensive, but a simple ×2 magnification with Shannon inter-
polation followed by an homographic transform implemented
by a spline of order 3 produces an artifact-free image for a
computational cost equivalent to spline interpolation.

3 The Shannon total variation

3.1 Definition

Let | · | denotes the `2 norm over R2, let Ω = IM × IN
denote a 2-D discrete domain of size M×N and u ∈ RΩ
a discrete gray-level image with domain Ω. We define

the Shannon total variation of u by

STV∞(u) =

∫
[0,M ]×[0,N ]

|∇U(x, y)| dxdy , (34)

where U is the Shannon interpolation of u defined

in (17), and ∇U : R2 → R2 denotes the gradient of

the trigonometric polynomial U . No closed-form for-

mula exist for (34), but we can approximate this con-

tinuous integral with the Riemann sum

STVn(u) =
1

n2

∑
(k,l)∈Ωn

|∇nu(k, l)| , (35)

where n ∈ N∗, Ωn = InM × InN and

∀(k, l) ∈ Ωn, ∇nu(k, l) = ∇U
(
k
n ,

l
n

)
.

In order to compute STVn(u), we need to focus on

the practical computation of ∇nu. By differentiating

(18), we get the gradient of U , that is, ∀(x, y) ∈ R2,

∇U(x, y) =
1

MN

∑
−M2 ≤α≤

M
2

−N2 ≤β≤
N
2

e
2iπ

(
αx
M +

βy
N

)
gû(α, β) , (36)

where

gû(α, β) = 2iπ εM (α)εN (β) û(α, β)

(
α/M

β/N

)
. (37)

Therefore,∇nu can be efficiently computed in the Fourier

domain for n ≥ 2 with the following

Proposition 6 For any n ≥ 2 and any (α, β) ∈ Ω̂n :=

ÎnN × ÎnM , we have

∇̂nu(α, β) =

{
n2gû(α, β) if |α| ≤ M

2 , |β| ≤
N
2 ,

0 otherwise,
(38)

where gû is given by (37).

Proof The result comes directly when writing (36) with

(x, y) =
(
k
n ,

l
n

)
, and extending the sum to the frequency

domain Ω̂n by adding zero terms. Note that Ω̂n contains

all the frequencies (α, β) such that −M2 ≤ α ≤ M
2 and

−N2 ≤ β ≤
N
2 involved in (36) since n > 1. ut

The next Proposition establishes an upper-bound

for the induced `2 norm (noted ||| · |||) of the ∇n oper-

ator, which will be useful later.

Proposition 7 For any n ≥ 2, we have

|||∇n||| ≤ nπ
√

2 . (39)

Proof Let u ∈ RΩ , from (38) we deduce

‖∇̂nu‖2 =
∥∥n2gû∥∥2 ≤ 4π2n4 ‖û‖2

(
1

4
+

1

4

)
, (40)

since for any (α, β) such as |α| ≤ M
2 and |β| ≤ N

2 , we

have |εM (α)εN (β) αM |
2 ≤ 1

4 and |εM (α)εN (β) βN |
2 ≤ 1

4 .

Then, using the Parseval identity in (40), that is,

‖∇nu‖2 =
1

n2MN
‖∇̂nu‖2 and

1

MN
‖û‖2 = ‖u‖2 ,

yields ‖∇nu‖2 ≤ 2π2n2‖u‖2 and consequently (39). ut

Similarly to Proposition 6, we can compute the ad-

joint of ∇n in the Fourier domain (the proof is detailed

in Appendix C).
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Proposition 8 Let divn = −∇∗n, then for any n ≥ 2,

p = (px, py) ∈ RΩn ×RΩn , and (α, β) ∈ Ω̂ := ÎM × ÎN ,

we have

d̂ivn(p)(α, β) = 2iπ

(
α

M
hp̂x(α, β) +

β

N
hp̂y (α, β)

)
,

with hp̂x(α, β) =

p̂x(α, β) if |α| < M
2 , |β| <

N
2

1
2 (p̂x(α, β)− p̂x(−α, β)) if α = −M2 , |β| <

N
2

1
2 (p̂x(α, β) + p̂x(α,−β)) if |α| < M

2 , β = −N2
1
4

∑
s1=±1
s2=±1

s1 p̂x(s1α, s2β) if (α, β) = (−M2 ,−
N
2 ) ,

and hp̂y (α, β) =

p̂y (α, β) if |α| < M
2 , |β| <

N
2

1
2 ( p̂y (α, β) + p̂y (−α, β)) if α = −M2 , |β| <

N
2

1
2 ( p̂y (α, β)− p̂y (α,−β)) if |α| < M

2 , β = −N2
1
4

∑
s1=±1
s2=±1

s2 p̂y (s1α, s2β) if (α, β) = (−M2 ,−
N
2 ) .

Notice that Propositions 6 to 8 can be easily adapted

to the case n = 1. However, we shall not need to con-

sider this case as STV1 happens to be a poor approx-

imation of STV∞ (see next section). Note also that

similar definitions and propositions could be established

for the U ′ variant of Shannon interpolation mentioned

in (21). This variant yields somewhat simpler formulas

(no weights are required to handle Nyquist frequencies

in the case of even dimensions) since all operators can

be obtained by taking the real part of complex-valued

images. However, in addition to being less invariant (as

discussed in the end of Section 2.3), U ′ is also compu-

tationally less efficient as it requires the computation
of DFTs of complex-valued images.

3.2 Choice of the oversampling factor n

When estimating STV∞(u) with STVn(u), which value

of the oversampling factor n should we choose? We ex-

perimentally observed on many images that the con-

vergence with respect to n is extremely fast, so that

in practice choosing n = 2 or n = 3 is enough. Note

that an estimate of STV∞(u) could also be obtained

by using a finite difference scheme on the image magni-

fied with Shannon interpolation, that is, n−1TVd(Znu)

with

∀(k, l) ∈ Ωn, Znu(k, l) = U

(
k

n
,
l

n

)
.

Both estimates are consistent in the sense that

lim
n→+∞

STVn(u) = lim
n→+∞

n−1TVd(Znu) = STV∞(u) .

However, the convergence speed is much worse for the

latter, which comforts us in the choice of STVn (see

Table 1).

n n−1TVd(Znu) STVn(u)

1 1.6 · 10−1 1.8 · 10−2

2 4.2 · 10−2 1.3 · 10−3

3 2.1 · 10−2 1.7 · 10−4

5 8.6 · 10−3 7.3 · 10−5

10 2.8 · 10−3 3.4 · 10−6

Table 1 Relative errors of two STV∞ estimates. We
compare two estimates of STV∞(u) when u is the classi-
cal “Lena” image. As we can observe, the relative errors
are much smaller with STVn(u) (third column) than with
n−1TVd(Znu) (second column), and the convergence with
respect to n is faster. Even for n = 2, the STV2 estimate
is very accurate with a relative error of 0.1% or so. This ex-
periment has been repeated on many other images, including
pure noise images, and yielded similar conclusions for all of
them.

As concerns the idea of estimating STV∞(u) with

STV1(u), the following result shows that it could lead

to incorrect results, as controlling STV1(u) is not suf-

ficient to control STV∞(u). We believe that, on the

contrary, such a control is ensured as soon as n ≥ 2,

even though we have no proof of this affirmation yet.

Theorem 3 There exists no constant C such that

STV∞(u) ≤ C · STV1(u)

for any positive integer M and any discrete image u of

size M ×M .

The proof is given in Appendix D. It consists in

building a sequence of discrete images uM with size
M ×M such that STV1(uM ) is fixed but STV∞(uM )

increases to +∞ with M .

In all the experiments reported in this paper, we

used STVn with n = 3, but we observed only very slight

improvements (and sometimes none) compared to the

case n = 2, which should probably be preferred when

computational issues are important. Note also that one

could choose non-integer values of n (only nM and nN

have to be integers), which could also be interesting for

computational issues.

4 Duality tools for handling the STV

regularizer in a variational framework

4.1 Recall of convex analysis

We here briefly recall some classical convex analysis re-

sults needed for non-smooth convex optimization. We

refer to [28] for a more detailed presentation.
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Consider a finite-dimensional real vector space E

and let E? denotes its dual space, that is, the set of

linear mappings from E to R. Let R denotes the set

R ∪ {−∞,+∞} and 〈·, ·〉 : E? × E → R the bilinear

mapping defined by

∀ϕ ∈ E?, ∀u ∈ E, 〈ϕ, u〉 = ϕ(u) .

An affine function on E is a function A : u 7→ 〈ϕ, u〉+α,

where ϕ ∈ E? is called the slope of A and α ∈ R the

constant term. We denote by Γ (E) the set of functions

F : E → R which are the pointwise supremum of a

family of affine functions over E. One can show that F is

an element of Γ (E) if and only if it is convex and lower

semi-continuous (l.s.c.) and does not take the value −∞
unless it is constant. In order to dismiss singular cases,

we say that F is proper if it never assumes the value

−∞ and is different from the constant +∞. We denote

by Γ0(E) the set of proper elements of Γ (E).

