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Geometric models

Random sets

The favoured probabilistic framework to deal with random geometric
structures is that of Random closed sets:

F = {F ⊂ Rd closed}
A set F ∈ F is analysed through its intersection with other sets: for
K ⊂ Rd,

ψK(F ) := 1{K ∩ F ̸= ∅}

A random set F is mathematically a family of “hit-and-miss”
informations 1{F ∩K ̸= ∅},K compact.
The “Effros”, or “hit-and-miss” σ-algebra on F is generated by the
{ψK ;K compact}. Hence the law of a random (closed) set F is
characterised by the capacity functional

TF(K) := EψK(F) = P(F ∩K ̸= ∅),K compact.



Geometric models

Point patterns I

If F = {xi; i ⩾ 1} is a.s. a set of isolated points, we preferentially note
F = P and say P is a point process.

Photoreceptor in a chicken’s eye Jiao et al. [2014]



Geometric models

Point patterns II

Cell nuclei in a specimen of joint cartilage Stoyan et al. [1995]

Hickories, maples, oaks Gelfand et al. [2010]
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Point patterns III

Some models Lantuéjoul [2002]



Geometric models

Random sets I: Point processes

Binomial processes: for µ a locally finite measure on Rd without
atoms, let X1, . . . , Xn i.i.d uniform in Bn the ball centred in 0 with
volume n, and Pn = {X1, . . . , Xn}
Exercise: we have the limit for A ⊂ Rd (bounded or not)

#Pn ∩A→ Poiss(µ(A)) (Poisson distribution)

This implies convergence to a limit point process P called Poisson
point process with intensity µ, characterised by

#P ∩A (d)
= Poiss(µ(A)), A ⊂ Rd

This is convergence in the vague topology (compact)
stationary Poisson point process: µ = λLebd (λ > 0)



Geometric models

stationary Poisson point process



Geometric models

Other point process models

Perturbed lattices: P = {k + Uk; k ∈ Zd} where the Uk ∈ Rd are
i.i.d.
Cluster processes {τxPx;x ∈ P} where P is a “base” point process,
and the Px are i.i.d. realisations of a “small” point process.

Thomas process: P is Poisson with intensity λLebd, Px is Poisson
with Gaussian intensity N (0, σ2)

Zeros of a random function F : Rd → Rd, eigenvalues of a random
matrix, system of particles, ...

Which is which?



Geometric models

Marked point processes I

One can attach i.i.d. marks Mi of any sort to points of a point process:
age, color, shape, etc...

Spruces, birch Stoyan et al. [1995]

gastrointestinal disease in UK
Gelfand et al. [2010]



Geometric models

Marked point processes II

Exercise
Let P = {xi; i ⩾ 1} a Poisson point process with some intensity µ and Mi

i.i.d. with law ν on some space M. Let P̄ = {(xi,Mi); i ⩾ 1}. Show that
P̄ is Poisson with intensity µ× ν on Rd ×M, i.e.

#P̄ ∩ (A×B)
(d)
= Poiss(µ(A)ν(B)).
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Germ grain I

Some germ grain models Lantuéjoul [2002]
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Germ grain II

Figure: pines in North America Stoyan et al. [1995]
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Germ grain III

Definition
A germ-grain process F is formed by a point process P =

∑
i δxi marked by

a probability measure ν on the space of compact sets (endowed with the
trace topology):

F =
⋃
xi∈P

τxiKi

where the Ki are i.i.d. compact sets with law ν.

Remark: ν need not be a probability measure, one can just define
{(xi,Ki)} as a Poisson process with intensity µ× ν.
Let P a stationary Poisson process with unit intensity (λ = 1).



Geometric models

Germ grain IV

Assume Ki = B(0, Ri) with Ri with some law ν on R+. Then

TF(K) = 1− exp(−EνK
⊕R1)

where K⊕r = {y : d(y,K) ⩽ r}
Deduce the fraction volume (and show these identities)

κF : = ELebd(F ∩ [0, 1]d)

= Lebd(A)−1ELebd(F ∩A) = P(x ∈ F)

for any non-negligible A, or x ∈ Rd.

Generalise to non-circular shapes



Geometric models

Stationarity

We study here a set of data in the asymptotics of a large
homogeneous random medium:
Mathematically speaking, assume the random set F satisfies

τxF := {y + x; y ∈ F} (d)
= F

Quite often, the restriction P ∩ [0, n]d of a Poisson process is used to
approximate nd i.i.d. uniform variables on [0, n]d.
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Random fields I

Fantaye, Hansen, Maino, and Marinucci [2014]



Geometric models

Random fields II



Geometric models

Random fields III

Breast tissue Chan, Helvie, Gao, Hadjilski, 2023
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Gaussian fields I

Given a SDP “covariance” matrix C = (Ci,j)1⩽i,j⩽n, there is a unique
centred Gaussian vector X = (Xi)1⩽i⩽n such that

EXiXj = Ci,j .

Given a continuous SDP function C (x, y), x ∈ E, i.e. such that each
finite submatrix (C (xi, xj)1⩽i,j⩽n) is SDP, there is a unique centred
Gaussian process X with

EX(x)X(y) = C (x, y)

We can also prescribe the expectation m(x) by performing the
addition X(x) → X(x) +m(x). We only consider centred fields here



Geometric models

Gaussian fields II

The centred Gaussian field X is stationary if C is invariant under
shifts:

C (x, y) = τzC (x, y) = C (x+ z, y + z),

with z = −x we see that it only depends on y − x. In this case we use
the abuse of notation C (y − x) = C (x− y) instead of C (0, y − x).

Theorem (Bochner)

SDP yields Ĉ ⩾ 0 and conversely given any finite measure S , there is a
unique SDP C such that S = Ĉ (in the sense of distributions)



Geometric models

Gaussian fields III

Lantuéjoul [2002]



Geometric models

Gaussian excursions I

For each ℓ ∈ R, we can form random sets with

Fℓ = {x : X(x) ⩾ ℓ} or Lℓ = {x : X(x) = ℓ}.

called (Gaussian) excursion sets and level sets.

