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Chapter 1

Introduction and examples

When one has to generate a sample of random points in a window W of R%, the default strategy across
many fields is to choose a large number n and draw n i.i.d points uniformly in W. The asymptotic
mathematical object as n — o0 is the celebrated homogeneous Poisson process, used as a universal
reference, especially in theoretical studies, due to its nice mathematical properties. Such finite (n i.i.d
points) or infinite (Poisson) samples of independent points has some downsides, such as their tendency
to leave large empty spaces, or on the contrary, regions cluttered with too many points (see the picture
on the right, below), but this is an inevitable consequence of total randomness.

Hyperuniformity is a property exhibited by many mathematical models presenting instead a regular
spatial arrangement, remedying some flaws of independent samples. This type of arrangement is
reminiscent of the way particles subject to mutual repulsive forces would be distributed; moreover,
many natural models from statistical physics, biology, or other fields, exhibit hyperuniform behavior.

A hyperuniform sample A Poisson sample

Figure 1.3 (left) shows the photoreceptor locations of a bird’s eye, a class of animals renowned
for their excellent long-distance vision. This sample can be categorised as hyperuniform due to its
spatial statistical characteristics [40]. In image analysis and optimal transport, hyperuniformity is
also present, sometimes under the term blue noise, because regular samples can be useful for many
tasks, such as texture synthesis, dithering, or else, and variance reduction is an essential feature of blue
noise samples [88, 84, 67, 19]. The rendering picture in Figure 1.2, for instance, has been obtained by
replacing greyscale levels by blue noise samples with the corresponding density. For many applications,
the samples should be disordered, i.e. non-periodic, it can otherwise cause in Monte Carlo integration
or image processing undesired aliasing or structured artifacts [67].

This regularity is difficult to define rigorously in a non-ambiguous way, but the good fortune of
mathematicians and the reason why this field of study exists is that hyperuniformity is a very natural
and universal way to mathematically define a certain form of regularity, as we shall see. Roughly
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Figure 1.2: Dithering - Greyscale levels replaced by hyperuniform samples [19], ACM Trans. Graph.

speaking, a sample is hyperuniform if the variance of the number of points in each large window is
smaller than if the points were independent (Poisson or i.i.d). Hyperuniformity is a simple second-order
assumption, which does not involves higher order structure of the process, but it surprisingly implies
many macroscopic phenomena, related to optimal transport, or rigidity. It is also quite universal since
it can equivalently be defined by low variance for not-too-irregular linear statistics, and the whole
theory extends to general random measures, including for instance Gaussian fields, spin systems and
nodal domains. The systematic study of processes from the perspective of hyperuniformity essentially
originates from theoretical physics, in particular with the team of S. Torquato at Princeton, who
popularised the term hyperuniformity, or J. Lebowitz at Rutgers University, sometimes under the
terminology of superhomogeneity.

Besides its usefulness and appearances in other sciences, many popular mathematical models turned
out to be hyperuniform, in random matrices, statistical physics, random polynomials, quasicrystals,
see the surveys [82, 17| for an in depth collection. Reading the literature gives the impression that
hyperuniform point processes can be categorised in two classes: the class of lattices that eventually
undergo a perturbation, having properties similar to those of crystalline structures, and the class of
particle systems that look like spontaneous organisation of particles that arrange themselves due to
a pairwise repulsive force, and conserve some sort of local disorder. To draw a parallel with the way
animal visual receptors sample space, the latter models seem visually more disordered, somewhat like
the bird photoreceptors in the figure below (left), whereas one can make a parallel between crystalline
models and the regular arrangement of the eyes of insects (right). A remarkable property of disordered
hyperuniform processes is that they often display the same large-scale properties as their crystalline
counterparts, which is why physicists sometimes subtitle hyperuniformity as global order and local
disorder.

The scope of this survey is to study hyperuniformity and its consequences under a mathemati-
cal perspective. We also present most stationary models for which hyperuniformity has been proven
rigourously: determinantal processes, zeros of random Gaussian functions, Coulomb gases ... We give
a first definition in Section 1.1 and discuss the concept of disordered sample, we give some emblematic
examples in Sections 1.2, 1.4. In Chapter 2, the mathematical core of this book, we explore hyperuni-
formity from the spectral viewpoint, which allows for a practical and universal characterization in the
direct space. The most natural framework for studying hyperuniformity is in fact that of (wide sense)
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Figure 1.3: Left. Disordered hyperuniform receptors [40]. Right. Periodic “ordered” receptors

stationary random measures, generalising point processes. In this setting, we also provide universal
bounds on the variance of linear statistics, useful for parameterizing measures by their hyperuniformity
exponent. Section 3 is devoted to a deeper study of certain classes of hyperuniform point processes,
which requires delving into the world of Gaussian analytic functions (GAFs), determinantal point
processes (DPPs), and quasicrystals. Sections 4 and 5 present surprising macroscopic properties of
hyperuniform processes in dimension 1 and 2: in Section 4, we show that they enjoy good optimal
transport properties, which allows crystalline/periodic structures to be merged with the class of disor-
dered hyperuniform processes into a single continuum. Section 5 deals with another property, rigidity,
which states that for many hyperuniform processes, the number of particles in a region of space can
be completely inferred by observing the process on the rest of the space. This rigidity can take more
extreme forms as the hyperuniformity exponent increases, leading us to the study of stealthy processes,
with infinite exponent, showcasing even more fascinating properties.

Context and objectives

These notes were written at the occasion of the mini-course Hyperuniformity of random samples given
at the 2025 GeoSto conference at Grenoble-Alpes University, the slides can be found at https:
//helios2.mi.parisdescartes.fr/ “rlachiez/recherche/talks/slides-hu.pdf. This version is
intended to take part in the Springer series Stochastic Geometry, I expect to produce a longer version
containing additional models and proofs, and more insights into numerical aspects.

There already exists general studies about hyperuniformity. The survey [81] lists many different
physical models experiencing hyperuniformity at different orders, and presents most important proper-
ties, and some conjectures on hyperuniform and stealthy processes. The more mathematical discussion
of Coste [17] contains some of the material treated here. Since its publication, there have been several
theoretical advances that we report here, notably concerning spectral characterization [10], transport
properties [52, 13, 37, 41, 21, 25], rigidity [21, 50, 51], linear statistics and limit theorems [58, 39, 47],
Gibbs measures [20, 54, 53|, and others. The excellent book [36] describes several models of hyperuni-
form DPPs and random GAF zeros, and provides their properties, it constitutes an essential source
for this work.

1.1 Point processes formalism and first definition of HU

Even though many general results will be stated without additional cost to general random measures,
the main objects of this branch of litterature are simple point processes. To define them properly,
introduce the space of configurations .4 = .4 (R?) which elements are the atomic measures P = >, 8,,,
where the z; are countably many isolated points in R%. A configuration P can unambiguously be
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assimilated to its support and we often use set-related notation such as, for P, P’ € A4,
P U P' = supp(P) usupp(P’), P n P’ = supp(P) n supp(P’), P\A = supp(P)\A4, ...

Endow .4 with the vague topology, generated by the mappings
pr:Pe NS - P(f):= deP

for f continuous with compact support. The corresponding Borel o-algebra %(.4) is alternatively
generated by mappings fi, for A ¢ R? bounded measurable. A simple point process, or just point pro-
cess in the following, is a random element P of (4", B(.4")). Equivalently, it is a family of measurable
mappings

A P(A)eN

for A = R? bounded measurable, and the family of laws {P(A); A ¢ R?} uniquely defines the law of
P as a probability measure over 4. An essential assumption for the modelisation of homogeneous
structures is that of stationarity. Call 7, the operator of shift by = € R?, lifted to a set P — R? with

7.P = {y + z;y € P}, and say that a point process P is stationary if for all x € R% 7,P @ P, using the
set notation.

Let us introduce the Poisson process, fundamental brick in the realm of point processes. Given
a non-zero non-negative locally finite measure p on R? without atoms, P* is defined as the unique
process satisfying

P(4) < Poi(u(A)), A < RY,
where Poi(\) denotes the law of a Poisson variable with parameter A € R u {o0} (Poi(o0) = w0 a.s. by
convention). One way to explicitly build P* is to start from i.i.d. variables uniform in the ball B,
centred in 0 with volume n, i.e. P¥ := {Xl(n), e ,X,(Ln)} with law ﬁuan (for n sufficiently large).
We have for A ¢ R? bounded,
Law .

#{k: XM e A} —2% Poi(u(A)),
hence P exists in .4 as the weak limit of the P# in the vague topology. Let .#¢ be Lebesgue measure.
To obtain a stationary model, one must necessarily choose p = \.Z? for some A > 0, and X is called
the intensity of P. More generally, for any stationary point process P, the intensity A is defined by

EP(A

A= ;2”'1((/1))’ A < R? bounded non-negligible,
and this definition does not depend on A; the finiteness of A\ is by no means automatic, but we will
implicitly assume it by default. Since we mainly conduct here second order analyses of such processes,
we will in fact always assume local square integrability (denoted by L% ), i.e. EP(B)? < o for B
bounded.
As a Poisson variable, the variance of the number of points in the ball Br centered in 0 with radius

R > 0 for a Poisson process is the volume of the ball

Var (Pw”’ (BR)) — Var (Poi(£%(Bg))) = £%(Bg) = kaR* with kg = 2(B,).

In general, a random measure with variance proportionnal to the volume on large domains is said to
be extensive, and is in fact expected for most natural stationary point processes where particles only
interact locally.

The study of perturbed lattices, random matrices, particle systems, random polynomials, and
many other natural objects, that will be the main topic of the current work, made emerge a huge
class of stationary processes where there is no extensivity, and some cancellation seems to equilibrate
fluctuations of points, in what we call a hyperuniform, or superhomogeneous behaviour. The reasons
for this compensation are not always clear, and generally different for each system.
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Definition 1.1. A stationary point process P of R? is hyperuniform if

lim Var (P(Bgr))

=i~ (1.1)

1.2 Perturbed lattices

The most basic example of a hyperuniform infinite sample is the shifted lattice, i.e. in R?
7%= {k + U;k e 2%},

where U has the uniform distribution on [0, 1], denoted by U0,17¢- The shift by U ensures stationary,
i.e. invariance under R? translations. This model is not very rich from the mathematical point of
view, it still serves as a reference or as a counter-example for many phenomena. Any other Bravais
lattice, i.e. obtained through a linear mapping applied to Z%, would do as well, for simplicity we mostly
consider Z¢. We shall introduce the more general concept of independently perturbed lattice (IPL).

Example 1.1 (IPL). For y a probability measure on RY, let Z%* := {k + U + Uy; k € Z¢} where the
Ug are i.i.d. with law u, called ITPL with law pu.

The hyperuniformity of Z%* is not trivial, especially when pu = &, i.e. Z%* = Z¢ where it is
related to Gauss’s circle problem. A general proof in the spectral domain is a corollary of Theorem
2.1. We can still give some geometric intuition when the Uy are bounded and not deterministic: there
are approximately O(R?~1) points close to dBr, hence likely to cross the boundary under application
of the shift U, and they would cross approximately independently of one another. The variance of the
number of particles inside is the sum of variances of indicators for such points, which therefore gives
a sum with O(R%~1) uniformly bounded terms, which is indeed negligible with respect to R?.

This model can be refined by introducing dependency among the Uy, but to ensure stationarity we

will always require the perturbations to form a stationary field of Z¢, i.e. for m € Z%, {7, Uy; k € Z%} @
{Ux; k € Z4}. At chapter 4, we will see that hyperuniformity persists if the assumption of independence
of the Uy is dropped, as long as the Uy form a sufficiently mixing field. More surpsisingly, we will see
that, conversely, most hyperuniform processes can be written as a (non-mixing) stationary perturbating
field applied to a lattice. In this framework, the U can be interpreted as a transport between Z¢ and
the obtained point process P.

1.3 Disordered samples

Like chicken photoreceptors (Figure 1.3), many hyperuniform processes observed in physics or biology
seem to be disordered. Physicist sometimes present disorder as the absence of peaks in the spectrum,
which can be reminiscent of an underlying periodic structure. Another often used requirement is
isotropy, where no direction is priviledged: P = }.d,, is isotropic if for any orthogonal matrix O of

size d, OP := 3., 604, @ P. It is sometimes additionally assumed that C — dy has a density, and/or has

finite total mass. The latter assumption, and most of the results in this survey, pertain to second order
analysis, i.e. variance and covariance behaviour. Still, one might have order at this level and disorder
from a more global perspective, see for instance the example of cloaked lattices [56], see Example 2.4.
It is not hard to build counter-examples which satisfy the above properties but cannot be categorised
as disordered, but they are probably physically unnatural. A more satisfying mathematical concept is
that of mizing. This property is another interpretation of disorder where the behaviour of the model
at distant locations should be asymptotically independent.

Definition 1.2. Say that a stationary point process P is mixing if for A, B < R? Bounded Borel sets,

P(P(A) =0,P(r,B) =0) —— P(P(4) = 0)P(P(B) = 0)

T—00
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The fact that empty intersection events characterise the law comes from the fact that the o-algebra
is generated by the corresponding indicators. Mixing extends to general events Q, Q' of B(A") (see
[18, Lm. 12.3.IT]). If P is mixing, we have

PPeQ,n,PeQ)—>PPecQP(Pe).

This definition is not completely satisfactory either as some models, such as the stationary Poisson
line intersection process (see [42] and references therein), satisfies it and still exhibits very long range
dependency. We introduce at Section 2.5 the concept of Brillinger mixing, which seems ideal from
many points of view, but hard to verify in practice.

1.4 Three emblematic examples

We present here three examples that emerge from different branches of mathematics and can be
considered disordered. The first examples come from random matrices, more precisely they are the
scaling limit of points in the bulk of the eigenvalues of two prominent models. Two of them, the
GUE and Ginibre ensemble, are also determinantal processes, which will lead us to introduce this very
important class at Chapter 3. The third example comes from the unrelated field of random polynomials
and functions. It still bears a flavour similar to the Ginibre ensemble in that they are naturally defined
on the Complex plane, through Gaussian Standard Complex Variables, and are connected to the
theory of analytic functions through the complex covariance C(z,w) = €*?. Together with the Ginibre
ensemble, they really are the two seminal examples for which have been uncovered in first the universal
properties of hyperuniform processes such as rigidity or good transport properties, partly because they
are tractable, up to a certain point, among the jungle of all physically relevant point processes. Beyond
hyperuniformity, showing that they are stationary is actually non trivial in both cases, in some sense
they are just at the right place in the world of particle models, between relevancy and tractability.

We say a random complex variable G is a Standard Complex Gaussian (SCG), denoted G ~
A¢(0,1), if it has density

1 e
Ze 7 ze .
™

Equivalently, G = X 4+ iY, where X,Y are i.i.d. with law .47(0,1/2). The simplicity of this definition,
without square root or factor 2, and the easy computation of the normalisation constant with Gauss’s
integral, sometimes identifies it as more natural than real Gaussian variables.

1.4.1 The Sineg processes.
Let 8 > 0. Consider the random vector (Aq,...,A,) on R™ with joint density

o TT W=l Jexo-ax2/m), (12)

I<i<j<n i=1

where the symbol o¢ means proportionnal to, which essentially allows to avoid mentionning the renor-
malising constant. This density can be rewritten oc exp(—BH (A1, ..., A,)) with the Hamiltonian

H\, ... ) = —% DiIn(|x = ) + %Z)\?.
i#j i

This can be interpreted in terms of a system, called -ensemble, where particles are individually

attracted to 0 due to the confinment term exp(—BA?/4) term, and this tendancy is compensated by

the pairwise repulsion terms |A; — )\j|5 , that favor configurations where particles are not too close from

one another. A fundamental point is that P2 := {A},..., A,} can also be seen as the set of eigenvalues

of a random matrix:
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e If 3 = 1, P. has the same law as the set of eigenvalues of the Gaussian Orthogonal Ensemble
(GOE). The GOE is the random matrix M = (M, ;)1<i j<n in the space .7, (R) of n x n
symmetric matrices, where the M; ; are i.i.d. with law .47(0,2), and M;; = M, ;,1 <i<j<n
are i.i.d. with law .4#7(0,1) (proved at Section 3.3.1 through a change of variables). The reason
for a different variance on the diagonal is that the density of M%) in .7, (R) at some M € .7, (R)

has a neat expression in terms of M’s eigenvalues A1,..., \,: the density is by definition
o | Jexp(=M7;/2) [ [exp(=M7/4) =] [exp(—M7;/2)" 2 [ [ exp(—M7 /4)
i<j i i#j i
=exp(—Tr(MM7T)/4) (1.3)

—exp(= 3 24,
i=1

This expression differs from (1.2) as it is the density of the matrix itself, not its eigenvalues (see
Section 3.3.1). Tt is clear under this form that the law of M"(™) is invariant under conjugation by
the orthogonal group, which is the reason for the name orthogonal ensemble: for O an orthogonal
matrix,

OMl OT Ml (n)

If B = 2, the Als are the eigenvalues of the Gaussian Unitary Ensemble (GUE), the random matrix
M%) = (M, ;); ; which entries are independent complex Gaussian variables with variance 1 on
the diagonal and 2 on the upper diagonal. We then define a Hermitian model through M; ; := M; ;
for i < j. Similarly as for the GOE, the matrix M%(™ has a density in each Hermitian matrix H

rexp(~ Y] 02/2) = exp(—Tr(HAT)/2),

invariant under the conjugation by a unitary matrix.

