
On the Evolution of Services
Vasilios Andrikopoulos, Salima Benbernou, and Michael P. Papazoglou, Senior Member, IEEE

Abstract—In an environment of constant change and variation driven by competition and innovation, a software service can rarely

remain stable. Being able to manage and control the evolution of services is therefore an important goal for the Service-Oriented

paradigm. This work extends existing and widely adopted theories from software engineering, programming languages, service-

oriented computing, and other related fields to provide the fundamental ingredients required to guarantee that spurious results and

inconsistencies that may occur due to uncontrolled service changes are avoided. The paper provides a unifying theoretical framework

for controlling the evolution of services that deals with structural, behavioral, and QoS level-induced service changes in a type-safe

manner, ensuring correct versioning transitions so that previous clients can use a versioned service in a consistent manner.

Index Terms—Services engineering, service evolution, versioning, service compatibility.

Ç

1 INTRODUCTION

SERVICES are subject to constant change and variation.
Service changes originate from the introduction of new

functionality to a service, the modification of already existing
functionality to improve performance or the inclusion of new
policy constraints that require that the behavior of services be
altered. Such changes lead to a continuous service redesign
and improvement effort. However, they should not be
disruptive by requiring radical modifications in the very
fabric of existing services and applications.

Changes can happen at any stage in the service life cycle
and have an unpredictable impact on the service stake-
holders [1]. Being therefore able to control how changes
manifest in the service life cycle is essential for both service
providers and service consumers.

Service evolution is the disciplined approach for managing
service changes and is defined as the continuous process of
development of a service through a series of consistent and
unambiguous changes [2]. Service evolution is expressed
through the creation, provisioning, and decommissioning of
different variants of the service—called versions—during its
lifetime. These versions must be aligned with each other in
such a way as to allow a service developer to track the
various modifications introduced over time and their effects
on the original service. To control service development, a
developer needs to know why a change was made, what its
implications are, and whether the resulting service version
is consistent and does not render its consumers inoperable.

Eliminating spurious results and inconsistencies that
may occur due to uncontrolled changes is thus a necessary
condition for services to evolve gracefully, ensure service
stability, and handle variability in their behavior. With the
above backdrop, we can classify service changes on the
basis of their causal effects as

1. Shallow changes. Small-scale, incremental changes
that are localized to a service and/or are restricted
to the consumers of that service.

2. Deep changes. Large-scale, transformational changes
cascading beyond the consumers of a service
possibly to consumers of an entire end-to-end
service chain.

Deep changes require an approach dealing with shallow
changes, which form their foundation, as well as with
intricacies of their own. For this purpose, deep changes rely
on the assistance of a change-oriented service life-cycle
methodology to respond appropriately to changes [2]. They
are predominantly concerned with analyzing the effects and
dealing with the ramifications of operational efficiency
changes and changing compliance requirements which rely
on service composition reengineering exercises. Deep
changes therefore constitute a challenging and open
research problem in the context of service engineering. In
this work, we focus on developing a sound theoretical
framework and approach for dealing with shallow changes
as a precursor to dealing with deep changes.

Ensuring that a change is shallow requires service
developers to reason about the effect of change both on
service providers as well as service consumers. The number,
type, and specific needs of the consumers are often unknown
and their dependencies on the service are transparent to the
developer. This reasoning can only be performed on the
basis of formal principles and theories that control shallow
changes. Such an approach for controlling shallow changes
is currently unavailable and this work aims to address this
need. Without a comprehensive formal framework for
controlling and delimiting service evolution, service ver-
sioning cannot succeed. The goal of this research is therefore
to provide a theoretical framework to assist service developers in
their effort to develop evolving services while constraining the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012 609

. V. Andrikopoulos is with IAAS, University of Stuttgart, Universitaets-
strasse 38, D-70569 Stuttgart, Germany.
E-mail: vasilios.andrikopoulos@iaas.uni-stuttgart.de.

. S. Benbernou is with the Laboratoire d’Informatique Paris Descartes
(LIPADE), Université Paris Descartes, Room 814 K, 45 rue des Saints
Pères, Cedex 06, Paris 75270, France.
E-mail: salima.benbernou@parisdescartes.fr.

. M.P. Papazoglou is with the European Research Institute in Service
Science (ERISS), Tilburg University, Information Management Depart-
ment, Warandelaan 2, 5000 LE Tilburg, The Netherlands.
E-mail: M.P.Papazoglou@uvt.nl.

Manuscript received 17 Nov. 2009; revised 26 Apr. 2010; accepted 26 Feb.
2011; published online 1 Mar. 2011.
Recommended for acceptance by B. Nuseibeh.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2009-11-0359.
Digital Object Identifier no. 10.1109/TSE.2011.22.

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

effects of changes so that they do not spread beyond an evolving
service. In this way, service changes are kept localized so that
they neither lead to inconsistent results, nor do they disrupt
service clients. In particular, we shall constrain our work to
addressing the effects of shallow changes on service inter-
face specifications.

Services typically evolve by accommodating a multitude
of changes along the following, not mutually exclusive
dimensions:

1. Structural changes focus on changes that occur on the
service data types, messages, and operations, collec-
tively known as service signatures.

2. Behavioral changes affect the business protocol of a
service. Business protocols specify the external
messaging and perceived behavior of services (viz.
the rules that govern the service interaction between
service providers and consumers) and, in particular,
the conversations that the services can participate in.

3. Policy-induced changes describe changes in policy
assertions and constraints on the invocation of the
service. For instance, they express changes to the
Quality of Service (QoS) characteristics and compli-
ance requirements of a service.

Structural, behavioral, and QoS-related policy-induced
changes refer to the externally observable aspects of a
service (in terms of its signatures, protocols, etc.). These
types of changes have a direct and profound impact on the
service interfaces and as such they will be discussed
extensively in the following sections. Changes due to
legislative, regulatory, or operational requirements on the
other hand are typically deep changes [2], and therefore
outside the scope of this work.

The contribution of this paper is twofold:

. a language-independent, theoretically-backed ap-
proach which brings together structural, behavioral,
and QoS-related service changes, and

. a rigorous formal framework, type-safety criteria
and algorithms which control and delimit the
evolution of services. The goal of this framework is
to assist service developers in controlling and
managing service changes in a uniform and con-
sistent manner.

For this purpose, we develop a set of theories and models
that unify different aspects of services (description, version-
ing, and compatibility). In particular, we provide a
consistency theory for guaranteeing type-safety and correct
versioning transitions so that previous clients can use a
versioned service in a consistent manner.

The theoretical framework presented in this paper is at
the cross section of programming language theories,
service-oriented computing, and software engineering. It
provides an innovative approach that challenges and
redefines the state of the art in service evolution. At the
same time, it calls into question the existing standards and
support technologies as regards the facilities they provide
for service change.

The rest of this paper is organized as follows: Section 2
discusses the background of our work by presenting a
classification of existing service versioning approaches and
their techniques for compatible service evolution. Section 3

presents a running example based on an industrial case
study used throughout the rest of the paper. Section 4
formally defines the compatibility of services and presents
our theoretical framework for the compatible evolution of
services. Section 5 demonstrates the application of the
framework to the empirical guidelines supporting the
existing approaches and to the evolution scenarios of
Section 3. In Section 6, we summarize our implementation
effort. A qualitative evaluation and empirical validation of
the framework is performed in Section 7. Finally, Sections 8
and 9 discuss related work, and conclusions and future
work, respectively.

2 BACKGROUND

By its definition, service evolution has two important facets:
recording the continuous process of service development
and controlling the consistency and unambiguity of its
different versions. The following sections examine these
two facets.

2.1 Service Versioning

Versioning as a concept has its roots in the Software
Configuration Management (SCM) field that, together with
type theory, has contributed in major ways to software
maintenance and evolution [3]. From the aspects developed
under SCM, of particular interest for service evolution is
development support in terms of versioning as summarized
in [4]. More specifically, versioning refers to the keeping of
a historical record of software artifacts as they undergo
change. The reliance of Service-Oriented Architecture
(SOA) on the publishing of service interface descriptions
(e.g., in WSDL 2.01) and interaction protocols (in Abstract
BPEL2), together with the predominant use of XML as the
description language, adds an additional dimension to the
versioning of services.

Versioning support during service development has two
dimensions:

. Interface versioning. Versioning support for the service
description, i.e., the artifacts that describe the inter-
action of the service with its environment (e.g.,
definitions of data types in XML Schema and WSDL
and Abstract BPEL documents).

. Implementation versioning. Versioning support for the
code, resources, configuration files, and documenta-
tion of a service.

Implementation versioning is by definition an SCM issue
and as such the techniques from this domain can be applied
to it (as discussed in [4]). Traditional SCM systems, such as
the popular revision control systems CVS3 and Subversion,4

or their modern distributed counterparts like GIT5 and
Bazaar6 (among others) can be used for this purpose.
Service implementation is outside the scope of this work
and as such it is not considered in the rest of this paper. In

610 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

1. Web Services Description Language (WSDL) Version 2.0 http://
www.w3.org/TR/wsdl20.

2. Web Services Business Process Execution Language (BPEL) http://
docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

3. http://www.nongnu.org/cvs/.
4. http://subversion.apache.org/.
5. http://git-scm.com/.
6. http://bazaar-vcs.org/.

the following, we summarize the proposals of existing
service interface versioning approaches.

2.1.1 Service Version Naming

Versioning approaches typically distinguish between (con-
sumer) breaking and nonbreaking changes (cf., [5] and [6]).
The former constitutes major releases and the latter minor
ones. Naming a version usually follows theMajor#.Minor#
scheme where the sequential major release version number
precedes the minor one; version “1.3,” for example, denotes
the third minor revision of the first major release (with “1.0”
signifying the first version of that release). An alternative
naming scheme incorporates a release date stamp instead of
the sequence identifier [7].

Such naming schemes do not provide information about
the position of the versions in the version graph which
represents the relationships between versions [8]. In the
VRESCo approach [9], the version graph is explicitly stored
in the service registry, while in the WSDL and Universal
Description Discovery and Integration (UDDI) extension
approach of [10], the versioning graph can be reconstructed
using the custom metadata of the annotated service
description files.

2.1.2 Service Versioning Methods

Versioning in Web services is supported through the
mechanisms offered by XML and XML Schema. More
specifically, we can distinguish between the following
service versioning methods:

1. New XML namespaces for each (major) version.
2. Version Identifiers (VIDs) unambiguously naming

a version.
3. A combination of the above.

Approaches like [5], [10] that follow the new XML
namespace technique purposely break the consumers of the
service by assigning a different namespace to either the
service itself or to its data types. The new namespace results
in disrupting the binding of the service on the consumer
side. New namespaces are therefore meant to be used only
if a major version of a service is deployed. On the other
hand, VIDs are used either as attributes (either in the root
element of the document or in each element separately) [7],
[6] or as part of the (endpoint) URL [11], [12]. This,
however, requires the consumers to be somehow able to
process the versioning information and understand the
implications of the naming scheme for their application.
Both types of approaches rely on the Major#.Minor#

naming scheme either directly as a VID or by incorporating
it into the namespace itself. They are not mutually exclusive
and they can be used in conjunction for versioning control.

Some of the approaches to service interface versioning
use a service registry mechanism like the Universal
Description Discovery and Integration standard [13] or a
custom registry [9] for storing and controlling the version-
ing information—either as an alternative or complementary
to the XML-based techniques discussed above. For this
purpose, they propose the addition of versioning metadata
in the service description model that the registry is using.

2.1.3 Service Versioning Strategies

The versioning strategy varies depending on the goal of
each approach with respect to the breaking or not of

consumers. A number of approaches do not consider
whether changes to a service version break the consumers
of the service, e.g., [7] and [10]. As such, they leave to the
developers the prerogative and responsibility of checking
whether changes break the service consumers, but they also
maintain a high degree of flexibility in the cases they can
handle. In principle, these approaches allow for multiple
versions of a single service to be accessible at a time.

The majority of existing approaches (e.g., [5], [12], [13])
propose a common compatibility-oriented strategy for
versioning: maintain multiple active service versions for
major releases, but cut maintenance costs by grouping all
minor releases under the latest one. Nevertheless, the cost
of maintenance varies in proportion to the number of
active versions at a time. The creation of a major version
therefore, apart from possibly breaking existing consu-
mers, also increases the effort required for managing the
service portfolio.