For ℓ = 0, Fℓ is called nodal domain, Lℓ is called nodal set.



Geometric models

Gaussian excursions II

Nodal excursions Lantuéjoul [2002]
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Gaussian excursions III

Excursions at levels −1, 0, 1 Lerbet [2022]
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Gaussian excursions IV

Figure: Fantaye et al. [2014]
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Gaussian fields as white noise convolutions

Let i.i.d. Gaussian variables Wk ∼ N (0, 1); k ∈ Zd

Let ψ : Zd → R summable symmetric and

X(k) = ψ ⋆W (k) =
∑
i

Wk−iψ(i).

Covariance C(k) = EX(0)X(k) = ψ ⋆ ψ(k), Fourier S = Ĉ = ψ̂2

For any S ⩾ 0 on [0, 2π]d, one can generate a Gaussian field with

spectrum S with φ =
√̂
S

Idem in the continuous space for a spectral density s : Rd → R+ and a
“white noise” W (random measure limit of small i.i.d. Gaussians, e.g.
increments of Brownian motion)

X(x) =
∫ √̃

s(x− y)dW (y) =W ⋆
√̂
s has spectrum sLebd



Geometric models

Graphs / Tessellations / partitions I

Random Geometric graphs
Let P a point process,

a radius r > 0 : x Connect x, y ∈ P if ∥x− y∥ ⩽ r.

Germ grain model: Connect two points if their grains Kx,Ky touch,
e.g. if ∥x− y∥ ⩽ Rx, Ry when points are attached to i.i.d. balls
B(x,Rx), x ∈ P.

Geometric graphs for different values for r



Geometric models

Graphs / Tessellations / partitions II

Random connection model: each pair of points x, y is connected
independently with probability

φ(x− y, Ux, Uy), e.g. 1{∥x− y∥ ⩽ U−γ
x U−γ

y }

for some i.i.d. marks Ux, Uy ∈ [0, 1], γ ∈ (0, 1/d).

Exercise
The number of neighbours N(x,u) of a point at x with a mark u is a
Poisson variable with parameter cd,γu−γd.
The variance of Nx the number of neighbours of a point at x (with
random mark) is finite iff γ < 1

2d .



Geometric models

Graphs / Tessellations / partitions III

The Voronoi tessellation
Given a set of points P ∈ N , for x ∈ P , let the Voronoi cell of x

Voronoi(x, P ) := {y ∈ Rd : ∥y − x∥ ⩽ ∥y − x′∥, ∀x′ ∈ P}.

The edges form a graph structure/1D lines network; one can also consider
the dual Delaunay model, where two points x, y are connected if their
Voronoi cells touch: Voronoi(x, P ) ∩ Voronoi(y, P ) ̸= ∅.

Poisson Voronoi tessellation Lantuéjoul [2002]
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Graphs / Tessellations / partitions IV

Poisson line tessellation



Geometric models

Graphs / Tessellations / partitions V

For λ > 0, let µ the unique measure on the space L of lines of R2 that is
invariant under the action of Euclideand shifts and such that

µ({L : L ∩B(0, 1) ̸= ∅}) = λ.

Let P a Poisson process of intensity µ. The random closed set

F = ∪L∈PL

is the Poisson line intersection process.



Geometric models

Graphs / Tessellations / partitions VI

STIT tessellations
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Graphs / Tessellations / partitions VII

Stit tessellations

Stit-Mondrian tessellations
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Graphs / Tessellations / partitions VIII

Jalowy [2023]

D. Hawat
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Mixed models

Lan02

Shot noise fields
Cox processes
Hawkes processes
Gibbs processes
...
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Geometric functionals

Stationarity and LLN

We study a random set F under the assumption of stationarity

τxF
(d)
= F, x ∈ Rd

We wish to estimate parameters of the model based on a spatial
average over a window Wn with volume n (ball Bn or cube Cn).

φn(F) =
1

n

∫
Wn

dMF(x)

Typical example: Estimate the density of a point process

λ̂ =
1

n
#P ∩Wn

Or estimate the fraction volume of a random set F

κ̂ =
1

n
Lebd(F ∩Wn).



Geometric functionals

Total volume / mass

Statistics of interest φn(F ) :

Number of points of a point process F = P :

φn(P) = #P ∩Wn

Volume of a random set F:

φn(F) = Lebd(F ∩Wn)

Length / d− 1-dimensional Hausdorff measure of a graph /
tessellation / nodal lines set F = L :

φn(L) = Hd−1(L ∩Wn)



Geometric functionals

Standard behaviour:

stationary Poisson process P:

Nn := #P∩Wn ∼ Poiss(Lebd(Wn)︸ ︷︷ ︸
=n

)
(d)
=

∑n
i=1 Pi with Pi ∼ Poiss(1) i.i.d.

Law of Large Numbers (LLN): a.s.

1

n
Nn =

1

n

∑
i

Pi → EP1 = 1

Extensive variance:

Var (Nn) =
∑
i

Var (Pi) = n

CLT:
1√
n
(
∑
i

Pi − n) → N (0, 1).



Geometric functionals

Main questions:

Law of large numbers:
1

Lebd(Wn)
φn → κ ∈ R?

Linear variance: do we have

Var (φn) ≍ n?

CLT / Statistic stability / confidence intervals :

φ̃n :=
φn −Eφn√
Var (φn(F))

Law−−−→
n→∞

N (0, σ2)?

Functional CLT / Uniform tightness for parametric model Fℓ, ℓ ∈ R:

φ̃n(Fℓ)
Skohokod space−−−−−−−−−→

n→∞
G(ℓ) a continuous Gaussian process?



Geometric functionals

Intrinsic volumes / Curvature measures I

Let a bounded convex polygon C ⊂ Rd

Steiner formula: with C⊕r = {y : d(y, C) ⩽ r}, Lebd(C⊕r) is
polynomial in r : Lebd(C⊕r) = ...

= V d(C)︸ ︷︷ ︸
Lebd(C(d))

+r V d−1(C)︸ ︷︷ ︸
:=Hd−1(∂C)

+r2 V d−2(C)︸ ︷︷ ︸
=?