Given a function F : E → R, the Γ -regularization

of F is the largest element of Γ (E) which lower bounds

F , or, equivalently, the pointwise supremum of all affine

functions that lower bound F . Note that an affine func-

tion A with slope ϕ ∈ E? and constant term α ∈ R
satisfies A ≤ F if and only if α ≤ −F ?(ϕ), where

F ?(ϕ) = sup
u∈domF

〈ϕ, u〉 − F (u) , (41)

and domF = {u ∈ E, F (u) < +∞}. The function

F ? : E? → R is called the Legendre-Fenchel transform

of F (or the polar, or the conjugate of F ). It is an

element of Γ (E?), as it can be seen as the pointwise

supremum over the dual space E? of all affine functions

{Au}u∈domF defined by

∀u ∈ domF, Au : ϕ 7→ 〈ϕ, u〉 − F (u) .

Since here E has finite dimension, it is a reflexive space

and the Legendre-Fenchel transform of F ? (noted F ??)

is an element of Γ (E??) (and thus an element of Γ (E)),

which happens to be exactly the Γ -regularization of F .

In particular F ?? ≤ F and we have the characterization

F ∈ Γ (E)⇔ F ?? = F , (42)

which is very useful to derive a primal-dual reformu-

lation of an optimization problem when the cost func-

tion decomposes as a sum with at least one term in

Γ (E). Besides, since E (endowed with the Euclidean

inner product) is a Hilbert space, it is self-dual in the

sense that any element of E? can be represented as the

inner product with an element of E, which is very useful

in practical computations.

4.2 Chambolle-Pock Algorithm

The recent use in imaging of those powerful convex

analysis tools based on duality allowed to properly han-

dle total variation-based variational problems (see e.g.

[13,78]). This initiated some flourishing theoretical re-

search (see e.g. [4,31]) as well as the development of

efficient numerical schemes [17,22,7,72,54,27,57] dedi-

cated to nonsmooth optimization. We will here briefly

recall the formulation of the celebrated first order primal-

dual algorithm of Chambolle and Pock [17], which can

be used to address various total variation based image

processing tasks and comes with nice convergence the-

orems.

Consider X and Y two finite-dimensional real vector

spaces, an inner product 〈·, ·〉 over Y and the generic

saddle-point problem

min
x∈X

max
y∈Y

G(x) + 〈Kx, y〉 − F ?(y) , (43)

where F ∈ Γ0(Y ), G ∈ Γ0(X) and K : X → Y denotes

a linear operator. We set H : (x, y) 7→ G(x)+ 〈Kx, y〉−
F ?(y) and we assume that problem (43) has at least one

solution (i.e. a saddle-point of H). Recall that thanks

to (42), for any x ∈ X we have

F (Kx) = F ??(Kx) = sup
y∈Y
〈Kx, y〉 − F ?(y) , (44)

therefore one can interpret Equation (43) as a primal-

dual formulation of the primal problem

min
x∈X

G(x) + F (Kx) (45)

as soon as the supy∈Y is indeed a maximum (which

will be the case in practice). The proximal splitting al-

gorithm proposed by Chambolle and Pock in [17] (see

also [51,59], or more recently [55,21] for more details

about proximity operators and proximal algorithms) for

solving problem (43) is described in Algorithm 1 below.

In the case θ = 0, one iteration k of Algorithm 1

consists in a proximal ascent of y 7→ H(xk, y) followed

by a proximal descent of x 7→ H(x, yk+1), yielding a

semi-implicit variant of the classical Arrow-Hurwicz al-

gorithm [3]. In the case θ > 0, the iterate xk+1 =

xk+1 +θ
(
xk+1 − xk

)
represents a linear approximation

(or extrapolation) of the next iterate xk+2 based on the

current and the previous iterates xk+1 and xk; it is used

to make the scheme more implicit and prove the con-

vergence (in the case θ = 1 and τσ|||K|||2 < 1) of the

sequence (xk, yk)k≥0 toward a saddle-point of H, with

an estimate of the convergence rate in O(1/N) after N

iterations (see Theorem 1 in [17]). Notice that some ac-

celerated variants of this algorithm were also proposed
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Algorithm 1: Chambolle-Pock resolvent algo-

rithm for problem (43)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], x0 ∈ X,
y0 ∈ Y , and set x0 = x0

(note: for θ = 1, convergence toward a solution of
(43) was proven in [17] when τσ|||K|||2 < 1).

Iterations: For k ≥ 0, update xk, yk and xk as
follows,

yk+1 = argmin
y∈Y

1
2σ

∥∥y − (yk + σKxk)
∥∥2
2

+ F?(y)

xk+1 = argmin
x∈X

1
2τ

∥∥x− (xk − τK∗yk+1
)∥∥2

2
+G(x)

xk+1 = xk+1 + θ
(
xk+1 − xk

)

by the same authors, which under regularity assump-

tions on F ? and G achieve better convergence rates,

thanks to Nesterov-like acceleration strategies [52] (see

Algorithms 2 and 3 in [17]).

4.3 Dual formulation of the Shannon total variation

The STVn operator defined in (35) can be rewritten

under the form STVn(u) = 1
n2 ‖∇nu‖1,2, noting ‖ · ‖1,2

the norm over the space RΩn × RΩn defined by

∀g ∈ RΩn × RΩn , ‖g‖1,2 =
∑

(x,y)∈Ωn

|g(x, y)| .

One easily checks that the dual norm of ‖ · ‖1,2 is the

norm ‖ · ‖∞,2 defined by

∀p ∈ RΩn × RΩn , ‖p‖∞,2 = max
(x,y)∈Ωn

|p(x, y)| .

Consequently (see e.g. [8]), the Legendre-Fenchel

transform of ‖ · ‖1,2 , noted ‖ · ‖?1,2 , is the indicator

function of the closed unit ball for the norm ‖ · ‖∞,2 ,

defined by

∀p ∈ RΩn × RΩn , δ‖·‖∞,2≤1(p) =

{
0 if ‖p‖∞,2 ≤ 1 ,

+∞ otherwise.

We will now use the duality tools described in Sec-

tion 4.1 to derive a dual formulation of our STVn op-

erator.

Proposition 9 (dual formulation of STVn)

For any integer n ≥ 1 and for any image u ∈ RΩ,

STVn(u) = max
p∈RΩn×RΩn

〈 1
n2∇nu, p〉 − δ‖·‖∞,2≤1(p) .

Proof Since ‖ · ‖1,2 is convex and l.s.c. over RΩn ×RΩn ,

it is an element of Γ (RΩn × RΩn), thereby ‖ · ‖1,2 =

‖ · ‖??1,2 thanks to (42). Besides, given any image u ∈

RΩ , one has STVn(u) = 1
n2 ‖∇nu‖1,2 = ‖ 1

n2∇nu‖1,2 .

Therefore, STVn(u) =
∥∥ 1
n2∇nu

∥∥??
1,2

, i.e.

STVn(u) = sup
p∈RΩn×RΩn

〈 1
n2∇nu, p〉RΩn×RΩn − ‖p‖?1,2 ,

and ‖p‖?1,2 is exactly δ‖·‖∞,2≤1(p). Last, one can see that

the supremum is attained, since it is nothing but the

maximum of the inner product term over the closed

unit ball for the dual norm ‖ · ‖∞,2. ut

4.4 The Huber STV

The use of TVd as a regularizer for image processing

applications has a well-known drawback, the so-called

staircasing effect, which is the creation of piecewise con-

stant regions with artificial boundaries where one would

have expected smooth intensity variations (see for in-

stance [53,18,58] for theoretical results about the stair-

casing). Several variants of TVd have been proposed in

order to avoid this undesirable effect (see for instance

[9,42,43]). In the numerical experiments that will be

presented in Section 5, we observed that although this

staircasing effect is significantly attenuated when using

the STVn variant of TVd, it remains present (at least

visually) in the processed images.

In the case of TVd, a classical way to get rid of the

staircasing effect consists in replacing the `2 norm | · |
of the gradient in the definition of the TV operator by

its smooth Huber approximation with parameter α > 0

(coming from the statistical literature [37,38], and used

for instance in [71,73,17]). It is defined by

∀y ∈ R2, Hα(y) =

{
|y|2
2α if |y| ≤ α ,

|y| − α
2 otherwise .

(47)

The same adaptation can be easily done in the case of

STV by replacing the `2 norm by the Huber-function

Hα in Equations (34) and (35), which in the case of the

Riemann approximation leads to

HSTVα,n(u) =
1

n2

∑
(x,y)∈Ωn

Hα (∇nu(x, y)) , (48)

for any image u ∈ RΩ . Next Proposition establishes a

dual reformulation of (48).

Proposition 10 (dual formulation of HSTVα,n)

Let α > 0 and n ≥ 1. For any image u ∈ RΩ, one has

HSTVα,n(u) =
max

p∈RΩn×RΩn
〈 1
n2∇nu, p〉 − δ‖·‖∞,2≤1(p)− α

2n2 ‖p‖22 .