For this reason, approaches like [6] and [9] take special
interest in discussing different decommissioning strategies for
not current versions of the service. Despite differences in
the details, the goal in each case is to decrease the number
of active versions to the absolute minimum required to
serve the service consumers. Usually, a grace period is
given before decommissioning a service version and,
depending on the change identification model used (see
below), either the clients are notified in advance or they
have to “discover” for themselves this information.

2.1.4 Change Identification Model

In a similar fashion to versioning strategies, the model of
how service changes are perceived and identified by the
service consumers varies according to the goals of the
approach. This model can be classified in one (or more in
the case of [14] and [12]) of the following categories: client,
notification, and transparent.

In the client model [5], [6], [10], both nonbreaking and
breaking changes result in a new version, and the identifica-
tion of existence of this version is left to the consumer. The
consumer is then required to adapt to the new version if
necessary. In the notification model [13], the consumer is
explicitly notified for the existence of a new version and
asked to take action, usually within a given time period. This
typically requires service consumers to subscribe to some
sort of notification service. Finally, approaches that enforce
nonbreaking changes do not have to inform their consumers
of changes since in theory the changes are transparent to
them. In reality, however, some of these approaches allow
their clients to identify a new version using one or a
variation of the methods above [15], [9].

2.1.5 Discussion

The investigation into existing service versioning approaches
shows that the ease of use of VIDs in XML, in conjunction
with the XML namespace disambiguation mechanism, is
more than sufficient for recording and communicating the
different versions of the service to its clients. In this respect, it
is not necessary to provide additional methodologies for
managing the versioning of services.

Since the goal of this work is to provide a service
development approach that does not break the existing
consumers, the emphasis is on enforcing the transparency
of evolution. Major versions should be kept to a minimum

ANDRIKOPOULOS ET AL.: ON THE EVOLUTION OF SERVICES 611

and minor versions should be bundled together under one
major version in order to minimize the cost of maintenance
and achieve a reasonable tradeoff between flexibility and
constrained evolution. For this purpose, we provide a
theoretical framework that allows for sound service evolu-
tion. The following sections assume that a robust versioning
mechanism is already in place on the basis of which we
explain how to analyze and evaluate the changes that lead
to different versions of a service description.

2.2 Compatibility of Service Versions

Compatibility is a concept closely related to versioning. It
is usually decomposed into backward and forward cases.
A definition of forward and backward compatibility with
respect to languages and message exchanges between
producers and consumers is given in [16]. Forward
compatibility means a new version of a message producer
can be deployed without the need for updating the
message consumer(s). Backward compatibility means a new
version of a message consumer can be deployed without
the need for updating the message producer. Full
compatibility is the combination of both forward and
backward compatibility.

The roles of message producers and consumers can be
assigned in different ways for service providers and clients
depending on the message exchange pattern they use (in
WSDL 2.0 terms) and which defines the sequence and
cardinality of abstract messages listed in an operation.

2.2.1 Forward Compatibility

Some of the approaches discussed in the previous section
(in particular, [6], [15], and [14]) enforce forward compat-
ibility through the use of extensibility. Extensibility is the
property of a language to allow information that is not
defined in the current version of the language; extensibility
provides mappings from documents in any extended set to
documents already defined [16]. Extensibility, therefore, is a
relevant notion to both versioning and compatibility:
whereas versions can be either compatible or incompatible
(centralized) changes to the service, extensions are by
definition compatible (decentralized) additions to an exist-
ing service. The underlying assumption in all cases is that
the additional data can be safely ignored during the
processing of a message, without any effect on the
semantics of the message7 [16].

2.2.2 Backward Compatibility

Backward compatibility is in practice a mechanism for
distinguishing between major and minor releases—as long
as the changes applied to a service lead to backward
compatible versions of the service, they can be considered
minor releases; otherwise, they are major. The usual
approach for defining what constitutes a backward compa-
tible change to a service has been to enumerate the possible
compatible changes. This results to a list of permissible and
prohibited changes usually, but not exclusively, to the
WSDL document describing the service. This list reflects a
combination of common sense, technological limitations,
and empirical findings that results into a set of best
practices—guidelines to be followed and not necessarily

undisputed rules. These guidelines are presented in Table 1
and aggregate the guidelines from [5], [11], and [14].

All the changes are expressed in terms of changes to
WSDL and XML Schema elements. In summary, the
backward compatible changes are only additions of op-
tional elements (either input data types or operations) or the
modification of service implementation (as long as it does
not affect the WSDL document). The removal or any kind of
modification to an operation element is strictly prohibited,
as is the modification of the message data types (with the
exception of addition of optional data types).

This guideline-based approach is easily applicable and
requires minimum support infrastructure and, for this
reason, it is widely accepted. However, it exhibits certain
disadvantages, the main of which is that it depends on
service developers for deducing what is compatible and
acting accordingly. Even if these rules are codified and
embedded into a service development/versioning tool, as,
for example, in the case of [17], they will always be limited by
two factors: their dependency on technology (WSDL, in this
case) and their lack of a solid theoretical foundation. In our
approach, we extend the reasoning behind the backward
compatible guidelines and we enhance it by showing how
these rules can be generated as the result of a theoretical
framework to control and delimit service evolution.

3 RUNNING EXAMPLE

In order to demonstrate the practical applicability of our
work, we chose to use the industrial-strength Automotive
Purchase Order Processing use case. The use case was
developed in conjunction with IBM Almaden and is used as
one of the validation scenarios in the S-Cube Network of
Excellence8 [18]. The scenario is based on the cross-
industry, standardized Supply Chain Operations Reference
(SCOR) model that provides abstract guidelines for build-
ing supply chains.9 The SCOR model is comprised of four
levels of processes (scope, configurations, business activ-
ities, and implementation, respectively).

This Automotive Purchase Order Processing use case is an
example of how to realize SCOR level 3 activities using SOA-
based processes for an enterprise in the automobile industry
called Automobile Incorporation (a.k.a. AutoInc). AutoInc
consists of different business units, e.g., Sales, Logistics,
Manufacturing, etc., and collaborates with external partners

612 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

TABLE 1
Guidelines for Backward Compatible Changes

aAs long as it has no effect on the service interfaces.
bIncludes renaming, changing parameters, parameter order, and
message exchange pattern.

7. See [6] for an extensive discussion on the advantages and limitations of
this assumption.

8. http://www.s-cube-network.eu/.
9. https://www.supply-chain.org/.

like suppliers, banks, and transport carriers. The use case
describes a typical automobile ordering process, where
customers can place automated orders with AutoInc. For a
complete description of the use case, the reader is referred
to [18]. In the following, we present one of the services that
is part of the use case and discuss two possible evolution
scenarios for it.

3.1 Purchase Order Processing Service
(POSERVICE)

The Purchase Order Processing service supports the
“receive purchase order” activity of the Sales unit of
AutoInc. POSERVICE is at the core of the use case and has
a critical function. In case of failure or underperformance,
the whole chain of interlinked services in the use case will
be detrimentally affected.

Fig. 1 contains the WSDL definition of the service.
Starting from its port types, POSERVICE is communicating
with its consumers in an asynchronous manner through the
receivePO and receivePOCallBack operations. The
actual protocol for communicating with the service is
defined in BPEL. This is shown in Fig. 2, where a two-step
interaction between POSERVICE and its consumers is
explicitly defined. The consumer is supposed to invoke
the receivePO operation with the Purchase Order
document, codified by the PODocument data type, and
wait for the call back invocation receivePOCallBack

from the service side with the acknowledgment of the
order receipt. The simple message payload for the
operations of the service facilitates the demonstration of
the theoretical constructs we develop.

Finally, for the nonfunctional aspects of POSERVICE,

and given the absence of a widely acceptable standard for

the characterization of nonfunctional properties, we use

the S-Cube Quality Reference Model (QRM) [19]. In

particular, the QRM characteristics used for the definition

of the POSERVICE nonfunctional properties are

. Availability. The degree of availability of the service
to its consumers relative to a maximum availability
of 24 hours, seven days a week.

. Latency. Time passed from the arrival of the service
request until the end of its execution/service.

. Performance. The ability of a service to perform its
required functions under stated conditions for a
specified period of time. It is the overall measure of a
service to maintain its service quality.

In a hypothetical case, we assume that latency is

expected to vary between 0.15 and 0.3 seconds, availability

to vary between 80 and 95 percent and performance to be at

minimum 90 percent for the same conditions.

3.2 Evolution Scenarios

Since the goal of this work is to study the evolution of

services, it is only natural to perceive POSERVICE itself as

subject of change. In order to illustrate possible evolutionary

paths that the service can take during its lifetime, we

describe two evolution scenarios: a relatively simple service

improvement scenario and a more complicated service

redesign scenario.

3.2.1 Service Improvement Scenario

For this scenario, we assume that the service developers

attempt to improve the QoS characteristics of the service by

aiming for lower latency and focusing on less error-prone

handling of incoming requests. For this purpose, a new

version of the POSERVICE is designed, where:

. The customers, both new and returning, have to
provide the delivery information along with the
purchase order. In this way, the disruption caused
by missing information in later stages of the process
is minimized.

ANDRIKOPOULOS ET AL.: ON THE EVOLUTION OF SERVICES 613

Fig. 1. POSERVICE definition in WSDL.

Fig. 2. POSERVICE definition in BPEL.

. In order to streamline and accelerate the servicing
time of each order, the service forward the delivery
information to an intermediate service in the
Logistics unit of AutoInc, in order to verify that the
address does not contain an error and that it points
to an existing delivery address.

The new version asks customers to always include in
their requests the DeliveryInfo element, resulting in
changing its multiplicity as shown in Fig. 3. The rest of the
WSDL file remains as is. Furthermore, we assume the
changes in the scenario result in changing the nonfunctional
characteristics of the POSERVICE by introducing, for
example, lower latency ranging from 0.075 to 0.15 secs,
but worse performance of a minimum of 81 percent (due to
additional service communication overheads).

3.2.2 Service Redesign Scenario

In this scenario, we assume a potential customer of
POSERVICE requests to use a synchronous communication
pattern with the service for application safety reasons. The
service developers take the opportunity to also address some
standing issues of the service and redesign it in two ways:

. In order to accommodate both existing consumers
and the new customer, the service provides both
synchronous and asynchronous interfaces. How-
ever, instead of running two versions of the service
in parallel, both types of interaction with the service
are grouped into one communication protocol. The
new protocol allows consumers to decide which
type of communication to use at its entry point. This
allows for the synchronous interface to use the same
message types as the asynchronous one since they
carry the same payload.

. The time stamp on incoming messages is not
necessary since it can be calculated by mining the
service logs. However, all outgoing messages must
carry time stamps for auditing purposes. The time
stamp information is therefore removed from incom-
ing messages and moved to outgoing messages.

These changes are bundled in one service redesign task
with the goal to roll out a new version of the service as
soon as possible. In particular, a new operation and
wrapping port type for the synchronous communication
is added to the WSDL of the service as shown in Fig. 4.
receivePOSync reuses the same messages as its asyn-
chronous counterpart receivePO in Fig. 1, taking into
account the necessary modifications into the PODocument

and POAck document types.
The simple sequence/receive set of BPEL activities in

Fig. 2 is replaced by a pick activity that acts as a multiple
option receive. Depending on whether the synchronous or
asynchronous version of the operation is invoked, the

appropriate response scheme is used (i.e., with a reply
activity instead of the call back invocation for the
synchronous part). These changes are depicted in Fig. 5.

While the redesign scenario also results in changes in the

nonfunctional characteristics of POSERVICE, we will not

consider them for purposes of simplifying the presentation.

4 COMPATIBLE EVOLUTION OF SERVICES

In the previous section, we discussed how existing works

approach service evolution in terms of versioning and

compatibility. Existing approaches use an informal notion

of compatibility, relying on the empirical guidelines sum-

marized in Table 1. In the following sections, we provide a

classification of the different aspects of service compatibility

before formalizing its definition using type theory.

4.1 Aspects of Compatibility

For the purposes of this discussion, we extend the

definition for software components given in [20] and

separate compatibility into two distinct dimensions:

614 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

Fig. 3. POSERVICE WSDL—service improvement scenario (PODocu-
ment only).