+ · · ·+ κdr
d × 1︸︷︷︸

Euler(C)=V 0(C)

Steiner’s formula is still true for any convex bodies!



Geometric functionals

Intrinsic volumes / Curvature measures II

V k(C) :=“k-th intrinsic volume”, can be generalised to any convex set
V d(C) := Lebd(C)
V d−1(C) : = “Perimeter” = “Boundary measure”
V d−2(C) = “mean width” ̸= Hd−2(C(d−2)) . . .
V 0(C) = 1

The intrinsic volumes can be extended to unions of convex sets with:

V k(A ∪B) = V k(A) + V k(B)− V k(A ∩B)

Ok for volume
Less obvious for perimeter
It gives a way to extend the intrinsic volume to “polyconvex sets”
(finite union of convex bodies). Same interpretation for V d, V d−1,

V 0(C) = Euler(C)



Geometric functionals

Intrinsic volumes / Curvature measures III

Euler characteristic:
d = 2 : Number of connected components - Number of bounded holes
d = 3 : Number of CC - Number of handles + Number of cavities:
bounded CCs of Cc

Other V k can be interpreted as “the average k-dimensional
cross-section” (Crofton formula)

Intrinsic volumes can be further extended to smooth sets
Gives an alternative way to define Euler characteristic
Computing (probabilistically or not) an intrinsic volume is easy
because it is a sum of unordered local contributions
Hadwiger’s characterisation theorem Any continuous additive
functional φ is a linear combination

φ(C) =

d∑
k=0

λkV
k(C)



Geometric functionals

Intrinsic volumes / Curvature measures IV

One can see intrinsic volumes as measures over the set C:

V d(C) =

∫
C
1Lebd(dx)

V d−1(C) =

∫
C
1{x ∈ ∂C}Hd−1(dx)

V k(C) =

∫
C

Mk(C, dx)︸ ︷︷ ︸
k−th curvature measure

Gauss-Bonnet theorem: for C smooth, e.g. C = Fℓ excursion set of
C3 Gaussian field,

V 0(C) =

∫
∂C

M0(C, dx)︸ ︷︷ ︸
Gauss curvature at x

dx



Geometric functionals

Local / Linear functionals I

Linear functionals in the model are: the number of points, the volume,
perimeter, Euler characteristic, etc...
Often, there is an input P, point process or Gaussian field, and a
random set F defined locally from P, and the functional is linear “in
F”. Examples:

P is a Poisson process,

Germ grain model: F =
⋃
x∈P

B(x, 1), φn(P) = Vol(F ∩Wn)

NN Graph: L =
⋃

{x nearest neighbour of y}

[x, y], φn(P) = Euler(L ∩Wn)

Sum of perimeters of Voronoi cells based on a point process
X is a Gaussian field, φn = Perimeter(Fℓ ∩ ∂Wn)
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Semi-local functionals

Subgraph count: count the number of triangles / cliques / other
abstract finite graph occuring in a random graph; can be seen as
“polynomial” in P :

#triangles in geometric graph on P

=
∑

x1,x2,x3∈P
1{x1, x2, x3 pairwise connected}

Number of connected components Betti0 / Number of “holes”
Bettid−1 (d ⩾ 2)
Other Betti numbers Bettik, 0 ⩽ k ⩽ d− 1. Interestingly

Euler(F)︸ ︷︷ ︸
Local

=
∑
k

(−1)k Bettik(F)︸ ︷︷ ︸
Non-local



Geometric functionals

Random set / Simplicial complex

To study homology on a random set F, one can either:
Study equivalence classes in terms of homotopy (Algebraic Topology)
Study random sets based on complexes, such as the Čech complex on a
point set, or a triangulation of F



Geometric functionals

Betti numbers

Betti numbers of F ⊂ Rd smooth manifold
Bettik(F ) : Number of equivalence classes of kD loops for 0 ⩽ k < d

Betti0(F ) : Number of 0D loops (≈ points) = #CC(E)
Betti1(F ) : Number of 1D loops (≈ circles)
Betti2(F ) : Number of 2D loops (≈ bounded holes)

Euler characteristic: Euler(E) :=
∑

k(−1)kBettik(F ) =
∫
∂E κF (x)dx

Walker 2016



Geometric functionals

Another representation

A reason why subgraph counts is relevant for topological analysis:
Let Nk(F ) the number of k-dimensional simplices
Then

Euler(F ) =
∞∑
k=0

(−1)kNk(F )

Uses of Euler characteristic
The Euler characteristic can be used to estimate the percolation
threshold of large stationary models
The mean Euler characteristic is useful to estimate rare crossing
events for random fields



Geometric functionals

Highly non-linear: optimisation functionals

Lenght of minimal spanning tree
Optimal transport cost
Length of minimal spanning path (Traveling Salesman Problem)

Figure: Minimal spanning tree on Poisson points



Abnormal fluctuations

Abnormal fluctuations



Abnormal fluctuations

Random Geometric Graph and Random Connection Model I

Let n→ ∞ some parameter

Let P a stationary Poisson process

For any x, y ∈ P ∩Wn, draw an edge between x and y with
probability

ψ (∥x− y∥, Ux, Uy) ∈ [0, 1]

ψ interaction profile
Ux, x ∈ Pn : i.i.d. marks with some law ν (marked point process).

If ν = δ0 (no randomness), we have the random geometric graph, and
the number of neighbours follows a Poisson distribution with parameter

#neighbours(x)
(d)
= Poiss

(∫
ψ(∥x− y∥)µ(dy)

)
.