The Proof is given in Appendix E. In the following, we

shall use the dual formulations of STVn and HSTVα,n

provided by Propositions 9 and 10 in order to reformu-

late many optimization problems frequently considered

in image restoration in their primal-dual form (43).
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5 Image processing applications

In this section, we illustrate the interest of STV in the

case of several TV-based image processing applications.

As we shall see, replacing the classical discrete TV by

STV does not raise any theoretical nor numerical diffi-

culty, and brings clear improvements regarding subpix-

ellic scales.

5.1 Image denoising

The STV variant of the denoising model (1) proposed

by Rudin, Osher and Fatemi (ROF) in [62] writes

argmin
u∈RΩ

‖u− u0‖22 + λSTVn(u) , (49)

where u0 ∈ RΩ denotes the observed image with (dis-

crete) domain Ω, and λ ≥ 0 is the so-called regular-

ity parameter that controls the trade-off between the

data-fidelity term (the square `2 distance to u0) and the

regularity term STVn(u) in the minimization process.

Using Proposition 9, we immediately get a primal-dual

reformulation of (49),

argmin
u∈RΩ

max
p∈RΩn×RΩn

‖u− u0‖22 + 〈 λn2∇nu, p〉 − δ‖·‖∞,2≤1(p) , (50)

which has exactly the form of (43) with (x, y) = (u, p),

G(u) = ‖u − u0‖22, K = λ
n2∇n (with adjoint K∗ =

− λ
n2 divn), and F ?(p) = δ‖·‖∞,2≤1(p).

Notice that replacing STVn(u) by HSTVα,n(u)

into (49) leads to the Huber STVn variant of ROF. In

view of Proposition 10, it amounts to replace the term

F ?(p) = δ‖·‖∞,2≤1(p) by F ?(p) = δ‖·‖∞,2≤1(p)+ λα
2n2 ‖p‖22

into the primal-dual problem (50).

For both STVn and HSTVα,n regularizers, the cor-

responding primal-dual problem can be numerically sol-

ved by specializing Algorithm 1, which yields Algo-

rithm 2 below. Notice that (39) yields the upper bound

|||K||| ≤ λπ
√
2

n , which is useful to set the parameters

τ and σ of the algorithm. The images resulting from

the different (discrete or Shannon, Huber or usual) TV-

based image denoising models are compared in Fig. 4

and 5: we illustrate in Fig. 4 the improved behavior of

STV over the classical discrete TV regarding posterior

interpolation, and do the same in Fig. 5 for the Huber

variant.5.2 Inverse problems

Let us now consider the more general case of a linear

inverse problem addressed with quadratic data fidelity

and STV regularization. It writes

ũ ∈ argmin
u∈RΩ

‖Au− u0‖22 + λSTVn(u) , (52)

Algorithm 2: Chambolle-Pock resolvent Algo-

rithm for Problem (49)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], u0 ∈ RΩ,
p0 ∈ RΩn × RΩn , set u0 = u0 and set ν = 1 when
using the STVn regularizer and ν = 1 + σαλ

n2 when
using the HSTVα,n regularizer. Define the projection
operator π∞,2 by

∀(x, y) ∈ Ωn, π∞,2(p)(x, y) =
p(x, y)

max (1, |p(x, y)|)
,

for any p ∈ RΩn × RΩn .

Iterations: For k ≥ 0, update pk, uk and uk with

pk+1 = π∞,2
((
pk + σλ

n2 ∇nuk
)
/ν
)

uk+1 =
uk + τλ

n2 divnpk+1 + 2τu0

1 + 2τ

uk+1 = uk+1 + θ
(
uk+1 − uk

)
(51a)

(51b)

(51c)

where u0 ∈ Rω denotes the observed image (ω being a

finite subset of Z2, possibly ω = Ω) and A : RΩ → Rω is

a linear operator which may model the convolution with

the impulse response of an acquisition device (defocus

or motion blur for instance) or other linear observation

mechanisms such as tomography, downsampling, loss of

image regions, etc.

Proposition 11 (primal-dual formulation of (52))

Any solution ũ of Problem (52) satisfies

ũ ∈ argmin
u∈RΩ

max
p∈RΩn×RΩn

q∈Rω

G(u) + 〈Ku, (p, q)〉 − F ?(p, q) ,

where G(u) = 0, F ?(p, q) = δ‖·‖∞,2≤1(p) + ‖ q2 + u0‖22
and K : RΩ →

(
RΩn × RΩn

)
×Rω is the linear operator

defined by Ku =
(
λ
n2∇nu,Au

)
for any u ∈ RΩ .

Proof Writing f(v) = ‖v − u0‖22, one easily gets the

expression of the Legendre-Fenchel transform of f , that

is f?(q) = ‖ q2 +u0‖22−‖u0‖22. Besides, since f ∈ Γ0(Rω),

we have

‖Au− u0‖22 = f(Au) = f??(Au)

= sup
q∈Rω
〈Au, q〉 − ‖ q2 + u0‖22 + ‖u0‖22 , (53)

and the supremum is attained since the cost functional

is concave, differentiable, and its gradient vanishes at

the point q = 2(Au−u0). Replacing the quadratic term

accordingly into (52), removing the constant ‖u0‖22
(which does not change the set of minimizers), and re-

placing as well the STVn term by its dual formulation

using Proposition 9, we obtain the desired result. ut
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(a) noisy image (b) TVd (discrete TV) (c) STV (Shannon TV, n = 3)

details of (b) bicubic interpolation of (b) Shannon interpolation of (b)

details of (c) bicubic interpolation of (c) Shannon interpolation of (c)

Fig. 4 Comparison of discrete TV and Shannon TV for image denoising. A noisy image (top, left) undergoing
additive white Gaussian noise with zero mean and standard deviation σ = 20 (see also the reference image in Fig. 5) was
processed with the ROF model using the TVd (top, center) and STV3 (top, right) discretizations. The regularity parameter
λ was set in order to get the same norm of the estimated noise (the difference between the noisy and the restored image) in
each simulation. In the second row we display a cropping of the TVd-restored image oversampled with factor 3 using different
interpolation methods (from left to right: nearest neighbor, bicubic spline and Shannon interpolation). In the third row, the
same operation is realized on the STV-restored image. We can see that images TVd and STV images look globally similar. The
details on the left of rows 2 and 3 reveal the presence of staircasing in both cases, but this artifact is significantly attenuated
in the case of STV. Looking at the second row, we see that the TVd image cannot be interpolated in a satisfying way, since
both bicubic and Shannon interpolation methods yield images with undesirables oscillations (ringing) localized near objects
contours. This is not the case with the STV image, that can be interpolated without creating artifacts with both bicubic and
Shannon interpolations (row 3).
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(d) reference image (e) Huber TVd (f) Huber STV (n = 3)

details of TVd (see Fig. 4 (b)) details of (e) bicubic interpolation of (e)

details of STV (see Fig. 4 (c)) details of (f) bicubic interpolation of (f)

Fig. 5 Image denoising with Huber-TV and Huber-STV. This experiment is similar to Fig. 4, except that we here
consider the Huber variant (with α = 5) of ROF denoising, both for the TVd and STV discretizations. As expected, the Huber
variant avoids the staircasing effect for both discretizations (TVd and STV). However, it does not solve the interpolability
issue for TVd: the bicubic interpolation of Huber TVd presents several ringing artifacts (like the non-Huber TVd displayed
in Fig. 4), and these artifacts are again completely avoided by considering the STV discretization. The same phenomenon is
observed on the Shannon interpolates of (e) and (f) (not displayed here).
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Again, the Huber version of (52) is obtained by re-

placing the STVn(u) term by HSTVα,n(u), which sim-

ply changes F ?(p, q) = δ‖·‖∞,2≤1(p) + ‖ q2 + u0‖22 into

F ?(p, q) = δ‖·‖∞,2≤1(p) + αλ
2n2 ‖p‖22 + ‖ q2 + u0‖22.

Note that the adjoint of K (defined in Proposi-

tion 11) is K∗(p, q) = − λ
n2 divnp+A∗q, and its induced

`2 norm satisfies

|||K|||2 ≤ ||| λn2∇n|||2 + |||A|||2 ≤ 2
(
πλ
n

)2
+ |||A|||2 .

Thus, Chambolle-Pock Algorithm can be rewritten in

the present case as Algorithm 3 below. The update of

the dual variable (here the tuple (p, q)) in the generic

Algorithm 1 was split into two independent updates

thanks to the additive separability with respect to p

and q of the function (p, q) 7→ 〈Ku, (p, q)〉 − F ?(p, q).

Algorithm 3: Chambolle-Pock resolvent Algo-

rithm for Problem (52)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], u0 ∈ RΩ,
p0 ∈ RΩn × RΩn , q0 ∈ Rω, set u0 = u0 and set ν as
in Algorithm 2.