Fig. 4. POSERVICE WSDL—service redesign scenario.

Fig. 5. POSERVICE BPEL—service redesign scenario.

horizontal compatibility (or service interoperability) and
vertical compatibility (or substitutability/replaceability).
More specifically:

Definition 1. Horizontal compatibility or interoperability of
two services expresses the fact that the services can participate
successfully in an interaction as service provider and service
consumer.

Horizontal compatibility is therefore a codependence
relation between two interacting parties (services in the
general case). The underlying assumption is that there is at
least one context under which the two services can fulfill
their roles. Context in this case is a configuration of the
environment in terms of the execution state of both service
producer and service consumer, along with the status of
their resources, and for a particular message exchange
history. This assumption is also implicit in the definition of
the vertical dimension, and permeates all the definitions
formal and informal that follow.

Definition 2. Vertical compatibility or substitutability (from
the provider’s perspective) or replaceability (from the con-
sumer’s perspective) of service versions expresses the require-
ments that allow the replacement of one version by another in a
given context.

The combination of the two compatibility dimensions
leads to the notion of T-shaped changes as depicted in Fig. 6.
In the example of Fig. 6, overlapping hexagons denote
compatible service versions. Service S1 is horizontally
compatible with S2, meaning that S1 interoperates with
S2—either as a consumer or a provider or both. Similarly,
S2 is horizontally compatible with service S3. There exist
two more versions of service S2 denoted by S02 and S002 that
are vertically compatible with each other (and horizontally
compatible with S03) but incompatible with S2 as denoted by
the gap between S2 and S02;S002 . This signifies the existence
of a major release of S2 (namely, S02), which broke the
interoperability of S2 with S1 and S3; S02 was then replaced
by a minor release (i.e., S002).

The two dimensions are therefore interrelated: substitut-
ability and replaceability can be perceived as the property of
preservation of interoperability for internalized changes to one or
both of the interacting parties (producers or consumers). This
enables referring simply to compatibility and denoting both
aspects. If compatibility is achieved under all possible

contexts, either on the vertical or the horizontal dimension,
or both, then it is called strict substitutability/replaceability
and interoperability or strict compatibility, respectively.

4.2 Formal Definition of Service Compatibility

For the formalization of the compatibility between any two
services, we assume that each service (version) is denoted
by a description schema S comprised of records s. Records
represent the structural dependencies inside the service
description using elements and their relationships as in [21],
behavioral constraints in the form of behavioral contracts [22],
and/or non-functional characteristics expressed as QoS
properties [23] or dimensions [24].

Based on this assumption, we can take advantage of the
existence of a subtyping relation that allows us to (partially)
order different records based on their characteristics for
defining compatibility. Subtyping allows us to check
whether two records participate in a specialization/general-
ization relation and whether (under certain conditions that
will be discussed later in this section) one record can replace
another. We will be using the notation s � s0 to denote that
record s is a subtype of record s0, irrespective of whether s is a
structural, behavioral, or nonfunctional record.

To formally define the compatibility of two service
versions, we first define a distribution of the set S into two
proper subsets Spro and Sreq, representing the set of records
for which the service acts as a producer and a consumer (of
messages), respectively [25]:

Definition 3. Spro is the set of output-type records of a service
description and Sreq is the set of input-type records.

Compatibility between service versions S and S0 can be
defined based on this distribution as follows:

Definition 4 (Service Compatibility). We define three cases of
compatibility:

. Forward. S <f S0 , 8s 2 Spro; 9s0 2 S0pro; s0 � s
(covariance of output).

. Backward . S <b S0 , 8s0 2 S0req; 9s 2 Sreq; s � s0
(contravariance of input).

. Full. S <c S0 , S <f S0 ^ S <b S0.
These definitions are in line with both traditional type

theory and with the language-producing set-based theory
proposed in [16]. Given the fact that the subset Spro
represents the language produced by the service, then this
definition of forward compatibility is equivalent to the
informal definition given in the Background section.
Furthermore, armed with this definition, we can reason
directly on new versions S0;S00;S000; . . . of the service,
comparing them on a record to record basis for checking
their compatibility. The following sections build the
necessary components for such a reasoning. We start with
an abstract model for describing services, on which we
define the subtyping relation between service records. From
there, we proceed by presenting an algorithm for checking
the compatibility of services.

4.3 Service Description

In order to describe a service in our framework, we use the
notion of Abstract Service Descriptions (ASDs) we introduced
in [21] and which we refine here. An ASD represents a

ANDRIKOPOULOS ET AL.: ON THE EVOLUTION OF SERVICES 615

Fig. 6. Horizontal and vertical compatibility.

particular version of a service and can be defined as the set
of all its versioned records S :¼ fsjig, i ¼ 1; . . . ; N , j 2 V,
where V is the set containing the version identifiers vid for
all records s. S therefore contains one particular version for
each of its constituent records.

Each ASD respects a particular metamodel (Fig. 7). This
metamodel divides constructs in three layers: a structural, a
behavioral, and a nonfunctional layer. The essential char-
acteristics of this metamodel can be found in metamodels
for services description languages such as WSDL and BPEL
[26] and in initiatives as the OASIS SOA Reference
Architecture.10 The ASD Metamodel aggregates informa-
tion from these models and acts as a foundation from which
all possible service descriptions can be generated or,
alternatively, can be validated against, as discussed in [21].

4.3.1 Structural Layer

The structural layer of the ASD, as shown in the lower part
of Fig. 7, contains an Operation and a Message concept
corresponding to the WSDL operation and message
constructs, respectively. Information Type is a wrapper
for XML Schema complex types or elements that are used as
parts of the message exchange. A (structural) ASD consists
of elements—informational constructs representing the
building blocks of the service—and their relationships—
expressing the structural dependencies of elements.

Elements and their relationships are formally defined as

Definition 5. An element e is a tuple e :¼ ðname : string;
ðatti;i�1 : attributeÞ�; ðprj;j�1 : propertyÞ�Þ. A relationship
rðes; etÞ between elements es (the source element) and et
(the target element) is a tuple rðes; etÞ :¼ ðnames : string;
namet : string; rel : relation;mul : multiplicityÞ,
where

. name; names; namet are the unique element identi-
fiers of elements e; es; et, respectively (of type string),
e.g., RequestMessage.

. ðatti; i ¼ 1; . . . ;mÞ� a set of zero or more generic types
of attributes (int, char, string, etc.). Each attribute is

assigned a value during the generation of an ASD from
the metamodel. An example of an attribute is
Currency : String, denoting the currency to be used
in the scope of a specific message.

. ðprj; j ¼ 1; . . . ; nÞ� a set of zero or more property
values, that is, attributes with predefined value ranges
and characteristics. Properties contain information
about the elements generated by the concept and
belong to a property domain. The messagePat-

tern to be used for an operation is an example of a
property domain, containing properties like One-

way, Request-Response, etc. The property
domains for each element are depicted as enumera-
tions in Fig. 7.

. rel is the type of relation between the elements
(a; c; s—aggregation, composition, or association with
the semantics defined in [21]).

. mul is the multiplicity of the relationship, defined as
mul :¼ ½mincrd;maxcrd� where mincrd;maxcrd 2 IN
(the set of natural numbers) is the minimum and
maximum, respectively, multiplicities allowed for each
member of the relationship, as denoted in Fig. 7.

For example, let’s assume the WSDL definition of the
POSERVICE as shown in Fig. 1. For the purchase order
document and its wrapping message, we have elements
PODocument and POMessage, generated by the ASD
Metamodel concepts Information Type and Message,
respectively

epod ¼ðname ¼ PODocument; valueType ¼ document;
valueRange ¼ N=AÞ;

i.e., there are no attributes, valueType is “document” and
valueRange is undefined, and

em ¼ ðname ¼ POMessage; role ¼ inputÞ;

(as before). We can equivalently write these elements in
shorthand notation as: epod ¼ ðPODocument; documentÞ and
em ¼ ðPOMessage; inputÞ, respectively.

From the message schema of POSERVICE, the PODocu-
ment must contain exactly one order description item
OrderInfo and one TimeStamp item, but it may contain one
delivery description item Delivery Info. The respective
elements ASD elements are eoi ¼ ðOrderInfo; stringÞ, ets ¼
ðTimeStamp; dateTimeÞ, and edi ¼ ðDeliveryInfo; stringÞ,
and the multiplicities of the relationships between em and
eoi, ets, edi elements must be ½1; 1�, ½1; 1�, and ½0; 1�,
respectively. The relationships of the epod element are
therefore written in this notation as

rðepod; eoiÞ ¼ðnames ¼ PODocument; namet ¼ OrderInfo;
rel ¼ a;mul ¼ ½1; 1�Þ;

or, in shorthand,

rðepod; eoiÞ ¼ ðPODocument;OrderInfo; a; ½1; 1�Þ;
rðepod; ediÞ ¼ ðPODocument;DeliveryInfo; a; ½0; 1�Þ;
rðepod; etsÞ ¼ ðPODocument; T imeStamp; a; ½1; 1�Þ:

Elements em; epod; eoi; edi; ets and their relationships con-
stitute the ASD representation of the POMessage data type
in Fig. 1. Different versions of elements and relationships

616 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

Fig. 7. The ASD metamodel.

10. http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.html.

can be represented by referring to the set V of all VIDs:
ei; rj; i; j 2 V denote versions i and j of element e and
relationship r, respectively. In the following, we will simply
write e0 or r0 as shorthand for eiþk; k � 1 and rjþm;m � 1.

4.3.2 Behavioral Layer

The behavioral layer contains the records describing the
perceived behavior of the service in terms of exchanges of
messages grouped under service operations and the condi-
tions under which message exchanges may occur.

A number of different techniques have been proposed
for describing and reasoning on the exchange of messages,
such as business protocols based on finite state machines
[27], [28] or deterministic finite automata [29], formal
languages like TLAþ [30], communication action schemas
[31], workflows [32], automata [33], timed protocols [34],
and Calculus of Communicating Systems (CCS)-like con-
structs [22]. A notation for the behavioral description of
services (called (behavioral) contracts) has been proposed in
[22], which is conceptually very similar to our approach. For
this reason, we rely on that work for the definition of
behavioral description and show how the necessary
constructs for applying it are incorporated into our model.

Behavioral contracts � under [22] use three operators:
continues with “.”, external choice “þ”, and internal choice “�”.
The behavioral contract �1 ¼ a1:a2 means that a1 is followed
by action a2. �2 ¼ a1 þ a2 signifies that the external party
(the service client) chooses which action to perform (a1 or a2

but not both), whereas for �3 ¼ a1 � a2, it is the service that
decides which action is to be performed. Furthermore,
actions are distinguished as input (to the service), denoted
by a simple action a, and output type (from the service to
the client) actions, denoted by barred actions a. If not
specified explicitly, it is assumed that an action can be either
input or output type.

The ASD Metamodel in Fig. 7 contains the concepts
Protocol (for behavioral contracts �) and Activity (for
actions ai), and the stereotyped relation sTypewith possible
names follows, eChoice, and iChoice corresponding to
the operators ., +, and �, respectively. Activity defines a
specific type of action to be performed on the basis of an
operation (in the same manner as BPEL simple activities). The
protocol described in Fig. 2 maps to the behavioral contract
expression �ðesequenceÞ ¼ aReceivePO:aSubmitPOAck, which in turn
corresponds to the ASD elements and relationships:

esequence ¼ ðsequenceÞ;
eReceivePO ¼ ðReceivePO; receiveÞ;
eSubmitPOAck ¼ ðSubmitPOAck; invokeÞ;
rðesequence; eReceivePOÞ
¼ ðsequence;ReceivePO; follows; ½1; 1�Þ;

rðesequence; eSubmitPOAckÞ
¼ ðsequence; SubmitPOAck; follows; ½1; 1�Þ:

The expression above is the equivalent of Fig. 2 in ASD
notation. In a similar fashion, we can always map11 a protocol
eprt and its relationships to other protocols rðeprt; eprtiÞ or
activities rðeprt; eactiÞ to the respective behavioral contract �ðeprtÞ.