Abnormal fluctuations

Random Geometric Graph and Random Connection Model II

This does not reflect real social networks where it is known that the
number of neighbours experiences a power law

https://helios2.mi.parisdescartes.fr/~rlachiez/social/index.html

More generally, ν determines the law of the neighbour profile. To
reflect social network, we choose ν, ψ such that the number of
neighbours has a “heavy” power law tail

https://helios2.mi.parisdescartes.fr/~rlachiez/social/index.html


Abnormal fluctuations

Random Geometric Graph and Random Connection Model
III

Age dependent 1D random connection model (Credit. P. Gracar)



Abnormal fluctuations

Back to RCM model I

Age-dependant random connection model: Number of neighbours
of typical point x with mark Ux ∼ U[0,1] on R:

#Neighbours(x, Ux)
(d)
= Poiss(U−γ

x )

γ < 1/2 : finite second order moment,

γ ⩾ 1/2 : infinite second order moment



Abnormal fluctuations

Back to RCM model II

Call m-clique of the graph a group of m points which are all mutually
connected, consider the number of m-cliques in [−n, n], approximable by

φn(P) =
∑

x∈P∩[−n,n]

1

m
#{m-cliques ∋ x}

Theorem
Clique counts

[ Hirsch and Owada [2024]]: Stable limit for γ > 1/2 (with the right
renormalisation)
[ Hirsch, Lr, and Owada [2025]]: CLT for γ < 1/2



Abnormal fluctuations

For more general subgraph counts, the result depends on the shape of the
graph: for instance, for subtree counts, it depends on the number ℓ of
leaves:

Theorem
ℓ-subtree counts:

[ Hirsch and Owada [2024]]: Stable limit for γ > 1/2ℓ

[ Hirsch, Lr, and Owada [2025]]: CLT for γ < 1/2ℓ

7 wedge trees in this example, with ℓ = 2



Abnormal fluctuations

Perturbed lattices

Let Uk, k ∈ Zd i.i.d. variables in Rd

Let P0 = {k + Uk} the perturbed lattice
Let U ∼ U[0,1]d . Then P = τUP0 is a stationary point process
Consider

φn(P) = #P ∩ Cn.

Theorem (Mastrilli ’25)

If d ⩾ 3, φ̃n(P) → N (0, 1)

If d = 2 and E∥Uk∥ν <∞ for some ν > 0, φ̃n(F ) → N (0, 1)

If d = 1 and the characteristic function φ of the Uk satisfies
φ(x) ∼ 1− c|x|α for some c > 0, α ∈ [1, 2), there is no CLT (the limit
is stable for α > 1)



Abnormal fluctuations

Hyperuniformity I

Let Pm ⊂ C be either

(Ginibre process) the set of eigenvalues of M = (Mi,j)1⩽i,j⩽m where
Mi,j = Ri,j + iIi,j i.i.d. N (0, 1)

(GAF zeros) the zeros of the random “Gaussian Analytic Function”
(GAF)

F (z) =

m∑
k=1

(Rk + iIk)
zk

k!

where the Rk, Ik are i.i.d. N (0, 1) variables.



Abnormal fluctuations

Hyperuniformity II

Theorem
Pm → P where P is stationary and hyperuniform:

Var (#P ∩Bn)

Lebd(Bn)
→ 0

Figure: Left: Ginibre, Right: GAF zeros

References: Hough et al. [2009], Lr [2025+]



Abnormal fluctuations

Linear statistics for hyperuniform point processes

Let f smooth with fast decay with
∫
f ̸= 0. For an ergodic process with

unit intensity λ = 1:

E
∑
x∈P

f(x/R)︸ ︷︷ ︸
e.g. #P∩BR

= Rd

∫
f

For a unit intensity Poisson process:

Var (P(fR)) = Rd

∫
f2

For a hyperuniform process

Var (P(fR)) ∼ Rd−αcf

where α > 0 is the hyperuniformity index (can be arbitrarily large).



Abnormal fluctuations

Planar Gaussian random waves I

Let X(x), x ∈ R2 the random Gaussian field with covariance measure
the Bessel function of 1t order defined by

C (x) := J1(x) =
1

2π

∫ 2π

0
eix·e

iθ
dθ,

it means that S := Ĉ is the uniform distribution on the circle
∂B(0, 1), and X does not have a white noise decomposition.

This system does not have strong mixing properties because the
correlation C decreases “slowly” at ∞, namely

C (x) ∼∥x∥→∞ sin(∥x∥+ c)∥x∥−1/2.



Abnormal fluctuations

Planar Gaussian random waves II

By Maruyama’s theorem, X is mixing. This long range interactions
still yields non-standard behaviour.

We study the excursion and level sets

Fℓ = {x : X(x) ⩾ ℓ}, Lℓ = {x : X(x) = ℓ}.

When the covariance decays fast, e.g. Bargmann-Fock field

C (x− y) = exp(−∥x− y∥2),

geometric functionals have a standard behaviour.



Abnormal fluctuations

BF excursion Random wave excursion

Related to Chladni figures



Abnormal fluctuations

Theorem
The variance of the nodal volume is “linear”, i.e. in n

Var
(
Lebd(Fℓ ∩Bn)

)
≍ n

The nodal length is hyperfluctuating and depends on ℓ (Berry’s
conjecture Berry [2002]):

Var
(
Hd−1(Lℓ ∩Bn)

)
≍

{
n3/2 if ℓ ̸= 0

n ln(n) if ℓ = 0.

The variance of the number of connected components is in n3/2 for
ℓ ̸= 0 Beliaev et al. [2019]

Var (Betti0(F0 ∩Bn)) ⩾ cn3/2

Exercise
Sho



Abnormal fluctuations

Random waves nodal length

Nodal set of the excursion random wave

The nodal length does not follow a CLT Marinucci et al. [2016]: with

φn = Hd−1(Lℓ ∩Bn)

we have for some a, b ⩾ 0

φ̃n → aX2
1 + bX2

2

where X1, X2 are independent Gaussian variables.



Abnormal fluctuations

2D optimal transport I

Call allocation of Cn to P ∩ Cn a partition of Cn into disjoint cells
B = {Bx, x ∈ P ∩ Cn}, such that each cell has equal volume

Lebd(Bx) =
n

#P ∩ Cn
.

Call allocation 2-cost the quantity

C(B) = inf
B

∑
x

∫
Bx

∥x− y∥2dy.

Jalowy [2023]



Abnormal fluctuations

2D optimal transport II

Call optimal cost the minimal value of the cost

φp
n := W2

2(P ∩ Cn) = inf
B
C(B).

