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Hyperuniform processes

@ A stationary hyperuniform point process P C R is such that
Var(#P N B(0,7)) = o( |B(0,7)| ).
———

Poisson rate

“Fluctuations are suppressed at large scales”, “superhomogeneous”
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“Global order and local disorder’

N
What does HU look like?
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|
History

o Condensed matter physics: Perturbed lattices, hard sphere models,
Lloyd (k-means) algorithm, ... (Torquato, Gabrielli, Stillinger, Zhang,

o Statistical physics: Coulomb and Riesz gases, Determinantal point
processes (DPPs) (Lebowitz, Ghosh, ...)

@ Numerical integration, image processing: “blue noise”, “samples
with low discrepancy”

e Eigenvalues of random matrices and DPPs (Ginibre ensembles, sine
process)

@ Zeros of planar random Gaussian Analytic Function (GAF) (Sodin,
Tsirelson, ...)
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Hyperuniformity exponent

For some (unit intensity) processes P, there is o > 0 such that, for a
smooth function f € € (RY):

Var <Z f(a:/R)) ~ Ri=@ /f

zeP

@ Numerical integration: The larger the «, the better is the sample to
estimate [ f!

Poisson: a = 0 (think of f = 1p(g 1) for the scaling order)

It is indispensable to use smooth functions as for f = 1p 1), @ <1
[Beck '87].

“Class I": > 1, “Class II": « =1, “Class lll": o« < 1.
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Structure factor S

@ Define § as the non-negative measure satisfying for f a test function

Var (Z f(a:)) = /f\QdS.

zeP

(exists if E(#P N B(0,1))? < o0)
o If S(du) ~ uPdu as u — 0, then 3 = o under some density
assumptions (e.g. [Mastrilli, Blaszczyszyn, Lavancier '24]).

o Infinite Ginibre ensemble (DPP coming from random matrices /
Coulomb gas): a =2 as

S(du) = (1 — e *")du
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“Amorphous” point processes

@ For a “nicely” behaved standard HU process P, a = 2:

S(du) = i(’()-)/ +0(u?) | du

=0 (HU)

@ GAF process: o = 4 only “non-lattice” known process with o > 2

Left: DPP («a = 2) Right: Zeros of the planar GAF (Gaussian Analytic Function)
(o =4) Ben Hough et al.
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Estimating S and « for amorphous processes

e Estimate S: Scattering intensity / empirical structure factor: on a
rectangular window W = [],[-R/2, R/2]4,

8 1 —ikx
S(k) = — E e k|2,
R

kePNW

o [Gautier, Hawat, Bardenet, Lr '23] Assume the pair correlation g
exists and is integrable. As R — oo,

sup |S(k) — E(S(k))| — 0
keAgr

Ap : points # 0 for which one coordinate is a multiple of 27 /R.
o We cannot estimate S(k) for ||k < 7/vdR
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Tapered estimators

@ Let T a square integrable function. Define the tapered estimator

2

A~

Sr(k) = % S T(a/R)e ik

zeP

We have S(k) = Sp(k) for T = 110,1].
e Multi-tapered versions (inspired by [Rajala, Olhede, Murrell '20 ])

ijSTj (k})
J
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Package structure factor (with D. Hawat, G. Gautier,
R. Bardenet)

Functionalities for estimating S (several methods)
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[Mastrilli, Blaszczyszyn, Lavancier '24]

@ Estimator of o based on multi-tapering :

—d— 21 hl(ZTf“ )

(the f; replace the complex exponentials)
@ Converges to « in probability under continuity assumptions

@ CLT under Brillinger mixing if a < d
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Lattice computations

@ [Coste '21]: § — 6y — S ass. in the sense of distributions if P is ergodic
® “a=o00" : Shifted lattice P = Z* (/. 1/ ~ %, 0 : fr = f(-/R)
Z Jr(k+U) =c4 Z ¢! 1l fp(m) (Poisson formula)

kezd meZd

:(.(]Rd Z ¢ 1Rm-( f(Rm)

m

—. R4 p eiBmU AR
JRY( @ +m§;0 f(Rm) )

deterministic fast decay

@ o = 2: Perturbed lattice P = {k + X, + [/, k € Z}, X}, iid centred,
S(du)y =Y [®x,(m)Pom(du) + (1 = [@x, (w)]*)du
—_————

meZi\{0} CF of X,

Dy, (u) =1 - EXDu? +o(u?) = a=2
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|
Lattice of clusters (o = 2p)

e Put p equidistant points rotated by a random angle at distance r from
each point of Z2:

r=02,p="7 r=13,p="7 Making of r=13,p==6
e [Sodin & Tsirelson '04]: p = 3, “toy model” for GAF (o = 4)

”

Proposition (Lr '24)
If p is prime, S(du) < c||u||*du asu — 0, “a > 2p". }

Any corresponding continuous (amorphous) model?
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Lattice or not lattice?

