
074 0 -74 5 9 /11/ $ 2 6 . 0 0  ©  2 011  I E E E 	 MAY/JUNE 2011  | IEEE SOFTWARE � 49

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM 
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

SERVICE EVOLUTION IS “the con-
tinuous process of development of a ser-
vice through a series of consistent and 
unambiguous changes.”1 The evolution 
of a service is expressed through the 
creation and decommissioning of differ-
ent service versions during its lifetime. 
These versions must be aligned with 
each other in a nondisruptive manner 
and in a way that lets a service designer 
track modifications and their effects on 
the service. To control service evolution, 
a designer must know why a change 
was made, what its implications are, 

and whether the change is consistent. 
Eliminating spurious results and incon-
sistencies that occur because of uncon-
trolled changes is necessary for services 
to evolve gracefully, ensure stability, 
and handle variability in their behavior.

We can classify the nature of ser-
vice changes depending on their causal 
effects:

•	 Shallow changes. These are small-
scale incremental changes localized 
to a service or restricted to the ser-
vice’s clients.

•	 Deep changes. These are large-scale 
transformational changes cascading 
beyond a service’s clients, possibly 
to entire value chains (end-to-end 
service networks).

Typical shallow changes focus on struc-
tural-level changes (service types, mes-
sages, interfaces, and operations) and 
business protocol changes (the con-
versations in which the service partici-
pates). Typical deep changes include 
policy-induced (pertaining to business 
agreements between service providers 
and consumers), operational behavior 
(for example, when the service fulfills 
its expected function in a timely and 
orderly manner), and nonfunctional 
changes (relating to quality-of-service, 
or QoS, issues and service-level agree-
ment, or SLA, guarantees for individ-
ual and end-to-end services).

While both shallow and deep 
changes need an appropriate version-
ing strategy, deep changes further in-
troduce several intricacies of their own 
and require the assistance of a change-
oriented service life cycle to allow ser-
vices to react appropriately to changes 
as they occur. 

In this article, we discuss a causal 
model of service changes that addresses 
the effects of both shallow and deep 
changes. This article is largely based 
on concepts and definitions found in 
previous work.1 The definitions used 
have been revised and amended on the 
basis of formalization and compatibil-
ity analysis, prototype implementation, 
comparison with functionality offered 
by open standards, and an empirical in-
depth investigation using an industrial 
strength case study.

Background
Evolution in software systems tra-
ditionally has been considered as ei-
ther a part, or a synonym of software  

Managing 
Evolving  
Services
Michael P. Papazoglou and Vasilios Andrikopoulos, Tilburg University

Salima Benbernou, Paris Descartes University

// Services are subject to constant change and 

variation, leading to continuous redesign and 

improvement. However, service changes shouldn’t be 

disruptive by requiring radical modifications or by 

altering the way that business is conducted. //

FOCUS: SOFTWARE COMPONENTS: BEYOND PROGRAMMING



50	 IEEE SOFTWARE  | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM 
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: SOFTWARE COMPONENTS: BEYOND PROGRAMMING

SERVICES VERSUS COMPONENT EVOLUTION
While evolving, both components and services can offer multiple 
interfaces for the same functionality. This makes it possible to 
sustain several simultaneous versions. However, subtle differ-
ences exist between these two related technologies summarized 
by the following dimensions:

•	 Coupling. Services make use of abstract message defini-
tions to mediate their binding with respect to each other. 
They focus on message and event definitions rather than 
method signatures, which typify components.1

•	 Invocation. Services introduce the concept of service 
capability, which describes the classification, functionality, 
and conditions under which a particular service can be dis-
covered and invoked. This leads to reactive services (which 
can respond to environmental demands without compromis-
ing operational efficiency). Components typically focus on 
locating and invoking other components by name.

•	 Binding. An SOA application might choose a service dynami-
cally on the basis of quality of service, using parameters 

such as response time, throughput, and availabil-
ity. Components depend on mechanisms like glue coding, 
wrappers, delegation, or aggregation for binding.1

•	 Composition. Service composition leads naturally to the 
creation of higher-level services that are typically long- 
running, coordinated workflow service arrangements  
specified according to business protocols. Component  
composition is typically on a lower level that depends  
on the component model used.2

Managing service evolution therefore requires a systematic 
revisit of the techniques and theories for component evolution.