This is the optimal transport cost for the Wasserstein distance.

Theorem ( Ajtai, Komlos, and Tusnady [1984])

If d ⩾ 3, φn ≍ n

If d = 2, φn ≍ n ln(n)

If d = 1, φn ≍ n2



Abnormal fluctuations

Allocations to Poisson points

Credit: D. Haway
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Conditions for standard statistical
behaviour



Conditions for standard statistical behaviour

Formulation

In the greater generality, we can represent φn as a stationary random
signed measure M, i.e. φn(F) = M(Wn). Examples:

Number of points of P : M(A) = #P ∩A
Volume of a random set F : M(A) = Lebd(F ∩A)
Number of triangles of a graph on a point process P :

M(A) =
∑

x∈P∩A

1

3
#{ triangles ∋ x}

Number of bounded connected components of a “full” random set F:

M(A) =

∫
F∩A

1

Lebd(connected component containing x)
dx

We will assume Local Square Integrability (LSI): for A bounded

EM(A)2 <∞.



Conditions for standard statistical behaviour

Example of a useful result

Sometimes M(dx) is called the score function, when randomness
comes from a point process P we use the notation M(dx) = ξ(x,P)
and

φn =
∑

x∈P∩Wn

ξ(x,P)

Theorem ( Beck [1987])

For M LSI (wide sense) stationary random measure,

lim sup
n→∞

Var (M(Bn))

n1−
1
d

> 0.

Not true in all generality for a rectangle instead of a ball
The lim inf can be zero
True for a rectangle if M is a “disordered” point process
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Ergodicity and LLN I

The basic assumption is that of ergodicity. It roughly means that a
quantity can be estimated by doing spatial averages.

Definition
A stationary random measure M is ergodic if for all bounded function f ,

1

n

∫
Bn

f(τxM)dx→ Ef(M)

If for instance one wishes to estimate the fraction volume / intensity
with f(P ) = #P ∩B1,

λ =E#P ∩B(0, 1),

λ̂n :=
1

n

∫
Bn

f(τxP)dx =
1

n
#P ∩Bn + o(1) → λ a.s.
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Ergodicity and LLN II

What can go wrong? Let P be a stationary Poisson process with
random intensity Λ . The actual intensity is

λ = EP([0, 1]d) = EΛ

but we have a.s.

λ̂ :=
1

n
#P ∩Wn → Λ

which in general does not give λ.

Non integrable functional for 2D optimal transport:∑
x∈P∩Wn

Cost1(Cell(x,P)) ≍ n ln(n)
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Ergodicity and LLN III

Discrete version (see [Meester and Roy, 1996, Sec. 2.2]): for f
integrable

1

nd

n∑
k1=1

· · ·
n∑

kd=1

f(τ(k1,...,kd)F) → Ef(F)

This will typically apply to functionals φn = φ(P ∩ Cn) which are
approximatively additive, i.e. for all rectangle R union of two
rectangles R1,R2,

φ(P ∩R) = φ(P ∩R1) + φ(P ∩R2) + o(diam(Ri)
d)︸ ︷︷ ︸

Boundary terms
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Ergodicity and LLN IV

because then

φn(P ∩ Cn) ≈
n∑

k1=−n

· · ·
n∑

kd=−n

φn(P ∩ τkC1)

See for instance Yukich [1998] for general definitions and results

Quite often, one can also have more easily a weak LLN using
Bienaymé-Chebyshev inequality with

Var
(
1

n
φn(F)

)
→ 0 ⇒ 1

n
φn(F )−

1

n
Eφn(F )

P−−−→
n→∞

0.
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LLN for Betti numbers I

Definition

Čech k-simplex of P: set of k points x1, . . . , xk ∈ P such that

k⋂
i=1

B(xi, r) ̸= ∅.

Theorem ( Yogeshwaran et al. [2017])

Let P an ergodic stationary point process with finite moments on each
compact. We have for some bk > 0

1

n
Bettik(P ∩ Cn)

a.s.−−−→
n→∞

bk.
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LLN for Betti numbers II

Remember that Bettik(K) is the number of equivalence classes of
k-dimensional loops in a set of complexes K.

Lemma (Topological lemma)

For two complexes K ⊂ K1,

|Bettik(K1)− Bettik(K)| ⩽
k+1∑
j=k

#{j-simplex in K1 \K}

Approximation: Decompose Cn in cubes of size t: Ct
j , j = 0, . . . , N with

Ntd = n

Bettik(P ∩ Cn) ≈
∑
j

Bettik(P ∩ Ct
j)
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LLN for Betti numbers III

The difference consists in simplexes touching the boundary, negligible for t
large enough.
With the previous inequality, the difference is bounded by

#{k − simplices touching ∂Ct
j}

+#{(k + 1)− simplices touching ∂Ct
j} ≈ N × 2drt ≍ n

td−1

then apply the ergodic theorem to the translates

Bettik(P ∩ Cj), j = 0, . . . , N

for t arbitrarily large.
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Variance upper bound with Poincaré inequality I

For a functional φ(x1, . . . , xn), and i.i.d. variables X ′
1, . . . , X

′
n,

X1, . . . , Xn, we have the Efron-Stein variance upper bound

Var (φ(X1, . . . , Xn)) ⩽
∑
i

(
Eφ(X1, . . . , Xi, X

′
i+1, . . . , X

′
n)

−Eφ(X1, . . . , X
′
i, X

′
i+1, . . . , X

′
n)
)2
.