Dealing with operational pre and postconditions to represent
the conditions under which message exchanges can occur is
more straightforward: we update the classic extension of
behavioral specification by Liskov and Wing [36] and Meyer
[37] that describe the behavior of an object in terms of pre-
and postconditions. The conditions are expressed as rela-
tively simple logical expressions like pre:elems 6¼ fg denot-
ing a nonempty list of input elements. For the purposes of
this discussion, we will assume that these conditions are
codified as groups of expressions that must be in a specific
(Boolean) status. The ASD Metamodel contains for this
purpose the following concepts: Constraint elements to
allow the definition of specific conditions to be satisfied, and
Operation Conditions to group them and define
whether they are to be used as pre or postconditions for
protocols or operations. Operation Conditions and
Constraint elements and their relationships are covered
by the discussion on the structural layer since they use only
basic relationships (association and composition).

4.3.3 Nonfunctional Layer

The nonfunctional layer consists of QoS and policy
constraints in the forms of assertions that are associated
with evolving services. In a similar manner to the
behavioral layer, we overload the semantics of the layer
elements and their relationships. Since our approach
depends on the ordering of the service description records,
the remainder of this section will focus on ordinal QoS
dimensions [24], i.e., QoS dimensions whose values can be
ordered according to some predefined criteria.

More specifically, we adopt a simplified version of WS-
Policy12 for the description of QoS-related expressions.
The concepts for these records and their property
domains are depicted on the upper layer of Fig. 7. We
assume that Assertions, containing statements about the
acceptable and expected value ranges of ordinal QoS
dimensions are organized by conjunctions or disjunctions
into AssertionSets, grouped in turn as Profiles.

Using the ASD notation, an element of Assertion type
easrt is a tuple easrt :¼ ðname : string; dim : string; dimType :
dimensiontype; valueÞ. For the values of the nonfunctional
profile of the POSERVICE, for example, we have

eassert1 ¼ ðassert1; availability;monotonic; ½80; 95�Þ;
eassert2 ¼ ðassert2; latency; antitonic; ½:15; :3�Þ;
eassert3 ¼ ðassert3; performance;monotonic; ½90; 100�Þ:

Each dimension dim belongs to the DimensionType

property domain denoting its behavior with respect to the
ordering of its values. Monotonic dimensions order their
values with increasing order; Antitonic order them in
decreasing order. Availability values (a monotonic dimen-
sion) can be considered more general if they are higher,
whereas response time values (an antitonic dimension) are
more general if they are closer to 0. Elements of Profile
and AssertionSet type act as anchors for the relation-
ships between the assertions. Expressing the grouping of
assertions under an assertion set (e.g., aset1 ¼ assert1 ^
assert2 ^ assert3 in the example) is denoted in a similar
manner to the behavioral layer as

ANDRIKOPOULOS ET AL.: ON THE EVOLUTION OF SERVICES 617

11. For a more detailed discussion on the mapping between BPEL,
behavioral contracts and the behavioral layer the reader is referred to [22]
and to [35].

12. Web Services Policy Version 1.2 http://www.w3.org/Submission/
WS-Policy/.

rðeaset1 ; eassert1Þ ¼ ðaset1; assert1; AND; ½1; 1�Þ;
rðeaset1 ; eassert2Þ ¼ ðaset1; assert2; AND; ½1; 1�Þ;
rðeaset1 ; eassert3Þ ¼ ðaset1; assert3; AND; ½1; 1�Þ:

POSERVICE offers only one profile to its consumers epfl1 ,
containing exactly one assertion set easet1

epfl1 ¼ ðpfl1Þ;
rðepfl1 ; easet1Þ ¼ ðpfl1; aset1; OR; ½1; 1�Þðby conventionÞ:

Combinations of disjunctions and conjunctions and more
complex logical expressions can be denoted in the ASD
notation in a similar manner.

4.4 Subtyping of ASD Records

4.4.1 Structural Subtyping

By their definition, each element and relationship are types
themselves and we can compare two elements or relation-
ships by extending the subtyping relation as follows:

Definition 6 ((Structural) Subtyping of Elements and
Relationships).

. For e ¼ ðname; att1; . . . ; attk; pr1; . . . ; prlÞ and e0 ¼
ðname0; att01; . . . ; att0m; pr

0
1; . . . ; pr0nÞ, we define the

subtype relation between e and e0 as

e � e0 , name � name0^
k > m; atti � att0i; 1 � i � m^

l > n; prj � pr0j; 1 � j � n;

that is, they have the same name identifier, and e0 has
less attributes and properties than e, but the ones it has
are more generic (supertypes) of the respective
attributes and properties of e. By definition it holds
that ðe ¼ ;Þ � e0.

. F o r rðes; etÞ ¼ ðnames; namet; rel;mulÞ a n d
rðe0s; e0tÞ ¼ ðname0s; name0t; rel0;mul0Þ, we define the
subtype relation between r and r0 as

rðes; etÞ � rðe0s; e0tÞ , es � e0s ^ et � e0t ^ rel
¼ rel0 ^mul � mul0;

that is, the elements e0s; e
0
t participating in the (new)

relationship are supertypes of es; et (and therefore
names � name0s ^ namet � name0t) and the multi-
plicity domain of the relationship is a superset of the
respective one in the old relationship. We assume
; � rðes; etÞ, iff mul ¼ ½0; NÞ, N � 1.

With respect to the property domains of Fig. 7, it holds
that int � double � string � document for DataType and

one	 way � request	 response;
notification � solicit	 response

for MessagePattern. This allows us to modify not only
the message payload but also the interaction protocol of the
service operations under certain conditions that we discuss
in the following. Both of these options are not allowed by
the guidelines of Table 1.

Consider, for example, the new version of POSERVICE

from the Service Improvement Scenario as shown in Fig. 3,
which requires the delivery information to be obligatorily

submitted together with the purchase order (instead of
optionally as in the previous version in Fig. 1, as indicated
by the minOccurs=0 attribute). rðepod; ediÞ is therefore
replaced in the service description S0 of the service by
r0ðepod; ediÞ ¼ ðPODocument;DeliveryInfo; a; ½1; 1�Þ and it
holds that r0ðepod; ediÞ � rðepod; ediÞ since mul0 � mul, that
is, r0ðepod; ediÞ is a subtype of rðepod; ediÞ. This should be
expected since an optional data type in the message schema
is more generic than the same message schema with the
data type as mandatory.

4.4.2 Behavioral Subtyping

In [22], the authors introduce a behavioral subcontracting
relation
 between behavioral contracts. A behavioral
contract � is called a behavioral subcontract of �0, that is,
�
 �0 if it manifests less interaction capabilities than �0. In
[22], the authors present the description and proofs required
for checking whether this relation holds given � and �0.
During the presentation of the records of the behavioral
layer, we showed how to map protocol elements to their
respective behavioral contracts. Therefore, applying the
subtyping relation and checking for compatibility between
versions of elements in the behavioral layer is reduced to
mapping them to the respective contracts and applying the
subcontracting relation
 between them. This is achieved by
overloading the semantics of the subtyping relation for
Protocol elements and adding the following condition in
Definition 6:

eprt � e0prt , �ðeprtÞ
 �ðe0prtÞ:

That is, elements of the Protocol type are mapped to their
respective behavioral description and the subtyping check
is performed in that formalism.

The addition of an option of synchronous communication
mode to the input of POSERVICE initiated by the Redesign
Scenario from Section 3, for example, results in a protocol
that is a supertype of the initial protocol of the service.
We have shown above that the protocol of the initial
version of the service maps to the behavioral contract
�ðesequenceÞ ¼ aReceivePO:aSubmitPOAck. The BPEL description
of the POSERVICE in the Redesign Scenario (Fig. 5) is
mapped to the ASD records

e0pick ¼ ðpickÞ; eseq1
¼ ðseq1Þ; e0seq2

¼ ðseq2Þ;
eReceivePO ¼ ðReceivePO; receiveÞ;
eSubmitPOAck ¼ ðSubmitPOAck; invokeÞ;
rðeseq1

; eReceivePOÞ ¼ ðseq1; ReceivePO; follows; ½1; 1�Þ;
rðeseq1

; eSubmitPOAckÞ
¼ ðseq1; SubmitPOAck; follows; ½1; 1�Þ;

e0ReceivePOSync ¼ ðReceivePOSync; receiveÞ;
e0ReplyPOAck ¼ ðReplyPOAck; replyÞ;
rðe0seq2

; e0ReceivePOSyncÞ
¼ ðseq2; ReceivePOSync; follows; ½1; 1�Þ;

rðe0seq2
; e0ReplyPOAckÞ

¼ ðseq2; ReplyPOAck; follows; ½1; 1�Þ;
rðe0pick; eseq1

Þ ¼ ðpick; seq1; eChoice; ½1; 1�Þ;
rðe0pick; e0seq2

Þ ¼ ðpick; seq2; eChoice; ½1; 1�Þ:

618 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

The equivalent expression in behavioral contract nota-
tion is

�ðe0pickÞ ¼ ðaReceivePO:aSubmitPOAckÞ
þ ðaReceivePOSync:aReplyPOAckÞ;

from which it can be seen that �ðesequenceÞ
 �ðe0pickÞ since
�ðe0pickÞ contains �ðesequenceÞ and allows for further interac-
tions. Therefore, and according to the extension of Defini-
tion 6 we introduced, we can conclude that esequence � e0pick.
This means that a client that works with protocol esequence
can also work normally with protocol e0pick.

Reasoning on the Operation Conditions and Con-

straint elements and their relationships is sufficiently
covered by Definition 6. Adding new Constraints e0coni ¼
ðconi; expressioni; trueÞ and e0conj ¼ ðconj; expressionj; trueÞ
to an existing Operation Conditions element eopcon ¼
ðopcon; preÞ, for example, creates additional relationships
rðeopcon; e0coniÞ ¼ ðopcon; coni; c; ½1; 1�Þ and

rðeopcon; e0conjÞ ¼ ðopcon; conj; c; ½1; 1�Þ

for which we know that ðrðeopcon; econiÞ ¼ ;Þ 6� rðeopcon; e0coniÞ
and ðrðeopcon; econjÞ ¼ ;Þ 6� rðeopcon; e0conjÞ since eopcon 6¼ ; ^
½1; 1� 6¼ ½0; N�, N � 1.

4.4.3 Nonfunctional Subtyping

Extending the subtyping relation as defined in Definition 6
in the model of nonfunctional description we introduced
requires two things: providing operators for ordering the
value ranges for each assertion element with respect to how
general/specific they are, and handling the special seman-
tics of disjunctions and conjunctions. For the former, we
base the ordering of assertions on the nature of their
dimension and we use the relations already defined in
Allen’s Interval Algebra [38] for relatively positioning
intervals (here value ranges) on a dimension. For the latter,
we use the simple observation that an assertion set with
more conjunctions is more restrictive (i.e., more specific)
than one with less, while the reverse is true for disjunctions.

Definition 6 therefore needs to be supplemented by the
conditions

. easrt � e0asrt , name � name0 ^ dim � dim0 ^ v � v0
with

v � v0

, vf¼; <; s; fi;m; ogv0 ðmonotonic dimensionsÞ
vf¼; >; f; si;mi; oigv0 ðantitonic dimensionsÞ

�

where the relations have the following semantics:

¼ v has equal length (and overlaps totally) with v0,

s v starts together with v0 but finishes before it,

f v starts after v0 but it finishes together with it,

m v meets v0 at its finishing point (v finishes when v0

starts),

o v partially overlaps with v0—having started

before v0,
< v takes place before v0.

The inversions si; fi;mi; oi; > signify that the roles of v
and v0 are reversed (v > v0, for example, means that
v0 takes place before v, etc.).

. ; � rðes; et; OR;mulÞ and rðes; et; AND;mulÞ � ;.
The first addition expresses the ordering of values based

on their monotonic or antitonic nature. More generic means
extending the value range toward the direction that is
considered “better,” allowing even for partial or no over-
laps, provided that the range moves toward better values.
The second addition formalizes the notion that the more
options exist for a profile the more generic it is; the more
conditions to be satisfied on the other hand in each profile,
the more specific it is.