For any 8 > 0, the 3-ensemble has been showed by [23] to constitute the eigenvalues of an explicit
matrix model M?(") | The case 5 = 4 involves matrices of quaternions and is called the Gaussian
Symplectic Ensemble (GSE), but we will not explicit further cases 5 ¢ {1, 2}.

Recently, Valko and Virag [85] derived the construction for each S > 0 of the Brownian carrousel, a set
of SDEs which limit points form a point process of R, and which is the weak limit of the S-ensembles
as n — o0. Under the formulation (1.2), the mean number of particles per unit volume goes to infinity,

which is why a rescaling by 1/n is necessary:

Theorem 1.1 ([85]). For 8 > 0, there is a stationary point process P® = R, called Sineg process, such

that

\/*Pﬁ Law /3.

n—0o0

Furthermore, P? is hyperuniform.

The scaling +/n is not immediate to justify from (1.2). Let us compare with i.i.d. points X7, ...
uniform on [—n,n], where indeed the mean number of points per unit volume remains constant:

E) X} =n’

which matches the rescaled eigenvalues

E) (vVaX)? = nEZ (M2

s Xn
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Most proofs of those results are pretty involved, and often parts of classical textbooks about random
matrices, so we will mostly omit them. We still provide at Section 3.3.1 a proof that for § = 1, (1.2)
indeed is the density of the eigenvalues of M'(")| to illustrate the fundamental link between statistical
physics and random matrices. The process Sine; turns out to be a member of the class of Pfaffian point
processes [36]. The case 8 = 2 is also special as Siney process is a member of the class of Determinantal
Point Processes (DPPs), important in the theory of hyperuniformity, which we will prove at Section
3.3.4. Determinantal point processes, central in random matrix theory, are probably the main source
of mathematically tractable hyperuniform point processes in any dimension.

1.4.2 The Ginibre ensemble

The next example is again a system of particles, and at the same time the eigenvalues of a random
matrix model, but in dimension 2, more naturally in C. Let G, ; ~ A¢(0,1) i.id, 1 < 4,7 < n, and the
(non-Hermitian) random matrix Gin, = (G; j)1<ij<n. Let P$™ < C the random subset of C formed
by the a.s. distinct n eigenvalues of Gin,,. A change of variable yields that PS™ yields an interpretation
in terms of statistical physics, namely it corresponds to the equilibrium state of n particles with the
so-called Coulomb interaction potential:

Proposition 1.1. PS™ has density

oC H \zi—zj\gexp(—Z\ziP). (1.4)

I<i<j<n

Here again, the density (1.4) translates an antagonism between an individual confinment term and
a repulsive pairwise interaction.

Theorem 1.2. The point processes P, converge weakly in the vague topology to a point process
PGin = C that is stationary, isotropic, hyperuniform.

Note the absence of rescaling, which can again be justified by comparing with ii.d. variables
Xi,..., Xy uniform on B, /:

EZX =n VEZG =ETr GlnnGln ).

The proof of Theorem 1.2 is at Section 3.3.3, it relies as for Siney in dimension 1 on the fact that P,
is a determinantal point process, those two proofs are actually very similar.

1.4.3 Zeros of the planar GAF

Another important class of point processes, or more generally random measures, is that of nodal sets
of random functions, i.e. P = {x : F(z) = 0} = R? for some random F : R? — RY. In general these
systems are extensive, i.e. they present no hyperuniformity [49, 28]. A notable exception is the zero set
of the planar Gaussian Analytic Function (GAF). Let Gg, k > 1, i.i.d. A¢(0,1) distributed variables,
and the random function

FPI Z

k>1
where a.s. the series converges absolutely. Let its zero set be

PCAF — (2 : FFPl(2) = 0}. (1.5)

Theorem 1.3. P®AF is a stationary hyperuniform isotropic point process.
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A surprising point is that the law of GAF is not invariant under C-translations, but its zero set

is. This can be explained by the fact that for v € C, 7,FF' := FFl(v + ) @ exp(p(v, -))FF! for some

deterministic function ¢ : C> — C. From this identity, it is clear that the zero sets of FF! and 7, FF! have
the same law. One can also define P®AF as the weak limit PSAF of the zeros of the n-degree polynomial
Foarn(z) = D, %zk. More background and results about GAFs and a proof are provided at Section
3.2, based on [36].

Figure 1.4: Left. Ginibre ensemble. Right. GAF zeros.
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Chapter 2

Mathematical hyperuniformity of
random measures

Physicists often define the hyperuniformity of a point process as the property that its Fourier transform
vanishes at 0. We provide here the mathematical material to justify this assertion in full generality
and deduce other characterisations of hyperuniformity easier to handle technically, and prepare some
of the proofs of Chapter 3.

Even though point processes provide the main motivation and featured examples, the theory can
be applied most generally in the framework of wide sense stationary measures, which will allow us to
illustrate technical considerations with examples drawn from random Gaussian fields, spin systems,
or nodal lines. We also give universal lower bounds on the variance and Central Limit theorems, and
other insights about general hyperuniformity.

2.1 Wide sense stationary random measures

We consider the space .#(R%) of complex-valued measures on R?, endowed with the vague topol-
ogy, generated by the mappings ¢y : M € .#(R%) — M(f) = { fdM, for f a continuous complex-
valued function with compact support, and the corresponding Borel o-algebra %(.# (R?)). A Locally
Square Integrable random measure (denoted L2 _ measure) is a random element M of .#(R%) such
that E(M(A4)?) < o for A bounded. We extend the notation M(f) = § fdM to the class of bounded

functions with compact support €°(R9), or other classes when available, and say M is stationary, or

. . d
strongly stationary, if M(7,f) @ M(f) for z € R%. See the fundamental books [8, 69] or the more
recent work [10] for a justification of the facts presented below. A disintegration theorem gives the
existence of the covariance measure C, sometimes called auto-correlation, characterised by

Cov (M jf (x + y)C(dy)dz, f,g € CKCZ’(IR‘Z). (2.1)

When f, g, M have complex values, recall that we consider the complex covariance Cov (U, V) = EUV —
EUEV. Taking for f, g approximations of Dirac masses in resp. 0 and some y € R\{0}, we see that
C(dy) measures the covariance between infinitesimal masses around 0 and y. Despite its name, C is
well-defined as a signed measure only on bounded subsets of R? (see Example 2.3), it is formally
considered as a tempered distribution.

The covariance measure is semi-definite positive in the sense that

[#@)f+ wcanar = vartar) = 0

15
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for f € €°(R?%), hence Bochner’s theorem yields the existence of a non-negative measure S such that

Var (M(f)) = (Qﬂ)‘df |/ (w)*S(du) (2.2)

Rd

where the Fourier transform is defined by

flu):=| flz)e ™ dz.
Rd

Note that this identity extends to Schwarz functions f, i.e. such that f, f and their derivatives are
integrable against any function |z|%,a > 0. S is called the spectral measure, or structure factor when
it is continuous with respect to .Z?. One can also view C as a tempered distribution on R¢, and then
S = #C, where .% denotes the Fourier transform on tempered distributions.

More axiomatically and without mention to .# (R?), we can define a wide sense, or weakly, station-
ary random measure (WSRM) as a collection of complex-valued square integrable random variables
M(f) that satisfy M(f + g) = M(f) + M(g), f,g € € and (2.2) for some non-negative measure S. It
yields Var (M(7, f)) = Var (M(f)). The property (2.2) might seem secondary, but it is really what we
need for most purposes, we give several examples below.

The more investigated examples of linear statistics are ball indicators f = 15,, R > 0. Understand-
ing the behaviour of their Fourier transform is essential to study fluctuations of the number variance
of point processes, i.e. the variance of the number of points in Bg, as R — 0.

Lemma 2.1. We have
1p, (u) = [u] =By (u)

where B/, is the Bessel function of order d/2, it implies in particular for some Cy > 0,c4 € R [1, Sec.
9.2]

U5, (u) = Callu] =% sin([u] = ca)(1 + 0uen(1)). (2:3)

A first consequence of this lemma is that not any non-negative measure S can be the spectral
measure of a leoc (wide-sense) stationary random measure M; S is locally finite and its growth at oo is

controlled by [u[@+!:

Lemma 2.2. For any L?

i . wide sense stationary random measure M, the spectral measure S satisfies

JRd(l + ) =4S (du) < oo (2.4)

This lemma also provides a proof that S is a tempered measure.

Example 2.1 (Gaussian processes). Any finite measure S is the Fourier transform of some continuous
covariance function C, and there exists a random Gaussian process G(z), z € R?, and the corresponding
random measure M(dz) = G(z)dz, characterised by

Cov (G(z),G(y)) = Clz —y),

see for instance [3, Th. 5.4.2]. Minimal regularity assumptions on C (or tail decay on S) imply that G
can be chosen to have regular sample paths, see for instance [3, Th.1.4.2].

Example 2.2 (Point processes). A L2 random measure P taking only integer values is called a point
process as it can a.s. be represented as P = ], n;0,, for some isolated points z; and n; € N*. As in the
previous chapter, we shall generally require here that the process is simple, i.e. n; = P({z;}) =1, so
that P can be unambiguously associated with its support, we sometimes abusively write P(A4) = #PnA.
Local square integrability implies that supp(P) is a.s. locally finite.
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The most important example is certainly the unit intensity homogeneous Poisson point process
(defined at Section 1.1), which satisfies Var (P(A)) = £9(A), hence (2.2),(2.1) readily imply C =
80,S = #4. This is the traduction that there is no interaction between different locations (the Dirac
mass in 0 is an artifact of the atomic nature of point processes). A general disordered point process,
supposed to have asymptotic independence for distant points, is expected to have a covariance measure
of the form C = 6y + g2 for some integrable g, and a structure factor S = s.2¢ where s — 1 is expected
to be integrable.

Example 2.3 (Shifted lattices). Following up on Section 1.2, we have for test functions f, g

EZY(f)Z%9) = Y. Ef(k+U)g(m+7U)
k,meZ4
= Z J fk+ u)g(m + u)du
k,mezd ¥ [0:1]
ZJ fk+u) Zg(k+1—|—u)
kezd lezd
hence we have
Cov (Z2%(f) Jf z+y) > Ay da:—ff g(z + y)dzdy
lezd

and the covariance is C = Y}_,q 61 — £ (remark that C(R?) is not well defined). We then use the

Poisson summation formula
DW= > fk)
leZd ke2nZd

to have by the Plancherel formula, with S =

(2m)US, 1y = (¢, = 3 f) jf— (2m)4 (k) — (2m)£(0),

lezd ke2nZd

ie. S = Zkeznzd\{o} dx. We will see at the next section that this form of the spectral measure, in

particular the gap around 0, neatly proves the hyperuniformity of Z?¢, a fact that is not obvious
through direct geometric computations.

Example 2.4 (Independently perturbed lattices). Following up on Example 1.1, let us now give
the spectral measure for the perturbed lattice Z%#, where p is a probability measure on R?. Let
u) = § e tdu(t). We have

S(du) = (1= [$()Pdu+ D} |(m)] (2.5)

me27xZ4\{0}

This is a particular case of the more general Proposition 4.1 where a point process is perturbed
by clusters. We can observe that the periodic structure of the lattice is present through the atomic
component in the second term, while the continuous component expresses the slight disorder introduced
in the system.

As for shifted lattices with no perturbations, we observe that the spectral measure vanishes around
0. Still using the next section, this shall imply the hyperuniformity of such models. A nice observation
by Klatt and Torquato [56] is that if y1 is %o 174, then the singular component vanishes. It means that
the periodic structure is not detectable by a second order analysis. It is still present at higher orders,
in the sense of factorial moment measures defined at Section 3.1; more generally it is likely not mixing,
and the cloaking of the second order periodic structure does not kill the anisotropy of Z¢.
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2.2 Spectral characterisation of hyperuniformity

Coste [17] derived the spectral characterisation of hyperuniformity of a weakly disordered L% . point
process, i.e. when C is integrable or with constant sign [17, Prop. 2.2]: hyperuniformity is equivalent
to S(B.) = o(e?) as ¢ — 0; Bjorkliind and Hartnick [10] removed this assumption. This is in particular
useful to show that hyperuniformity can be equivalently characterised using smooth linear statistics
instead of discontinuous ball indicators. For f : RY — C, let fr(z) = f(z/R), R > 0. To give an
optimal statement, recall that (2.2) holds for Schwarz functions and bounded measurable functions
with compact support, but often it also holds for a wider class of functions. Without discussing this
further, we call S-admissible an integrable function fsuch that (2.2) holds for all fr, R > 0, but the
two afore-mentionned classes are sufficient for most purposes.

Theorem 2.1. Let a wide sense stationary random measure M with spectral measure S. The three
following are equivalent.

e (i) M is hyperuniform, i.e. Var (M(Bgr)) = o(R%).
e (ii) there exists f S-admissible such that { f # 0 and Var (M(fg)) = o(R%).

e (iii) We have spectral hyperuniformity:

lim 5(Bc)

=0.
e—0 Ed

Point (iii) immediately implies that (independently perturbed) shifted lattices Z4# from Examples
2.3,2.4 are hyperuniform, since the structure factor vanishes at the origin. Importantly, the class of
regular functions admissible for hyperuniformity, i.e. satisfying (ii), includes the indicator of a sphere
by Lemma 2.1, but not the indicator of all shapes, as for instance a direct geometric reasoning yields
the hyperfluctuating variance

Var (Zd([—n7 n + 1/2]d)) — p2(d-1)

for n € N going to infinity. Geometrically, the large variance comes from the possibility of large groups
of n?1 points to cross the border of a large cube in the same direction without being compensated.
This irregularity hence does not come from the sharp corners of the rectangles, rather from its flat
edges; a similar reasoning yields that the indicator of the rectangle with “rounded corners” W =
{z+vy:2e[-10,10]%y € B(0,1)} does not satisfy (ii) either. [10, Theorem 3.6] shows that the
number variance cancellation holds for so-called Fourier smooth shapes. Possible number variance
fluctuations are further discussed at Section 2.3.

Proof. We intensively use the scaling identity J/‘I\g — Rf(R ) for f € L'(RY). We immediately have (i)
implies (ii) since 15, € C4(R?).

e (ii)= (iii). Since f is integrable, f is continuous with f(0) = § f # 0. Hence there is a,x > 0

such that k1, < |f|. Then by (2.2)

#*S(Ba/r) <J

R fpS(du) < R™>* | | fr|*S(du) = (2m)“R™**Var (M(f)) = o(R™)
Ba/r R4

by assumption, which gives (iii).

o (iii) = (i). We have with f = 1p, and Lemma 2.1, using (2.2), for some ¢ < 0,
(2r) Ve (M(fr) = [|l*S(d)

<R?dsup|f|25(Blo/R)+R2dcf\ (1+HuHR)_d_ls(du)+cR2dJ (] B) =4~ (du).
B1\Bio/r B
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Lemma 2.2 shows that the last term is in O(R?~1), and (iii) implies that the first term is in o( R%),
hence we must show that the second term is in o(R?). It would be easy under the simplifying
assumption that S has a density s(u) — 0 as u — 0. In the general case, one needs the identity,
for a bounded test function ¢ and a probability measure p,

sup ¢
j () pu(du) = j u({u: plu) > t))dt,

0

applied to u = clp,\p,, .S With the right renormalising constant ¢, and ¢(u) = (1 + |u|R)=4—1.
Since 1 + |u||R < 2|ul|R for |u| > 10/R, it yields for some finite ¢

(2m)Var (M(fz)) <032df0 S({ue B)\Bio/r : 2u| R < t71)})dt + o R%)

1
<cR? f RIS (B . R) dt + cR*R™(*1S(By) + o(RY).
—d—1

R tT a2

By (iii), RdS(B{Til/QR) = t*ﬁg(rﬁ/%) where lim,_,o £(v) = 0. Then Lebesgue’s theorem

yield that R=%Var (M(fg)) — 0, as desired.
L

2.3 Universal variance lower bounds and non-spherical windows

A celebrated result of [7] shows that for a deterministic point configuration P, the fluctuations of the
number of points in a large window Bp are at least of the order v R4~ which leads in general to
a variance lower bound of the order R4~! for arbitrarily large R. This principle is not restricted to
atomic measures, as we shall see here, stating the generalisation of [14, Theorem 1.1].