Does the functional vary a lot when one point is resampled?
For a stationary Poisson process P,

Var (φ(P ∩Wn)) ⩽
∫
Wn

E[φ(P ∪ {x})− φ(P)]2λdx

It quite often matches the lower bound ( Lr and Peccati [2017],
Schulte and Trapp [2024])
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Variance upper bound with Poincaré inequality II

Example: Number of connected components of the r-Germ grain
model / r-geometric graph:

Adding a ball can create at most one CC, but it cannot merge more
than κd CCs for any existing point around:

|φ(P ∪ {x})− φ(P)| ⩽κd
E |φ(P ∪ {x})− φ(P)|q ⩽κqd (with q = 2)

Works similarly for other Betti numbers

With the representation Euler =
∑d−1

k=0(−1)kBettik, it gives also an
upper bound for the Euler characteristic.
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Variance lower bounds

More tricky , often requires conditionnal variance formula - Example of
Volume of Voronoi cells :

φn =
∑

x∈P∩Wn

Vol(Cell(x,P)) ⇒ Var (φn) ≍ n1−1/d

φn =
∑
x∈P

Per(Cell(x,P) ∩Wn) ⇒ Var (φn) ≍ n.



Conditions for standard statistical behaviour

Stronger assumption: mixing or “asymptotic independence”

Say that F (stationary) is mixing if for bounded A,B ⊂ Rd,

P(A ∩ F = ∅, τxB ∩ F = ∅) → P(A ∩ F = ∅)P(B ∩ F = ∅)

Theorem ( Maruyama [1949])

A stationary centred Gaussian field X(x), x ∈ Rd with covariance function
C and spectral measure S = Ĉ is

ergodic iff S has no atoms

mixing iff C (x) → 0 as ∥x∥ → ∞.

Exercise:The Poisson line intersection process is mixing
Mixing is a convenient concept of ergodic theory but we sometimes
need a stronger assumption.
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A CLT with Brillinger mixing in dimension d ⩾ 2 I

(Refresher on) the method of cumulants: for a variable X with
exponential moments (Eet|X| <∞ for some t > 0), call κm(X) the
m-th order cumulant

κm(X) =
dm

dtm
lnEetX |t=0

It retrieves some familiar quantities

κ1(X) =EX

κ2(X) =Var (X)

κ3(X) =E(X −EX)3

. . .
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A CLT with Brillinger mixing in dimension d ⩾ 2 II

The m-th cumulant is a linear combination of moments of order
j ⩽ m.

For the Gaussian variable, EetX = et
2
, κm(X) = 0 for m ⩾ 3.

Marcinkiewicz theorem: Gaussian laws are the only laws on R for
which only finitely many cumulants do not vanish (i.e. ln(EetX) is
polynomial).

Theorem
Let Xn centred with unit variance. Xn → N (0, 1) if and only if for all but
finitely many m,κm(Xn) → 0.

See also the 4th moment theorems (in some frameworks,
κm(X) → 0 for m = 3, 4 is sufficient)



Conditions for standard statistical behaviour

A CLT with Brillinger mixing in dimension d ⩾ 2 III

With Beck’s lemma for a random measure M, we have a CLT for

M̃(Bn) := Var (M(Bn))
−1/2 (M(Bn −EM(Bn))

if for sufficiently high m ⩾ 3

κm(M̃(Bn)) =
κm(M(Bn))

Var (M(Bn))
m/2

→ 0

Hence we have a CLT if e.g. for all m, κm(M(Bn)) = O(n) (except
maybe for strongly hyperuniform processes in d = 1).
Example: Poisson process: κm(Poiss(n)) = n hence we have a CLT
The “Poisson-like” condition κm(Bn) = O(n) is strongly related to
“Brillinger mixing” (equivalent under some regularity assumptions),
and to fast decay of correlations at every order:

Recall κ = P(x ∈ F).
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A CLT with Brillinger mixing in dimension d ⩾ 2 IV

Recall that plain mixing is related to

P(0, y ∈ F)−P(0 ∈ F)P(y ∈ F) = κ(P(y ∈ F|0 ∈ F)− κ) → 0.

Fast decay of correlations : for all p, q ⩾ 0

|P(x1, . . . , xp+q ∈ F)−P(x1, . . . , xp ∈ F)P(xp+1, . . . , xp+q ∈ F)|
⩽ Φp,q(dist({x1, . . . , xp}, {xp+1, . . . , xp+q}))

where Φp,q has fast decay at ∞ (faster than any power function).
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Theorem ( Błaszczyszyn, Yogeshwaran, and Yukich [2019])

Let F a random measure with fast decay of correlations, then we have
Brillinger mixing and CLT

Some applications
Semi-local (non-linear) statistics over non-Poissonian input:

Random geometric graphs on Determinantal processes
Voronoi tessellations on zeros of Gaussian Analytic functions
Betti numbers (far from percolation thresholds)
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Geometric stabilisation and weak dependency

We introduce the concept of stabilisation, essential to prove that a
geometric functional is statistically stable.

Let P a stationary point process on Rd and a functional

φn(P) =
∑

x∈P∩Wn

ξ(x,P)

Concept: the contribution of each point x ∈ P depends on a ball
around x with radius Rx :

ξ(x,P∪A) = ξ(x,P ∩B(x,Rx)∪A) for all finite A

By stationarity, the law of Rx does not depend on x
We should have some control over Rx’s tail.
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Example: NN graphs and subgraph counts

Let φn(P) the length of the NN graph on P ∩Wn, we have
stabilisation with

Rx = sup{2∥y∥ : y ∼ x}

P(Rx > t) = P(R0 > t) ⩽ ce−c′td

Still works (with different constants) with the k-NN graph, or for
weighted edge lengths

∑
x,y∈P ∥x− y∥α1{x ∼ y}

Also works for the number of triangles in Wn, for the geometric graph,
...
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Quantifying stabilisation

Stretched exponential stabilisation for some α > 0

sup
x,n

P(Rx > t) ⩽ C exp(−c∥t∥α)

Polynomial stabilisation

sup
x,n

P(Rx > t) ⩽ C(1 + t)−d−α

Weak stabilisation: There exists a random variable D∞ such that

D0φn(P) := φn(P)− φn(P ∪ {0}) P−−−→
n→∞

D∞

Strong implies Weak: E
∑
x

1{0 ∈ B(x,Rx)} <∞

hence a.s. for some R0 suff. large, 0 does not influence ξ(x,P) further
than R0, and conversely.
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CLT and 2d order variance with stabilisation on Poisson
input

Theorem (Penrose Yukich 2001, Th. 3.1)

Assume we have
Weak stabilisation
the 4th moment is uniformly bounded: for finite A ⊂ Rd

sup
n,A

E |φn(P ∪ {0} ∪A)− φn(P ∪A)|4 <∞

Then Var (φn) = O(n) and

n−1/2(φn −Eφn) → N (0, σ2︸︷︷︸
>0?