Iterations: For k ≥ 0, update pk, uk and uk with

pk+1 = π∞,2
((
pk + σλ

n2 ∇nuk
)
/ν
)

qk+1 =
2 qk + 2σ

(
Auk − u0

)
2 + σ

uk+1 = uk + τλ
n2 divnp

k+1 − τA∗qk+1

uk+1 = uk+1 + θ
(
uk+1 − uk

)

5.2.1 Application to image deconvolution

In the case of image deconvolution, the linear operator

A in (52) is the convolution with a point spread function

kA (modeling for instance some blurring phenomenon

such as diffraction, defocus, motion blur, . . . ). Let us

consider such a discrete convolution kernel kA ∈ RωA
with finite domain ωA ⊂ Z2, and define the associated

operator A : RΩ → Rω by

Au(x, y) =
∑

(a,b)∈ωA

kA(a, b)u(x− a, y − b) , (55)

where ω denotes the subset of Ω made of all the pixels

(x, y) ∈ Ω such as (x, y) − ωA ⊂ Ω. In order to use

Algorithm 3, we need the explicit expression of A∗ :

Rω → RΩ , which writes

A∗v(x, y) =
∑

(a,b)∈ωA

kA(a, b) v(x+ a, y + b) , (56)

for v ∈ Rω and (x, y) ∈ Ω, with the convention that

v(x+ a, y + b) = 0 when (x+ a, y + b) 6∈ ω. One easily

checks that |||A||| ≤ ||kA||1 as well.

Most authors define the convolution with kernel kA
as an operator A : RΩ → RΩ at the cost of an exten-

sion of u outside of Ω, usually a periodic or a mirroring

condition, or a zero-extension. Such a convention sim-

plifies the analysis (and the computations, especially in

the periodic case where the convolution can be imple-

mented with the DFT), but we shall not use it here as it

is unrealistic and thus of little help to process real data.

Experiments illustrating STV deblurring are displayed

in Fig. 6 (motion blur) and 7 (out of focus).

5.2.2 Application to image zooming and inpainting

The variational formulation (52) can be used to perform

many other image processing tasks: as soon as we can

derive a closed-form expression for A, its adjoint A∗,

and estimate an upper bound for |||A|||, Algorithm (3)

can be implemented without difficulty. We here mention

two more examples of applications (zoom and inpaint-

ing), each corresponding to a particular choice of A. We

experimentally checked that, in both cases, the use of

STVn instead of TV yields nicely interpolable images.

In the case of image zooming, the operator A is often

assumed to be a blurring kernel followed by a subsam-

pling procedure (see [44,17]). A simple particular case

is the discrete captor integration model A : RΩ → Rω
defined by

Au(x, y) =
1

δ2

∑
(a,b)∈I2δ

u(δx+ a, δy + b) , (57)

where ω = IM × IN denotes a small discrete domain

and Ω = IδM × IδN a bigger one, δ (the magnification

factor) being an integer at least equal to 2. In that

case, we easily obtain the relation |||A||| = 1
δ and the

expression of the adjoint operator A∗ : Rω → RΩ as

A∗v(x, y) =
1

δ2
v
(
bxδ c, b

y
δ c
)
. (58)

Another example is image inpainting, which aims at

estimating plausible image intensities in a (nonempty)

subpart ω0 of the image domain Ω where the infor-

mation is missing. In that case, ω = Ω, the operator

A : RΩ → RΩ is defined by

Au(x, y) = 1ω0(x, y) · u(x, y) ,

and one easily checks that A∗ = A (A is a diagonal

operator) and |||A||| = 1.
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(a) blurry & noisy (b) reference

(c) TVd-restored (d) STV-restored details of (a)

Shannon interpolation of (c) Shannon interpolation of (d)

Fig. 6 Motion deblurring with discrete TV and Shannon TV. A degraded (blurry and noisy) image (a) is synthesized
by convolving the reference image (b) with a real-data motion blur kernel and then adding a white Gaussian noise with zero-
mean and standard deviation σ = 2. The degraded image (a) is then processed by solving the corresponding TVd and STV3

regularized inverse problems (Equation (52)). As in Fig. 4, the regularization parameter λ is set in such a way that the amount
of estimated noise (here the quantity ‖Aũ− u0‖2, where ũ is the restored image) is the same for both methods. The resulting
images (c) and (d) are quite similar, but the magnified views on the bottom row (magnification of factor 4 with Shannon
interpolation) clearly show that they strongly differ in terms of interpolability: as in the denoising case, the interpolated TVd

image exhibits strong ringing artifacts, whereas the interpolated STV image does not.
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(a) blurry & noisy (b) reference

(c) Huber TV (d) Huber STV details of (a)

bicubic interpolation of (c) bicubic interpolation of (d)

Fig. 7 Out-of-focus deblurring using Huber TV and Huber STV. This experiment is similar to Fig. 6, except that we
here used a fluorescence microscopy image of actin filaments and microtubules in interphase cells (source cellimagelibrary.org,
cil number 240, first channel), a synthetic out-of-focus blur kernel defined by the indicator of a disk with radius 7 pixels, and
we replaced the TVd and STV3 regularizers by their Huber versions (α = 5). The conclusions are identical.
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5.3 Constrained minimization

In some situations, it is desirable to consider constrained

minimization problems of the type

ũ ∈ argmin
u∈RΩ

STVn(u) subject to Au = u0 , (59)

where u0 denotes the observed image with discrete do-

main ω, ũ denotes the reconstructed image with dis-

crete domain Ω, and A denotes again a linear operator

from RΩ to Rω. In other words, we are interested in the

computation of an image ũ having the smallest Shannon

TV among those satisfying the constraint Au = u0. Re-

mark that the inverse problem (52) is none other than

a relaxed version of (59). In the presence of noise, it

is better to use the relaxed formulation, but the con-

strained model (59) may be interesting when the level of

noise in u0 is low, especially because it does not require

the setting of any regularization parameter λ.

Using Proposition 9, we obtain a primal-dual refor-

mulation of (59),

ũ ∈ argmin
u∈RΩ

max
p∈RΩn×RΩn

δA−1(u0)(u) + 〈 1
n2∇nu, p〉 − δ‖·‖∞,2≤1(p) , (60)

where the (closed and convex) set

A−1(u0) :=
{
u ∈ RΩ , Au = u0

}
is assumed to be nonempty, and δP denotes the indica-

tor function of a set P (that is, δP(p) = 0 if p ∈ P, +∞
otherwise). A solution of Problem (60) can be numeri-

cally computed using Algorithm 4, takingG = δA−1(u0),

F ? = δ‖·‖∞,2≤1 and K = 1
n2∇n in Chambolle-Pock Al-

gorithm.

Algorithm 4: Chambolle-Pock resolvent Algo-

rithm for Problem (60)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], u0 ∈ RΩ,
p0 ∈ RΩn × RΩn , set u0 = u0 and define ν and π∞,2
as in Algorithm 2. Denote by π0 the `2 projection
from RΩ onto the (closed and convex) set
A−1(u0) =

{
u ∈ RΩ , Au = u0

}
.

Iterations: For k ≥ 0, update pk, uk and uk with

pk+1 = π∞,2
((
pk + σ

n2∇nuk
)
/ν
)

uk+1 = π0
(
uk + τ

n2 divnp
k+1

)
uk+1 = uk+1 + θ

(
uk+1 − uk

)

To illustrate the general framework above, we will

consider in the next section the problem of reconstruct-

ing an image from partial measurements in the Fourier

domain. A particular case is image magnification (as-

suming that the original low-resolution image does not

suffer from aliasing), which corresponds to the recovery

of high-frequency components only, but other situations

(like tomography) require spectrum interpolation in a

more complicated domain. Note also that many other

applications, such as image inpainting or image zoom-

ing presented in Section 5.2.2, can be easily handled as

well with the constrained formulation (59).

5.3.1 Application to spectrum extrapolation

Given an image u0 ∈ RΩ whose spectrum û0 is known

on a certain (symmetric) subdomain ω̂0 of Ω̂, how to

extend this spectrum to the whole spectral domain Ω̂?

The trivial zero-padding approach, which amounts to

extending the spectrum with the constant zero, yields

a very oscillatory image in general, in reason of the

irregularity (missing Fourier coefficients) of the extrap-

olated spectrum. A more satisfying reconstruction can

be obtained with a variational approach: among all pos-

sible spectrum extensions, choose the one that mini-

mizes a given energy. This kind of approach was used

by Rougé and Seghier [60], who considered the Burg

entropy, and by Guichard and Malgouyres [36,44], who

used the discrete TV (but in a slightly different frame-

work, since they take as input a subsampled image

which suffers from aliasing). We here consider the en-

ergy STVn; in a constrained formulation, this is a par-

ticular case of (59), since the frequency constraint (û

and û0 are equal on ω̂0) can be enforced under the form

Au = u0 where A = F−1 ◦Mω̂0
◦ F (F and F−1 de-

note the direct and inverse discrete Fourier transforms

respectively, the operator Mω̂0
denotes the pointwise

multiplication of a element of CΩ̂ with 1ω̂0
, and û0 is

implicitly set to zero outside ω̂0). Note that the `2 pro-

jection π0 onto the set A−1(u0) is simply obtained in

the Fourier domain with

∀u ∈ RΩ , ∀(α, β) ∈ Ω̂,

π̂0(u)(α, β) =

{
û0(α, β) if (α, β) ∈ ω̂0

û(α, β) otherwise .