For the QoS characteristics of POSERVICE after the
Service Improvement Scenario, for example, we have in
ASD notation the records

e0assert2 ¼ ðassert2; latency; antitonic; ½:075; :15�Þ;
e0assert3 ¼ ðassert3; performance;monotonic; ½81; 100�Þ;
e0aset1 ¼ ðaset1Þ; e0pfl1 ¼ ðpfl1Þ;
rðe0aset1 ; e

0
assert2

Þ ¼ ðaset1; assert2; AND; ½1; 1�Þ;
rðe0aset1 ; e

0
assert3

Þ ¼ ðaset1; assert3; AND; ½1; 1�Þ;
rðe0pfl1 ; e

0
aset1
Þ ¼ ðpfl1; aset1; OR; ½1; 1�Þ:

By their definition, latency is an antitonic dimension
(lower values are better) and performance is monotonic (the
closer to 100 percent, the better), and we have

. assert2 ¼ assert2 ^ latency ¼ latency ^ antitonic
¼ antitonic ^ ð½:15; :3� mi ½:075; :15�Þ,

. assert3 ¼ assert3 ^ performance ¼ performance
^ monotonic ¼ monotonic ^ ð½81; 100� fi ½90; 100�Þ.

From the extension of Definition 6 for nonfunctional
elements, we have eassert2 � e0assert2 and e0assert3 � eassert3
(with eassert1 remaining unchanged). These results corre-
spond to the observation that a client that accepts latency
between 0.15 and 0.3 seconds can also accept the more
favorable latency between 0.075 and 0.15 seconds. In
contrast, a client that expects performance between 90 and
100 percent cannot accept a performace that ranges between
81 and 100 percent since this may result in performance
below the acceptable lower limit (90 percent). Changing the
performance of the service from 81-100 percent to 90-
100 percent on the other hand is acceptable (for the client).

4.5 Reasoning on Service Evolution

Having established a type theory for all the layers of an
ASD, it becomes possible to use the subtyping relation of
ASD records to check for the compatibility of service
versions. Reasoning about this decision is quite straightfor-
ward: By combining Definitions 4 and 6 (as extended
accordingly for each layer), we can check whether both
cases of compatibility are satisfied using the definition of
subtyping for ASDs. The following sections discuss how
this can be achieved.

4.5.1 T-Shaped Changes

We informally define the concept of T-shaped changes as
the set of changes that respect service compatibility. We
use three fundamental operators to describe the changes
occurring to service descriptions: add for the addition of
record, del for the removal of a record, and mod for the
modification of the record (addition/removal of attributes

ANDRIKOPOULOS ET AL.: ON THE EVOLUTION OF SERVICES 619

or properties and so on). Combinations of these funda-
mental operators can be further used to produce more
advanced operators like the renaming of a record. By
applying these operators to an ASD S and for a record s,
we get the respective change primitives: addðs;SÞ, delðs;SÞ,
and modðs;SÞ. Depending on whether s is an element or
a relationship, the change primitives are expanded
accordingly: addðe;SÞ and addðrðes; etÞ;SÞ, for example,
signify the addition of an element e or a relationship
rðes; etÞ to S, respectively.

The evolution of services rarely occurs in simple
increments and usually encompasses a number of changes
to the service description that occur simultaneously. For this
reason, we define a change set as the fundamental degree of
change to a service description:

Definition 7. A change set �S is a set of change primitives

�S :¼ foperatorðsi;SÞjoperator 2 fadd; del;modgg;

that when applied to an ASD S results in a new version of the
service S0, signified by S0 ¼ S ��S.

Versions of services can therefore be expressed in terms
of the change sets that are required for reconstructing a
version from a baseline (original) version, following the
conventions of SCM. For the purposes of this discussion, we
assume that the change sets between ASDs are recorded
during the development of the services. If not, then the
application of an algorithm like the one presented in [39]
could generate them. We can classify change sets with
respect to compatibility as

Definition 8 (T-shaped Changes). A change set �S is called
T-shaped iff, when applied to a service description S, it results
in a fully compatible service description S0 ¼ S ��S, that is,
S <c S0 (using Definition 4).

The term “T-shaped change” refers to the relation
between the two aspects of compatibility as illustrated in
Fig. 6. As long as a change set �S results in a horizontally or
vertically compatible (or both) version of a service, then it
belongs to the set TT of all possible T-shaped changes.
Constraining the evolution of services is therefore reduced to
checking �S 2 TT.

4.5.2 Checking for Compatibility

Reasoning on a change set is performed in two steps:

. Distribution of the elements of S in sets Spro and Sreq
sets using Definition 3.

. Checking whether the change set is T-shaped or not
using Definition 8.

For the creation of the Spro and Sreq sets, we initially
select all elements of input or output type in Fig. 7, starting
with elements like Messages. Then, by taking advantage of
the relationships between elements in Fig. 7, we propagate
this property to all elements connected to them, following
the direction of the arrow of the relationship. Then, we
“mark” both the relationship and the connected element
with the same type (input or output) and we continue this
process until there are no more relationships to traverse.
This way, we construct the Spro and Sreq sets, which contain

. Spro. Message elements with property value
role=output or fault and all Information

Type elements that are in an aggregation relation-
ship with them, together with the respective
relationships. Activity elements with property
act=invoke or act=reply. Operation Condi-

tions elements with property value role=post

and all Constraint elements that are in a
composition relationship with them, together with
the respective relationships.

. Sreq. Message elements with property value
role=input and all Information Type ele-
ments that are in an aggregation relationship with
them, together with the respective relationships.
Activity elements with property act=receive.
Operation Conditions elements with property
value role=pre and all Constraint elements
that are in a composition relationship with them,
together with the respective relationships.

Protocol and Profile records are distributed by
convention to the Sreq set since they refer to the input aspect
of the interaction of the consumer with the service.
Determining if a change set is T-shaped is performed by
using the Compatibility Checking Function (CCF) (Listing 1).

Listing 1. CCFðS;S0Þ
1: for all s0 2 S0req do

2: if 6 9s 2 Sreq; s � s0 then

3: return false;

4: end if

5: end for

6: for all s 2 Spro do

7: if 6 9s0 2 S0pro; s0 � s then

8: return false;

9: end if

10: end for

11: return true;

The two steps of CCF correspond to the two legs of
Definition 4: lines 1 to 5 to covariance of input and lines 6 to
10 to contravariance of output. For this purpose, we use the
definition of subtyping for records in different layers of the
ASD as discussed in the previous. If both checks pass
successfully, then the function returns true; in any other
case, it returns false. The following section provides a series
of examples of how the reasoning on T-shaped change sets
is performed in practice.

5 APPLICATION OF THE THEORETICAL FRAMEWORK

In this section, we demonstrate how our theoretical
compatible service evolution framework can be applied by
(theoretically) validating and extending the empirical
guidelines for backward compatibility (Table 1), and
revisiting the evolution scenarios defined in Section 3.

5.1 T-Shaped Change Patterns

Table 2 contains a number of patterns of change sets, some of
which correspond to the backward-compatibility preserva-
tion guidelines in Table 1. It also contains an indication of
whether each pattern of change set is T-shaped or not,

620 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

together with an explanation of the reasoning that led to this
conclusion.13 More specifically:

�SP1 (which corresponds to the guideline of adding
optional message data types) is T-shaped, irrespective of
whether the data types (represented by an it element) are
added to a message that belongs to the provided or
required set. This is because if it is the former case, then it
does not affect the second step of CCF; if it is the latter case,
then due to the fact that an optional relationship (with
minimum multiplicity 0) is a supertype of the “empty”
relationship by definition and given that the rest of S
remains unaffected, then it also passes the first step. �SP2 is
also T-shaped under all cases, following a similar reasoning.

�SP3 on the other hand is T-shaped only if the deleted
operation has exclusively input messages and under the
assumption that these messages can be ignored without affecting
either the producer or the consumer. The respective guideline
explicitly forbids this change set by being too conservative
for the sake of safety. Our approach shows that such a
modification to a service would not necessarily break
existing consumers. If the receipt of the message is part of a
larger communication protocol though, then this change set
may not be T-shaped due to the respective constraints on the
behavioral layer. Such cases should be handled with care.

�SP4 and �SP5 work in a different manner. They allow
for flexible input messages and associated data types by
allowing a more general multiplicity domain in their
relationship. This implies that the service can accept more
incoming messages or a wider message payload than
before. They also restrict the output messages accordingly.

�SP6 and �SP7 accept as T-shaped the addition of a
nonoptional data type to an output message and the

removal of a message data type from input messages. The
reasoning is the same as in the case of �SP3: as long as the
consumer or the producer, respectively, can ignore the
“additional” message payload, then the compatibility is
preserved. Further T-shaped change sets can be generated
in a similar fashion.

The set of T-shaped change sets that can be produced in
an incremental way is therefore a superset of the guidelines-
based one in Table 1. Enumerating all possible T-shaped
change sets for all layers of service description, even by
starting with a relatively simple metamodel as that of Fig. 7,
is too lengthy of a process to be presented here and defeats
the purpose of the framework. Nevertheless, if necessary or
desired, it is shown that this process is feasible.

5.2 Evolution Scenarios Revisited

The following section revisits the evolution scenarios defined
in Section 3 and discusses if the changes they are proposing
are T-shaped or not. The purpose of this discussion is to
further illustrate our proposal and demonstrate the effect of
each scenario to service developers and consumers.

5.2.1 Service Improvement Scenario

This scenario results in changes in both the structural and
nonfunctional layers of POSERVICE. More specifically and
as discussed throughout the previous sections, S0 differs
from S by

r0ðepod; ediÞ ¼ ðPODocument;DeliveryInfo; s; ½1; 1�Þ;
e0aset1 ¼ ðaset1Þ; e0pfl1 ¼ ðpfl1Þ;
rðe0aset1 ; eassert1Þ ¼ ðaset1; assert1; AND; ½1; 1�Þ;
rðe0aset1 ; e

0
assert2

Þ ¼ ðaset1; assert2; AND; ½1; 1�Þ;
rðe0aset1 ; e

0
assert3

Þ ¼ ðaset1; assert3; AND; ½1; 1�Þ;
rðe0pfl1 ; e

0
aset1
Þ ¼ ðpfl1; aset1; OR; ½1; 1�Þ:

ANDRIKOPOULOS ET AL.: ON THE EVOLUTION OF SERVICES 621

TABLE 2
Patterns of Change Sets

aReferring to Table 1; guidelines in italics are either new or not originally allowed.
bThat is, a one-way operation, for example, can be deprecated without an effect on the consumer—the service can just ignore the incoming
message.

13. In the table and the following discussion, we will write msg denoting
a Message element, and it for Information Type, and op for
Operation elements, respectively.

We have previously established that

. r0ðepod; ediÞ � rðepod; ediÞ, with rðepod; ediÞ 2 Sreq and
r0ðepod; ediÞ 2 S0req.

. epfl1 6� e0pfl1 since e0assert3 � eassert3) easet1 6� e0aset1 .

By combining the above, we find the change set �SSIS
required by the scenario not to be T-shaped: The first step of
CCF is violated since r0ðepod; ediÞ � rðepod; ediÞ and epfl1 6�
e0pfl1 . In service versioning terms, this signifies the need for
the creation of a major version of the service, requiring the
consumers of POSERVICE to adapt or migrate to the new
version.

This scenario illustrates the case for shallow changes: By
trying to minimize errors and improve the service, the
service developers unintentionally generated additional
development effort for the service consumers. While this
cost may appear small, it is impossible to predict the actual
impact of such a change for service-based applications
(SBA) consuming the service. Furthermore, it has to be
considered that the creation of the new version of
POSERVICE must be accompanied by the execution of an
appropriate decommissioning plan for the existing version
to facilitate the transition to the new version (as discussed
in Section 2). This plan comes with additional costs in
communicating the change to the consumers and running
two active versions of the service (and their supporting
implementation) in parallel for the transitional period. The
costs of implementing the Service Improvement Scenario
therefore may outweigh its benefits and in this case it has
to reconsidered.

5.2.2 Service Redesign Scenario

This scenario has two major effects on the POSERVICE: It
changes its interaction protocol by replacing the simple
sequence with a pick activity (adding a new operation to the
structural description to support the additional entry point)
and it also modifies the incoming and outgoing messages.
We previously showed during the discussion on behavioral
subtyping that esequence � e0pick and thus passes the first step
of CCF. We therefore only have to check the records of the
structural layer.