)

The 4th moment assumption is not always easy to check (see RCMs)
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Stabilisation of topological functionals

Consider the germ grain F based on a Poisson process and a radius r

F = ∪x∈PB(x, r)

φn = Bettik(F ∩Wn).

Theorem ( Yogeshwaran, Subag, and Adler [2017])

LLN :
1

n
φn

a.s.−−−→
n→∞

β̂k

Variance for k = 0 / k = d− 1 :
1

n
Var (φn) ≍ σ2 > 0

CLT :
1√
n
(φn(P)−Eφn(P)) → N (0, σ2)
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CLT proof with weak stabilisation

Let us prove that the number of connected components stabilises.
We let Cr the class of disjoint connected components touching
B(0, r), hence that can be modified by adding/removing 0

Cr is a.s. bounded by κd
If they are disconnected globally they are a fortiori disconnected inside
B(0, 3r)

Two components C,C ′ disconnected close to 0 might be connected
far from 0, but they reach their “connected status” at some finite
radius R(C,C ′) (they cannot be connected “at ∞”)
Once we are over all such radii, “it stabilises”.
More generally, use Meyer-Vietoris sequence
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Stabilisation and TDA

In the context of TDA/persistent homology, one studies the evolution
of Betti numbers when r evolves:

Bettir,sk (P ∩Wn) := #{(equiv. classes of) cycles born before r
and merged after s}

Bettir,rk (P ∩Wn) = Bettik(Fr ∩Wn) germ grain model / geometric
graph with parameter r

Lemma ( Hiraoka et al, Lm 5.3)

“Deterministic stabilisation:” For any configuration P , and 0 ⩽ r ⩽ s, there
is Dr,s(P ) and R = Rr,s(P ) such that for n ⩾ R

Bettir,sk ((P ∩Bn) ∪ {0})− Bettir,sk (P ∩Bn) = Dr,s(P )

Implies CLT. Krebs et al. [2021], Trinh [2019] : binomial case,
multidimensional version, inhomogeneous intensity
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Limit theorems for excursion / random fields functionals I

TDA is about studying a parametric “functional” model

Lots of natural data can be modeled through a random field, ℓ is the
varying parameter

Adler, Bobrowski, Borman, Subag, and Weinberger [2010]
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Limit theorems for excursion / random fields functionals II

Adler et al. [2010]
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Limit theorems for excursion / random fields functionals III

Adler and Taylor [2007]

X centred stationary Gaussian field on Rd

ℓ ⩾ 0,Fℓ = {x : X(x) ⩾ ℓ}
0 ⩽ k ⩽ d− 1, φn = Bettik(Fℓ ∩Wn)

Further assume white noise convolution for some L2 symmetric ψ :

X(x) =

∫
ψ(x− y)dW (y)

i.e. C = ψ ⋆ ψ.



Conditions for standard statistical behaviour

Limit theorems for excursion / random fields functionals IV

Theorem ( Beliaev, McAuley, and Muirhead [2024])

Assume
∫
ψ ̸= 0 and

Smoothness ψ ∈ C 5(Rd)

Fast decay

|ψ(x)|, |∂iψ(x)|, |∂i,jψ(x)| ⩽ C(1 + ∥x∥)−9d−1, x→ ∞

Let φn = Var (Betti0(Fℓ ∩Wn)). Then

Var (φn) ∼ σℓn with σℓ > 0

φn −Eφn√
n

→ N (0, σ2ℓ ).
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Theorem ( Hirsch and Lr [2025])

Assume still
∫
ψ ̸= 0 and

More smoothness: ψ of class C213

Faster decay |∂αψ(x)| ⩽ c(1 + ∥x∥)−55d

Either Fℓ or Fcℓ does not percolate (and ℓ ̸= ℓc critical level)
Then there is a Functional CLT for Betti numbers for
φn,ℓ = Bettik(Fℓ ∩Wn), weakly in the Skohokod topology

φ̃n,ℓ :=
φn,ℓ −E√

n
→ Gk(ℓ)

where Gk is a non-zero centred continuous Gaussian field with
Var (Gk(ℓ)) = σ2ℓ > 0.
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FCLT proof

CLT Proof Based on stabilisation
Multivariate CLT (Cramér-Wold device): for finitely many
coefficients λi, levels ℓi;∑

i

λiφn,ℓi → N (0, σ2λ) ⇒ (φ̃n,ℓ1 , . . . , φ̃n,ℓq) → (Gk,ℓ1 , . . . , Gk,ℓq).

Tightness: requires uniform bound on increments of the form

sup
n

E|φ̃n,ℓ − φ̃n,ℓ′ |4 ⩽ c∥ℓ− ℓ′∥β

with β > 1. In any case, we always have to control that φ̃n,ℓ does not
vary too much when ℓ varies
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Proof I

Also based on stabilisation ideas but on Gaussian input

Poisson: “discrete” white noise

Gaussian field: based on Gaussian white noise W (dx)

⇒ What is stabilisation for a Gaussian field?

