Hyperuniformity exponent: estimation, rigidities, simulation

Raphaël Lachièze-Rey (Inria Paris and Université Paris Cité)

Raphaël Lachièze-Rey (Inria Paris and UnivHyperuniformity exponent: estimation, rigid

Hyperuniform processes

• A stationary hyperuniform point process $\mathbf{P} \subset \mathbb{R}^d$ is such that

$$\operatorname{Var}(\#\mathbf{P} \cap B(0,r)) = o(\underbrace{|B(0,r)|}_{\operatorname{Poisson rate}}).$$

"Fluctuations are suppressed at large scales", "superhomogeneous"

Hyperuniform processes

• A stationary hyperuniform point process $\mathbf{P} \subset \mathbb{R}^d$ is such that

$$\operatorname{Var}(\#\mathbf{P} \cap B(0,r)) = o(\underbrace{|B(0,r)|}_{\operatorname{Poisson rate}}).$$

"Fluctuations are suppressed at large scales", "superhomogeneous"

What does HU look like?

Raphaël Lachièze-Rey (Inria Paris and UnivHyperuniformity exponent: estimation, rigid

History

- **Condensed matter physics**: Perturbed lattices, hard sphere models, Lloyd (k-means) algorithm, ... (Torquato, Gabrielli, Stillinger, Zhang, ...)
- **Statistical physics**: Coulomb and Riesz gases, Determinantal point processes (DPPs) (Lebowitz, Ghosh, ...)
- Numerical integration, image processing: "blue noise", "samples with low discrepancy"
- Eigenvalues of **random matrices** and **DPPs** (Ginibre ensembles, sine process)
- Zeros of planar random **Gaussian Analytic Function (GAF)** (Sodin, Tsirelson, ...)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Q◇

Hyperuniformity exponent

For some (unit intensity) processes \mathbf{P} , there is $\alpha \ge 0$ such that, for a smooth function $f \in \mathscr{C}^{\infty}(\mathbb{R}^d)$:

$$\operatorname{Var}\left(\sum_{x\in\mathbf{P}}f(x/R)\right)\sim R^{d-lpha}\int f$$

- Numerical integration: The larger the α, the better is the sample to estimate ∫ f!
- Poisson: $\alpha = 0$ (think of $f = 1_{B(0,1)}$ for the scaling order)
- It is indispensable to use smooth functions as for $f=1_{B(0,1)}$, $\alpha\leqslant 1$ [Beck '87].
- "Class I": $\alpha > 1$, "Class II": $\alpha = 1$, "Class III": $\alpha < 1$.

うつつ 正面 ヘビマ・ヘリ・ ヘロ・

Structure factor *S*

• Define ${\mathcal S}$ as the non-negative measure satisfying for f a test function

$$\operatorname{Var}\left(\sum_{x\in\mathbf{P}}f(x)\right) = \int |\hat{f}|^2 d\mathcal{S}.$$

(exists if $\mathbf{E}(\#\mathbf{P} \cap B(0,1))^2 < \infty$)

- If $S(du) \sim u^{\beta} du$ as $u \to 0$, then $\beta = \alpha$ under some density assumptions (e.g. [Mastrilli, Blaszczyszyn, Lavancier '24]).
- Infinite Ginibre ensemble (DPP coming from random matrices / Coulomb gas): $\alpha = 2$ as

$$\mathcal{S}(du) = (1 - e^{-u^2})du$$

→ 同 → → 三 → → 三 三 → への

"Amorphous" point processes

• For a "nicely" behaved standard HU process ${\bf P},\,\alpha=2:$

$$\mathcal{S}(du) = \left(\underbrace{\mathcal{S}(0)}_{=0 \text{ (HU)}} + O(u^2)\right) du$$

• GAF process: $\alpha = 4$ only "non-lattice" known process with $\alpha > 2$

Left: DPP ($\alpha = 2$) Right: Zeros of the planar GAF (Gaussian Analytic Function) ($\alpha = 4$) Ben Hough et al.