With respect to the (new) input and output messages, as
shown in Fig. 4, the new ASD S0 differs from the previous
version by

. the removal of the relationship rðepod; etsÞ ¼
ðPODocument; T imeStamp; a; ½1; 1�Þ,

. the addition of the relationship rðe0poack; etsÞ ¼
ðPOAck; TimeStamp; a; ½1; 1�Þ.

Since rðepod; etsÞ 62 S0req and the rest of Information

Type elements connected to epod remain unaffected, then all
records s0 2 S0req pass the first step of CCF. The second step
of CCF operates on all elements of Spro, for all elements of
which we can see that s0 � s (since rðe0poack; etsÞ does not
appear in Spro) and therefore this step passes too.

Furthermore, the addition of the receivePOSync opera-
tion to the WSDL of the service depicted in Fig. 4 is mapped in
ASD notation to the addition of element e0recsync to S0, together
with its (structural) relationships rðe0recsync; emsgÞ and
rðe0recsync; emsgackÞ to the existing POMessage and POMessa-

gesAck messages, respectively. In addition, the elements

e0pick; e
0
seq1

; e0seq2
; e0ReceivePOSync; e

0
ReplyPOAck and the respective

relationships have to be added, and the esequence to be
removed and replaced by epick. For these elements, it holds
e0recsync; e

0
ReceivePOSync 2 S0req and e0ReplyPOAck 2 S

0
pro. Using a

similar reasoning as above, we can see that CCF returns
successfully with true and therefore �SSRS 2 TT.

In contrast to the Improvement Scenario, the Redesign
Scenario is actually shallow. This means that the new
version of POSERVICE S0 can be implemented and
deployed by replacing the previous version without any
effect to existing consumers. Both new (using the synchronous
communication capability) and old (using the asynchro-
nous one) consumers can interact with the service using the
same service interfaces. No particular decommissioning
plan is necessary, and no additional costs (further than the
development of the new service) are required. Being able to
reason that the Redesign Scenario is T-shaped therefore
guarantees that the effort and impact of implementing the
change is minimum.

It has to be noted that using only the backward-compat-
ibility preservation guidelines, summarized in Table 1,
service developers would not be able to decide on the
compatibility of the new version produced by the scenario
since no behavioral aspects are covered by the guidelines.
Based exclusively on the structural layer, they would
conclude the new version is not compatible since no
modification of incoming and outgoing messages is allowed
(other than the addition of optional elements). In the
following sections, we will focus on this divergence by
investigating its roots and proposing specific solutions.

6 IMPLEMENTATION

In order to demonstrate the efficacy and practicality of our
approach, we performed a proof-of-concept implementa-
tion. Using this implementation, we can empirically
validate our proposal in a controlled setting through a case
study. In the following sections, we discuss the technolo-
gies, methods, and outcomes of these procedures.

For the implementation of our proposal, we used widely
supported and open source tools. The resulting Service
Representation Modeler (SRM) prototype14 provides two key
facilities required for the empirical validation of our
proposal [40]: a graphical editor for defining ASD models
of service versions, and a reasoning module that compares
two ASD models and checks them for compatibility as
discussed in the previous section. A high-level flowchart
view of the architecture of the SRM prototype is shown in
Fig. 8. More specifically, service description versions (i.e.,
WSDL, BPEL, and WS-Policy documents) are converted
into ASD models by the model transforming capability of
the graphical editor and then given as input to the
reasoning module. The reasoning module uses CCF in
order to check their compatibility and includes the results of
this check into a report. This compatibility report is then
returned to the graphical editor for visualization.

We developed the SRM prototype as a plug-in for the
Eclipse platform.15 The first step for the implementation

622 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

14. Available at http://srmod.wordpress.com/.
15. http://www.eclipse.org/.

consisted of the definition of the metamodel to be used for
the representation of the services in the prototype. For this
purpose, we used the bottom layer of the ASD Metamodel
(Fig. 7). The various elements and relationships of the
structural layer were encoded in the Emfatic language
(part of the EMF Eclipse plug-in [41]). We also annotated
the Emfatic specification of the metamodel with GMF-
specific instructions. We then used the injection facilities
of the Epsilon plug-in16 to convert the Emfatic specifica-
tion of the metamodel into an ecore-type metamodel.
Using this ecore metamodel, we automatically generated
the Java code required for the graphical editor and the
reasoning module. Fig. 9 shows an example of both
functionalities in action.

The top part of the figure shows the ASD model for one
of the versions of the POSERVICE loaded in the graphical
editor of the SRM prototype. The editor provides the tools
for creating and modifying a graphical representation of
ASD models. It achieves this by offering a Palette panel (on
the upper right part of Fig. 9), which contains widgets
corresponding to the various structural records in the ASD
Metamodel. Selecting one of these widgets and pointing in
the white canvas area adds the respective element to the
ASD model. Adding or modifying the name, properties,
relationships, and the Spro=Sreq distribution (according to
Definition 3) of the records is done through the Properties
perspective (at the bottom of Fig. 9).

The reasoning module of the SRM tool was implemented
as a fully functional Epsilon program. We started by
translating the CCF into a set of rules for records of the
structural layer as follows:

op � op0 , name ¼ name0

^messagePattern ¼ messagePattern0

msg � msg0 , name ¼ name0 ^ role ¼ role0

rðop;msgÞ � r0ðop0;msg0Þ , op � op0

^msg � msg0 ^mul � mul0

. . .

This unrolling of the rules allowed us to encode the CCF
in a straightforward manner and provide it as a module of
the SRM prototype. The module takes as input two ASD
models and compares them, checking for compatibility as
shown in Fig. 9. Currently, the results are returned in the
Epsilon console perspective inside Eclipse but we are

working on exporting them in XML format and visualizing
them using the graphical editor.

Fig. 9 shows the results of such a comparison between
two ASDs, checking for compatibility on a record-per-
record basis. If all checks are successful then the reasoner
concludes with a true; otherwise, it returns false. In the
particular case, the reasoning module returned a false since
an Information Type to Information Type relation-
ship was found to violate the CCF.

7 EVALUATION

Providing service developers with the means to control
the evolution of services belongs conceptually to design
science. As such, the evaluation of this work is performed
along the lines of requirements for effective design science
research. For this purpose, we use the guidelines
proposed in [42].

In particular, the utility, quality, and efficacy of the
proposed framework for the compatible evolution of
services were evaluated in the previous sections using
descriptive methods. Due to the nature of our approach,
which combines theoretical with empirical aspects, we
evaluated the design of our approach using the scenarios
driven from the industrial case of the POSERVICE. In the
previous sections, we demonstrated the impact of changes
with varying complexity to the consumers of POSERVICE,
describing how to avert consumer disruption through the
application of the service compatibility theory. The pro-
posed method of controlling service compatibility was
compared and contrasted with existing approaches in
Section 5. We concluded that our approach by far covers
and improves results of existing service evolution ap-
proaches and therefore our contribution is significant.

7.1 Empirical Validation

The prototype implementation of our proposal, described in
Section 6, allowed us to design and execute a case study in
order to validate our (theoretical) findings in a controlled
environment of evolving services. The validation focused
on the structural layer of services, working exclusively with
WSDL descriptions, as typically used in practical settings.

More specifically, we modeled in the SRM prototype the
structural description of all versions of the POSERVICE

discussed in Section 3 and checked them for compatibility.
The results of this procedure agree with the theoretical
results as presented in Section 5: The Service Improvement
Scenario was found not to be T-shaped, while the Redesign
Scenario was concluded to be T-shaped as far as the
structural layer is concerned—since the SRM prototype is
currently limited to checking for structural compatibility.
Ongoing work is concentrating on providing the appropriate
extensions to cover the rest of the layers of our approach.

For the empirical validation, we deployed the various
versions of the POSERVICE in the Apache Axis2 Web
services engine,17 hosted in an Apache Tomcat servlet
container.18 We used the WSDL2Java code generation tool19

ANDRIKOPOULOS ET AL.: ON THE EVOLUTION OF SERVICES 623

Fig. 8. SRM prototype architecture.

16. http://www.eclipse.org/gmt/epsilon/.

17. http://ws.apache.org/axis2/.
18. http://tomcat.apache.org/.
19. http://ws.apache.org/axis2/tools/1_4_1/CodegenToolReference.

html.

from the Axis2 toolkit to generate a skeleton of the service
from the initial version of the service, to which we added
the necessary business logic for implementing the function-
ality of the service. Developing a Service-Based Application
to act as the client of the service was also achieved by using
the same code generation tool on the initial version of
POSERVICE.

We then proceeded to use the generated SBA to invoke
the different versions of the deployed service. During
runtime, we monitored the server and mined the client logs
in order to check whether each service version is invoked
successfully, or whether the service version (or the client)
breaks. It was observed that the service and the SBA broke
in both scenarios, signifying the incompatibility between
the different versions of the service. In the case of the
Improvement Scenario, this was expected and confirms our
theoretical findings. In the case of the Redesign scenario,
however, this result diverges from the theoretical prediction
due to the inadequacy of the service implementation
technology to handle evolution in connection with XML
Schema validation.

This conclusion was derived on the basis of an exhaustive
investigation of this divergence between theory and practice.
In particular, we traced back the produced error messages in
order to locate the service container module that produced
them. Our findings confirm that the problem stems from the
processing of XML messages in both service provider and
client sides (see also [43]). This divergence manifests when
either side tries to validate the incoming and outgoing
messages against an XML Schema that is no longer
valid—but not necessarily incompatible. This means that
current XML-based implementation technologies are unable
to ignore dynamically information not contained in the
schema vocabulary. If both parties could ignore the data

types not in their message schema and validate the rest of the
message, then the empirical result would be in agreement
with the theoretical findings of this work.

A workaround for enabling these types of changes is to
intercept the messages and apply to them an appropriate
transformation using a technology like XSLT20 or Schema-
tron,21 as discussed in [43]. Nevertheless, it is our belief that
this issue is better handled on the level of service description
languages rather than building ad hoc workarounds. In the
following section, we explain how this issue can be handled
in accordance with the proposed theoretical framework.

7.2 Realization

To evaluate the ability of service description language
specifications to handle the mechanisms that support
service evolution as discussed in the previous sections, we
surveyed their latest versions. In particular, we referred to
the WSDL 2.0, BPEL 2.0, and WS-Policy 1.5 specifications.
With the exception of WSDL, all surveyed specifications do
not contain the notion of versioning. The WSDL 2.0 Primer22

briefly discusses evolutionary strategies for evolving
services, but in a nonnormative manner and by incorporat-
ing the strategies found in [16].

As such, the WSDL 2.0 Primer concentrates on the
guidelines for backward and forward compatibility as
presented in Table 1. WSDL 2.0 is therefore more restrictive
than our approach with respect to service evolution. The
authors of the Primer, however, acknowledge that changes
in the message content depend on the type system used to

624 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

Fig. 9. SRM prototype.

20. eXtensible Stylesheet Language Transformations (XSLT) Version 2.0
http://www.w3.org/TR/xslt20/.

21. http://www.schematron.com/.
22. WSDL Version 2.0 Part 0: Primer http://www.w3.org/TR/wsdl20-

primer.

describe them. The weak typing approach taken in the
processing of messages and the static binding of service and
client implementations to WSDL documents leave little
space for improvement given the limitations of existing
technologies and standards for Web services.

In order to facilitate the realization of our compatible
service evolution framework, we propose that the current
WSDL specification works in tandem with BPEL and WS-
Policy in order to integrate all aspects of service description
into a tightly connected set of documents. While both BPEL
and WS-Policy can currently refer to WSDL elements in their
documents, the integration of the three languages is quite
loose on purpose. As we have already discussed, and despite
its market dominance, WSDL is limited in the amount of
information that it can carry with respect to the needs of
consumers. Providing a tighter integration of the three
specifications into a vertically integrated document that
combines all three specifications would make the serial-
ization of the ASD model easier.

More importantly, a stronger typing system than the
current one has to be used both on the level of XML
processing and on the level of the respective standard
specifications. The model of simple XML parsing backed by
XML Schema validation, currently used in most Web
services technologies, stifles evolution and creates unneces-
sary coupling in both service provider and consumer sides.
Despite the option of XML extensibility, it is difficult to
design for compatible service evolution without the
possibility of ignoring the parts of a message that are not
understood by the message consumer.