References
	 1.	 I. Crnković  et al., “A Classification Framework for Software  

Component Models,” IEEE Trans. Software Eng., vol. 99, 2010;  
http://doi.ieeecomputersociety.org/10.1109/TSE.2010.83.

	 2.	 A. Elfatatry, “Dealing with Change: Components versus Services,”  
Comm. ACM, vol. 50, no. 8, 2007, pp. 35–39.

maintenance. The insight gained from 
early studies resulted in empirical laws 
that drive and govern software systems’ 
evolution.2 Evolution is particularly im-
portant in distributed systems because 
of a complex web of software interde-
pendencies. As Keith Bennett and Vá-
clav Rajlich point out,3 attempting to 
apply the conventional maintenance 
procedure (halt operation, edit source, 
and reexecute) in large distributed sys-
tems (such as those emerging in service-
oriented environments) isn’t sensible. 
The difficulty of identifying which soft-
ware artifacts form the system itself is 
nontrivial, especially in the context of 
large service networks. In addition, the 
lack of ownership and access to the ac-
tual source code (if any) of third-party 
services (because of the service-oriented 
architecture, or SOA, principles of en-
capsulation and loose coupling), doesn’t 
allow us to apply various maintenance 
techniques, such as refactoring or im-
pact analysis.

The difficulty of approaching system 
evolution purely as a maintenance activ-
ity has already appeared in the study of 

component engineering in general, and 
component evolution in particular. The 
basic ideas and solutions for the evolu-
tion of component-based systems (CBS) 
are summarized elsewhere.4 Evolving a 
component includes changes in both its 
interfaces and its implementation, with 
each having different evolutionary re-
quirements. Because of their compos-
ability and emphasis on reuse, compo-
nents exhibit strong dependencies with 
the components they consume. Chang-
ing a component might therefore have 
implications for other components and 
upgrading to a new component might 
require that both versions (old and 
new) be deployed in parallel while the 
transition takes place. Finally, identi-
fying and distinguishing between dif-
ferent component versions requires the 
introduction of software configuration 
management (SCM) techniques, such as 
version identifiers incorporated into the 
component metadata. Because version 
identifiers don’t explain what changes 
occurred between versions, checking 
for compatibility must be performed 
separately.

Historically and conceptually, we 
can consider CBS as a predecessor of 
service-oriented computing. However, 
we must remember that components 
and services differ in terms of coupling, 
binding, granularity, delivery, and com-
munication mechanisms and overall 
architecture (see the “Services versus 
Component Evolution” sidebar).

Case Study
To provide a systematic way of look-
ing at service evolution, we use the 
industrial-strength “Automotive Pur-
chase Order Processing” case study 
developed jointly with IBM Almaden 
that the S-Cube Network of Excel-
lence (www.s-cube-network.eu) uses as 
a validation scenario. The case study is 
an example of how to realize standard-
ized supply-chain activities using SOA-
based processes for a fictitious enter-
prise in the automobile industry called 
Automobile Incorporation (AutoInc). 
AutoInc consists of different business 
units—such as sales, logistics, and 
manufacturing—and collaborates with 
external partners like suppliers, banks, 



	 MAY/JUNE 2011  | IEEE SOFTWARE � 51

and transport carriers. The case study 
describes a typical automobile ordering 
process, where customers can place au-
tomated orders with AutoInc.

Within this context, we performed 
a case study on the effect of changes 
to different services. We developed 
various evolutionary scenarios, de-
scribing the required actions and pro-
posed modifications to purchase order- 
processing services. We identified these 
scenarios either as maintenance actions 
(for example, optimizing the perfor-
mance of some services) or as reengi-
neering efforts (completely redesigning 
service interfaces).

Dealing with  
Shallow Changes
Shallow changes affect both individ-
ual and end-to-end services. To deal 
with shallow changes, we discuss help-
ful practices for service compatibility 
and versioning derived on the basis of 
structural and business protocol service 
changes.

Service Version Compatibility
To deal with message exchanges be-
tween a service provider and a client, 
they must still be able to exchange valid 
messages despite any interface changes 
that could happen to either side. To 
achieve this, we must rely on the no-
tion of service version compatibility. 
Service version compatibility guaran-
tees that we can introduce a new ver-
sion of either a provider or a client of 
service messages without changing the 
other. We classify compatibility in two 
dimensions:5

•	 Horizontal compatibility or in-
teroperability. This means that two 
services can participate successfully 
in an interaction, either as service 
producers or consumers.