Estimating \mathcal{S} and α for amorphous processes

• Estimate S: Scattering intensity / empirical structure factor: on a rectangular window $W = \prod_i [-R/2, R/2]^d$,

$$\hat{\mathcal{S}}(k) = \frac{1}{R^d} |\sum_{k \in \mathbf{P} \cap W} e^{-ikx}|^2.$$

• [Gautier, Hawat, Bardenet, Lr '23] Assume the pair correlation g exists and is integrable. As $R \to \infty$,

$$\sup_{k \in A_R} \left| \hat{\mathcal{S}}(k) - \mathbf{E}(\hat{\mathcal{S}}(k)) \right| \to 0$$

 A_R : points $\neq 0$ for which one coordinate is a multiple of $2\pi/R$. • We cannot estimate S(k) for $||k|| \leq \pi/\sqrt{dR}$

(ロト 4 得 ト 4 ミト 4 ミト (月)と のなの

Tapered estimators

• Let T a square integrable function. Define the tapered estimator

$$\hat{\mathcal{S}}_T(k) = \frac{1}{R^d} \left| \sum_{x \in \mathbf{P}} T(x/R) e^{-ikx} \right|^2$$

We have
$$\hat{\mathcal{S}}(k) = \hat{\mathcal{S}}_T(k)$$
 for $T = \mathbf{1} [0, 1]^d$.

• Multi-tapered versions (inspired by [Rajala, Olhede, Murrell '20])

$$\sum_{j} w_j \hat{\mathcal{S}}_{T_j}(k)$$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ の々で

Package structure_factor (with D. Hawat, G. Gautier, R. Bardenet)

Functionalities for estimating S (several methods)

Violin plot of estimation of α over 50 trials of 10^4 points

D. Hawat

• Estimator of α based on multi-tapering :

$$\hat{\alpha} = d - \sum_{j} \frac{w_j}{\ln(R)} \ln\left(\sum_{i} T_j(f_i, R)^2\right)$$

(the f_i replace the complex exponentials)

- Converges to α in probability under continuity assumptions
- CLT under Brillinger mixing if $\alpha \leqslant d$

Lattice computations

- [Coste '21] : $\hat{S} \delta_0 \to S$ a.s. in the sense of distributions if **P** is ergodic
- " $\alpha = \infty$ " : Shifted lattice $\mathbf{P} = \mathbb{Z}^d + U, U \sim \mathscr{U}_{[0,1]^d} : f_R = f(\cdot/R)$

$$\sum_{k \in \mathbb{Z}^d} f_R(k+U) = c_d \sum_{m \in \mathbb{Z}^d} e^{iRm \cdot U} \hat{f}_R(m) \text{ (Poisson formula)}$$
$$= c_d R^d \sum_m e^{iRm \cdot U} \hat{f}(Rm)$$
$$= c_d R^d (\underbrace{\hat{f}(0)}_{deterministic} + \sum_{m \neq 0} e^{iRm \cdot U} \underbrace{\hat{f}(Rm)}_{\text{fast decay}})$$

• $\alpha = 2$: Perturbed lattice $\mathbf{P} = \{k + X_k + U, k \in \mathbb{Z}^d\}, X_k$ iid centred,

$$\mathcal{S}(du) = \sum_{m \in \mathbb{Z}^d \setminus \{0\}} |\Phi_{X_0}(m)|^2 \delta_m(du) + (1 - \underbrace{|\Phi_{X_0}(u)|^2}_{\text{CF of } X_0}) du$$

$$\Phi_{X_0}(u) = 1 - \mathbf{E}(X_0^2)u^2 + o(u^2) \Rightarrow \alpha = 2$$

Lattice of clusters $(\alpha = 2p)$

• Put p equidistant points rotated by a random angle at distance r from each point of \mathbb{Z}^2 :

r = 0.2, p = 7 r = 1.3, p = 7 Making of r = 1.3, p = 6

• [Sodin & Tsirelson '04]: p = 3, "toy model" for GAF ($\alpha = 4$)

Proposition (Lr '24)

If p is prime, $S(du) \leq c ||u||^{2p} du$ as $u \to 0$, " $\alpha \geq 2p$ ".

Any corresponding continuous (amorphous) model?

Lattice or not lattice?