Theorem 2.2 (Beck). Let M a wide sense stationary random measure that is not identically 0 a.s..
Then for some ¢ > 0, for R sufficiently large,

R
Var (M(Br))

which in particular yields

lim sup 7Var (M (BR))

msu a1 > 0.

Proof. Let f = 1p,. By Lemma 2.1, |f|? is larger than (1 + |[u|)~%"! “on average”, i.e. there is
K >0,p0 > 0,Rg > 0 such that S(Bj ) > 0 and for u ¢ B,,, R > R,

R R
J R f(Ru)|*dR %J R™Y(1 4 |u|R)~*dR. (2.6)
1 1

We then have by (2.2), for R > Ry,

R R
(27r)dj RldVar(M(fR))dszRd\B L R f(Ru)|2dRS(du)

1

R
%J f RIY(1 + [u|R)~4dRS(du)
RA\B,, J1

[u|R
—x f Juf =2 f P+ )01 dpS (du)
RI\B [

uo ||

S [l R 1)l (R - DS ().
Rd

PO
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O

The proof above actually works for any kernel f satisfying (2.6). Since the ball is the most regular
shape in many aspects, one could imagine that it has the lowest Fourier transform in some sense, hence
this lower bound could hold for any shape. This is in fact not the case for rectangular shapes, which
Fourier transform is indeed larger in some directions, but also smaller in others. The class of admissible
shapes, called Fourier smooth, is discussed around [10, Theorem 3.6]. In the complex plane, Sodin,
Wennman and Yakir [77] give variance asymptotics for Jordan domains with rectifiable boundary for
a class of weakly disordered point processes. Let us make some further remarks:

e (vanishing lim inf) Bjoérklund and Bylehn [14, Prop. 2.2.3] show that, iff d = 1 mod 4,

d
lim inf 7Var (Z (BR))

R— Rd_l =0

e (General shape dependence) The limsup bound is invalid on rectangular windows when one
studies non-atomic random measures, even with short range dependencies. Consider for instance
the spectral measure S = 15.%2? where S = {(u;) € R? : Vi,2 > |u;| > 1}, and the unique
centred Gaussian field which spectral measure is S (Example 2.1). One can directly show that
the variance is bounded: from (2.2)

d
(2m)*Var (M([—R, R]%)) = L R ﬂ sin(Ru;)/(Ru;)|*du

i=1
< —2
\J cnui du < o0.
S 7

One can refine this example by taking S with support on all R?, as long as it vanishes sufficiently
fast close to the axes and at infinity.

e (shape-dependance for point processes) In a private communication, M. Bylehn mentions that
there are some admissible orthogonal transformations O such that the previous lim sup bounds
does not hold for the rotated lattice OZ?, using a bound of Skryganov [73]:

Var (0Z%([-R, R]*)) = O(In(R)*~Y).

e (no shape-dependence for disordered point processes) Nazarov & Sodin [62, Lemma 1.6] show
that under the weak disorder assumption that C — dq is integrable for some point process P, for
any bounded window W with non-empty interior, Var (P(RW)) satisfies Beck’s lower bound.

Remark 2.1. When the variance of a point process is subextensive, i.e. in o(R?), then under mild
integrability conditions, it behaves necessarily in R?~!, see [57, Proposition 2].

2.4 Hyperuniformity exponent and classification

The speed of decay of the structure factor in 0 actually matters, for the decay of smooth linear statistics,
but also for other phenomena, such as rigidity (Chapter 5). It is traditionally said that some number
a > 0 is a hyperuniformity exponent of S (or M) if S(du) ~ c|lu|*du as u — 0 for some ¢ > 0. We
shall more generally say without requiring a density that S admits hyperuniformity index a > 0 if
S(B.) = O(e%**) as ¢ — 0.

Proposition 2.1. Let S the spectral measure of a leoc wide sense stationary random measure M.
Assume S admits exponent a > 0. Let f an S—admissible function such that for some 8 = (d + 1)/2,
as u — 00,

|f ()] = O(lul~7).
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(For the unit ball indicator, 3 = (d 4+ 1)/2.) Then

—(d+a)v2py 28.
Var (M(f)) = O() < 117700 )10 e 220
R4 2In(R)) if d + a = 2.

If conversely Var (P(fg)) = O(RY®) holds for some S-admissible function f with { f # 0, then S

admits exponent a.

A version of this result for Schwartz functions appears in [58] under an integrability assumption on
S. Variance estimation for linear statistics is also a central topic in [47], under the running assumption
that the covariance measure C is integrable, or has finite higher order moments. They notice in
particular that the decay exponent is even when the covariance is integrable. Due to the reciprocal
relation with the hyperuniformity exponent exhibited by the previous proposition, one can also see it
as a consequence of the symmetry of S. They also give sufficient conditions for S to admit exponent
«, and discuss the class of admissible kernels f.

Proof. The proof is strongly similar to the step (iii) implies (i) in the proof of Theorem 2.1, with
S(B.) = O(g%*®): Using a usual (2.2) and Lemma 2.2,

(2m) R2Var (M(fz)) <sup | 12S(Bioyn) + f \
B1\Bio/r

<O(R™%=%) + (II) + O(R™%).

(1+ ulR)=*7S(du) + CJ (lul R)~*7S(du)

Bi

As before, (IT) is easily dealt with when S has a density s satisfying s(u) < cf|u|® close to 0, with the
change of variables v = Ru. In the general case, proceed also as in (iii) =>(i) but with 23 instead of
d+ 1. Tt yields for some ¢ < c© changing at each line

1 R™28
(I1) <ch_2/1 S(Bt,ﬁ/R)dt + CL S(B)dt
1
écf (t~Y28 /R)*Fdt + cR™2P
R—28
- Ro~4(R=28)1=(d+)28 L ¢(R=28 < R2/ 4 cR 2P ifd+ a # 28
<c
R=4=20(In(R)) + R~?” otherwise.

For the converse, as in (i) implies (iii), |f| = k1, for some ,a > 0, and
(2m)Var (M(fa)) = | R¥|F(Bu) PdS () > KBS (Byyn)
Ba/R
hence indeed S admits index « if Var (M(fr)) = O(R*~®). O

Example 3.1 and Theorem 4.3 provide examples of point processes with arbitrary decay for S around
0. The optimal exponent « is related to a classification of hyperuniform point processes relevant in the
physics litterature [82], depending on the number variance behaviour (i.e. for f = 1, and 28 = d+1):

e Class I if Var (P(Bg)) = O(R%™1), corresponding to @ > 1. Recall that by Beck’s theorem
(Theorem 2.2), R?~! is also the smallest possible magnitude for the number variance.

e Class II, when o = 1, which yields Var (P(Bg)) = O(R?!In(R))
e Class III, when a € (0, 1), giving Var (P(Bg)) = O(R4~%).

Let us make two remarks:
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e This classification encompasses most “useful models”, i.e. arising in a genuine physical or biolog-
ical phenomenon, but some mathematical hyperuniform systems are not represented here, when
the reduced variance decreases to 0 at a logarithmic scale, see Example 3.1 or examples in [21].

e By Beck’s theorem, using the variance on a large ball indeed restricts the variance range at R%~!
and above, but when one uses smoother linear statistics, by Proposition 2.1, one can discriminate
more efficiently between hyperuniform systems. For instance, The GAF zeros P®AF and Ginibre
process PG of Section 1.4 are both in class I, but they have respective optimal indexes 4 and 2,
and in agreement exhibit different macroscopic properties, for instance regarding rigidity ([31],
see Theorem 5.1). See also Section 4.1.1, which yields examples for arbitrarily large «. The
extreme case o = o0 corresponds to stealthy processes, discussed at Section 5.2.

Let us conclude with a lemma that yields that most point processes have exponent at most 2.

Lemma 2.3. Let 1 a symmetric non-negative finite measure which is not supported by a hyperplane.
Then there is 0 > 0, pg > 0 such that for ||u| < po,

- e tan

This conclusion also holds if the assumption of symmetry is dropped, if instead p is assumed to have
a finite second moment and be centred, i.e. {zdy = 0.

> oul®.

Proof. Let R > 0 such that
f |22 u(dz) > 0
B(0,R)

and p > 0 such that 1 — cos(t) > t2/4 for |t| < Rp, and let u € B(0, p).
We have

s(u) := J(l — e (dx) = j(l — cos(z - u))p(dx)

2
x-u
= f %u(dm). (2.7)
B(0,R)
Call C.(u) the cone of z such that |z - u| > ¢|z||u| (and Co(u) = R?). Define the function
S(o.2) = | J|2 (), v € B0, 1).
C.(v)nB(0,R)

Since by assumption g is not supported by the hyperplane orthogonal to v € dB(0,1), X(v,&,) > 0 for
some &, > 0. We wish to show by contradiction that

Jog > 0,e > 0: Vv e dB(0,1),%(v, &) = 0y.

If it is not the case, there is v, € dB(0, 1) such that X(v,, 1/n) < 1/n. By compacity we can choose
vy that converges to some v, and it yields a contradiction when C., (v) = Cy/,(vy,). In consequence,
for u € B(0, p), we can conclude the proof with

s(u) = & |lul*o0/4.

O

This lemma implies that stationary determinantal processes have exponent at most 2 (see Theorem
5.2), and with (2.5) yields the following corollary for some IPLs:

Corollary 2.1. Let p a non-null probability measure on R? which is symmetric. Then the perturbed
lattice Z%* has exponent at most 2.

Even if p is supported by a hyperplane, doing the same analysis on a subspace of minimal dimension
supporting u, we have s(u) > o|u;|? at least for one coordinate i, which forbids exponent more than 2.
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2.5 CLTs and Brillinger mixing

We investigate the Central Limit Theorem for the mass of a large ball M(Bg) for a wide sense stationary
random measureM. The cumulants method, classical for extensive systems, fortunately extends to
hyperuniform systems, due to the universality of Beck’s lower bound (Theorem 2.2). Recall that the
m-th cumulant of a real random variable X is the m-th order derivative in 0, when it exists, of the log
of the moment generative function Kx(t) = InEe'¥ | i.e.

dm

——Kx(t)]¢=0-

fom(X) = S

We have a familiar interpretation for low order cumulants: for X = X — EX,

k1(X) =EX

ko(X) =Var (X)

r3(X) =EX?

k4(X) =EX* — Var (X)?

For instance for X ~ 2(X),A > 0, we have easily Kx(t) = A(e' = 1) = A3}, %, hence for all m
Em(X) = A

The Gaussian variables are characterised as those variables such that ki(X) = 0 for k& > 3, indeed
Kx(t) =t? for X ~ #7(0,1). Marcinkiewicz refined this result by showing that a variable is Gaussian
as soon as only finitely many cumulants do not vanish.

Recall that a sequence of variables X,,n > 1 converge to a standard Gaussian variable X if
all moments converge, i.e. for each m > 1, EX]* — EX™ as n — 0. Since moments are linear
combination of cumulants, the convergence still holds if for each m = 1, k(X)) = km(X). Using
Marcinkiewicz theorem, one can show that this convergence holds if one only assumes Var (X,) — 1
and £, (X,) — 0 for all m = my, for some mg > 3, see for instance [78, Lemma 3].

Define in general

M(Br) — EM(Bg)
Var (M(Bg))

M(Br) =

The previous method applies to the number of points of a Poisson point process in a large ball because
P(Br) @ Poiss(.Z%(R%)). Hence Var (P(Bg)) = R? and

o (PUBR)) = Var (P(Br)) ™"k (P(B) = B2,

it indeed goes to 0 for m > 3. More generally, it applies to many standard and hyperuniform random
measures:

Theorem 2.3. Let M a wide sense stationary random measure in dimension d > 2 having finite
moments of all orders on a compact set. Assume that for some mg = 3, for m = mg, the cumulants
have Poison / sub-Poisson decay

km(M(Br)) =O(R?). (2.8)

Then we have the CLT for some sequence R,, — o0

—_—

M(Bg, ) — A4(0,1).
In dimension 1, if (2.8) holds and Var (M(BRr)) = ¢R® with a > 0, as R — 0,

—_—

M(Br) — (0, 1).
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—_—

Proof. Let X, = M(BR,L),XVn = M(Bg),n = 1. Recalling Beck’s Theorem 2.2, Var (X,,) = cR%~! for
some R,, — o0 and

Km(M(BpR, R}
km(M(BR,)) = (M( )n)@/g sc¢ (d—1)ym/2"
Var (M(Bg,,)) Ry,

We see that indeed for d > 1 and m sufficiently large, the right hand side goes to 0, and Marcinkiewicz’s
theorem allows to conclude to the CLT. In dimension d = 1, the bound is R*~**/2 and we can conclude
similarly. O

Remark that the R?~! lower bound in Theorem 2.2 actually holds for a set of radii R with positive
Lebesgue density, it is not just a marginal sequence of R,,’s. For other linear statistics M(fr), Beck’s
bound might not hold, see in particular Proposition 2.1. It can still happen that there is a CLT even if
the variance is bounded or, surprisingly, goes to 0, see for instance [75], but this is rather exceptionnal.
See [47, Section 4.1] for a discussion, and for more general results than Theorem 2.3.

Assumption (2.8) is the manifestation of a property which is expected for strongly disordered point
processes, named Brillinger mixzing, but hard to prove apart from some well understood classes such
as Poisson, determinantal, and permanental processes, or zeros of random Gaussian fields. One can
strictly weaken this assumption to #,,(M(Bg)) = o( R™@=1)/2) (for m above some mg € N) but there
is no immediate interpretation for the relevancy of such an hypothesis.

This theorem has been applied successfully to many linear statistics over point processes, but also
to random measures. In [11], the authors consider more generally a geometric functional over a point
process P under the form

Xn = Z f(xv P)

xePNn B,

for some score function & that does not only depend on the location x. It can be interpreted as a linear
statistic over the stationary random measure

M= > 6.¢(x,P).

zeP

Under some assumptions of stabilisation and dependency decay related to Brillinger mixing on P and
&, they are able to show a CLT for M(Bg).

2.6 Non-Euclidean hyperuniformity

A rescaling yields that the hyperuniformity of a point process P on R? can be equivalently stated by

Var (P.,.(B
lim Y Pr(BL)
r—o  EP,.(B)
where P,.(+) := P(r-). We can exploit this to define asymptotic hyperuniformity for a sequence of point
processes which are finite and, obviously, do not satisfy stationarity.

Definition 2.1. Let P,, random measures supported by some K < R?. Say the family {P,;n > 1} is
asymptotically hyperuniform over K < R if for each “smooth” compact B < K

lim Var (P, (B))

n  EP,(B) =0

This can be relevant for finite models, such as Coulomb / Riesz gases, or eigenvalues of random
matrices. For such models, particles near the edge behave in general differently. The good framework
is to choose K containing a.s. the bulk, i.e. a number of particles in O((1 — ¢)n) for some € > 0 that
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seem to behave in a homogeneous way, see Theorem 3.2 for Coulomb gases.

This definition is not adapted to random measures of a different nature. For instance, if M is a
hyperuniform random measure of one-dimensional object of R? (lines, cuves, etc...), then M,,(B) =
VnZ?%(B). Hence the renormalisation in the definition of hyperuniformity must be adapted to the
intrinsic dimension of the model.
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Chapter 3

Hyperuniform point processes

In this chapter, we develop the examples from the introduction and give some proofs. We start by
defining factorial moment measures, central in the study of determinantal processes. We then discuss
the planar GAF zeros, as it is a striking and isolated example, easy to define formally. Random matrices
and DPPs form the core of hyperuniform point processes, but require more context and preparation.
Non-integrable Gibbs measures are discussed after, but their high mathematical complexity leaves less
room for rigourous results, let alone proofs. We conclude with models presenting an aperiodic order,
such as quasicrystals.