Some examples of spectrum extrapolations are proposed

in Fig. 8 and 9.

5.3.2 Link with Compressed Sensing

The theory of compressed sensing [11,26] brings an in-

teresting perspective on the role and interest of TV

in image processing: under certain conditions, cartoon

images (that is, discrete images whose discrete gradi-

ent is sparse) can be reconstructed exactly from a lim-

ited number of linear measurements using TV mini-
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input image (u0) TVd STV (n = 3) reference

u0: spectrum TVd: spectrum STV: spectrum reference: spectrum

Fig. 8 Image zooming with spectrum extrapolation. An input image (1st column) is synthesized by setting to 0 the
high frequency components (that is, outside a square ω̂0) of a reference image (4th column). Spectrum extrapolation is then
realized using either the discrete TV (2nd column) or the STV (3rd column). For each image of the first row, the spectrum
(Fourier modulus, in log scale) is displayed below on the second row. As we can observe, the constrained TV minimization
framework (59) is efficient for spectrum extrapolation: both discretizations manage to reconstruct part of the missing high
frequencies and remove the ringing patterns observed in the input image. However, STV is to be preferred to discrete TV as
it manages to avoid the aliasing artifacts of the latter (red arrows), and delivers nicely interpolable images.

reference u0 (zero padding) STV

reference: spectrum u0: spectrum STV: spectrum

Fig. 9 Image reconstruction from partial measurements in the Fourier domain. We here reproduce a simplified
tomography inversion experiment: a reference image (1st column) is sampled in the Fourier domain along several discrete rays
(covering around 35% of the whole frequency domain), and two image reconstruction methods are compared. The first one
consists in setting the missing Fourier coefficients to 0 (2nd column), which produces severe ringing artifacts. Extrapolating the
missing Fourier coefficients with the constrained STV minimization framework (59) yields a much nicer image (3rd column)
which can be easily interpolated. As in Fig. 8, the spectrum of each image of the first row is displayed on the second row.
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mization. Indeed, the problem of spectrum extrapola-

tion we just described is a fundamental experiment of

the Compressed Sensing theory. Candès, Romberg and

Tao remarked in [11] that a discrete sampled image of

the Shepp-Logan phantom (a cartoon synthetic analyt-

ical image made by the addition of 10 ellipses) could

be exactly reconstructed from a limited number of its

DFT coefficients by minimizing the discrete TV of the

latent image, constrained with the known DFT coef-

ficients (see Fig. 10 (b)). The theory was simultane-

ously developed by Donoho [26], and continuously re-

fined later, in particular to extend the initial probabilis-

tic proofs to the deterministic case [25,39]. Also note

the works on simple model sets/quasicrystals by Matei

and Meyer [47,46], which establish links between Com-

pressed Sensing and irregular sampling. Please consider

[29] and the references therein for more details about

the Compressed Sensing theory.

In Fig. 10, we reproduce a classical experiment of

the Compressed Sensing theory by trying to reconstruct

the whole Shepp-Logan phantom image from a limited

number of its discrete Fourier coefficients. This spec-

trum extrapolation problem is solved using TV mini-

mization (either with TVd or the STV variant), as de-

scribed in Section 5.3.1. Contrary to TVd, which leads

to a perfect reconstruction (Fig. 10 (b)), the STV vari-

ant yields a distorted approximation (Fig. 10 (c)). The

reason for this seeming failure is simple: since the ref-

erence image is strongly aliased (as a sampled version

of a piecewise constant image), the use of the Shannon

interpolation (and hence STV minimization) is partic-

ularly inadequate. Notice incidentally that this exper-

iment (conceived to mimic the reconstruction frame-

work in Magnetic Resonance Imaging) is not realistic,

because in the physical world one would not be able

to measure Fourier coefficients of the discrete (aliased)

phantom image, but only Fourier coefficients of the con-

tinuous phantom. The difference is clearly analyzed in

[35]: “Counterintuitively, the reconstructions out of ras-

terized simulations lead to aliasing effects that have a

positive impact on visual quality. This situation, which

occurs when the same model is used for both simulation

and reconstruction, is sometimes referred to as “inverse

crime.” It arises because of the artificially imposed con-

sistency between the computational forward models used

for simulation and reconstruction. In such an inverse-

crime situation, the continuous nature of the underlying

physical model is not taken into account.”

Is it nonetheless possible to obtain results similar

to compressed sensing on interpolable images? To that

aim, we have to give up strict sparsity and consider

smooth versions of cartoon images (that is, the kind of

bandlimited image that could be observed in a realistic

optical system undergoing diffraction). In Fig. 11, we

used a smooth and non-aliased version of Shepp-Logan

phantom (obtained by keeping the low frequency com-

ponents of a 10-fold higher resolution image smoothed

by a Gaussian kernel). With this reference image, which

is well-suited to Shannon (and spline) interpolation,

and with acquisition conditions similar to those of

Fig. 10 (same measured Fourier coefficients), STV reg-

ularization leads to a more faithful reconstruction than

TVd.

Thus, we can see that even in a compressed sensing

framework (for which STV is a priori less suited because

the Shannon interpolate of a non-zero discrete image

cannot have a sparse gradient), the use of STV remains

interesting, in particular if the output image is to be

interpolated. Another example of this is the experiment

of Fig. 9, for which the TVd reconstruction (not shown)

and the STV reconstruction are visually similar, but

only the STV image can be well interpolated.

6 Regularization with weighted frequencies

Using STV as a regularizer leads to iterative algorithms

that operate in the Fourier domain. This has a non-

negligible computational cost, even though this kind of

algorithms is common nowadays and there exist very

efficient implementations of the Fourier Transform, like

FFTW [32]. We now consider an image restoration model

that benefits from the availability of the Fourier trans-

form of the current image at each iteration.

6.1 Model

Let u0 : Ω → R be an input image (with Ω = IM × IN )

and γ : Ω̂ → R+ a non-negative map that is symmetric

(in the sense that γ̂ is real-valued). We consider the

minimization problem

argmin
u∈RΩ

‖û− û0‖2γ + λSTVn(u) , (62)

where λ > 0 is a regularization parameter and

‖û− û0‖2γ =
1

|Ω|
∑

(α,β)∈Ω̂

γ(α, β) · |û(α, β)− û0(α, β)|2

is a weighted squared distance between u and u0 (strictly

speaking, it defines a distance only if γ does not van-

ish). Model (62) generalizes two other models consid-

ered above. Indeed, STV image denoising (49) is ob-

tained with γ ≡ 1, while the choice γ = 1ω̂0
leads
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(a) frequency mask (b) reconstruction with TVd (c) reconstruction with STV

Fig. 10 Compressed sensing under “inverse crime” conditions. We here simulate a compressed-sensing acquisition
of the synthetic cartoon Shepp-Logan image (sampled on a 187× 187 grid) by observing its DFT coefficients along 20 discrete
lines (a) that cover only 12% of the full frequency domain. The image is then reconstructed using constrained TVd (b) or
STV (c) minimization, as described in Section 5.3.1. The reconstruction obtained using TVd is indistinguishable from the
reference image (not displayed here), whereas the reconstruction obtained using STV is a poor approximation. This illustrates
the inability of STV to reconstruct cartoon (and thus severely aliased) images in an “inverse crime” (unrealistic) compressed
sensing framework (see discussion in Section 5.3.2).

(a) smooth reference (b) reconstruction with TVd (c) reconstruction with STV

resampling of (a) resampling of (b) resampling of (c)

Fig. 11 Compressed sensing under realistic conditions. We here consider a smooth reference image (a), obtained by
keeping the 187× 187 low-frequency content of a 1870× 1870 image of the analytical Shepp-Logan phantom smoothed with a
Gaussian filter (with standard deviation σ = 7). This setup is more realistic than the “inverse crime” situation of Fig. 10, since
the DFT coefficients of the reference image are now much more faithful to the Fourier coefficients of the underlying continuous
image. We reproduced the same experiments as in Fig. 10 with this smooth reference image, and obtained the corresponding
TVd (b) and STV (c) reconstructed image. We can see that STV regularization now clearly outperforms the discrete TV: the
reconstructed discrete image (c) is more faithful to the reference than (b) (visually, and in terms of PSNR: 54.4 dB with STV,
versus 37.5 dB with TVd), and the comparison of the interpolated STV and TVd images (second row) shows that the STV
result is geometrically more precise at a sub-pixel scale.

to a relaxed version of spectrum extrapolation consid-

ered in Section 5.3.1. Choosing a more general (non-

binary) weight map γ provides a way to selectively reg-

ularize the Fourier coefficients of the input image u0:

when γ(α, β) is large, one expects to obtain û(α, β) ≈
û0(α, β); on the contrary, the coefficients û(α, β) corre-

sponding to small (or zero) values of γ(α, β) are essen-

tially driven by STV regularization.
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6.2 Algorithm

Replacing the STVn term by its dual formulation

(Proposition 9) into (62) yields the primal-dual problem

argmin
u∈RΩ

max
p∈RΩn×RΩn

‖û− û0‖2γ + 〈 λn2∇nu, p〉 − δ‖·‖∞,2≤1(p) . (63)

In order to apply Algorithm 1 to (63), one needs to

perform at each iteration k the primal update

uk+1 = argmin
u∈RΩ

1
2τ

∥∥∥u− uk+1/2
∥∥∥2
2

+ ‖û− û0‖2γ , (64)

where uk+1/2 = uk + τλ
n2 divnp

k+1. Thanks to Parseval

Identity, this can be rewritten

ûk+1 = argmin
u∈RΩ

1
2τ |Ω|

∥∥∥û− ûk+1/2
∥∥∥2
2

+ ‖û− û0‖2γ , (65)

from which we easily obtain the explicit formula for the

update given in Algorithm 5.