•	 Vertical compatibility or substi-
tutability (from the provider’s per-
spective) or replaceability (from the 
consumer’s perspective). This de-

scribes the requirements that let one 
service version replace another in a 
given context.

Traditionally, two types of changes to a 
service definition can guarantee version 
compatibility:6

•	 Backward compatibility. A new 
version of a message client is in-
troduced and the message provid-
ers are unaffected. The client might 
introduce new features but should 
still support all the old ones.

•	 Forward compatibility. A new ver-
sion of a message provider is in-
troduced and the message clients 
that are only aware of the original 
version are unaffected. The pro-
vider might have new features but 
shouldn’t add them in a way that 
breaks any old clients.

Some types of changes that are both 
backward and forward compatible in-
clude the addition of new service op-

erations to an existing service descrip-
tion. In this case we’re talking about 
full compatibility. Full compatibility 
lets you replace an existing service ver-
sion with an equivalent (that is, com-
patible) one without affecting the cor-
rect operation and performance of its 
clients.

From a practical standpoint, com-
patible service evolution in the services 
description standard Web Services 
Description Language (WSDL) 2.0 is 
limited to service changes that are ei-
ther backward or forward compatible, 
or both.7 The types of service changes 
that are compatible are

•	 the addition of new WSDL opera-
tions to an existing WSDL docu-
ment, and

•	 the addition of new XML schema 
types within a WSDL document 
that aren’t contained within previ-
ous types.

Incompatible change types, on the 
other hand, include removing an opera-
tion, renaming an operation, changing 
an operation’s parameters (in data type 
or order), and changing the structure 
of a complex data type. An alternative 
approach enables the compatible evolu-
tion of services.5 Instead of restricting 
service changes to the short list that we 
mentioned, a theoretical framework al-
lows for reasoning on the evolution of 
services. As a result, further compatible 
changes (called T-shaped) are allowed; 
for example, removing data elements 
from incoming message data types 
and adding data elements in outgoing 
message data types. Service version 
compatibility for structural changes is 

based on two fundamental premises of 
type theory:8

•	 Service argument contravariance. 
If we redefine the argument of a 
service, the new argument types 
must always be an extension (gener-
alization) of the original ones.

•	 Service result covariance. If we re-
define the result of a service, the 
new result types must always be a 
restriction (specialization) of the 
original ones.

For example, we can enhance the 
message payload of services in the  

Evolution is particularly important in  
distributed systems because of a complex 

web of software interdependencies. 



52 IEEE SOFTWARE  | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM 
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: SOFTWARE COMPONENTS: BEYOND PROGRAMMING

AutoInc case study by time-stamping 
information if the messages are pro-
duced as output of the service, but 
not if they’re consumed as input from 
the service. This reasoning is inversed 
when considering the evolution of the 
clients of AutoInc’s services. To real-
ize these capabilities, we must replace 
the existing model of validating incom-
ing messages against their original (and 
possibly obsolete) XML schema with a 
direct marshalling of the message con-
tent into objects—and checking the 
compatibility of the message with the 
expected message schema separately.5

When evolving a business protocol, 
states and transitions can be added or 
removed from an active protocol. A 
new version of a protocol is created 
each time its internal structure or ex-
ternal behavior changes. We call the 
parts of a specifi c protocol that a client 
can observe the protocol	view. Because 
the client’s protocol view is restricted 
to the parts that directly involve the 
client, a client might have equivalent 
views on different protocols. Evolu-
tion doesn’t affect clients whose views 
on the original and target protocols are 
the same. Business protocol evolution 
is considered by Seung Hwan Ryu and 
his colleagues when they distinguish 

between various aspects of protocol 
changes.9 Protocol	 compatibility aims 
at assessing whether two protocols can 
interact—that is, if it’s possible to have 
a conversation between two services 
despite changes to their protocols. Two 
protocols can have complete compat-
ibility, meaning that both protocols 
can understand the conversations of 
the other; or partial, when there’s at 
least one conversation possible between 
them.

Protocol compatibility is essential 
for redesigning service interfaces while 
allowing existing clients to consume 
them. In the case of AutoInc, it allows 
for the replacement of single-entry-
point asynchronous interfaces with 
more complicated multiple-entry inter-
faces that provide for both synchronous 
and asynchronous communication on 
demand. This allows for the deploy-
ment of one service interface to cover 
both types of communication instead 
of having to provision for multiple ser-
vice interfaces.