3.1 Factorial moment measures

We saw that the law of a point process P = Y, §,, is characterised by the laws P(f) for f € €°(R?).
Factorial moment measures give a more analytic way to decompose P’s law in projections of orders
1,2, ... and characterise it in the same way that the law of a reasonable random variable is characterised
by its moments of every order. Let pup' the m-th factorial moment measure of P, characterised through
non-negative test functions f € C4((R?)™) applied to m-tuples of distinct x;’s with

M
E E f(xil,...,xim)=Jf,um.
41,...,0m distinct

The number of terms in the sum is determined by the number of Dirac masses in P = > 6,,. When p
has a density with respect to £, it is denoted by pp'.

e For k = 1, one retrieves the intensity ub(A) = EP(A) for A = R%. If P is stationary, pp is
invariant under translations, hence pp = A.Z?, with the intensity A > 0.

e For1 <k<m, u’f, is proportionnal to the projection of uf' on k arguments (recall that those
measures are symmetric).

projection

e The first and second order properties of P can be equivalently described by the couple (A, p3) or
by the couple (A, C) (or obviously the couple (A,S)): combine (2.1) with

Cov (P(f),P(9)) =EZ f(zi)g(z;) — E(P(f)) E(P(g))

“B Y, f(eg(e) ~ | f@)ds [ g@rds

i#]

:Jf®gp§+)\Jfg—)\2Jff§. (3.1)

27
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e The factorial in the name refers to the formula obtained for a simple point process P when
f = 1gm for a bounded set B:

pp(B™) =E )] oo > 1 =EP(B)™ (3.2)

1€EBNP 226 BAP\zy Tm€BNP\{z1,....¢m—1}
where for a number x > 0,20 := x(z — 1) ... (2 — m). Notice that the Newton formula

m k(m)

m!

1H{k=0}=01-1F= i (—1)

m=0

gives the inclusion-exclusion formula whenever the sum converges absolutely

pp' (B™). (3.3)

This can be useful as, by standard results on random closed sets, the law of a simple point
process P can equivalently be characterised by the values P(P(B) = 0), B  R?, called capacity
functional [60].

3.1.1 Law characterisation and convergence

It is classical that the law of a real random variable X is characterised by its moments EX™ m > 1
if Eexp(t|X|) < oo for some ¢t > 0. Similarly, if some point process P satisfies Eexp(tP(A)) < oo for
all A bounded for some ¢ > 0 (depending on A), in which case we say that P has some exponential
moments, then the law of the P(A), A bounded, and hence the law of P, is characterised by the moments
EP(A)™, m = 1, A bounded. In turn, the EP(A)™,m > 1 can be recovered from the uf',m > 1 with
(3.2). We hence proved the following:

Proposition 3.1. The law of a point process P having some exponential moments is characterised by
the pg',m > 1.

If for instance the factorial moment measures are known to satisfy pp'(B™) < ¢ for some cg < o,
it implies finite exponential moments on B:

|ﬁCB‘m

m!

Eexp(tP(B)) <c), <, (3.4)

hence under such an assumption for all B, the uf* uniquely define a distribution (if they define a

distribution at all). This will in particular allow to define properly the class of DPPs in Section 3.3.2
through their factorial moment measures.

Similarly, the convergence between random variables X,, — X for X with some exponential moment
is implied by the convergence of the m-th moment EX]" — EX" for each m > 1. Recall that the
convergence between point processes P,, —=» P is implied by P,, (A) Law, P(A) for each bounded A.

n—o0 n—0o0
Hence if for all A bounded, for all m > 1, EP,,(A)™ — EP(A)™, we have indeed the weak convergence
P,, — P. Finally, since EP(A)™ is a linear combination of the uk(A4),1 < k < m, we have:
Proposition 3.2. If for some random measures P,,, P with P having some exponential moments, we
Law

have pg! (A™) — up'(A™), for each compact A, then P,, —— P.

n—0o0

3.1.2 Repulsivity and negative dependence

Hyperuniform processes are sometimes believed to exhibit local repulsion, probably due to the fact
that the most famous examples, DPPs and zeros of random functions, indeed experience a natural local
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repulsion. Mecke’s formulas exactly mean that for P a homogeneous Poisson process with intensity
A=1,pp = (L™, hence what is considered repulsion for a point process P is when the difference
o — (& 4)m measuring somehow the deviation to neutrality, takes negative values, which indicates
negative dependancy. We say in particular that P is completely repulsive if for all m > 1, p* < £ as
measures. One often talks about local repulsion when the inequality holds locally for m = 2. It holds
much more rarely at large scales, and for all m; the class of DPPs is probably the sole tractable class of
useful models having such a property, the GAF zeros do not [36]. Repulsivity can be seen as negative
dependence, in the sense that a positive mass at some location discourages mass in other locations.
The reduced variance at large scale still induces some negative dependance, there should necessarily
be compensation of large batch of particles. For instance in a large rectangular window W that can be
decomposed in two disjoint congruent rectangles Wy, Wy, if there is a large concentration of particles
in some half, the concentration in the other half should be below average to ensure the low discrepancy
guaranteed by hyperuniformity. This phenomenon is quantified by negative asymptotic correlations

lim Corr(P(RW1), P(RW3)) < 0.

R—®

This phenomenon has been first formally studied in [2] in the discrete setting, and recently in the
continuum setting in [47, 39, 77].

3.2 Zeros of the planar Gaussian analytic function

We give here some more context about Gaussian fields and Gaussian Analytic Functions (GAFs), based
on the excellent reference [36]. This section is a summary of some results of their Section 2 under the
angle of Euclidean Gaussian fields and point processes.

In general, a Gaussian field F : R? — RY is a collection of random vectors F(z) = (F(z),...,F,(z)) €
R?, z € R? such that for (z1,...,2.,) € (RN)™, (F(x1),...,F(z,,)) is a (R?)™-valued Gaussian vector.
In particular each coordinate field {F;(x),z € R%},1 < i < q defines a Gaussian signed measure as
in Example 2.1. We saw that each finite measure S on R? uniquely defines the law of a stationary
Gaussian field F : R — R with covariance function C = .#~!S. For F a vector-valued field, each of
the g(g + 1)/2 pairwise covariance functions C; ;(x,y) = Cov (F;(z),F;(y)),? < j, must be specified to
determine the law of F uniquely in the class of Gaussian fields.

The class of GAFs is a subclass of the class of Gaussian fields from C to C (with the identification
C = R?) such that a.s. each sample path is a.s. an analytic function. Hence one should in principle
specify the 3 covariance functions C; 1, Cs 2, C; 2 to characterise the law of the field. The class of GAFs
crucially holds an additional requirement: each finite linear combination };; a;F(z;) must be a complex
Gaussian variable, which means it should have i.i.d. (Gaussian) real and imaginary parts (this in fact
means that the FIDI are so-called complex Gaussian vectors). Hence GAFs are not just Gaussian fields
which are a.s. analytic. A very convenient and fundamental gain from this requirement is that the law
of a centred GAF F is uniquely determined by its complex covariance

C(z,w) = EF(2)F(w),

replacing the C; ; of the real Euclidean representation. By [36, Lemma 2.2.3|, a general recipe to
construct GAFs is to use models of the form

F(2) = ). Zebn(2)
k=1

for i.i.d. A¢(0,1)-distributed Zj and analytic functions ¢ such that a.e.

Do ln(2))? < oo
B
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Such a representation can generally be obtained using the theory of compact operators. We are
interested here in the planar GAF, defined by

FPl(2) = i Zkik
=R

and the analycity of FF! yields that its zero set PSAF contains a.s. isolated points, it is indeed a point

process. An easy computation gives the complex covariance

C(z,w) = EFFY(2)FPl(w) = &*?. (3.5)

PGAF

Proof that the PSAF is stationary and isotropic. The statistical invariances of come from the fol-

lowing conjugation property under shifts and rotations:

Lemma 3.1. For 0 e R, z, w,v € C

C(e" 2, e"w) =C(z,w),
Clz +v,w +v) =€ Cz,w)e " )

where ¢(z,v) = —i29/2 + izZv/2 € R because ¢ = .

The proof of this lemma is a straightforward computation. The invariance under rotation of PCAF
comes from the fact that the rotated field z — FF'(e?2) has the same complex covariance C(z,w) as
FP! hence they have the same law, and their zero sets have the same law as well.

As for invariance under complex translations, 7,FF! has the same covariance as the GAF Fy : z —
e?(#VIFPL(2)| hence these two GAFs have the same law. Since F and FY have the same zero set, it
indeed yields that P°AF and 7,P®AF have the same law, and P®AF is indeed stationary. O

Remark 3.1 (Non-Euclidean GAFs). The theory of GAFs is very general and takes its full power on
domains endowed with a non-euclidean metric, such as the sphere or the hyperbolic disk. It yields
the spherical and hyperbolic families Fip h, F?yp of GAFs, each invariant under natural isometries,
parametrized by a density parameter L > 0, which is an analogue of the scaling z — FF!(Lz) on the
complex plane. A further link with DPPs was uncovered by Peres and Virag [66]: curiously, the zero

set of Flfyp is a DPP on the unit disk, and it is the unique DPP among the zeros of all aforementionned
GAFs.

Remark 3.2. PAF and PG troubly share quite many features, especially locally. Krishnapur and
Virag [46] give an interesting explanation: P4 can be written as the zero set of a GAF with a random
complex covariance function (this is stronger than being the zero set of a random analytic function,
which is true for any point process by Weierstrass’s theorem).

3.2.1 Hyperuniformity of PCAF

Let us give a proof of hyperuniformity that shows how the harmonic nature of analytic functions is at
the core of the hyperuniformity behaviour of PAF, borrowed from [75], and originating in the pioneed
work of Forrester and Horner [26].

Lemma 3.2. There is a constant C such that for f of class C? with compact support,
Var (PA7(f)) < ClAf[72(c)-
This entails that as R — oo,
Var (P“F(fr)) = O(R™?).

The hyperuniformity therefore follows directly from Theorem 2.1-(ii). This also shows by Proposition
2.1 that P®AF has an hyperuniformity index o > 4 (one can prove that the exponent is exactly 4
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with the converse statement). This is exceptionnal in the sense that, apart from shifted lattices, other
known hyperuniform processes have index at most o = 2, even perturbed lattices, due in particular to
Lemma 2.3.

Proof. Morally, the proof follows from the a.s. analycity of GAF and the stationarity of PeAF. It relies
on two claims: a (non-random) analytic function F' on D < C with zero set P satisfies

1
PU) = 57 | AFG)mIFG): (3.6)
and the zero set P of a GAF F satisfies for f € C?
Var (P(f)) = # JAf(z)Af(w)Cov <ln F(2)|,In |ﬁ(w)|) dzdw. (3.7)

For the first claim, the starting point is the harmonicity of the log on the complex plane: Aln(|-|) =
560 in the distributional sense, i.e. for f e C3(C),

£0) = 5= |7 (=N (3.8)

Hereafter, fix f and denote by A its support. A non null holomorphic function F' has finitely many
zeros z; in A, and the logarithm has an analytic determination on A, hence F' can be written

F(z) = e9®) H |z — zi|dz, z € A,

for some analytic function g. Therefore with P = 7. 6., € .47(C), the smooth linear statistic can be
expressed

P = 210 = 52 3 [ATGIl =tz = g [AFEIIFE Oz = o [A7G) P
which yields (3.6), exploiting the fact that the real part of an analytic function ¢ is harmonic:
JAf(z)%g(z)dz =0.

Let us apply this to a GAF F. Denoting by r(z)? = E|F(z)|? =,F(z) = F(2)/s(z) is a complex
Gaussian variable with constant variance, hence ¢ := E1In |F(2)| is constant as well, and

2rEP(f) = j/\ Af(z)Eln|F(z)|dz = L Af(2)EIn|F(2)|dz + JAf(z) In(k(2))dz =0+ L Af(z)In(k(z))dz
47*EIP(f)? = Lz Af(2)Af(w)E[In|F(2)|In |F(w)|]dzdw
= | Af(2)Af(w)E[n|F(2)|In|F(w)|]dzdw + fAf(z)Af(w) In(x(2)) In(k(w))dzdw 4+ 0 + 0

A2

- JAf(z)Af(w)Cov (m IF(2),In |ﬁ(w)|) dzdw +0+0 + JAf(z)Af(w) In(x(2)) In(k (w))dzdw

which yields (3.7). Let us apply this to FP'. The final idea is that |FF'(z)[,In |FF!(w)| have a small
correlation when z,w are far away. We have the general inequality ([36, Lemma 3.5.2|) for A4¢(0,1)
variables Z, Z', Cov (In|Z|,In|Z'|) < $|EZZ'|?, hence

Cov (In[FP(2)], In [F™ (w)]) < 5[BFP!(2)F1(w)]?
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By (3.5), the right hand side is %6*‘2*7”'2 =: 0(z —w). Hence by Cauchy-Schwarz inequality

4m*Var (PGAF(f)) = JAf(Z)Af(w)U(Z —w)dzdw < [Af| 2y |Af * ol L2(c) < HAfHQLz(C) HUH%I(C)

which concludes the proof.

3.2.2 Other hyperuniform Gaussian nodal measures

We conclude the study of planar GAF zeros by showing that they form the unique such stationary set
up to a rescaling, by a rigidity principle discovered by Sodin:

Theorem 3.1 ([74]). Let F, G two GAFs on some domain D < C, such that their respective zero sets
PF,PC have the same intensity: pll,F = pll,G. Then there exists a deterministic function ¢ : D — C not
vanishing on D with F = ¢G a.s..

Hence for A > 0, there is a unique set of GAF zeros P with p} = A\.Z?, obtained by properly
rescaling P®AF. To the author’s knowledge, no other Gaussian field with stationary hyperuniform zeros
has been found, such a phenomenon is known to be impossible for one-dimensionnal stationary fields
[49]. The complex version of Berry’s Gaussian random wave model, experiencing many cancellation
phenomena, has hyperfluctuating zeros [87]. The general cancellation phenomena for Gaussian random
measures and their chaotic projections has been analysed in [28].

In [32], inspired by the Euclidean GAF and motivated by signal theory, the authors exhibit charged
particles located on the zero set of a Gaussian Weyl-Heisenberg field F, i.e. a random measure of the
form

M = Z .k,

z:F(2)=0

where k, is the sign of the Jacobian determinant det DF(z). Such measures (with or without charges)
are stationary, and the authors give their intensity and prove that under some assumptions, the global
charge experiences screening, which implies a hyperuniform behaviour of class I (Section 2.4), see their
Theorem 1.14.

3.3 Random matrices and determinantal point processes

We provide here partial proofs of Theorems 1.1 and 1.2. It is the occasion to make more explicit the
fundamental link between random matrix models and particle systems such as log gases and OCPs,
through astute changes of variables. Determinantal processes in the continuous space arise mainly as
eigenvalues of random matrix models. We are interested here in stationary examples (GUE, Ginibre)
where the key point is to prove that they are projector DPPs.

3.3.1 Change of variables

It is claimed in the introduction that the S-ensembles for 5 = 1,2 in dimension d = 1 and the Ginibre
ensemble can be written out as the set of eigenvalues of resp. the GOE, GUE, and Ginibre random
matrix models. As an elementary and prototypical example, we provide here an argument for the GOE
ensemble, similar reasonings are possible for other matrix models, but more involved. We refer to the
monographs [5, 59, 36] for other models.

Partial proof that the eigenvalues of MY(") have density (1.2) for B =1. Since ML(") is a symmetric
matrix, there exist a random matrix Q,, in the orthogonal space &, and a random matrix D, =
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diag(A1,...,A,) in the space 2, of diagonal matrices such that ML) = Q, D,.QY. D, is assimilated
to R™ with the Euclidean metric and endowed with .£". We in fact give a full proof except for the
fact that M(") is a.s. in S the set of symmetric matrices with distinct eigenvalues, hence D, is a.s.
in DF the class of diagonal matrices with distinct eigenvalues, but it is a plausible fact given that the
entries of MY(") are independent Gaussian, see for instance [59, 5|.

Our interest is the exact density of D,,. Let us first prove that the law of Q,, can be chosen to be
o, the unique probability measure on &, that is invariant under the action of the multiplication by
any Q € O, or Haar measure. Let Q with law o and independent of (M*(™) Q,,,D,,). The expression
(1.3) yields that the law of M1(") is invariant under the conjugation action M — QMQT for Q € 0,
hence QQ,, is another possible random orthogonal matrix in the decomposition of M%(")_ Since QQ,,
also has law o, it proves the claim, and we indeed choose Q,, with law ¢ independent of D,,. Hence
the law of (Qn,Dy) is o0 x uy for some measure py on DF that we seek to explicit.