6.3 Image Shannonization

One interesting application of Model (62) is its abil-

ity to (partly or fully) remove aliasing from a given

image, thus providing what we could call an “Image

Shannonizer”. We did not thoroughly investigate this

phenomenon yet but the first results we obtained using

the simple Gaussian weight function

γ(α, β) = e
−2π2σ2

(
α2

M2 +
β2

N2

)
(66)

seem interesting enough to be mentioned here.

Aliasing arises when a continuous image is not sam-

pled in accordance with Shannon Theorem, that is,

Algorithm 5: Chambolle-Pock resolvent algo-

rithm for problem (62)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], u0 ∈ RΩ,
p0 ∈ RΩn × RΩn , set u0 = u0 and define ν and π∞,2
as in Algorithm 2.

Iterations: For k ≥ 0, update pk, uk and uk with

pk+1 = π∞,2
((
pk + σλ

n2 ∇nuk
)
/ν
)

uk+1/2 = uk + τλ
n2 divnpk+1

uk+1 = F−1

( ̂uk+1/2 + 2τγ · û0

1 + 2τγ

)

uk+1 = uk+1 + θ
(
uk+1 − uk

)

when the sampling step is too large compared to the

highest frequency component that the image contains.

In that case, the sampled image will be aliased, which

means that its discrete Fourier coefficients will be the

sum of one correct value and several incorrect values

arising from higher frequencies that cannot be repre-

sented in the available discrete Fourier domain. In prac-

tice, since the power spectrum of natural images tends

to exhibit a power-law decrease (see [61]), aliasing most-

ly impacts the highest frequencies of the discrete image

in general; it is thus logical to choose for γ a decreas-

ing function of the distance to the origin. The isotropic

map (66) is a possibility, but it would certainly be worth

exploring other choices.

The Shannon interpolate of an aliased image is very

oscillatory in general, because the aliased component

define a trigonometric polynomial with improper aliased

frequencies. Therefore, we can expect Model (62) to

show interesting aliasing removal performances, as STV

is strongly affected by oscillations. Indeed, we can ob-

serve in Fig. 12 and 13 that the aliasing of the input

image u0 (which is clearly visible on its spectrum) is

completely removed after processing through the Im-

age Shannonizer, without introducing noticeable blur

on the image.

7 Conclusion

In this paper we showed that images delivered by varia-

tional TV-based models could not be easily interpolated

when the TV is discretized with a classical finite differ-

ence scheme. However, we demonstrated on several ex-

amples that a variant called STV (for Shannon TV) suc-

cessfully addresses this issue, and can be efficiently han-

dled using Legendre-Fenchel duality and Chambolle-

Pock Algorithm. We easily adapted the STV variant

to Huber-TV regularization, which let us believe that

STV could be easily applied to other variants of the

discrete TV as well; for example, the Total Generalized

Variation (TGV) proposed in [9] involves higher order

derivatives that could be computed exactly as in the

STV approach.

The choice of the upsampling factor n used to es-

timate STV with a Riemann sum was discussed and

it was shown that n = 1 was inadequate. However, it

would be interesting to further investigate this issue

and prove that n = 2 (or intermediate values between 1

and 2) guarantees a close correspondence between the

true STV and its estimate STVn.

We also presented a new STV-based restoration mo-

del relying on a weight map in the Fourier domain,

and showed that in certain cases it could be used as

an “Image Shannonizer”, which transforms an image
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input image Shannonization frequency attenuation

input image: details Shannonization: details frequency attenuation: details

input image: spectrum Shannonization: spectrum frequency attenuation: spectrum

Fig. 12 Image “Shannonization”. The input image (left column) is slightly aliased, as indicated by the periodic con-
tinuation patterns (see red arrows) that appear in its Fourier spectrum (3rd row). Processing this image with the “Image
Shannonizer” (62) results in a visually similar image (middle column) that seems aliasing-free (the patterns are not visible
any more on the 3rd row). In comparison, a generic frequency attenuation process (on the right column, with a Gaussian
attenuation map) produces a large amount of blur while being less efficient in terms of aliasing removal.
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input image Shannonization frequency attenuation

Fig. 13 Details of Fig. 12 with Shannon resampling. Different parts of the three images of the first row of Fig. 12
are shown after Shannon interpolation. As expected, the output of the “Image Shannonizer” (middle) is well interpolable,
contrary to the input image (left) on which oscillations appear. A simple frequency attenuation (right) is not efficient, since it
introduces a large amount of undesired blur.
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into a very similar one that can be easily interpolated

(with Shannon interpolation or spline interpolation for

example). This seems particularly interesting, as most

images are not perfectly sampled (and hence difficult to

interpolate) and would hence benefit a lot from this pro-

cess. This opens new perspectives on aliasing removal

(and thus super-resolution from a single image), but

several questions are still to be answered, in particular

concerning the choice of the weight map.

Source codes

Source codes corresponding to the algorithms described

in this paper are freely available on the web pages of

the authors.
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31. J. M. Fadili and G. Peyré. Total variation projection
with first order schemes. IEEE Transactions on Image
Processing, 20(3):657–669, 2011.

32. M. Frigo and S. G. Johnson. The design and implementa-
tion of FFTW3. Proceedings of the IEEE, 93(2):216–231,
2005. Special issue on “Program Generation, Optimiza-
tion, and Platform Adaptation”.

33. P. Getreuer. Linear methods for image interpolation. Im-
age Processing On Line, 1, 2011.

34. G. Gilboa. A spectral approach to total variation. In Pro-
ceedings of the International Conference on Scale Space
and Variational Methods in Computer Vision, Lecture
Notes in Computer Science, volume 7893, pages 36–47,
2013.

35. M. Guerquin-Kern, L. Lejeune, K. P. Pruessmann, and
M. Unser. Realistic analytical phantoms for parallel mag-
netic resonance imaging. IEEE Transactions on Medical
Imaging, 31(3):626–636, 2012.

36. F. Guichard and F. Malgouyres. Total variation based
interpolation. In Proceedings of the European signal pro-
cessing conference, volume 3, pages 1741–1744, 1998.

37. P. J. Huber. Robust Estimation of a Location Parame-
ter. The Annals of Mathematical Statistics, 35(1):73–101,
1964.

38. P. J. Huber. Robust regression: Asymptotics, conjectures
and monte carlo. The Annals of Statistics, 1(5):799–821,
1973.

39. P. Indyk. Explicit constructions for compressed sensing
of sparse signals. In Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, pages
30–33. Society for Industrial and Applied Mathematics,
2008.

40. V. A. Kotelnikov. On the capacity of the ’ether’ and of
cables in electrical communication. In Proceedings of the
1st All-Union Conference on Technological Reconstruc-
tion of the Community Sector and Low-Current Engi-
neering, 1933.

41. S. Lanzavecchia and P. L. Bellon. A moving window
shannon reconstruction algorithm for image interpola-
tion. Journal of Visual Communication and Image Rep-
resentation, 5(3):255–264, 1994.

42. C. Louchet and L. Moisan. Posterior expectation of the
total variation model: properties and experiments. SIAM
Journal on Imaging Sciences, 6(4):2640–2684, 2013.

43. C. Louchet and L. Moisan. Total variation denoising us-
ing iterated conditional expectation. In Proceedings of
the European signal processing conference, pages 1592–
1596. IEEE, 2014.

44. F. Malgouyres and F. Guichard. Edge direction preserv-
ing image zooming: a mathematical and numerical anal-
ysis. SIAM Journal on Numerical Analysis, 39(1):1–37,
2001.

45. R. Marks. Introduction to Shannon sampling and in-
terpolation theory. Springer Science & Business Media,
2012.

46. B. Matei. Model sets and new versions of shannon sam-
pling theorem. In New Trends in Applied Harmonic
Analysis, pages 215–279. Springer International Publish-
ing, 2016.