We therefore propose that the parsing and validation
model should be replaced by an automatic marshaling of
messages (that is, their transformation into the respective
objects) and the check for compatibility on the level of records
(using the CCF presented in Section 4). Static bindings
should be replaced by dynamic bindings to interface
classes. These classes are able to accommodate the subtyp-
ing of the messages and representations through the use of
inheritance (in static languages like Java) or a combination
of inheritance and dynamic binding of types (in dynamic
languages like Ruby23).

Finally, the use of XML namespaces for version
identification should be replaced by (or be combined with)
a more robust versioning mechanism. For instance, version
attributes should be natively included in the service
description document. While very practical and easy to
implement, namespace-based techniques depend exclu-
sively on the service developer to be realized, as shown
by our case study. This dependence increases the propen-
sity for errors and miscommunication. Furthermore, using a
different namespace identifier for each modification un-
necessarily breaks the service clients and increases the
maintenance costs by introducing additional versions. As
such, they should be used with caution.

8 RELATED WORK

Evolution is particularly important in distributed systems
due to a complex web of software component interdepen-
dencies. As Bennet and Rajlich point out [3], attempting to

apply conventional maintenance procedures (halt opera-
tion, edit source, and reexecute) in large distributed systems
(like the ones emerging in SOA) is not sensible. On one
hand, the difficulty of identifying which services form the
system itself is nontrivial, especially in the context of large
service networks. On the other hand, the matter of owner-
ship and access to the actual source code of third-party
services, directly linked to the encapsulation and loose
coupledness principles promoted by service orientation,
does not allow the application of many of the maintenance
techniques like refactoring or impact analysis.

Historically and conceptually, Component-Based Sys-
tems (CBS) are the predecessor of SOA and share the
principles of encapsulation, independence, and unambig-
uous definition of interfaces. However, components and
services are quite different in terms of coupling, binding,
granularity, delivery, and communication mechanisms and
overall architecture [44]. As a result, the applicability of a
component evolution theory or technique as summarized
by Stuckenholz [45] should always be examined carefully
before being adopted.

For purposes of presentation, we distinguish between two
categories of approaches for compatible service evolution:

1. Corrective—adaptation-based approaches that ac-
tively enforce the nonbreaking of existing consumers
by modifying the service, and

2. Preventive—that attempt to delimit and forbid
changes that would break the consumers (instead
of fixing them). The compatible evolution frame-
work as discussed in the previous sections falls in
this category.

Corrective approaches involve different mechanisms for
adapting either the interface or the implementation of the
service (or both) to the interoperability requirements of
the service consumers. Adaptation has been introduced in
CBS, where adapting a component-based system means
modifying one or more of its components. In practice,
most components cannot be integrated directly into a
system-to-be because they are incompatible. Software
Adaptation aims at generating, as automatically as
possible, adapters to compensate for these incompatibil-
ities. Numerous adaptation approaches have been pro-
posed, see, for example, [46], [47]. These approaches,
however, address low-level component mismatches and
they cannot ensure the invariants of the overall system.
This is critical for service-oriented systems which are
composed—rather than implemented—and for which the
adaptation to one mismatch may outweigh its utility.

Service adaptation can be further distinguished into two
categories: interface adaptation, where the goal is to solve
mismatches in the signature and/or protocol of collaborat-
ing services by modifying the interfaces accordingly, e.g.,
[31], [48], and composition adaptation, where the subject of
change is the aggregation of services constituting the
composite service [49], [50], and [51]. In this case, either
the services participating in the composition are replaced by
other equivalent services, or the “gluing” connecting them
is modified, or both.

Adapters are an alternative approach for preserving
compatibility without modifying the service itself. The basic

ANDRIKOPOULOS ET AL.: ON THE EVOLUTION OF SERVICES 625

23. http://www.ruby-lang.org/en/.

idea is to resolve the mismatches between the expected by
the consumers and the supported by the implementation
interfaces. Brogi and Popescu [32], Nezhad et al. [33], for
example, support the (semi)automated generation of adap-
ters between service interfaces and implementations, based
on the parametric transformation of the expected and the
actually offered interfaces of the service. Interface adapters
can also be layered on top of each other (e.g., in cross stubs
and custom handlers in [52] or chain of adapters in [53]) to
“mask” the mismatches and maintain compatibility between
providers and consumers. By using this technique, service
developers deal with an (ideally) unique implementation
endpoint that exposes multiple versions of interfaces,
instead of multiple versions of the service. The maintenance
cost then is moved to the consistency and efficiency of the
layering of the adapters and out of the service life cycle itself.

There are a number of issues with these corrective
approaches with respect to service evolution. First,
adaptation does not necessarily happen in response to
change; it may actually be the cause of change. For
example, adaptation may be used for enabling the reuse of
services (e.g., [31]). In this respect, adaptation is one of the
means by which evolution manifests, the other being the
replacement of the services used for the composition and
the redeployment of a service in case of service composi-
tions. Furthermore, the application of service adaptation
techniques—both for interface and composition—is not
always possible without explicit manual intervention. In
this sense, these approaches are limited in their automa-
tion. The required modifications may also interfere with
the operation of other services by the same organization in
terms of resources (computational and financial) and code.
Service adapters avoid this risk by not requiring the
redevelopment of the service. They, however, transfer the
service adaptation cost to the effort required for develop-
ing, and more importantly, maintaining the adapters.
Finally, the majority of the corrective approaches dis-
cussed above focus on the generation of the adaptation
with the goal to automate the process without first
checking whether the adaptation is necessary (in terms
of compatibility). However, this is not always true as, for
example, discussed in [52] and [53]. These approaches
incorporate compatibility checks before attempting to
generate suitable adapters.

Most of the approaches discussed in Section 2 can be
classified as preventive approaches. As we explained in
length, all these approaches take the very pragmatic road
of providing a set of guidelines for the compatible
evolution of services based on existing technologies. Of
particular mention is the work of Becker et al. [17] that also
presents an approach that constrains the evolution of
services based on backward compatibility. They also,
however, depend on a guideline-based approach which is
limited in expressiveness and portability in other technol-
ogies. In this work, we are abstracting from the particular
technology used for the implementation of services and
present a theoretical framework that not only covers,
extends, and explains the outcome of these approaches, but
also provides a formal foundation on which the effect of
changes to the interface of service can be reasoned on. In

[21], we discuss the fundamentals of the framework for
compatible evolution, but we focus exclusively on the
structural aspect of services. In this work, we extend this
framework to the behavioral and QoS-related aspects of
service description and we update it to cover compatibility
for those aspects accordingly.

Finally, as discussed in Section 4, our approach and all the
approaches discussed in Section 2 assume that the change
sets between service versions are available as part of the
development process of the service. In case they are not, then
a number of works on version differencing in UML models
[54], MOF-based models [55], or business process models [39]
can be used. However, these works focus on model
consistency, and as such they do not provide a decidability
theory for guaranteeing type-safety and correct versioning
transitions so that previous clients can use a versioned
service in a consistent manner. This is the very essence of the
approach followed by this paper.

9 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a theoretical framework and
language-independent mechanisms to assist service devel-
opers in controlling and managing service changes in a
uniform and consistent manner. For this purpose, we
distinguished between shallow (small-scale, localized)
changes and deep (large-scale, cascading) changes and we
focused on shallow changes. In particular, we provided a
sound theory for service compatibility and reasoning
mechanisms for delimiting the effect of changes which we
keep local to and consistent with a service description.

The approach proposed in this paper is in contrast to the
vast majority of existing approaches in the field. Most such
approaches view service compatibility as strictly enforced
by a set of empirical and technology-specific rules (e.g.,
WSDL-dependent guidelines) which indicate which
changes are characterized as being compatible. This results
in a very strict service evolution regime which prohibits
potentially legitimate changes from being applied due to
the limitations of current service technologies.

We presented a formally backed compatible service
evolution framework which is based on a technology-
agnostic notation for the representation of services in the
form of Abstract Service Descriptions. ASDs act as a spring-
board to explain the versioning mechanisms for services.
Using these results, we formally defined service compat-
ibility and developed a theory for the compatible evolution
of services. As part of this approach, we introduced the
notion of T-shaped changes, which enforce service compat-
ibility between interrelated service versions in two dimen-
sions: horizontally and vertically. We also demonstrated
how to reason about the compatibility of service versions
using a Compatibility Checking Function in order to decide if
changes to them are T-shaped or not. We validated our
compatible service evolution framework in practice by
means of a proof-of-concept prototype implementation in
the form of the Service Representation Modeler tool and a case
study. Based on the findings of this validation, we provided
a series of recommendations for the improvement of service
description languages in the context of service evolution.

The compatible service evolution framework will be
extended in the immediate future to show that the set of

626 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

shallow changes is closed under compatibility-preserving
change sets, and that our approach is complete in the
mathematical sense by illustrating that the CCF can
generate all possible T-shaped sets, as discussed in [35].
Following this, the SRM prototype will be extended with
appropriate behavioral and nonfunctional layer capabil-
ities to ensure consistency in service versioning. While
reasoning on the structural layer was sufficient for the
purposes of this paper, extending this capability to the
other layers is considered critical for the full implementa-
tion of the framework. Furthermore, the option to import
ASD models directly from WSDL, BPEL, and WS-Policy
(currently performed semi-automatically) and to visualize
the results of the compatibility check will also be added to
the SRM capabilities.

These changes will allow us to provide service devel-
opers with a comprehensive toolset for controlling the
different aspects of service evolution. The application of the
SRM prototype in-the-field would allow us to draw useful
conclusions about the efficacy of both the prototype and our
work in general. Of course, this process would also allow us
to further improve and extend our research findings.

Finally, throughout all the work presented here, we have
assumed a direct bilateral consumer/provider type of
interaction between services and their clients. This intro-
duces a certain amount of rigidity in service evolution. To
relax this rigidity and allow for additional change scenarios
that guarantee type-safe evolution, we experimented with
service contracting and Service Level Agreements (SLAs)
[25]. In particular, we investigated the application of an
intermediary construct in the form of a service contract
interposed between service providers and consumers. A
service contract can be used to represent an SLA between a
service provider and consumer. Explicit contracts between
providers and consumers allow for greater flexibility in
evolving both parties in a compatible manner as they relax
some of the assumptions regarding the ability of services to
evolve while preserving their compatibility. We further-
more showed how even the contract itself can be a subject to
change without affecting the interacting parties that it
binds. Due to the fact that service contract formation
depends on the subtyping relation as defined here, the
work on contracting can be easily incorporated with the
compatible evolution framework described in this paper.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube). The authors wish to thank the reviewers for the
many insightful comments and constructive criticism that
have resulted in substantially improving the quality of this
paper. They would also like to thank the members of ERISS,
and especially Michael Parkin, Michele Mancioppi, and
Oktay Türetken, as well as Barbara Pernici, Hossein Siadat,
and Mariagrazia Fugini at Politecnico di Milano for their
feedback and support while writing and improving this
paper. They also thank Juan Vara and David Granada in the
Kybele Research Group at the University Rey Juan Carlos for
their invaluable help with the prototype implementation.

REFERENCES

[1] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and
Managing Web Services: Issues, Solutions, and Directions,” VLDB
J., vol. 17, no. 3, pp. 537-572, May 2008.

[2] M.P. Papazoglou, “The Challenges of Service Evolution,” Proc.
20th Int’l Conf. Advanced Information Systems Eng., pp. 1-15, 2008.

[3] K.H. Bennett and V.T. Rajlich, “Software Maintenance and
Evolution: A Roadmap,” Proc. Conf. Future of Software Eng.,
pp. 73-87, 2000.

[4] J. Estublier, D. Leblang, A. van der Hoek, R. Conradi, G. Clemm,
W. Tichy, and D. Wiborg-Weber, “Impact of Software Engineering
Research on the Practice of Software Configuration Management,”
ACM Trans. Software Eng. Methodology, vol. 14, no. 4, pp. 383-430,
2005.

[5] K. Brown and M. Ellis, “Best Practices for Web Services
Versioning,” http://www.ibm.com/developerworks/
webservices/library/ws-version/, Jan. 2004.