The idea of the proof is to compute the Jacobian of the mapping (Q, D) — M = QDQ" for
(Q,D) € O, x ZF. Tt is tricky to directly perform a change of variables on the non-Euclidean manifold
0, we therefore locally linearise it first with the space of antisymmetric matrices .o7,, assimilated to
R™7=1/2 and endowed with .Z"("~1)/2 thanks to the exponential mapping. Recall that for Q in a
neighbourhood U’ of I, Q = exp(A) for some A € o, (close to 0). Call v the law on U’ induced on
oy, by o, i.e. for a test function ¢ supported by exp(U’)

Jw o(dQ) = J¢ exp(A))v(dA). (3.9)
We introduce the mapping I' : <7, x 2F — /¥
I'(A, D) := exp(A)Dexp(A)T.
We saw that I is surjective onto ..., it is clearly C*. Let us compute the absolute Jacobian determinant
Jr(+) in (0, Dy).

Lemma 3.3. For Dy = diag(A1,...,A,) € 2%, the Jacobian matrix of I" has absolute determinant

Jr(0,Dg) = ¢y, H |Ai — A;| for some ¢, > 0.

1<j

In particular, it does not vanish. By the inverse function theorem, I' is a C*-diffomorphism on a
neighbourhood V of (0, Dy) contained in U x Up,. We can therefore perform a change of variables,
for ¢ supported by T'(V),

Jy* M)dM = J (A, D))Jr(A, D)dg™ " D/?(A)d2™ (D). (3.10)
On the other hand, by (1.3) and (3.9),
B(MH ) | e M ang
= e [o(QD@" o Q) (D)
= [etra, Dy P i (A) (D).
We can therefore identify with (3.10)

e~ (PDD/A 1 (A, D)d.L™M M V2(A)d L™ (D)ocdw(A)e” PP/ Ay, (D).
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It yields that Jr is separable on V' and p; has a density f around Dy. With Lemma 3.3, we have
f(Do)oc [ ;- ; [Xi —Asl, and this is valid for any Dy € Z;. For a test function ¢ on Up,, and (4, D) :=
¢(D),

E(D,,) =Ep(M"™)

o j H(D)e” PP ) dy(A)dpy (D)

ocﬁﬁ(xl,...,An)e—ZM?/‘*ﬂMi — \jldA; .. d,

1<j

which concludes the proof.
Let us finally prove Lemma 3.3. We see I' as a function from R™*(=1/2 x R™ to R™"+1/2 and
denote its components I'; ;,7 < j. Let § = diag(A1,..., ) € Dn, H = (H; j)1<ij<n € U.

I'H,Dy+0)=(I+ H +o0(H))(Do+0)(I — H+ o(H))
=I'(0,Dy) + 6 + HDg — DoH + o((H,0)).

Note that HDg — DoH = (H; ;(Aj — Xi))1<i,j<n vanishes on the diagonal, and at the opposite J is
supported by the diagonal. For ¢ < j, we can read the partial derivatives on the lower diagonal

ol ;
A (O,Do) =\ — )\j iff (Z,]) = (k,l), for k <1
(‘)H]ﬁl
(3F¢j
: Dy) =0,1<k <
a)\k (0, 0) O, k n,

and for1 <i<n

oLy
O
cﬂ“m
0Hy,

(0,Dg) =0y,

(0, Dg) =0,k < L.

Seeing the Jacobian matrix VI" as blocks of dimension n(n—1)/2 or n, the nxn block gives determinant
1, the n(n —1)/2 block is diagonal and gives [ [,_.(A; — A;), and the other blocks vanish; this gives the
desired expression.

1<j

O

3.3.2 Determinantal processes

In order to prove results for the GUE and Ginibre process, we must derive some basic definitions
and concepts related to the theory of determinantal processes. We give a simplified treatment in the
context of hyperuniformity on a continuous space.

Definition 3.1. Let K : R¢ x R? — C measurable. A point process P on R? is a DPP with kernel K
if it admits factorial moments densities of the form, for m > 1,

pp (1, &m) = det((K (24, 25))1<ij<m), 1y - -+ T € R?. (3.11)

The first example is the homogeneous Poisson process with intensity A > 0, for which K(z,y) =
A{z = y}. More generally, p(z) = K(z,2) € Ry on R For existence and unicity questions, it is
enough to perform a local analysis, in the sense that P is a DPP with kernel K if and only if for each
bounded B, P1pg is a DPP with kernel K1g g, and unicity and existence of P need only be solved on
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such B. Implicitly, P should have local moments of every order, and we shall henceforth assume that
K is locally square integrable as it will be fruitful to consider the associated operator in L?(B)

L f(x ff

Remark that by (3.11), each minor of K has a positive determinant, hence each submatrix (K (z;, x;))
is necessarily semi-definite positive. Therefore, Hadamard’s inequality yields for compact measurable
Bc R

m/2

|pR (B™)| < J ) UK(mi,xi)da@l day, = (JB K(ac,x)dx)m < 24B)™? (L K(:r,x)Q) < 0.

By (3.4) and Proposition 3.1, such a DPP has exponential moments and is uniquely defined by equations
(3.11). This is not an obligation, but in general, to have tractable existence and unicity results, one
requires K to be Hermitian, i.e. for z,y € R, K(y,z) = K(z,y).

A particularly important class is that of canonical kernels, defined to be of the form

¥) = > arpr(z)@k(y) (3.12)

k=1

where the @i,k > 1 form an orthonormal family. The semi-definite positiveness of K implies that
a, € Ry, and it is also necessary that ap < 1, see [36, Th. 4.5.5].

Those are typically the form of kernels for finite point processes P, coming from finite matrix
models. When all (non-zero) ay’s equal 1, the kernel is easily seen to enjoy the reproducing property:

Definition 3.2. Say that K is reproducing if for =,y € R,

K(z,y) = » K(z,2)K(z,y)dz.

This property is more conceptually seen as a projection property in the L? space. If (3.12) is
satisfied, for f € L2(R?) with compact support, Lx f is the projection of f onto the space spanned by
the ¢g. For a general reproducing kernel

k(L f)(z fozJ.f zydydz—ff JKZ‘Z zydz—jf ,y)dy = L f(z).

As a counterexample, the Poisson kernel K (z,y) = 1{x = y} neither satisfies (3.12) nor is reproducing.

This reproducing property is useful here for at least two reasons. Remember first that the p’,g, E<m
can be seen as projections of pp', but the fact that the defining DPP property (3.11) holds for pf* does
not implies automatically that it holds for p’é, k < m, except for reproducing kernels:

Proposition 3.3 ( [24]). Let K a reproducing kernel and P a point process such that (3.11) holds for
some m > 1. Then (3.11) holds for all 1 < k£ < m.

Hence the reproducing property saves us a lot of effort in the proof that a point process is deter-
minantal, as we will see with the GUE and Ginibre ensembles.

Proof. Tt suffices to show it for k& = 1 by induction. We decompose the set of permutations ¥,, in X1
for which o(n) = n and ¥ the complement. For o € X1, let & the restriction of o to [1,n — 1]. For
o € X¥ call ¢,(0) the cycle containing n, and & € ¥,,_; bypassing n (i.e. 6(c~1(n)) = o(n), others
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values do not change). Then

fdet((K(zi, 25))ij<n)di(2n)

= 6(0)]_[K(iva(i))JK(Zn,zn)u(dzn)+ > el 1 K(Zi,%(i))J [T EGiszom)nldz,)

oex] i<n cex¥ i¢cn (o) i€cp (o)
=c Z e(o) n K (2i, 25(:))
oexl i<n—1
+ > e0) [ Kziizow) I1 K(ziy 25(1)) % fK(Za—l(n),Zn)K(ZmZa(n))/i(dZn)
cex#k igcn (o) i€cn (o)\{n,0=1(n)}
=c Z (o) H K (2, 25(:)) + Z g(o) H K (2, 25(:)) n K (zis 26(1)) %X K(26-1(n)s Zo(n))
GE€Xn_1 isn—1 ek —e(5) igen (o) i€cn (0)\{n,0=1(n)}

:Hiec”(g)\(n} K(Zmz&(i))
=cdet((K (2, 2)))ijen—1) — Y. #{o0:6=0}K7.

o'€Xn, 1

To conclude, notice that for each &, there are N — 1 ways to choose where to insert index n in
permutation &, which yields the result with the constant C,, ,—1 = (¢ — (N — 1)). Then one can
iterate. 0

Let us now focus on stationary DPPs. Assume up to applying a rescaling that the intensity is 1,
i.e. pb(z) = K(x,z) = 1. Since by (3.11), we have the density p3(z,y) = (1 — |K(z,y)|?), stationarity
yields that it only depends on z — y, we therefore define k(x) = |K(0,z)|. A direct computation
combining (3.1) and (2.2) gives the spectral measure S = 5.2 with the structure factor

s=1-Fr% (3.13)

As a consequence, @(u) < 1. Also, s(0) = 1—@5(0) and reproducing kernels yield hyperuniform DPPs:

Proposition 3.4. Let P a stationary DPP with locally square integrable reproducing kernel K. Then
s(0) = 0 and P is hyperuniform. Furthermore, s(u) > o||u|? for some o > 0, hence the hyperuniformity
exponent is at most 2.

2

Proof. s is uniformly continuous as k° is integrable by assumption. The reproducing and Hermitian

properties yield
K2(0) = fﬁ = JK(O,x)K(w,O)dz = K(0,0) =1

which yields hyperuniformity by Theorem 2.1. The lower bound is a consequence of Lemma 2.3. [

3.3.3 Ginibre as a DPP

Recall from Chapter 1 that Gin, is the random element of .#,(C) with density proportionnal to
exp(=Tr(HH*)),H € M#,(C).

Lemma 3.4. The point process Gin,, is a DPP with kernel

K,(z,w) = A

3|

n—1 Nk )
Z (zw|) e_\z|"‘;|w\2
k=0
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Remark 3.3. We will see that K, is of the canonical form (3.12) with n terms and all a; equal to 1

1 —|z%/2

because the pp(z) := ﬁzk_le are orthonormal. This characterises processes with a.s. n points

because for m > n, the matrix (K, (2;, 2j))1<i,j<m has rank n, hence pg;, = 0, confirming that Gin,,
has never more than n points, and

E#Gin,, = JK(Z, z)dz =n

confirms #Gin,, = n a.s.. If for some other point process P one of the a; was in (0,1), we would have
a random number of points because E#P < n but pg # 0. In fact, for a canonical kernel, one can
represent the number of points as a sum of independent Bernoulli variables with parameters aj (see
[36, Theorem 4.5.3]).

Remark 3.4. We only consider DPPs with some kernel K on R¢ endowed with Lebesgue measure but
it is easily seen that one can equivalently consider a DPP with kernel K (z,y) = K(z,y)o(z)@(y) for
some ¢ : R? — C on R? endowed with |¢(x)|?dz, in the sense that for z1,...,,, € R?

det((K (4, 7;))1<ij<m) (@) - - |o(2n)|* = det((K(z:,25))1<ij<m)- (3.14)

Proof. The starting point is the Van Der Monde determinant. For z = (z1,...,2,) € C",

[ [(zi = 2) = det((zF ™ )1<inen)-

1<J

Let us multiply each column by a scalar «y to be defined later and take the square modulus: let
M(z) = (aszil)lgi,kgn, then

H |2 — 2?0 det(M (2))|? = det(M(2) M (2)*) = det(K, (2, 2;))

i<j
with

n
K, (z,w) := Z o |22F R
k=1

We admit here the density representation (1.4), it can be proved in a similar (but more intricate)
manner than for the GOE, see Section 3.3.1. Using Remark 3.4, it proves that PpGin has the DPP form

~ _ 122+ |w)?
2

(3.11) with the kernel K,,(z,w) = K, (z,w)e . We already saw that pp* = 0 for m > n, and for
m < n we wish to apply the reproducing property, which concludes the proof thanks to Proposition
3.3.

More precisely we prove that K, has the canonical form (3.12) with ¢ (z) = apz*te 1#"/2. Let
us check that the ¢y form an orthonormal family for the choice ay, := (m(k — 1)1)~1/2:

0 27
f or(2)p;(2)dz = apa; Jzkflfjfle*‘zlzdz = ako_zjf J p“jfzeie(k*j)e*pzpdpdﬁ
C o Jo

in polar coordinates. We see in particular that it vanishes for k& = j due to the angular integral, and
for k = j, it gives with the change of variables u = p?

0
27r|o¢k|2f Pk tdpe="" = w|oy|?T(k) = 1.
0

This concludes the proof of Lemma 3.4.



R. Lachiéze-Rey Hyperuniformity and rigidity 38

Turning back to the proof of Theorem 1.2, we have the convergence K, (z,w) — K (z,w) := 7~ e*®

uniformly on each compact. Hence by Proposition 3.2, PS™™ converges to PS'*, the DPP with kernel K,
weaky in the weak topology. The invariance of PG under rotations is inherited from the invariance of
PSin under rotations, because the random matrix Gin,, is invariant under the action of the orthogonal

group.
Finally, for the stationarity of P, we recall Lemma 3.1 (which also proves isotropy):

K(z4+v,w+v) = ei“”(z’”)K(z, w)e_i“”(“””)

for some real function ¢. As already observed for the planar GAF, the kernel K is not invariant under
the action of shifts, but it does not prevent PS™ to be stationary because for each m € N,

Ppein (21 + W, ..., 2m + w) = det(K (z; + w, 2 + W); j<m) = ZE(O’) H K(zi + w, 253y + w)

(e

where the sum is over permutations of {1,..., m}, and with i = o ()

H K(z;+w,zy +w) = n ei“”(zf'””)K(zi7 zi/)e_i“”(zi““’) = exp <12 oz, w) — 12 oz, w)) 1—[ K(z,2i)

and the first exponential equals 1. Therefore the kernels pf, are invariant under the action of shifts,
which proves by Proposition 3.1 that the point processes 7,P¢™ and PG have the same law, i.e. PG
is stationary.

3.3.4 GUE as a DPP

We see from (1.2) that the GUE has the same density form as Ginibre, but on R instead of C.
Everything works the same in the previous proof, except that the ¢ are not orthogonal on R. Going
back to the Van Der Monde determinant, we have another unexploited freedom: we can substract from
each column a linear combination of columns with a smaller index:

k
i k1 _ i k—1 o1
det((mki )Kikgn)det((m& e ) )

=P (\:)

We apply a Gramm-Schmidt orthonormalisation procedure to ensure that the P are orthogonal on
R. In fact, they are a renormalised version of the Hermite polynomials. It then proves with the same
computations that P$UE is a DPP with kernel

K, (A, X) = i Pk()\)Pk(X).
k=1

We leave as a black box the following result: Uniformly on each compact of R,
sin(A — ')
K,(AN) > K\N) i=c——+ =

( ? ) ( ’ ) ¢ )\_ )\/

One can consult for instance [5]. Hence using Proposition 3.2 and the exact same reasoning than for
the Ginibre process, PSUE converges to an infinite stationary hyperuniform process called the Sine
process (this is in fact easier than for Ginibre because here the kernel itself is invariant under shifts,
not only the factorial moment measures).

3.3.5 Pfaffian processes

We mention for completeness the existence of Pfaffian processes, of which the GOE process is an
instance, but we shall not develop them here, see for instance [17, Section 3.3] and references therein.
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3.4 Systems of particles

The [-ensembles, GOE, GUE, and Ginibre models, descend from a more general class of models
in statistical physics defined through a Hamiltonian. Consider a pairwise potential, i.e. a function
¢ : (R?)? - R, and the energy function

E°(z1,...,2p) := Z o(x; — ;).
i#j
A Gibbs measure with energy H® is roughly speaking a system of particles that tend to arrange
themselves randomly while keeping a low-energy configuration. Since the more the particle shift apart
at infinity the lowest is, in general, the energy, one must add a confinment term to ensure the particles
have an antagonising force to localise them. This could be a hard confinment in a ball (or another
shape), with radius ~ n'/4 so that each particle has approximately a constant volume for itself. There
are also smoother ways to confine the particles, we will typically consider an energy term of the form

E(zy,...,2y) = E°(z1,...,2,) +2Vn(xi)

and V,, is called a confinment potential, it is supposed to have compact sublevel sets. A hard confinment
penalisation consists formally in choosing Vi, (z;) = o x 1{|z;| > n/4} (with co x 0 = 0), but this
is less usual in the mathematics litterature. A frequent and convenience choice is V(z;)oc |x;]?, and
it emerges naturally in the theory of random matrices as we saw with previous models. We indicate
[65, 71] as a gentle introduction to the mathematical aspects of such topics.