47. B. Matei and Y. Meyer. A variant of compressed sens-
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56. J. Preciozzi, P. Musé, A. Almansa, S. Durand, A. Khaz-
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A Proof of Proposition 1

Let us consider, for x ∈ R \ Z,

Sn(x) =
n∑

p=−n
sinc(x− pM)

= sinc(x) +
n∑
p=1

sinc(x− pM) + sinc(x+ pM)

=
sinπx

πx
+

n∑
p=1

(−1)pM
(

sinπx

π(x− pM)
+

sinπx

π(x+ pM)

)
.

Writing x = Mt
π

, we obtain

Sn(x) =
sinMt

M

(
1

t
+

n∑
p=1

(−1)pM
(

1

t− pπ
+

1

t+ pπ

))

and the limit sincdM (x) = limn→∞ Sn(x) can be computed
explicitly using classical series expansions (due to Euler):

∀t ∈ R \ πZ,
1

tan t
=

1

t
+

∞∑
p=1

1

t− pπ
+

1

t+ pπ
,

1

sin t
=

1

t
+

∞∑
p=1

(−1)p
(

1

t− pπ
+

1

t+ pπ

)
.

If M is odd, (−1)pM = (−1)p and we obtain

sincdM (x) =
sinMt

M sin t
=

sinπx

M sin πx
M

,

and if M is even, (−1)pM = 1 and the other series yields

sincdM (x) =
sinMt

M tan t
=

sinπx

M tan πx
M

as announced. ut

B Proof of Theorem 2

Since each operator Tz is linear and translation-invariant (Hy-
pothesis (ii)), it can be written as a convolution, that is,

Tzs(k) = (ψz ? s)(k) :=
∑
l∈IM

ψz(k − l)s(l), (67)

where ψz is an element of S. Taking the DFT of (67), we
obtain

∀α ∈ Z, T̂zs(α) = ψ̂z(α)ŝ(α). (68)

Now, from Hypothesis (iii) we immediately get

∀z, w ∈ R, ∀α ∈ Z, ψ̂z+w(α) = ψ̂z(α)ψ̂w(α), (69)

and by continuity of z 7→ ψ̂z(α) (deduced from Hypothesis
(i)) we obtain

∀α ∈ Z, ψ̂z(α) = eγ(α)z (70)

for some γ(α) ∈ C. Since ψ̂1(α) = e
−2iπα

M , we have

γ(α) = −2iπ

(
α

M
+ p(α)

)
, (71)

where p(α) ∈ Z and p(−α) = −p(α) (the fact that Tzu is

real-valued implies that ψ̂z(−α) = ψ̂z(α)∗).
Last, we compute

‖Tz − id‖22
= sup
‖s‖2=1

‖Tzs− s‖22

=
1

M
sup
‖s‖2=1

‖T̂zs− ŝ‖22

=
1

M
sup

‖ŝ‖2
2
=M

∑
α∈ÎM

|e−2iπ( α

M
+p(α))z − 1|2 · |ŝ(α)|2

= 4 max
α∈ÎM

sin2

(
π

(
α

M
+ p(α)

)
z

)
= 4π2z2 max

α∈ÎM

(
α

M
+ p(α)

)2

+ o
z→0

(z2).

Hence,

lim
z→0

|z|−1‖Tz − id‖2 = 2π max
α∈ÎM

∣∣∣∣ αM + p(α)

∣∣∣∣ (72)

and since α
M
∈ (−1

2
, 1
2

) and p(α) ∈ Z for any α ∈ ÎM , the
right-hand term of (72) is minimal if and only if p(α) = 0 for

all α ∈ ÎM . We conclude from (71) and (70) that

∀α ∈ ÎM , ψ̂z(α) = e−2iπαz/M , (73)
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and thus (68) can be rewritten as

Tzs(k) =
1

M

∑
α∈ÎM

ŝ(α)e−2iπαz/Me−2iπαk/M , (74)

which is exactly S(k − z) thanks to (13) (recall that the real
part is not needed because M is odd). Therefore, (24) is a nec-
essary form for a set of operators (Tz) satisfying Hypotheses
(i) to (iv).

Conversely, one easily checks that the operators (Tz) de-
fined by (24) satisfy the Hypotheses (i) to (iv). ut

C Proof of Proposition 8

Let us denote by ∇n,xu and ∇n,yu the two elements of RΩn
such that ∇nu = (∇n,xu,∇n,yu). In the following, the nota-
tion 〈·, ·〉X stands for the usual Euclidean (respectively Her-
mitian) inner product over the real (respectively complex)
Hilbert space X. We have

〈∇nu, p〉RΩn×RΩn = 〈∇n,xu, px〉RΩn + 〈∇n,yu, py〉RΩn .

Recall that we defined divn = −∇∗n, the opposite of the ad-
joint of ∇n. Noting divn,x = −∇∗n,x and divn,y = −∇∗n,y,
we have

〈∇nu, p〉RΩn×RΩn = 〈u,−divn,x(px)− divn,y(py)〉RΩ .

so that we identify divn(p) = divn,x(px) + divn,y(py). Let

us focus on the computation of divn,x(px). Let Ω̂1, Ω̂2, Ω̂3,

Ω̂4 be the sets defined by

Ω̂1 =
{

(α, β) ∈ R2, |α| < M
2
, |β| < N

2

}
∩ Z2

Ω̂2 =
{(
±M

2
, β
)
∈ R2, |β| < N

2

}
∩ Z2

Ω̂3 =
{(
α,±N

2

)
∈ R2, |α| < M

2

}
∩ Z2

Ω̂4 =
{(
±M

2
,±N

2

)}
∩ Z2 .

Notice that some sets among Ω̂2, Ω̂3 and Ω̂4 may be empty
according to the parity of M and N . Now, let hp̂x be the
function defined in Proposition 8 and let us show that

∀(α, β) ∈ Ω̂, ̂divn,x(px)(α, β) = 2iπ
α

M
hp̂x(α, β). (75)

Given z ∈ C, we denote as usual by z∗ the conjugate of z.
Thanks to Parseval identity, and using Proposition 6 (because
we assumed n ≥ 2), we have

〈∇n,xu, px〉RΩn =
1

n2MN
〈∇̂n,xu, p̂x〉CΩn

=
1

n2MN

∑
(α,β)∈Ω̂n

∇̂n,xu(α, β) (p̂x(α, β))∗

=
1

MN

∑
−M

2
≤α≤M

2

−N

2
≤β≤N

2

− û(α, β)

(
2iπεM (α)εN (β)

α

M
p̂x(α, β)

)∗
.

It follows that

〈∇n,xu, px〉RΩn = S1 + S2 + S3 + S4 ,

where for all k ∈ {1, 2, 3, 4}, we have set

Sk =
1

MN

∑
(α,β)∈Ω̂k

− û(α, β)

(
2iπεM (α)εN (β)

α

M
p̂x(α, β)

)∗
.

Consider S1 first. Since we have εM (α) = εN (β) = 1 and

hp̂x(α, β) = p̂x(α, β) for all (α, β) ∈ Ω̂1, we recognize

S1 =
1

MN

∑
|α|<M

2
, |β|<N

2

− û(α, β)

(
2iπ

α

M
hp̂x(α, β)

)∗
.

Now consider S2. If M is odd, Ω̂2 is empty and S2 = 0.

Otherwise, since εM (α)εN (β) = 1/2 for all (α, β) ∈ Ω̂2, by
grouping together the terms

(
−M

2
, β
)

and
(
M
2
, β
)
, we get

S2 =
1

MN

∑
α=−M

2
,|β|<N

2

− û(α, β)

×
(

2iπ
1

2

α

M
p̂x(α, β)− 2iπ

1

2

α

M
p̂x(−α, β)

)∗
=

1

MN

∑
α=−M

2
,|β|<N

2

− û(α, β)

(
2iπ

α

M
hp̂x(α, β)

)∗
,

since we have set hp̂x(−M
2
, β) = 1

2

(
p̂x(−M

2
, β)− p̂x(M

2
, β)
)

for |β| < N/2.

Similarly for the term S3. When N is odd, Ω̂3 = ∅ and
S3 = 0. Otherwise, when N is even, we have εM (α)εN (β) =

1/2 for all (α, β) ∈ Ω̂3, thus, by grouping together the terms(
α,−N

2

)
and

(
α, N

2

)
, we get

S3 =
1

MN

∑
|α|<M

2
,β=−N

2

− û(α, β)

×
(

2iπ
1

2

α

M
p̂x(α, β) + 2iπ

1

2

α

M
p̂x(α,−β)

)∗
=

1

MN

∑
|α|<M

2
,β=−N

2

− û(α, β)

(
2iπ

α

M
hp̂x(α, β)

)∗
,

since we have set hp̂x(α,−N
2

) = 1
2

(
p̂x(α,−N

2
) + p̂x(α, N

2
)
)

for |α| < M/2.
Lastly, let us consider S4. When M and N are both even

(otherwise Ω̂4 = ∅ and S4 = 0), we immediately get, for
α = −M

2
and β = −N

2
,

S4 = −û(α, β)

 ∑
s1=±1,s2=±1

2iπ
1

4
s1

α

M
p̂x(s1α, s2β)

∗

= −û(α, β)

(
2iπ

α

M
hp̂x(α, β)

)∗
,

since for all (α, β) ∈ Ω̂4, we have εM (α)εN (β) = 1/4 and we
have set hp̂x(α, β) = 1

4

∑
s1=±1,s2=±1 s1p̂x(s1α, s2β).