- There seem to be **two main categories**: (perturbed) **lattices**, with an **atomic component** in *S*, and "amorphous"/mixing/isotropic ones (Ginibre, GAF, DPPs, Coulomb gases), with a **purely continuous** *S*.
- What if the perturbations $X_k, k \in \mathbb{Z}^d$ form a **dependent** stationary field? [Dereudre, Flimmel, Huesmann, Leblé '24]
- As it turns out, in dimension $d \ge 2$, a HU^{*} process **P** (with intensity 1) can be seen as a perturbed lattice in the sense that

 $\mathbf{P} = \{k + X_k + U; k \in \mathbb{Z}^d\}$

with $\{X_k\}$ stationary **dependent** and $\mathbf{E}(||X_k||^2) < \infty$ [Lr,Yogeshwaran '24], see also [Leblé & Huesmann '24], [Butez, Dallaporta & Garcia-Zelada '24]

Most likely, the tail of X₀ is exponential for many models (proved for GAF in [Nazarov, Sodin & Volberg '07])

Rigidity (lattices)

- A (perturbed) lattice satisfies number rigidity:
 - $\mathbf{P} = \{k + X_k + U, k \in \mathbb{Z}^d\}, X_k \text{ iid centred: for } K \text{ compact}$

$\#\mathbf{P}\cap K\in\sigma(\mathbf{P}\cap K^c)$

• If $X_k = 0$ (unperturbed lattice), we have maximal rigidity:

$\mathbf{P} \cap K \in \sigma(\mathbf{P} \cap K^c)$

• Do other types of processes satisfy rigidity?

Rigidity [Ghosh & Peres '17]

• Ginibre process and GAF satisfy number rigidity:

Knowledge of $\mathbf{P} \cap B(0,1)^c \Rightarrow \#\mathbf{P} \cap B(0,1) = 52$

• GAF satisfies 1-rigidity:

$$\left(\#\mathbf{P}\cap B(0,1),\sum_{x\in\mathbf{P}\cap B(0,1)}x\right)\in\sigma(\mathbf{P}\cap B(0,1)^c)$$

Definition (k-rigidity)

 $\mathbf{P} \text{ is } k\text{-rigid iff } \sum_{x \in \mathbf{P} \cap B(0,1)} x^{\mathsf{m}} \in \sigma(\mathbf{P} \cap B(0,1)^c), \mathsf{m} \in \mathbb{Z}^d, |\mathsf{m}| \leqslant k$

Rigidity and HU exponent

- Ginibre, perturbed lattices in d = 1, 2: 0-rigid, $\alpha = 2$
- GAF (d = 2): 1-rigid, $\alpha = 4$.

Theorem (Lr '24)

Decompose $S(du) = s(u)du + S_s$ where S_s is singular (atomic, Cantor, ...). **P** is k-rigid if the spectral density s has a "zero of order k". If **P** is isotropic or separable, or "simple":

- Converse is true (for "linear rigidity")
- Zero of order k means

$$\int \frac{\|u\|^{2k}}{s(u)} du = \infty.$$

 \Rightarrow The *p*-flower lattice of clusters is (p-1)-rigid for *p* prime.

J

ロト 《御 》 《 臣 》 《臣 》 三国 うえの

Simulation

• Blue noise comes from image processing, blue noise sampling seems to "prevent some aliasing phenomena": *Heck et al.*(2013) and *Yan et al.*(2015)

Fig. 1. A bird's eye view of the standard zone plate reveals structured aliassing for blue noise patterns that have peaks in their power spectrum. Fight-frequency image content is not encluded by which is the standard structured aliassing for blue noise patterns. The structured aliassing is a structured aliassing the structure of the structure

Fig. 1. Example of Poisson-disk sampling and its spectral analysis. (a) A sampled point set. (b) Power spectrum from this point set. (c) Radial means and normal anisotropy.

(日) (日) (日) (日) (日) (日) (日) (日)

Simulations from physicists (team of Torquato)

[Morse et al. '23]: Minimization of an energy which ground states are HU

[Klatt et al. '19]: Lloyd/KMeans algorithm

-

Stealthy processes

The structure factor of $\mathbb{Z}^d + U$ is

In particular it has a gap around zero ($\alpha = \infty$).

Definition

A SPP **P** is **stealthy** if S(B) = 0 for some neighbourhood (of 0).