@ There seem to be two main categories: (perturbed) lattices, with
an atomic component in S, and “amorphous” /mixing/isotropic ones
(Ginibre, GAF, DPPs, Coulomb gases), with a purely continuous S.

e What if the perturbations X}, k € Z% form a dependent stationary
field? [Dereudre, Flimmel, Huesmann, Leblé '24]

@ As it turns out, in dimension d > 2, a HU* process P (with intensity
1) can be seen as a perturbed lattice in the sense that

P={k+X,iU;keczZ

with {X}} stationary dependent and E(|| X[|?) < oo
[Lr,Yogeshwaran '24], see also [Leblé & Huesmann '24], [Butez,
Dallaporta & Garcia-Zelada '24]

@ Most likely, the tail of X is exponential for many models (proved for
GAF in [Nazarov, Sodin & Volberg '07 ])
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-
Rigidity (lattices)

o A (perturbed) lattice satisfies number rigidity:
P={k+ XU, ke Z%, Xy iid centred: for K compact

#PNK € o(PNKC)

o If X} = 0 (unperturbed lattice), we have maximal rigidity:

PNKeo(PNK°)

@ Do other types of processes satisfy rigidity?
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Rigidity [Ghosh & Peres '17]

@ Ginibre process and GAF satisfy number rigidity:

Knowledge of P N B(0,1)¢ = #P N B(0,1) = 52

o GAF satisfies 1—-rigidity:

#PNB(0,1), > x| ea(PnB(0,1))
zePNB(0,1)

Definition (k-rigidity)

Pis k-rigid iff >, 2™ € o(PNB(0,1)°),me Z% |m| < k
zePNB(0,1)

™ mid - = ==t
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|
Rigidity and HU exponent

@ Ginibre, perturbed lattices in d = 1,2: 0-rigid, a = 2
o GAF (d = 2): 1-rigid, a = 4.
Theorem (Lr '24)

Decompose S(du) = s(u)du + Ss where S, is singular (atomic, Cantor,
...). P is k-rigid if the spectral density s has a“ zero of order k". If P is
isotropic or separable, or “simple”:

o Converse is true (for “linear rigidity”)

P,
/ s(w) =

= The p-flower lattice of clusters is (p — 1)-rigid for p prime.

e Zero of order k means
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Simulation

Simulation

@ Blue noise comes from image processing, blue noise sampling seems

to “prevent some aliasing phenomena”: Heck et al.(2013) and Yan et
al.(2015)

Dart Throwing® CCOVT Centroids* PO/ GV Centroids* Step Blue Noise
Fig. 1. Abird’seye view of
image content is not replaced by white noise (as is the goal of

similar o the
of regular sampling. Step blue noise patterns, as defined in Section 3.1, consistently p.mm such arifucts by coaky rspping 41 high roquancios to i
noise. (The superscripts refer to the citations in Table 1.)

Fig 1. Example o
() Re

ling and its spectral analysis. (a) A sampled point set. (b) Power spectrum from this point set.
opy.
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Simulation

Simulations from physicists (team of Torquato)

[Morse et al. "23]: Minimization of an energy which ground states are HU
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Stealthy processes

The structure factor of Z¢ + U is

> i
kezd\ {0}

In particular it has a gap around zero (o = 0).

Definition

A SPP P is stealthy if S(B) = 0 for some neighbourhood (of 0).

@ What can be the structure factor of a stealthy process? Can it
have a non zero continuous part? Be mixing?

Related to difficult problem in harmonic analysis and quasi-crystals
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Simulation of mixing processes

@ |t is easy to simulate a perturbed lattice, but it has atoms, or “Braggs
peaks”, and is not mixing.
@ DPP simulation: not more than several thousands points

@ GAF simulation: 7
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Simulation

A HU process without Braggs peaks and n In(n)
complexity (with A. Shapira and L. Thomassey)

@ Lattice perturbed by stationary field:
{k+ X (k) +U;k € 2%}

for X : R? — R? a stationary field.
o Lattice perturbed by field X with stationary increments

Z29% X ={k+ X(k) : k € 2%},
X requires a convention of the type X(0) =0 = not stationary.

Theorem (TLS '24 + )

For P a stationary point process with Palm measure P°, X a field with
stationary increments, P? x X is the Palm measure of a stationary point
process.

— = = =r=Tyr"
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~_____ Simution |
Perturbation with fractional Gaussian fields

Theorem

Let X a fractional Brownian motion on R with Hurst index H < 1/2. Let
PO = Z% % X. Then P is the Palm measure of a point process P which
structure factor S is purely continuous and satisfies as u — 0,

S(du) ~ ut=21,
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_ Simuation]
Coulomb repulsion (with D. Hawat, R. Bardenet)

@ Move Poisson point z; according to the repulsive Coulomb force
Ca(z) =

ll]l

T — x5 =i+ 520(1(:5]- — ;)
JF

Theorem (HBL + M)

For any f of class C*> with compact support, I. = > f(zf) :

Var(I.) = Var(Iy) (1 — 2ekq) + O(e"F1/%)

Explanation: Cj (is the only kernel that) satisfies in the weak sense

ACy = —kgdg
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Test with MCRPP Python package

Var (I.) = Var (Iy) (1 — 2ex4) + O('1/9). Hence choose o = (2k4) "
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Variance as ¢ increases for resp. f1, fa, f3
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~_____ Simution |
Test with other initial data

st a0t

Repeled i
© Scrambled Sobol |

To b on o5 10 05 0 28 To 5 o0 o5 1o 15 za 2
A . - i - o

Variance evolution for other initial processes: Ginibre, Scrambled Sobol 2D, scrambled
Sobol 3D
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Workshop around Hyperuniformity in Paris on December 11-13:
https://hyperuniformity.sciencesconf.org/

Thank you for your attention!
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https://hyperuniformity.sciencesconf.org/

R
The table

Atomic part Continuous part a/Rigidity Complexity
Stealthy Purely lattice v X e} N
Crystalline v X oS}
77 ? 4 oo
Independently perturbed lattice v v 2p N
(locally dependent)
Amorphous GAF X v 4 ?
DPPs (Ginibre) 2 N2?
Coulomb < 27 ?
Riesz
1D X % 24 X v 1—2H N In(N)
[ NotHU ] Poisson etc... 0 N
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