Finally, we can write S1 +S2 +S3 +S4 as a sum over Ω̂,
indeed,

〈∇n,xu, px〉RΩ = S1 + S2 + S3 + S4

=
1

MN

∑
(α,β)∈Ω̂

−û(α, β)

(
2iπ

α

M
hp̂x(α, β)

)∗
,

and using again the Parseval identity, we get (75). With a
similar approach, one can check that

∀(α, β) ∈ Ω̂, ̂divn,y(py)(α, β) = 2iπ
β

N
hp̂y (α, β) ,

where hp̂y is defined in Proposition 8. Consequently, for any

(α, β) ∈ Ω̂, we have

̂divn(p)(α, β) = 2iπ

(
α

M
hp̂x(α, β) +

β

N
hp̂y (α, β)

)
,

which ends the proof of Proposition 8. ut
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D Proof of Theorem 3

Recall that for any integer M , we denote by TM the real
vector space of real-valued trigonometric polynomials that
can be written as complex linear combination of the family
(x 7→ e2iπ

αx

M )−M

2
≤α≤M

2

. In order to prove Theorem 3 we

need the following Lemma.

Lemma 1 Let M = 2m+ 1 be an odd positive integer. The
functions F and G defined by,

∀x ∈ R, F (x) =
1

M

m∑
α=−m

e
2iπαx

M , G(x) = F (x)− F (x− 1) ,

are both in TM and G satisfies

M−1∑
k=0

|G(k)| = 2 ,

∫ M

1

|G(x)| dx ≥
8

π2
log

(
2M

π

)
− 2 .

Proof F is in TM by construction, and so is G as the differ-
ence of two elements of TM . Writing ω = π

M
, we can notice

that F (0) = 1 and

∀x ∈ (0,M), F (x) =
e2iω(−m)x

M
·

1− e2iπx

1− e2iωx
=

sin (πx)

M sin (ωx)
,

so that F (k) = 0 for all integers k ∈ [1,M−1]. Consequently,
G(0) = 1, G(1) = −1 and G(k) = 0 for all integers k ∈
[2,M − 1], thus

M−1∑
k=0

|G(k)| = |G(0)|+ |G(1)| = 2 ,

yielding the first announced result of the Lemma. Now, re-
mark that the sign changes of G in (0, 2m+1) occur at integer
points 2, 3, . . . 2m and in 1

2
(by symmetry). Thus, we have

J :=

∫ M

1

|G(x)| dx =
2m∑
k=1

(−1)k
∫ k+1

k

G(x) dx

= 2

2m−1∑
k=0

(−1)k
∫ k+1

k

F (x) dx ,

since for all x ∈ [0,M ], we have G(x) = F (x)− F (x− 1) and
(because M is odd) F (x) = F (M − x). It follows that

J ≥ 2

(
2m∑
k=0

(−1)k
∫ k+1

k

F (x) dx

)
− 2 ,

since |F | ≤ 1 everywhere.
Consequently, by isolating the index α = 0 in the defini-

tion of F , we get J ≥ 2
(
J ′ + 1

M

)
− 2, with

J ′ =
2m∑
k=0

(−1)k

M

∑
−m≤α≤m

α 6=0

∫ k+1

k

e2iωαx dx .

By exchanging the sums and grouping identical terms, we
obtain

J ′ =
1

M

∑
−m≤α≤m

α6=0

2m∑
k=0

(−1)k ·
e2iωα(k+1) − e2iωαk

2iωα

=
∑

−m≤α≤m
α 6=0

−1

iπα

2m∑
k=1

(
−e2iωα

)k
.

(76)

After summation of the geometric progression

2m∑
k=1

(
−e2iωα

)k
= −e2iωα ·

1− e2iωα(2m)

1 + e2iωα

= eiπα
i sin(2ωmα)

cos(ωα)
=
i sin(2ωmα− πα)

cos(ωα)
= −i tan(ωα) ,

Equation (76) finally leads to

J ′ =
∑

−m≤α≤m
α 6=0

1

πα
· tan(ωα) =

2

M

m∑
α=1

g(ωα)

where g = t 7→ tan t
t

. Now since g is positive and increasing
on (0, π

2
), we have

m∑
α=1

g(ωα) ≥
∫ m

0

g(ωx) dx =
1

ω

∫ ωm

0

g(t) dt .

Using the lower bound g(t) ≥ 2
π

tan t for t ∈ (0, π
2

), we finally
get

J ′ ≥
4

π2

∫ ωm

0

tan t dt = −
4

π2
log cos(ωm) = −

4

π2
log sin

(
ω

2

)
and thus J ′ ≥

4

π2
log

(
2

ω

)
, from which the inequality an-

nounced in Lemma 1 follows. ut

Now, let us prove the Theorem 3 by building a discrete
image u such that STV1(u) is fixed but STV∞(u) increases
with the image size. We consider the function H defined by

∀x ∈ R, H(x) =

∫ x

0

G(t) dt ,

where G ∈ TM is the real-valued M -periodic trigonometric
polynomial defined in Lemma 1 (M = 2m+ 1). Since the in-

tegral of G over one period is zero (
∫M
0

G(t) dt = 0), H is also
an element of TM . Consequently, the bivariate trigonometric
polynomial defined by

∀(x, y) ∈ R2, U(x, y) =
1

M
H(x) ,

belongs to TM ⊗ TM , and since M is odd it is exactly the
Shannon interpolate of the discrete image defined by

∀(k, l) ∈ IM × IM , u(k, l) = U(k, l). (77)

In particular, by definition of STV1 and STV∞, we have

STV1(u) =
∑

(k,l)∈Ω

|∇U(k, l)| ,

and STV∞(u) =

∫
[0,M]2

|∇U(x, y)| dxdy .

From Lemma 1, we have on the one hand,

STV1(u) =
∑

(k,l)∈Ω

|∇U(k, l)|

=

2m∑
k=0

|H′(k)| =
2m∑
k=0

|G(k)| = 2 ,

and on the other hand,

STV∞(u) =

∫
[0,M]2

|∇U(x, y)| dxdy =

∫ M

0

|H′(x)| dx

=

∫ M

0

|G(x)| dx ≥
8

π2
log

(
2M

π

)
− 2 .

which cannot be bounded from above by a constant indepen-
dent of M . ut
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E Proof of Proposition 10

Let u ∈ RΩ , n ∈ N and α ∈ R such that n ≥ 1 and α > 0.
One can rewrite HSTVα,n(u) = 1

n2Hα(∇nu), where

∀g ∈ RΩn × RΩn , Hα(g) =
∑

(x,y)∈Ωn

Hα(g(x, y)) .

Let us show that the Legendre-Fenchel transform of Hα is

H?α(p) = δ‖·‖∞,2≤1(p) + α
2
‖p‖22 .

One easily checks that Hα ∈ Γ (R2), and it follows that
Hα ∈ Γ (RΩn × RΩn). Thus, for any image u ∈ RΩ , we have
Hα(∇nu) = H??α (∇nu) and

H??α (∇nu) = sup
p∈RΩn×RΩn

〈∇nu, p〉 −H?α(p) . (78)

Besides, we have H?α(p) =
∑

(x,y)∈Ωn H
?
α(p(x, y)), and the

Legendre-Fenchel transform of Hα is the function H?α(z) =
δ|·|≤1(z)+ α

2
|z|2, where δ|·|≤1 denotes the indicator function

of the unit ball for the `2 norm in R2. Indeed, it is proven
in [55] that Hα is the Moreau envelope (or Moreau-Yosida
regularization) [51,76] with parameter α of the `2 norm | · |,
or equivalently the infimal convolution (see [59]) between the
two proper, convex and l.s.c functions f1(x) = |x| and f2(x) =
1
2α
|x|2, that is

∀y ∈ R2, Hα(y) = (f1�f2) (y) := inf
x∈R2

f1(x) + f2(y − x) .

Thus, we have H?α = (f1�f2)? = f?1 + f?2 (see [59,55]), lead-
ing exactly to H?α(z) = δ|·|≤1(z) + α

2
|z|2 for any z ∈ R2,

since we have f?1 = z 7→ δ|·|≤1(z) and f?2 = z 7→ α
2
|z|2. It

follows that for any p ∈ RΩn × RΩn , we have

H?α(p) =
∑

(x,y)∈Ωn

H?α(p(x, y)) = δ‖·‖∞,2≤1(p) + α
2
‖p‖22 , (79)

and the supremum (78) is a maximum for the same reason as
in the proof of Proposition 9. Finally, writing HSTVα,n(u) =
1
n2Hα(∇nu) = 1

n2H
??
α (∇nu) using (78) and (79) leads to the

announced result. ut
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