[6] K. Jerijærvi and J. Dubray, “Contract Versioning, Compatibility
and Composability,” http://www.infoq.com/articles/
contract-versioning-comp2, Dec. 2008.

[7] C. Peltz and A. Anagol-Subbarao, “Design Strategies for Web
Services Versioning,” http://soa.sys-con.com/node/44356, 2004.

[8] R. Conradi and B. Westfechtel, “Version Models for Software
Configuration Management,” ACM Computing Surveys, vol. 30,
no. 2, pp. 232-282, 1998.

[9] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “End-to-
End Versioning Support for Web Services,” Proc. IEEE Int’l Conf.
Services Computing, vol. 1, pp. 59-66, July 2008.

[10] M.B. Juric, A. Sasa, B. Brumen, and I. Rozman, “WSDL and UDDI
Extensions for Version Support in Web Services,” J. Systems and
Software, vol. 82, no. 8, pp. 1326-1343, Aug. 2009.

[11] M. Endrei, M. Gaon, J. Graham, K. Hogg, and N. Mulholland,
“Moving Forward with Web Services Backward Compatibility,”
http://www.ibm.com/developerworks/java/library/ws-soa-
backcomp/index.ht ml?ca=drs-, May 2006.

[12] R. Weinreich, T. Ziebermayr, and D. Draheim, “A Versioning
Model for Enterprise Services,” Proc. 21st Int’l Conf. Advanced
Information Networking and Applications Workshops, vol. 2, pp. 570-
575, 2007.

[13] R. Fang, L. Lam, L. Fong, D. Frank, C. Vignola, Y. Chen, and N.
Du, “A Version-Aware Approach for Web Service Directory,”
Proc. IEEE Int’l Conf. Web Services, pp. 406-413, July 2007.

[14] D. Parachuri and S. Mallick, “Service Versioning in SOA,” http://
www.infosys.com/offerings/IT-services/soa-services/white-
papers/pages/index.aspx, Dec. 2008.

[15] A. Narayan and I. Singh, “Designing and Versioning Compatible
Web Services,” http://www.ibm.com/developerworks/
websphere/library/techarticles/0705_narayan/0705_narayan.
html, Mar. 2007.

[16] D. Orchard ed. “Extending and Versioning Languages: XML
Languages [ed. Draft],”World Wide Web Consortium (W3C),
http://www.w3.org/2001/tag/doc/versioning-xml, July 2007.

[17] K. Becker, A. Lopes, D.S. Milojicic, J. Pruyne, and S. Singhal,
“Automatically Determining Compatibility of Evolving Services,”
Proc. IEEE Int’l Conf. Web Services, pp. 161-168, 2008.

[18] R. Kazhamiakin ed., “CD-IA-3.2.1 Initial Definition of Validation
Scenarios,” S-Cube Consortium, http://www.s-cube-network.eu/
, Oct. 2009.

[19] A. Gehlert and A. Metzger eds., “CD-JRA-1.3.2 Quality Reference
Model for SBA,” S-Cube Consortium, http://www.s-cube-
network.eu/, Mar. 2008.

[20] M. Belguidoum and F. Dagnat, “Formalization of Component
Substitutability,” Electronic Notes in Theoretical Computer Science,
vol. 215, pp. 75-92, 2008.

[21] V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou, “Mana-
ging the Evolution of Service Specifications,” Proc. 20th Int’l Conf.
Advanced Information Systems Eng., pp. 359-374, 2008.

[22] G. Castagna, N. Gesbert, and L. Padovani, “A Theory of Contracts
for Web Services,” ACM Trans. Programming Languages and
Systems, vol. 31, no. 5, pp. 1-61, 2009.

[23] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model
Evolution by Run-Time Parameter Adaptation,” Proc. IEEE 31st
Int’l Conf. Software Eng., pp. 111-121, 2009.

[24] M. Comuzzi and B. Pernici, “A Framework for QoS-Based Web
Service Contracting,” ACM Trans. Web, vol. 3, no. 3, pp. 1-52, 2009.

ANDRIKOPOULOS ET AL.: ON THE EVOLUTION OF SERVICES 627

[25] V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou, “Evolving
Services from a Contractual Perspective,” Proc. 21st Int’l Conf.
Advanced Information Systems Eng., pp. 290-304, 2009.

[26] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-Oriented Computing: State of the Art and Research
Challenges,” Computer, vol. 40, no. 11, pp. 38-45, Nov. 2007.

[27] B. Benatallah, F. Casati, and F. Toumani, “Representing, Analys-
ing and Managing Web Service Protocols,” Data & Knowledge Eng.,
vol. 58, no. 3, pp. 327-357, 2006.

[28] S.H. Ryu, F. Casati, H. Skogsrud, B. Benatallah, and R. Saint-Paul,
“Supporting the Dynamic Evolution of Web Service Protocols in
Service-Oriented Architectures,” ACM Trans. Web, vol. 2, no. 2,
pp. 1-46, 2008.

[29] M. Mancioppi, M. Carro, W. Heuvel, and M.P. Papazoglou,
“Sound Multi-Party Business Protocols for Service Networks,”
Proc. Sixth Int’l Conf. Service-Oriented Computing, pp. 302-316,
2008.

[30] J.E. Johnson, D.E. Langworthy, L. Lamport, and F.H. Vogt,
“Formal Specification of a Web Services Protocol,” Electronic Notes
in Theoretical Computer Science, vol. 105, pp. 147-158, Dec. 2004.

[31] M. Dumas, M. Spork, and K. Wang, “Adapt or Perish: Algebra
and Visual Notation for Service Interface Adaptation,” Proc.
Fourth Int’l Conf. Business Process Management, pp. 65-80, 2006.

[32] A. Brogi and R. Popescu, “Automated Generation of BPEL
Adapters,” Proc. Int’l Conf. Service Oriented Computing, pp. 27-39,
2006.

[33] H.R.M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and F.
Casati, “Semi-Automated Adaptation of Service Interactions,”
Proc. 16th Int’l Conf. World Wide Web, pp. 993-1002, 2007.

[34] J. Ponge, B. Benatallah, F. Casati, and F. Toumani, “Analysis and
Applications of Timed Service Protocols,” ACM Trans. Software
Eng. and Methodology, vol. 19, no. 4, pp. 1-38, 2010.

[35] V. Andrikopoulos, A Theory and Model for the Evolution of Software
Services, CentER Dissertation Series. Tilburg Univ. Press, 2010.

[36] B.H. Liskov and J.M. Wing, “A Behavioral Notion of Subtyping,”
ACM Trans. Programming Languages and Systems, vol. 16, no. 6,
pp. 1811-1841, 1994.

[37] B. Meyer, Object-Oriented Software Construction, second ed.
Prentice Hall PTR, 1997.

[38] J.F. Allen, “Maintaining Knowledge about Temporal Intervals,”
Comm. ACM, vol. 26, no. 11, pp. 832-843, 1983.

[39] J.M. Küster, C. Gerth, and G. Engels, “Dynamic Computation of
Change Operations in Version Management of Business Process
Models,” Proc. Sixth European Conf. Modelling Foundations and
Applications, pp. 201-216, June 2010.

[40] J. Vara, D. Granada, V. Andrikopoulos, and E. Marcos,
“Modeling and Comparing Service Descriptions,” Technical
Report TR-29032010, Univ. Rey Juan Carlos, Dept. of Computing
Languages and Systems II, http://kybele.es/research/TR/TR-
29032010.pdf, June 2010.

[41] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T.J. Grose,
Eclipse Modeling Framework. Addison-Wesley Professional, Aug.
2003.

[42] A. Hevner, S. March, J. Park, and S. Ram, “Design Science in
Information Systems Research,” MIS Quarterly, vol. 28, no. 1,
pp. 75-105, 2004.

[43] I. Robinson, “Consumer-Driven Contracts: A Service Evolution
Pattern,” The ThoughtWorks Anthology: Essays on Software Technol-
ogy and Innovation, pp. 101-120, Pragmatic Bookshelf, http://
martinfowler.com/articles/consumerDrivenContracts.html, Mar.
2008.

[44] M.P. Papazoglou, Web Services: Principles and Technology. Prentice
Hall, July 2007.

[45] A. Stuckenholz, “Component Evolution and Versioning State of
the Art,” ACM SIGSOFT Software Eng. Notes, vol. 30, no. 1, p. 7,
2005.

[46] S. Becker, A. Brogi, S. Overhage, E. Romanovsky, and M. Tivoli,
“Towards an Engineering Approach to Component Adaptation,”
Architecting Systems with Trustworthy Components, vol. 3938,
pp. 193-215, Springer-Verlag, 2006.

[47] C. Canal, P. Poizat, and G. Salaün, “Model-Based Adaptation of
Behavioral Mismatching Components,” IEEE Trans. Software Eng.,
vol. 34, no. 4, pp. 546-563, July/Aug. 2008.

[48] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani,
“PAWS: A Framework for Executing Adaptive Web-Service
Processes,” IEEE Software, vol. 24, no. 6, pp. 39-46, Nov./Dec. 2007.

[49] W. Kongdenfha, R. Saint-paul, B. Benatallah, and F. Casati, “An
Aspect-Oriented Framework for Service Adaptation,” Proc. Int’l
Conf. Service Oriented Computing, pp. 15-26, 2006.

[50] M. Colombo, E.D. Nitto, and M. Mauri, “SCENE: A Service
Composition Execution Environment Supporting Dynamic
Changes Disciplined through Rules,” Proc. Int’l Conf. Service
Oriented Computing, pp. 191-202, 2006.

[51] D. Ardagna and B. Pernici, “Adaptive Service Composition in
Flexible Processes,” IEEE Trans. Software Eng., vol. 33, no. 6,
pp. 369-384, June 2007.

[52] S.R. Ponnekanti and A. Fox, “Interoperability among Indepen-
dently Evolving Web Services,” Proc. Fifth ACM/IFIP/USENIX Int’l
Conf. Middleware, pp. 331-351, 2004.

[53] P. Kaminski, M. Litoiu, and H. Müller, “A Design Technique for
Evolving Web Services,” Proc. Conf. Center for Advanced Studies on
Collaborative Research, pp. 303-317, 2006.

[54] Z. Xing and E. Stroulia, “Differencing Logical UML Models,”
Automated Software Eng., vol. 14, no. 2, pp. 215-259, 2007.

[55] M. Alanen and I. Porres, “Difference and Union of Models,” UML
2003—The Unified Modeling Language, vol. 2863/2003, pp. 2-17,
Springer, 2003.

Vasilios Andrikopoulos completed the pre-
and postgraduate studies in the Computer
Engineering and Informatics Department of the
University of Patras, Greece, and received the
PhD degree cum laude from the Department of
Information Management at Tilburg University,
The Netherlands. He works as a postdoctoral
researcher for the Institute of Architecture of
Application Systems (IAAS), University of Stutt-
gart, Germany. His research interests include

service-oriented architecture and computing, with an emphasis on the
evolution of services and cloud application engineering.

Salima Benbernou is a full professor of
computer science at Paris Descartes University.
She participated in more than seven French and
EU-funded research projects, being coordinator
in some of them. Her research interests include
formal models for service-oriented computing,
privacy in information systems and databases.
She has authored more than 50 papers pub-
lished in peer-reviewed conferences, journals,
and book chapters, and served as a PC member

and coorganizer in several conferences and workshops.

Michael P. Papazoglou holds the chair of
computer science at Tilburg University. He is
the scientific director of the European Research
Institute in Service Science (ERISS), Tilburg
University, and European Commission’s Net-
work of Excellence, S-Cube. He is also an
honorary professor at the University of Trento in
Italy, and professorial fellow at the Universities
of Lyon, France, New South Wales, Australia,
and Rey Juan Carlos, Madrid, Spain. His

research interests lie in the areas of service-oriented computing, web
services, large scale data sharing, business processes, and federated
and distributed information systems. He has published numerous books,
monographs, and international conference proceedings, journal, and
conference papers. He is the editor-in-charge of the MIT Press book
series on Information Systems as well as the founder and editor-in-
charge of the new Springer-Verlag book series on Service Science. He
is one of the most cited researchers in the area of service-oriented
computing. He is a senior member of the IEEE and a Golden Core
member and a distinguished visitor of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

628 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 3, MAY/JUNE 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