The deterministic configurations minimising this energy are called ground states, or optimal con-
figurations, and are highly ordered. To add some randomness among low energy configurations and
reflect disordered states of matter such as gases and liquids, one balances the energy by an entropy
term, favoring more disordered random states, parametrized by some temperature 7' > 0, or the in-
verse temperature 8 = 1/T. The minimisers of this combined quantity called free energy are random
point configurations called Gibbs measure at inverse temperature 3 > 0. The Gibbs measure P with
n particles and energy H is defined by the density

ph(x, .. xn)ocexp(—BH (z1,...,2y)). (3.15)

The particles of P tend to approach global minimisers of the energy in the low temperature regime
B — o0, and at the opposite converge towards independent “totally disorded” processes with density
o], e~ 2i V() when B — 0 in the “high temperature regime”.

A popular example is s-Riesz gases, s € R, where ¢(x —y) = |[r—y|~°. When s > d, ¢ is integrable
at o0 and the model is said to be short range. It seems that hyperuniformity cannot happen as the
energy is extensive, i.e. proportionnal to the volume, see Ginibre inequality [55, (28)] for finite systems.
In this case, there is an unambigously defined infinite limiting point process P¥, i.e.

H H
P, — P
where P can also be described locally through DLR, equations, and Dereudre and Flimmel [20]
confirms that stationary locally interacting Gibbs measure are never hyperuniform.

A particular case is obtained with Coulomb gases, also known under the terminology jellium, or

One Component Plasmas (OCPs). Call ¢4 the Coulomb potential in dimension d, i.e.

pa(x) = {_ln(|$|) ifd=2

d—be‘P—d ifd=1ordz=3,
easily seen to satisfy in the distributional sense for some k4 > 0

Apq(z) = Kado, (3.16)



R. Lachieze-Rey Hyperuniformity and rigidity 40

in dimension 2 this fact has already been useful for GAF zeros at (3.8). Call P48 € 4/ (R) the simple
point process with exactly n points and inverse temperature 5 > 0 which density is

Pap(T1, .- zn)cexp(—f Z va(zi —x;)) eXP(*ﬁZ 1)

i#]

It indeed corresponds to Boltzmann equation (3.15) with potential 4. We recover some previously en-
countered examples: In Dimension 1, we obtain the S-ensembles, that converge resp. to the stationary
hyperuniform Sineg processes as n — o0 (Theorem 1.1). In Dimension 2, for § = 2, we exactly have
the Ginibre distribution.

Hence the “interesting” problem is wether long range Riesz gases are hyperuniform, which is, in
general, expected [55], and proved in dimension 1 [85]. In dimension d > 2, the only rigourous
result concerns Coulomb gases with n particles in dimension 2. The long range interactions make it
complicated to even define unambiguously an infinite model, the following result is rather asymptotic
hyperuniformity for large finite bulk subsystems, i.e. at distance ~ n'/¢ from the disk boundary.

Theorem 3.2 (Lebl¢). For n > 1, let 2, € R? R, > 0 such that for some ¢ > 0, B(z,, R,) <
B(0,+/nm(1 —¢€)). Then

Var (P} (B,, r,)) = o(R2).

The question might actually be easier to solve for infinite stationary models using smooth linear
statistics with Theorem 2.1-(ii). The (ill-posed) question remains:

Question 3.1. Are Coulomb systems in dimension d > 3 hyperuniform?

3.5 Quasi-periodic models

Hyperuniformity is important because it emerges in many different phenomena, especially in condensed
matter physics and statistical physics. Mathematically, disordered particle systems have attracted most
of the activity, but many other models, e.g. hard spheres, quasicrystals, or others, would deserve more
attention. To introduce the topic of aperiodic order, let us start with the following toy example, which
bears some similarity with subsequent more physical examples.

Example 3.1 (irrationally shifted lattices). Let some positive numbers a = {a,, > 0, m > 1}, mutually
irrational, and i.i.d. variables Uy, ~ % 1j¢,m > 1. Let the model obtained by summing independent
rescaled versions of the lattice

P2 = Z Z 6am(Um+m)'

m=1 meZd

Let us assume that ) a;? < oo to have finite intensity and local square integrability. Since the

spectral measure is linear in the random measure, we obtain the spectral measure of P? by using
Example 2.3 at the proper scale:

a __ —2d
=t Y b
m

me2nZA\{0}

Remark that by carefully choosing the a,,, one can have an arbitrary decay of S?(B;) as ¢ — 0, and
hence an arbitrary exponent of hyperuniformity, see Section 2.4.

Quasicrystals are broadly speaking non-periodic atomic measures whose spectrum is purely atomic,
their study emerged after experimental discoveries in physics in the 80s and is related to many fields,
including crystallography, aperiodic tilings, almost periodicity, see the mathematical monograph [6]
and references therein. Such objects are traditionally assumed to be homogeneous in space, and it is
thus natural to consider random constructions that are invariant under translations (|10, 64]).
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Let us introduce the invariant random quasicrystal model of Bjorklund and Hartnick [10], called
cut-and-project process, obtained from a higher dimensional tilted lattice that is projected onto a band
with a finite width. Let d,d’ € N*,T = T’y + U a shifted lattice of R% x R? | with U ~ %071]d+d/ and

Iy a lattice containing 0. Consider for W < RY compact the obtained projection
PlodW — (g (z,y) eT,ye W}.

Often, W is implicitly assumed to be the unit ball of R? and omitted in the notation.
Those models possess the following properties, defining a mathematical quasicrystal:

e Uniformly discrete, i.e. inf,, cpro.a |z —y[ >0 as.,
e relatively dense, i.e. for some r > 0, U,cpro.« B(z,7) = R? as.,
e The spectral measure S is purely atomic with a dense support.

Bkorklund and Hartnick [10] show that PTo-? is sometimes hyperuniform, depending on the diophantine
properties of I'. We refer to [10] for a precise definition, but an interesting class of lattices is that of
arithmetic lattices, which elements are badly approximable by rational tuples. A typical example is
o = {(a +bv2,a — b\/2);a,b € Z?} = R?, in the same way that algebraic numbers (i.e. solutions of
polynomial equations with integer coefficients, such as v/2, ”2\/5, etc...) are the worst approximable
numbers of R. The idea is that the diophantine properties of the dual of a lattice will determine its
hyperuniformity behaviour, and bad approximation properties give a more hyperuniform behaviour.
Interestingly, we observe in [48] the same phenomenon for nodal domains of Gaussian fields which
spectral measure has irrational atoms. Below we assume that W = Bj for simplicity, and call S the
structure factor of PTo:4,

Theorem 3.3 ([10]). e If the dual lattice of 'y is arithmetic,

= o(e®).

o For £+ ae. (d+d') x (d+d') real matrix A, the lattice Ty = AZT yields a hyperuniform
process such that for each given § > 0

e For d = d' = 1, there exists a lattice I'g such that for every o > 0,

lim sup w = 0.
e—0

It implies by Theorem 2.1-(iii) that P! is not hyperuniform.

This spectrum of different second order behaviours in fact reflects the spectrum of diophantine
properties of real numbers:
e the worst approximable numbers, such as the algebraic numbers, are characterised as those x € R
such that for some ¢ > 0
. D c
Vge N* inf |z — 5| > —

they form a negligible set of R¢.



R. Lachieze-Rey Hyperuniformity and rigidity 42

e For § >0, #'-ae. € Ris (2+ J)-approximable, in the sense that for some ¢ > 0, for infinitely
many g € N*,
2—4

. p _
fle —=| <
inf o ql cq

e There is a negligible set of numbers z with good approximation properties, such as the Liouwville
numbers, i.e. such that for every § > 0, there are infinitely many ¢ € N* with

|z — 8| <cqg 20,
q



Chapter 4

Perturbed lattices, matching and
optimal transport

We saw that an easy way to produce hyperuniform samples is to start from a lattice and perturb its
points by i.i.d. variables Uy, k € Z¢, but the underlying periodic structure remains detectable in the
resulting point process (see Example 2.4). A softening of this procedure is to allow for dependency
between the perturbations Uy, and in this chapter we first explore how much dependent can these
variables be and still maintain hyperuniformity. To maintain stationarity, we assume that the field
{Uyx; k € Z9} is invariant under Z?-translations; in particular the Uy are identically distributed

In the previous chapter, we saw hyperuniform models who have in appearance nothing to do with
a lattice structure, they seem to form a class fundamentally disconnected from the class of perturbed
lattices. We will see that, somehow surprisingly (at least in dimension 2), these disordered processes
can in most cases be written as dependently perturbed lattices, forming in some sort a converse to the
assertion that perturbed lattices are hyperuniform. To formulate and prove this result, we invoke the
theory of optimal transport. It ultimately proves that perturbed lattices and disordered hyperuniform
processes are not a dichotomy, they form two sides of a continuous class, except in dimension 1 where
a stronger requirement than hyperuniformity is required.

This is another illustration of the formula global order and local disorder, in that a hyperuniform
point process, even when it seems locally disordered, such as for a DPP or the zeros of a random
function, exhibits at large scale the same order than a lattice.

4.1 Perturbed lattices are hyperuniform point processes

We already saw that when a lattice undergoes i.i.d. perturbations, it is hyperuniform (Example 2.4
and Theorem 2.1-(ii)). When the perturbations are dependent, Dereudre et al. [21] proved that it still
holds as long as they have a finite second order moment in dimension 1 or 2. In the following, U =
{Ux; k € Z%} is a stationary field over Z?, independent of the shifted lattice 7yZ% where U ~ % 1}a.
Denote the resulting point process by

du _
VA = 2 5U+Uk‘
keZd

Theorem 4.1 (|21]). Assume E|U||? < . Then
e In dimension d = 1, supp Var (Zd’U(BR)) < o, ie. Z4Y is Class 1 hyperuniform.
e In dimension d = 2, Z%Y is hyperuniform, but the variance decay can be arbitrarily slow.
e In dimension d > 3, for every € > 0, there exists a stationary field U with |Ux| < ¢ a.s. and

R~ Var (Z*Y(Bg)) — .

43
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[21] also give counter-examples showing that these results are sharp in general. The general idea
is still that the more the perturbation is statistically disordered (extreme disorder being the indepen-
dence), the more it has the chance to maintain the underlying lattice structure, but also the less likely
is the obtained point process to be mixing. In some sense the mixing properties of U and P go in
reverse directions. This is confirmed by the results of [25, 41|, which ensures that hyperuniformity is
maintained in any dimension as long as the perturbating field U is sufficiently mixing. Flimmel [25,
Theorem 2| uses the a-mixing coefficients, for U a stationary field over Z4,

a(n) ;== sup{|P(Q) — P(Q)| : Qeo(Ui;ke A),Q e o(Uw:;k € B); A, BcR?:d(A,B) >n},neN.
Klatt et al. [41, Th. 5.5] introduce in the flavor of S-mixing, with Px the law of X,

B(m) = sup P (,0m) (A) — P%f(A)L m e Z4.
AcR? xR Borel

Theorem 4.2. If Y o(|m|) <o or Y. B(m) < o0, then Z%V is hyperuniform.

[25] contains a stronger version under some moment assumptions, and [41] actually considers any
stationary random measure (not only point processes), and any kind of perturbation, as long as
stationarity is in order.

4.1.1 Lattices perturbed by clusters and arbitrary exponent

A similar class of dependent perturbations is obtained when each point is replaced by a whole finite
point process, as considered in [50]. This is not formally a perturbed lattice as studied above, but the
resulting points can still be seen as the result of a perturbation applied to a lattice. We again refer
the reader to [41] for a general theory of perturbed random measures. Let us give here a result where
the point processes attached to different points are independent.

Let p1 a probability distribution on .4 (R?), and P = Y, §,, a simple stationary point process. Let
P;,7 > 1, i.i.d. point processes with law u, and

Pt .= ZZTIJ‘ P;.
J

%

Proposition 4.1. Let P a wide sense stationary point process with spectral measure S and assume
E#P? < o0. Let the random Fourier-Stieljes transform ¢(u) = { e“?*dP;(t). Then P* has the spectral
measure

Su = (Elp(u)* — [Ep(u)|?) £%(du) + Elp(u) ’S.

We recover (2.5) when #P; =1 a.s. We see that in general, if P is hyperuniform, S vanishes in 0,
hence also S, vanishes in 0, and by Theorem 2.1, P# is still hyperuniform. Remark that Lemma 2.3
does not apply to this form of structure factor, and we can indeed exploit this to have a point process
with arbitrarily high hyperuniformity exponent.

Among stationary models mathematically treated, the only exception to the behaviour s(u) > o|u?
are GAF zeros (Lemma 3.2) and shifted lattices. For the latter, at the opposite, the spectral measure
vanishes in a neighbourhood of the origin; it is a member of the class of stealthy processes, which are
the topic of Section 5.2. To obtain an intermediary model, that is not formally periodic, but still
presents a high level of rigidity, one can use a union of irrational shifted lattices, see above. We give
here another class of models, with slightly more disorder, where the points of a lattice are perutbed
by randomly rotated clusters.

Let p > 0,pe N*. Let P; = Z§=1 02imjp+0, Where the 0; are i.i.d. uniform on [0,27], and let u the
common law of the P;, and let P = Z¢, recall the construction of P# from above.
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Theorem 4.3 ( [50], Theorem 3). The point process P* is hyperuniform and if p is a prime number,
its spectral measure satisfies as u — 0

2p
loul™ .

Sp(u) ~ W )

hence P#* has hyperuniform exponent 2p.

See also [27], giving guidelines to design other examples in any dimension.

4.1.2 The partial matching process: a dependently perturbed lattice

Klatt, Last and Yogeshwaran [43] consider a special construction that can be seen as a dependently
perturbed lattice. Let P a homogeneous Poisson process with intensity a > 1, let Z¢ = 75 Z% the
usual shifted lattice with U%] 1}« independent from P (Section 1.2). Then build an injective mapping

T : Z¢ — P that is invariant under translations, i.e. 7,T @ T,z € R%, by performing a stable matching:

e First match x € Z%,y € P if they are mutual nearest neighbours, i.e. y is the closest point from
x in P and vice-versa, and put y = T'(z). Call Z¢ _, , such matched points from Z¢ and Pyagcn
the matched points from P.

e Remark that z8\z4 . 74 .
procedure by matching mutual nearest neighbours of Z%\Z
y = T(z) if y and z are matched.

P\Pmatch; Pmatch are still stationary point processes. Repeat the

f"lnatch and P\Patch, putting each time

e Then repeat the procedure by matching iteratively mutual nearest neighbours that have not been
matched previously.

This procedure never terminates globally, but each point of Z¢ is eventually matched after finitely
many iterations, hence T is well defined. We then have the following result. For z = k+U € Z¢, define
Ux =T(z) — 2z and U = {Uy; k € Z%}, so that indeed T(Z¢) = ZY is a dependently perturbed lattice.

Theorem 4.4 (KLY). T(Z9) is a stationary hyperuniform perturbed lattice and the Uy have an
exponential tail: for some finite ¢ > 0,

P(|Uo| > r) < ce™"".

The proof can be deduced from Theorem 4.2 by the same authors. In [43], they furthermore prove
that T'(Z%) is number rigid, a concept that is introduced at Chapter 5.

Remark 4.1. A similar procedure can be conducted with a = 1, and in this case the points of P are
also eventually exhausted, so that T is a bijection between Z? and P, but the matching properties are
much less agreable; in particular, |Up| has an infnite d-th moment , whereas other Poisson matchings
perform much better [34, 35].

4.2 Hyperuniform point processes are perturbed lattices

One of the motivations for studying hyperuniform point processes is the low variance for linear statis-
tics (Proposition 2.1), and more generally that they are “evenly” distributed across space, at least
they seem so visually. We try to formalise here this impression with the concept of allocation, and
more generally of optimal transport. As we will see, this provides some kind of converse statement to
Theorem 4.1, in that many hyperuniform processes can be seen as a perturbed lattices.