• What can be the structure factor of a stealthy process? Can it have a non zero continuous part? Be mixing? Related to difficult problem in harmonic analysis and *quasi-crystals*

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Simulation of mixing processes

- It is easy to simulate a perturbed lattice, but it has atoms, or "Braggs peaks", and is not mixing.
- DPP simulation: not more than several thousands points
- GAF simulation: ?

▶ ▲ ∃ ▶ ∃ ∃ ■ のQ ∩

A HU process without Braggs peaks and $n \ln(n)$ complexity (with A. Shapira and L. Thomassey)

• Lattice perturbed by stationary field:

 $\{k + X(k) + U; k \in \mathbb{Z}^d\}$

for $X: \mathbb{R}^d \rightarrow \mathbb{R}^d$ a stationary field.

• Lattice perturbed by field X with stationary increments

 $\mathbb{Z}^d \star X = \{k + X(k) : k \in \mathbb{Z}^d\},\$

X requires a convention of the type $X(0) = 0 \Rightarrow$ not stationary.

Theorem (TLS '24 +)

For **P** a stationary point process with Palm measure \mathbf{P}^0 , X a field with stationary increments, $\mathbf{P}^0 \star X$ is the Palm measure of a stationary point process.

Perturbation with fractional Gaussian fields

Theorem

Let X a fractional Brownian motion on \mathbb{R} with Hurst index H < 1/2. Let $\mathbf{P}^0 = \mathbb{Z}^d \star X$. Then \mathbf{P}^0 is the Palm measure of a point process \mathbf{P} which structure factor S is purely continuous and satisfies as $u \to 0$,

 $\mathcal{S}(du) \sim u^{1-2H}.$

left : log-log plot of the variance on [-R, R]. *right*: exponent in function of H

Simulation

Coulomb repulsion (with D. Hawat, R. Bardenet)

• Move Poisson point x_i according to the repulsive Coulomb force $C_d(x) = \frac{x}{||x||^d}$

$$x_i \to x_i^{\varepsilon} := x_i + \varepsilon \sum_{j \neq i} C_d(x_j - x_i)$$

Theorem (HBL + M) For any f of class C^2 with compact support, $I_{\varepsilon} = \sum f(x_i^{\varepsilon})$: $Var(I_{\varepsilon}) = Var(I_0) (1 - 2\varepsilon \kappa_d) + O(\varepsilon^{1+1/d})$

Explanation: C_d (is the only kernel that) satisfies in the weak sense

$$\Delta C_d = -\kappa_d \delta_0$$

Test with MCRPP Python package

 $\operatorname{Var}(I_{\varepsilon}) = \operatorname{Var}(I_0)(1 - 2\varepsilon\kappa_d) + O(\varepsilon^{1+1/d}).$ Hence choose $\varepsilon_0 = (2\kappa_d)^{-1}$.

Variance as ε increases for resp. f_1, f_2, f_3

▶ ◀ 프 ▶ 프 I = 𝒴 𝔄 𝔄

Test with other initial data

Variance evolution for other initial processes: Ginibre, Scrambled Sobol 2D, scrambled Sobol 3D $(\Box \rightarrow \langle \Box \rangle + \langle \Xi = \langle$

Raphaël Lachièze-Rey (Inria Paris and UnivHyperuniformity exponent: estimation, rigid

Workshop around Hyperuniformity in Paris on December 11-13: https://hyperuniformity.sciencesconf.org/

Thank you for your attention!

Raphaël Lachièze-Rey (Inria Paris and UnivHyperuniformity exponent: estimation, rigid

⇒ ↓ = ↓ = | = √Q

The table

		Atomic part	Continuous part	α /Rigidity	Complexity
Stealthy	Purely lattice	1	X	∞	N
	Crystalline	1	×	∞	
	???	?	1	∞	
	Independently perturbed lattice	1	1	2p	N
	(locally dependent)				
Amorphous	GAF	X	1	4	?
	DPPs (Ginibre)			2	N^2 ?
	Coulomb			≤ 2?	?
	Riesz				
	$1D X \star \mathbb{Z}^d$	×	1	1 - 2H	$N\ln(N)$
Not HU	Poisson etc			0	N