X(x) =

∫
ψ(x− y)dW (y) ≈

∑
y∈εZd

ψ(x− y)Wy with Wy ∼ N (0, εd)

Stability under resampling: let B ⊂ Rd and W ′ an independand copy of W
and the resampled field at B

XB(x) =

∫
B
ψ(x− y)dW ′(y) +

∫
Bc

ψ(x− y)dW (u)



Conditions for standard statistical behaviour

Proof II

XB (d)
= X because W −W1B +W ′1B

(d)
= W for all B ⊂ Rd

X ≈ XB far from B because W =W ′ outside B : for y at distance
more than R from B

E∥X(y)− XB(y)∥2 ⩽ c

∫
B(0,R)c

|ψ|2 ⩽ c(1 +R)−109d

The same holds for the fields derivatives far from B :

∂iX(x) ≈ ∂iX
B(x), ∂i,jX(x) ≈ ∂i,jX

B(x), ...
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Small variations analysis I

When a “smooth topological structure” evolves “smoothly”, the
topology does not change when there is no “topological accident”

Germ grain model: Merge/appearing/disappearing of ball, such
accidents are coded into the barcodes

The number of such accidents in a small interval [ℓ, ℓ+ h] goes to 0 as
h→ 0

Accidents of random functions: X(x) is Morse function if and only if
each critical point has X ′′(x) ̸= 0 and there are no two critical points
at the same level

The topology of a level set changes only when a critical point is
crossed
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Small variations analysis II

Lemma (Topological lemma)

let X :W → R Morse and ∆ a smooth perturbation, then (after removing
boundary components) there is an isotopy between the level sets {X ⩾ ℓ}
and {X +∆ ⩾ ℓ} if no critical point “crosses” level ℓ of X + t∆ for
t ∈ [0, 1]

When one resamples around 0, the difference stabilises weakly when
the window converges to ∞ as after a while the critical points close to
0 are not created/deleted. Beliaev et al. [2024]: a.s.

Bettik(Fℓ;Wn)− Bettik(Fℓ;WB1
n )

a.s.−−−→
n→∞

∆k
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Moments

By the topological lemma, the Betti number at some level ℓ is
bounded by the number of critical points from −∞ until ℓ, globally

Bettik({X ⩾ ℓ}) ⩽ cd,k#critical points(X)

For regular (say C3) Gaussian fields it is easy to prove that there is a
finite moment of order 2 for the number of critical points, hence for
the Betti numbers.
For stabilisation techniques, one requires higher moments, typically
4th order.
Proving even 3d order moments is complicated (even if the field is
C∞), Beliaev et al. [2024] proved it for their CLT
Almost simultaneously, Gass and Stecconi [2024] and Ancona and
Letendre [2025] proved that if the field is C k+1, the zeros have
moments up to order k (hence all moments if the field is C∞)
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Stabilisation I

We decompose

φn =
∑

x∈Wn:∇X(x)=0

Contribution of x

=
∑

x∈Wn:∇X(x)=0

Bettik(C(x,Fℓ) ∩Wn)1{x is the reference point}

where C(x,Fℓ) is the connected component containing x and

1{x is the reference point} = 1{x is the smallest critical point of
C(x,Fℓ) ∩Wn in lexicographical order}



Conditions for standard statistical behaviour

Stabilisation II

Do we have stabilisation of

Bettik(C(x,Fℓ) ∩Wn) and 1{x is the reference point}?

under the continuous perturbation

X → X̃

where
either we resample the white noise far from x continuously

X̃ = XB(x,R)c

or we slightly modify the level

X̃ = X(h+ ·)
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Stabilisation III

We consider the perturbation in a continuous manner

X̃(t) = X+ t(X̃− X), F̃
(t)
ℓ = {X(t) ⩾ ℓ}, t ∈ [0, 1].

Stabilisation depends a lot on the size of the component C(x,Fℓ)!

Theorem (Vanneuville, Muirhead, Ribera, Severo, Beffara, Gayet, ...)

For a standard Gaussian field in the supercritical regime, the typical
bounded component’s diameter decreases exponentially fast:

In dimension d ⩾ 2 at level ℓ > ℓc = 0,

In dimension d ⩾ 3 at level ℓ > ℓc > 0 with positive association C (x) ⩾ 0 or
if C decays sufficiently fast
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Stabilisation IV

We assume therefore that ℓ evolves in (ℓc,∞), so that on a small
perturbation, C(x,F(t)ℓ ) stays inside C(x,Fℓ′) for some ℓ′ ∈ (ℓc, ℓ)
satisfying

P(diam(C(x,Fℓ′)) > R) ⩽ exp(−cRα)

Quantifying the variation of x’s contribution hence amounts to
quantify if

Another critical point y becomes the smallest critical point of
C(x,F

(t)
ℓ ) in the LG order

Some critical points appear / disappear /merge during the perturbation
...
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Stabilisation V

There is one useful formula when studying Gaussian fields, called
Kac-Rice formula, that gives the number of zeros of a random field
To estimate the probability that topological accidents happen, we
bound by counting the number of zeros of a specific function:
Example 1: Critical points crossing the level

P(a critical point crosses level ℓ) = P((X̃(t) − ℓ,∇X(t)) vanishes)

⩽ E#Zeros((t, y) 7→ (X(t)(y)− ℓ,∇X̃(t)(y)))

Example 2: (Dis)appearing critical points

P(a critical point appears in B(x,R))

⩽ P(detHessF(t)(y) = 0, y ∈ B(x,R), t ∈ [0, 1])

⩽ E#Zeros((t, y) 7→ detHessF(t)(y))
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Kac-Rice formula

Kac-Rice formula for a deterministic function ψ : R → R

#Zeros(ψ) = lim
ε

∫
|ψ′(x)|1{ψ(x) ∈ [−ε, ε]}

2ε
dx.

Then take the expectation for a random Gaussian function. Using

P(ψ(x) ∈ [−ε, ε])
2ε

→ 1√
2πVar (ψ(x))

We have

E#Zeros(ψ) =
∫
E[|ψ′(x)||ψ(x) = 0]

1√
2πVar (ψ(x))

dx.

In higher dimensions

E#Zeros(ψ) =
∫
E[∥∇ψ(x)∥|ψ(x) = 0]

1

(2π)d/2Var (ψ(x))
dx.
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Alexander duality

Final remark: If the components of C(x,Fℓ) are too large, we can
work in the connected components of the complement using
Alexander duality:

Bettik(Fℓ ∩Wn) = Bettid−1−k(Wn \ Fℓ)

we use also the self-duality of the Gaussian field: X
(d)
= −X, hence

Rd \ Fℓ
(d)
= F−ℓ.

All in all, we can work at level ℓ either
in the subcritical regime (Fℓ percolates)
in the supercritical regime (F−ℓ percolates)
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Thank you!
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