From the point of view of transport, a sample of points is well distributed if one can divide up
the space in cells of equal volume such that each cell can be associated to a nearby point of the
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process nearby, the “center of the cell”. One can think for instance of points as school locations in
a city C,,, and Lebesgue measure represents the distribution of the population, the goal being that
each school is associated with an equal volume of population and that each citizen should not have to
travel too far to go to the school it has been assigned to (which is not necessarily the closest school).
The ideal repartition occurs when points (or schools) are distributed periodically as in a lattice, we
rather investigate here disordered samples. We show in the figure below three samples of points and a

corresponding partition of a sphere in cells of equal volume using the so-called gravitationnal allocation
[63].

Figure 4.1: Sending kids to school. Left. Ginibre eigenvalues. Middle. Poisson points. Right. GAF
zeros. llustration by D. Hawat

4.2.1 Optimal transport, matching and allocation

We propose in this chapter a quantification of this concept in terms of matching and allocation. Let
p=1.

e Let C,, = [0,n)%, and let P,, a sample of n¢ points in C,,. Call allocation a measurable mapping
T :C, — P, such that a.s. the volume of the set of points sent to each x € P,, is exactly 1, i.e.
LUT1({z})) =1, x € P,,. Call p-allocation cost of T'

D) = | o= TP,
Cn
and call optimal p-allocation cost W?

.alloc(Crn, Pn) the infimum of C,(T') over such allocations T',
the notation WL is explained below.

o Let Z, = C, n Z% the lattice points of C,,, note that #Z,, = n?. Call p-matching cost of a
bijection o : Z,, — P, the quantity

Cplo) = ), lo(k) — K|,
keZ,

P

Call optimal p-matching cost Wp,match

bijections o.

(Z,,,Py) of Z,, to P,, the minimum of C,(c) over all such

The concept of matching is in fact very close to that of perturbed lattices, as it means that there
are variable Uy := o(k) — k such that P,, = {k+ Ux; k € Z,,}. In general, of course, such Uy would not
be independent.

The matching and allocation costs are obviously different in general, but in the large sample
asymptotics, we will see that they have the same magnitude for a given stationary point process
P restricted to C,,. From this perspective, the process P will be stationary, i.e. invariant under
R-translations, and accordingly the field U := {Uy; k € Z¢} will be required to be invariant under Z9-
translations. To avoid some technicalities for now, we study more generally a family of point processes
P,,n = 1, and study whether there is explosion of the mean p-transport cost per particle.
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4.2.2 Linear cost for large finite samples

The concepts of matching and allocation costs above are both instances of the concept of p-Wasserstein
distance in optimal transport. Given two non-negative measures p,r with same mass on R?, call
coupling of p1, v a measure M on R? x R? with

M(xRY =p, MREx.)=w.

Then define the p-th order Wasserstein distance by

WE(u,v) = inf JHx—prM(dx,dy). (4.1)

M coupling

Remark that this quantity is symmetric in x4 and v.

Call .Z2 the Lebesgue measure restricted to C,,. Note that #Z, = #P, = £2%(C,,) = n?, which
is the reason why we employ a straight cubic window in this chapter. An allocation T : C,, — P,
induces the coupling

MAxB)i= Y ZHAAT({y)),

yeP,nB

the mass of points from A sent to B. A matching o : Z,, — P,, induces similarly a coupling

M(A x B) = > 1{y = T(z)}.

z€Z, nA,yeP,NnB

Hence the optimal matching and allocation costs correspond to infima taken over specific classes of
couplings, hence

WE(Zd Py) < WP o (L8 PL), WE(Z,,P,) < WE (Zn,Py).

p,alloc p,match

We in fact have the reverse inequality

d d
W;I;(Zna Pn) =W (va Pn)7 Wg(fn ) Pn) = W;f,alloc(g ’ Pn)a

p,match n

see for instance [70, Thm. 1.7]. We expect all those costs to be similar, which we formalise in the next
result.

Proposition 4.2. Let P,,,n > 1 point processes with resp. n? points in C,,, and p > 1. There is a
universal constant ¢ > 0 such that

Wg(fg, P,) = end.

Hence the linear cost (proportionnal to n?), is the least one can expect. Then the two following are
equivalent:

(i) There is a constant cpatcn such that EWD(P,,, Z,,) < Cmatch N,
(ii) There is a constant c,joc such that EWg(Pn,ff) < Callocn®.

Proof. The lower bound is a consequence of the isoperimetric inequality, which gives for any domain
Q with volume 1, and any y € R?

| le=spiez = | ey
Q B

(yorg )

Then just make the summation over the cells €; := T~ (z;).
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The equivalence comes from the general triangular inequality between finite measures: to prove
that (i) implies (ii), use

Wy(Pn, Z3) < Wy(Pry Z) + Wy(Z,,, L9).

This inequality is proved in all textbooks about optimal transport, see for instance [70, 86]. One can
obtain the estimate

WE(Z,, £3) < en?

using the following elementary allocation: cut C,, into n small cubes with sidelength 1 and define
TO : Cn — Zn by

Tok +[0,1)%) = {k}; k € Z,,.

It gives WF(Zy, Z) < Cp(Tp) < en®. Then use the inequality (a + b)? < cp(a? + bP),a,b = 0 to have
(i) implies (ii). The same inequality after switching the roles of Z,,, ¢ gives (ii) implies (i).
O

An example of paramount imporance in geometric probability is when P,, consists in i.i.d. points
uniformly distributed over C,,.

Theorem 4.5 (AKT Theorem [4]). Let P, made up of n? i.i.d. points uniform in C,, and p > 1.
Then (i) and (ii) hold if and only if d > 3

This result admits many generalisations, it is in particular valid for processes with asymptotically
integrable covariance, see for instance [52, 13, 35]. Hence in dimension d > 3, hyperuniform or not, a
standard point process has a satisfying behaviour in terms of transport / allocation / matching.

In dimension d = 2, on the other hand, one cannot find a nice allocation from C,, to P,, in the
sense that, by the AKT theorem

EW%,alloc ( P7l7 gr(j)

lim i — 0.
n n

This can be observed on Figure 4.1, the middle sample is formed by independent points, and the cells
are elongated, generating a large transport cost. Left and right samples, resp. Ginibre eigenvalues and
zeros of a GAF, have more spherical cells, yielding a lower cost. We will see now that the reason is
that such samples are asymptotically hyperuniform, as we saw previously.

Pioneer works in this direction are [38, 68], giving results for the finite Ginibre ensembles. Let us
give first the result of Butez, Dallaporta & Garcia-Zelada, bearing directly on the fluctuations of the
discrepancy, in the spirit of the original geometric definition of hyperuniformity in terms of number
variance (1.1), valid for any p > 1.

Theorem 4.6 ([13]). Let p > 1,P,, with n? points such that for some ¢, ¢ > 0, for any square B < C,,
with £4(B) > 1,

P.(B) — 2B)["

Z4(B)

Cc

S W(ZAB)re

supE (4.2)
n

Then
Wg(fjf, P,) < cn?

for some constant ¢’ not depending on n.
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Hyperuniformity for finite samples corresponds to the left hand member going to 0 for p = 2 as
B grows to infinity, hence it almost automatically yields linear bounds for the 2-Wasserstein distance.
If one has moments of higher order on the discrepancy, it gives a linear bound for the Wasserstein
distance of corresponding order. It unfortunately does not apply to systems where the bulk behaviour
is different from the behaviour on the boundary, as in Theorem 3.2.

We saw in Theorem 2.1-(iii) that hyperuniformity is equivalently characterised by the vanishing of
the spectrum in 0. The equivalent concept for a finite sample is the scattering intensity. For a point
process P, in C,,, denote by FP,(u) = {e P, (dt),u € R?, the Stieljes-Fourier transform. Then
the expectation of the scattering intensity is

Sp, (u) := mE 7P, (u)]?.

For P a L} stationary point process, and P, = P n C,, gpn (u) provides a simple and natural
approximation of the structure factors S(u) of P, see for instance [17, Th. 5.1] for a weak convergence
result. Actual estimators are built from multiscale tapered versions, see Chapter ??7. We give here for
completeness the following convergence result:

Proposition 4.3. Let P a wide sense stationary point process which covariance measure C is integrable.
Then S is continuous with respect to #¢ by standard Fourier considerations, and for u € R? the density
s(u) satisfies

Sp,, (u) = S(u)
if and only if u € 2rZ\{0} or more than half of u’s coordinates do not vanish.

Proof. Assume without loss of generality that P has unit intensity, hence EP,(C,) = n?. Define

fun(x) = 1¢, (2)e™ ™% so that n%Sp, (u) = E|P(fu.n)|?. Let us use (2.1) and Lemma 2.1:

E|P(fum)|2 :Var<P(fu,n)) + |EP(fu,n)|2
- j Fum * Fan(@)Cde) + |Ton (u)

‘ 2

, _ 2
= Jew'“’ 1c, * 1g, (z)C(dx) + ‘ndlc1 (un)‘
(N —

~nd

2

1_[ eiuin -1

. u;n
:u; 0 g

=n?S(u)(1 + o(1)) + n*

and the last term vanishes if v € 27Z%\ {0}, and otherwise is in n*(4~™) where m is the number of i

such that u; # 0, this concludes the proof. O

We see that the bias is minimal at non-zero multiples of 27/n, hence the best approximations are
the Sp(2rk/n), k € Z,\{0}. See [33] for a more precise result and variants of the scattering intensity
more useful in practical situations.

In the physics litterature, it is common to estimate the structure factor at such lattice points. In
conclusion, if P is hyperuniform, S(u) should be small for u close to 0, especially at the Spn (27k/n).

A recent result of Bobkov and Ledoux [12] allows to derive transport bounds in terms of the Fourier-

Stieljes transform. The drawback is that this bound is valid for the toric Wasserstein distance W},
i.e. when the distance |z — y|? is replaced by the toric distance d¢, (x,y)? = infycza |z — y + kn|?
n (4.1). When n goes to oo, the influence of boundaries in the toric distance will vanish under some
additional assumptions (see the next section).
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Theorem 4.7. Let P,, consists of n? distinct points. Assume that for some ¢ < oo, for k € Z,,\{0},

. 1ifd>3
ESp, (27k/n) < ¢ x { nas , (4.3)
Then
W3 (224, P,) < en. (4.4)

The relation between hyperuniformity and the Bobkov-Ledoux bound has been explored in [52],
combine (27) and (18) from [52] with t; = n to show the bound above. If now P,, = P n C,, for P
stationary, #P,, is random and the previous bound cannot apply directly, we give in the next section
the results of [52, 21| where this problem is handled.

As noted at Section 2.3, the number variance on squares and decay of the structure factor cannot
be formally deduced from one another. Using a computation similar to the implication (iii)= (i) in
the proof of Theorem 2.1, a decay of the structure factor in |In(|ul|)|=*~¢ as u — 0 yields a number
variance on balls of order
1/n

Var (P(B,,)) = n4S(Bl/n) S n4f i dr =n?In(n)"17¢,

o [In(r)+e
hence comparing with (4.2), for p = 2 the bound on the structure factor seems slighlty less restric-
tive.

4.2.3 Infinite samples

We investigate here how to translate the previous results to an infinite stationary hyperuniform model P
with unit intensity, to obtain the representation as a perturbed lattice, i.e. P = PY for some stationary
U = {Uy; k € Z%}, as announced in the chapter introduction. Previous results yield that for a Poisson
(or Poisson-like) process in dimension d > 3, or a hyperuniform process in dimension 2, on a large
window C,, where P has approximately n¢ points, there should be a nice matching between P n C,,
and Z,, or a nice allocation from C,, to P n C,,. Remember that the matching can equivalently be
written as a bijection o between Z? and P, with o (k) := k + Uy. The length ||Uy| can be interpreted
as the law of the distance between a typical point of P and the point of Z? it has been assigned to;
a good matching is such that E|Uy|P < oo for sufficiently high p, we shall typically investigate this
question for p = 2.

In analogy with the finite case, we call invariant allocation to P a random measurable mapping

T : R? — P which law is invariant under shifts, i.e. Ty T @ T,y € R? and such that a.s., the cells

T~({z}); x € P form disjoint measurable sets of volume 1. As before, the law of |T°(0)| and its moments
are a good indicator of how good is the allocation. It is possible to show under mild assumptions that
there is a stationary allocation T" with E|T(0)|? < oo for some p > 0 if and only if P is a p-perturbed
lattice, i.e. P = ZY where U is an invariant perturbation U with E|U|? < oo. We shall state the
next results in terms of matchings, but it could equivalently be stated in terms of allocations, recalling
Proposition 4.2.

As a preliminary remark, with or without hyperuniformity, there always exist such a perturbation U
or allocation T under the minimal assumption that P is ergodic, see for instance [35] where a matching is
built with the Gale-Shapley stable marriage algorithm. This procedure might actually yield suboptimal
matchings. It is proved in [35] that this stable marriage yields E|Up|| = oo in dimension d > 3 whereas
other matching procedures admit exponential moments.

We require below that the covariance measure is integrable, i.e. has finite total mass over R¢ (this
is assumed equivalently for the reduced pair correlation measure in [52]). This is typically the case for
disordered point processes. Let us start by the standard case in dimension d > 3.

Theorem 4.8. Let P a leoc stationary point process in R?, d > 3.
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(i) Assume Var (P(Bg)) < cR? for some ¢ < c. Then P is a p-perturbed lattice for p < d/2, in the
sense that P = ZY for some perturbation U with E|Up|? < .

(ii) Assume C is integrable. Then P is a 2-perturbed lattice

Point (i) is not formally present in the literature, but can be shown with the same method than in
[35], see [62, Remark 1]|. Point (ii) is [52, Theorem 1|. The fact that C is integrable yields with (2.1)
a linear /sublinear variance Var (P(Bg)) = O(R?), hence (i) is stronger in dimension d > 5, but (ii) is
preferable in lower dimensions when one can prove the integrability of C.

Let us now give results in the two dimensional case, where we need a little bit more than mere
hyperuniformity to obtain a linear matching cost.

Theorem 4.9 ([37, 52|). Let P a stationary hyperuniform point process of R?. Assume that either (i)
we have the integrability

f In(||z|)dx|C(dz)| < oo
R2\B;

or that (ii) for some ¢,e > 0

Rd
Var (P(Bg)) < CW.

Then P is a L2-perturbed lattice.

The relation between (i) and Theorem 4.7 about finite samples is the following: one can prove
Theorem 4.9 by first showing that the finite samples P,, := P n (), indeed satisfy a linear transport
cost as in (4.4). One of the difficulties is that N := #P,, is not n? a.s., hence one applies Theorem 4.7
to a renormalised lattice Z,, of Z,, with random mass N, and shows it has a good matching with P,,.
Then one uses the compacity of the space of matchings between atomic measures with same intensity
to show that asymptotically, we have a L? matching between Z¢ and P.

The result (ii) is proved in [37]. The authors actually show that the conclusion holds under a more
general condition, the finite Coulomb energy for P, implied by both (i) and (ii) (see their Proposition
1.7). When C has a density (at least at o), it seems that all these conditions are equivalent. [37] give
also an example of a 2D hyperuniform point processes that does not have finite Coulomb energy, see
also Example 3.1.

In conclusion, the dichotomy between perturbed lattices and disordered hyperuniform processes
seems rather to be a continuum. In dimension 1, hyperuniformity is not enough to guarantee linear
W3 cost, but we do not investigate this question as 1D optimal transport tools are pretty specific.

A stationary allocation T' naturally induces a fair partition, i.e. a partition of the space into cells
of equal volumes. There are further links between hyperuniformity and fair partitions that we shall
explore in a future version.
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Chapter 5
Rigidity

Another intriguing phenomenon has been noticed for some seemingly disordered hyperuniform pro-
cesses, that of rigidity. Ghosh and Peres [31] have shown that, for either P = Pgag or P = Pgjn, we
have number rigidity: the number of points in a ball can be a.s. guessed from the outside configuration,
i.e. for R > 0,

P(Br) € o(P n BS). (5.1)

Note that this property is irrealistic for a standard process, or a process that is considered to be asymp-
totically independent. The proptotypical example is the Poisson process, where the independence of
Plp, and Plpe makes (5.1) impossible. This number rigidity is once again reminiscent of lattices,
in the sense that for “small enough” perturbations Uy, k € Z¢ with law p, one expects that Z4* is
number rigid. The shifted lattice (obtained for p = dy) is an extreme example, as not only the number
of points, but in fact all of P1g, can be inferred from P1% .

5.1 Heuristics and linear rigidity

Let us see how we can guess P(Bg) for a point process with low variance for linear statistics. Let f
smooth with compact support and f(0) = 1. Then as R — oo, with Bienaymé-Tchebyshev inequality

P(B1) ~ P(1s, fr) = P(fr) — P(frl%,) ~ EP(fr) £ v/ Var (P(fr)) — P(frlg,).

For P sufficiently hyperuniform (see Proposition 2.4), Var (P(fr)) goes to 0 and the right hand side
gets arbitrarily close to an element of o(P1p¢). This method has been initiated in [31] and generalised
in [30].

For Pgar, the hyperuniformity exponent is larger (see Lemma 3.2), Ghosh and Peres [31] show that
one can furthermore guess the first moment of P1g, with a similar reasoning and f(z) = zf(x):

JadPere ~ REIP(a) = By Var (P(7i)) ~ RP(Frls).

This phenomenon is called 1-rigidity, since one can infer the moment of order 1 based on the outside
configuration. From this perspective, number rigidity can also be called 0-rigidity.

In both examples, the rigidity can be described as linear, in the sense that the quantity of interest
(the moment of order 0 or 1 on the unit ball) can be approximated by external linear statistics P(fr1p¢).
Generalising to higher moments leads to the following definitions.

53
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Definition 5.1. Say that a wide sense stationary random measure M is k-rigid for k € N iff for every
k = (k;) e NY with Y, k; = k,

d
Ji]x?dMec4M1%J.

i=1

Say that it is linearly k-rigid if for some kernels h,, € €2 (B{), we have the convergence in L? and a.s.
d
M(hn) — |] i dMm.
i=1

5.1.1 Necessary and sufficient conditions for linear k-rigidity

It turns out that linear rigidity on a compact subset A of R? involves the tempered distributions which
spectrum is supported by A, and those are by the Paley-Wiener theorem a subclass of the analytic
functions. Exploiting this theory, the following results are derived in [50].

Let us first give a condition easy to state in some structurally more simple cases. We consider
hereafter a wide sense stationary random measure M. Decompose its spectral measure S according to
the Radon-Nykodym theorem: there is a non-negative measurable symmetric function s : R — R,
with S = s.#2? + S, and S, is singular with respect to 2%, we call s the spectral density of M.

Theorem 5.1. Let k € N. Assume that one of the following holds:
e )k=0
e (ii) s is invariant under rotations
o (iii) s is separable, i.e. s(u) = si(u1)...sq(uq),u € RY, for some measurable symmetric s; > 0.

Then M is linearly k-rigid iff

JMdu = (5.2)
s(u) ' '

Remark 5.1. e This condition only bears on the continuous part of the spectral measure. It is
reminiscent of Szegd and Kolmogorov’s theorems on time series |79, 45|, and there is indeed a
relation, as we shall see at Section 5.2.

e This theorem shows that linear rigidity obeys some rules of monotonicity: for s’ <'s, k-rigidity
for s’ implies k-rigidity for s’, and for k¥’ < k, k-rigidity for s implies k’-rigidity for s.
Example 5.1. We have built at Section 4.1.1 a class of models P, for p a prime number, which can
have an arbitrarily high hyperuniformity exponent. In particular, Theorems 4.3 and 5.1 yield that P,
is (p — 1)-rigid.
When none of (i),(ii),(iii) holds, one can still state a more algebraic necessary condition, see [50].
We shall state some general necessary condition.

Proposition 5.1 ( [50], Proposition 2). Assume the spectral density s satisfies for some ¢, p,e > 0:

e s has finitely many zeros ui, ..., u, € R? and they have finite order, i.e.

— ||P
J Ju — wif? du < o
B(ug,e) s(u)

e s does not vanish too fast at co: for u ¢ (J, B(us,€), s(u) = ¢(1 + |ul|)~?
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Then for k € N, M is not linearly k-rigid if (5.2) does not hold.
This yields the following characterisation of rigidity for DPPs, using (3.13) and Lemma 2.3:

Theorem 5.2 ([50], Theorem 5). Let P a stationary DPP with locally square integrable Hermitian
kernel K. Then P is number rigid in dimension d = 1,2 if P is hyperuniform and for all ¢ > 0,

1
——du = o,
JBE s(u)

and is not linearly k-rigid in any other situation.

As seen at Sections 3.3.3 and 3.3.4, the Sine; process is a DPP with kernel K(z — y) = %

on R, and the Ginibre processes with kernel K(z,w) = r—lez@=I21*/2=wl*/2 on C. Hence one can show
with (3.13) that they are both number rigid. An example of a non-rigid hyperuniform DPP is given
by the tensor product of the sine kernel

K(x,y) = sinc(z1 — y1)sinc(za — y2), (1, 22), (41, 42) € R?,
because the spectral measure is continuous with density
s(ug,ug) = |u1| + |uz| + o(u1) + o(uz) as u — 0,

hence §; [u = du < oo.

The main reason why DPPs cannot be more then number rigid, and only in dimension 1 or 2, and
why it is in general difficult to find such processes in general, is Lemma 2.3, that yields s(u) > o|ul?
as u — 0; a similar phenomenon occurs for independently perturbed lattices.

5.1.2 Linear and non-linear rigidity of perturbed lattices

We can deduce from Example 2.4, Lemma 2.3 and Theorem 5.1 the following. For p a non-negative
measure on R?, call p, its component continuous with respect to Lebesgue measure and say p has a
continuous part if p. is not the null measure.

Proposition 5.2. Let p a symmetric probability measure on R? with a continuous part. Assume
furthermore that p is symmetric or has a finite second moment. Let Z%* the corresponding perturbed
lattice. Then Z4* is not linearly k-rigid if £ > 1 or if d > 3.

For k = 0,d € {1,2}, let ¢(u) = 5. e7™*pu(dt). Then Z%* is linearly number rigid iff for all ¢ > 0

1
L%lmwQM‘“

Proof. We use the spectral measure expression at (2.5) with Theorem 5.1 and Proposition 5.1. Let
f the density of p., ie. pu = f£% + p, for some singular measure p,, and p := us(RY) < 1. The
Rieman-Lebesgue lemma yields that

Je*i“'wf(:v)dx -0
as |lu| — oo, hence for |u| sufficiently large, [1)(u)|> < p+¢e < 1 for ¢ > 0 sufficiently small. Fur-
thermore, |¢)(u)| # 1 for u € R? because u cannot be concentrated on {z : (x,u) € 2wZ} since the
continuous part of y has a support with positive Lebesgue measure. Therefore, the spectral density s
satisfies the two first conditions in Proposition 5.1.
Lemma 2.3 yields that for ||u| sufficiently small, |4 (u)[? < 1 — o|ul|?® for some o > 0. Hence

Juf?*
L—www“<“

if k> 1ord=>3. Then for k = 0, Theorem 5.1-(i) yields number rigidity iff the integral is infinite. [
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The symmetry assumption on p can be replaced by a moment assumption.

In disordered models, most rigidity proofs actually yield linear rigidity [31, 16, 29|, but other
arguments use a different route. In [22], the authors prove number rigidity for Coulomb gases using
DLR equations, and [16] proved that this rigidity is actually linear. Proving that a model does not
experience rigidity actually gives information on its covariance decay [50].

For perturbed lattices, conversely, many models seem to experience non-linear rigidity. Consider
for instance in any dimension a probability measure u supported by By /4. Then clearly the resulting
process Z%* is number rigid, as one can unambiguously recover the underlying structure and find the
Z%-neighbours of each particle, and in dimension d > 3, by the results above, this number rigidity is
not linear.

There is also the notable example of [65] that proves with an ad-hoc argument that in dimension
d = 3, a lattice perturbed by Gaussian variables with sufficiently small variance is number rigid, and
this rigidity is also necessarily non-linear by Proposition 5.2.

Theorem 5.3 ( [31]). Let u = 4(0,02I;) on R%. Then Z%#* is number rigid if and only if d € {1, 2}
or if d = 3 and o < o, for some o, € (0,00).

Question 5.1. What are the number rigid lattices in dimension d > 37

5.2  Stealthy processes and maximal rigidity

We saw that the speed of decay in 0 of the structure factor determines the degree of rigidity of the
random structure. An extreme case is when the spectrum vanishes identically on a neighbourhood of
the origin.

Definition 5.2. A wide sense stationary random measureis stealthy if its spectral density vanishes on
a non-empty open set.

We dropped the assumption that the gap contains 0 as it might be non-relevant mathematically,
but is often present in the physics litterature. Stealthy point processes have attracted considerable
interest in physics, in particular for their peculiar optical properties in condensed matter physics, see
the non-exhaustive bibliographic sample [83, 90, 89, 80, 82, 61, 72] . It bears relations with the concept
of blue noise in image analysis [88], quantization in numerical probability [44], or numerical integration,
since they yield superpolynomial decay for the variance of smooth linear statistics by Proposition 2.1.

To the author’s knowledge, the only known mathematical examples of stealthy point processes on
R? are finite unions of shifted lattices as in Example 3.1 (with only finitely many a,,). The interest
of physicists is to put in evidence stealthy models of point processes which are also disordered, e.g.
isotropic and mixing, through some simulation procedures.

Stealthy random measures exhibit a very strong form of rigidity, called maximal rigidity, where the
restriction of M on a subset B = R? can be completely inferred from values of M outside B [30], it is
also a consequence of Theorem 5.1.

Definition 5.3. Say that a wide sense stationary random measure M is mazimally rigid on B < R? if
Mlp € o(M1%).

Stealthy measures are actually even more rigid than that, in that the set B can be non-compact.
Call strictly convex cone a closed cone C = R which does not contain both = and —z for some z # 0,
or equivalently such that for some zq € C,

inf  ax9-2>0.
zeC, [z] =1

Proposition 5.3. A stealthy wide sense stationary random measureis maximally rigid on any strictly
convex cone C, i.e. Ml € o(Mlge).

This result is proved in the forthcoming paper [51], where it is also shown that maximal rigidity on
a bounded set persists when the stealthiness hypothesis is relaxed to that of a deep zero. It is argued
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there that maximal rigidity comes from an instance of the uncertainty principle in harmonic analysis
called annihilating pairs, putting in relation a set B with a set B R? such that if a test function f
is supported by B and f is supported by B, then f = 0.

Stealthy processes have other striking features that distinguish them from the common point pro-
cesses, even the perturbated lattices. The bounded holes property [90], giving somehow an a.s. lower
bound on the density, was proved in [30, Theorem 1.1]. They also give an upper bound on the density
with their Theorem 1.3. Let us give a simple statement and proof.

Proposition 5.4. Let M a stealthy non-negative wide sense stationary random measure. Then there
exist finite A, R,n > 0 such that a.s., for every z € RY, M(B(x,1)) < A and M(B(z, R)) = 1.

In the case where M is a point process, M(B(x, R)) € N, hence the second statement gives the
bounded holes property: there is no ball with radius R without point.

Proof. Assume without loss of generality unit intensity. The stealthiness yields € > 0 such that, with

(2.2), for ¢ a non-negative Schwarz function supported by B., Var (M(¢)) = 0. Hence a.s.
M(5) = EM(3) = [
To make sure ¢ > 0, take ¢ = g ® o for some smooth ¢g supported by B. /. Assume also ¢ = 0
and ¢(0) > 0. Also, ¢(0) = § ¢ > 0 and there is k,a > 0 such that
()5 = IilBa .
If a < 1, one can still shrink ¢ by factor a, hence ¢ expands by a factor 1/a, meaning we can assume
without losing the previous sign properties that a = 1. By positivity of M and ¢ = |¢o]?,
kM(B1) < M(p) = J@ < ® (5.3)

which yields the first part of the statement. Since ¢ is non-negative, sup ¢ = ¢(0). We have for R > 0

0< [ = M(@) < pOMBr) + (P (5.4)
Since ¢ has fast decay and the B(k,1),k € d~1272  cover the space, we have for some ¢ > 0

Plpg () < Z 0Hk||7d71113(k,1)($), z e R%.
ked—1/274\Bg

It finally yields with stationarity, (5.3) and (5.4)

J@ <POMBr)+ Y, ck[IM(B(k1) < GOM(Br) +cA D [k
ked—1/224\Bp ked—1/224\ B

The series converges, hence the rest goes to 0, and M(Bg) = n := {¢/24(0) for R large enough. O
The proof can be refined to optimise the values of 7, R, A, see [30, 17].

5.2.1 Further questions on stealthy point processes

Spectral considerations therefore give the main properties of stealthy random measures. If on the other
hand one focuses on the class of point processes, which is the prominent class studied in the literature,
deeper questions arise.

Experimenters in physics and image analysis have generated very large point samples that seem
to be disordered and exhibit a stealthy behaviour, i.e. a flat spectrum at the origin [44, 61, 72]. The
existence of such models has not been established mathematically, except some toy models such as
unions of shifted lattices, see Example 3.1. These examples are actually non hardcore, i.e. there are
arbitrarily close pairs of particles, contrary to simulated samples.
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Question 5.2. Are there disordered stealthy hyperuniform processes in dimension d > 27.

Regarding the level of disorder, mixing might already be good, even if of course Brillinger mixing
would be ideal (see Section 2.5). Here again, this question is trivial if one considers random measures
in general. A Gaussian field which spectral measure is a non-negative Schwarz function supported by,
say, B2\Bi, is stealthy and as mixing as possible (it is actually 1-dependent). In passing, an interesting
phenomenon can occur for such continuous m-dependent models despite their mixing properties: they
can exhibit maximal rigidity on a ball, see [51], with a phase transition according to the ball radius.
The question is much more intricate for point processes, and largely open on the mathematical side.

Another question concerns the transport properties of stealthy processes. Using Section 4.2, it
might be possile to show that for each p > 1, stealthy point processes are LP perturbed lattices, i.e.
of the form ZY where U = {Uy; k € Z%} is stationary and E|Up|? < oo.

Question 5.3. Can a stealthy point process always be represented as a L™-perturbed lattice, i.e. with
the Uy a.s. bounded by some finite A > 07

This would corroborate the upper and lower density bounds of Proposition 5.4, and it is not
contradicted by Example 3.1 with a finite number of a;, which is actually the more complex examples
we have of a stealthy point process to date.

A final question is about the class of sets where stealthy processes are maximally rigid. We saw
that they are maximally rigid on closed strictly convex cones, but they might be interpolable on larger
classes, such as complements of convex cones, called major cones, like for quasicrystals (see below).
For instance, stealthy processes from Example 3.1 are maximally rigid on the complement of an infinite
large strip, i.e. on (R\[—A4, A]) x R4~1, for A sufficiently large.

Question 5.4. Are stealthy point processes maximally rigid on major cones? Or on larger sets?

5.3 Quasicrystals

We saw at Section 3.5 that quasicrystals provide a great deal of hyperuniform point processes, more
on the ordered side. The cut-and-project models are in general not stealthy, as their spectral measure
has a dense support. Nevertheless, as we saw before, it is often the spectral density s that bears
informations on the rigidity behaviour. In this respect, quasicrystals are extremely rigid since their
spectral density is 0. We give the following result, which is applicable to random measures with zero
spectral density. Note that such examples need not be hyperuniform.

Theorem 5.4 ([51]). Let M a wide sense stationary random measure. If s is purely atomic, M is
maximally rigid on the complement of any cone with non-empty interior.

Hence in our current knowledge, for quasicrystals, the maximal rigidity situation is even more
extreme than for stealthy processes: it is enough to know the process on an arbitrarily small convex
cone with non-empty interior to uniquely determine its values on the whole space.



Chapter 6

Quantitative aspects and the
structure-factor package

In the forthcoming long version of this survey, we shall explore quantitative aspects of hyperunifor-
mity, such as the problem of estimating the structure factor and detecting mere hyperuniformity, or
simulating large samples. See the online slides for a preview https://helios2.mi.parisdescartes.
fr/"rlachiez/recherche/talks/slides-hu.pdf.

We shall also give a longer introduction to the package structure-factor, that aims at generating
large samples and estimate the covariance and spectral measures, with a focus on hyperuniformity
detection. See the illustrating paper [33] and the documentation at https://pypi.org/project/
structure-factor/.

We will describe the existing methods used to generate hyperuniform samples, either exact or non-
exact. There does not seem to exist a procedure to obtain large disordered samples in time nln(n),
which raises a final question.

Question 6.1. Find a stationary disordered hyperuniform point process P such that P n C,, can be
generated in time nln(n), or more generally a procedure to generate samples P, with complexity
nln(n) such that the P,,n > 1 are asymptotically hyperuniform (as in Theorem 3.2).
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