Versioning Shallow Changes
A robust versioning strategy allows for 
service upgrades and improvements, 
while continuously supporting previous 
versions. Service versioning is therefore 

important for both developers and pro-
viders, building on the notion of service 
version compatibility. In the case of ser-
vice evolution, the cost of provisioning 
for multiple service interfaces is non-
linear. As with component evolution, 
developing a new interface requires ad-
ditional effort in binding the interface 
versions with the underlying implemen-
tation. In the case of multiple active 
service versions, however, each active 
version also requires access to resources 
in the supporting infrastructure. Fur-
thermore, each version adds managerial 
overhead in terms of monitoring and 
auditing to ensure that it complies with 
the agreed-upon SLAs. As such, provid-
ing for multiple interfaces in services 
can overtax the service provider. There-
fore, developers should minimize the 
amount of active versions by employing 
compatible changes.

With a compatible change, the ser-
vice implementation need only support 
the latest version of a service inter-
face10—for example, implementation 
version 1.1 of a Receive Purchase Order 
service in AutoInc supports interface 
version 1.1 in Figure 1. A client can 
continue to use a previous service ver-
sion (interface 1.0) while adjusting to a 
new version of the interface description 
or until the version is decommissioned. 
With an incompatible change, the cli-
ent receives a new version of the inter-
face description (interface version 2.0 
in Figure 1) and must adjust to the new 
interface before the old interface is de-
commissioned. The service must either 
continue to support both versions dur-
ing the handover period (having one 
active and one deprecated version as in 
Figure 1), or the service and the clients 
must change at the same time. Alterna-
tively, the client can continue until it 
encounters an error, at which point it 
switches to the new version. While this 
is common practice, it’s prone to errors 
and inconsistencies in provider and 
consumer interaction and thus should 
be avoided.

Client
version 1.0

Decommissioned Deployed

Deprecated

Active

Interface
version 1.0

Implementation
version 1.1

Interface
version 1.1

Client
version 2.0

Implementation
version 2.0

Interface
version 2.0

F IGURE 1. Service versioning. With a compatible change, clients can continue to use a 

previous version while adjusting to the latest service interface, or until the previous version is 

decommissioned. With an incompatible change, the client must identify the new version and 

adjust to the new interface before the old one is decommissioned.



 MAY/JUNE 2011  | IEEE SOFTWARE  53

Dealing with 
Deep Changes
Deep changes characterize complex ser-
vices and require that such services be 
redefi ned and possibly realigned within 
an entire end-to-end service. Deep ser-
vice changes require a change-oriented	
service	 life-cycle methodology to pro-
vide a sound foundation for spreading 
changes in an orderly fashion so that 
impacted services are appropriately 
(re)confi gured, aligned, and controlled 
as the changes occur.

The change-oriented service life 
cycle ensures that standardized meth-
ods and procedures are used for the 
prompt, effi cient handling of all ser-
vice changes to minimize the impact 
on service operation and quality. This 
means that in addition to functional 
(structural and behavioral) changes, 
a change-oriented service life cycle 
must deal with policy-induced, op-
erational behavior, and nonfunctional 
changes. The objective is to provide 
end-to-end QoS capabilities by ensur-
ing that services are performing as de-
sired and that service designers are able 
to anticipate out-of-control or out-of-
specifi cation conditions, and responds to 
them appropriately. This includes tradi-
tional QoS capabilities, such as security, 
availability, accessibility, integrity, and 
transactionality, as well as service	 vol-
umes (number of service events, number 
of items consumed, and service revenue) 
and velocities (performance characteris-
tics). These measurements show how an 
enterprise is performing its services.

Figure 2 illustrates a deep change-
oriented service life cycle that comprises 
a set of interrelated phases, activities, 
and tasks that defi ne the change process 
from the beginning to end. Each phase 
produces a major deliverable that con-
tributes to the change objectives. Logi-
cal breaks in the change process are as-
sociated with key decision points.

The Change-Oriented Life Cycle: Phase 1
The initial phase (need to evolve) 

focuses on identifying the need for 
change and scoping its extent. One 
of the major elements of this phase 
is understanding the causes of the 
need for change and their potential 
implications. For instance, compliance 
to regulations is a major force for 
change. This might lead to the 
transformation of all services within a 
service network. 

Here, the impacted individual ser-
vices in an end-to-end service (or ser-
vice-in-scope) must be identifi ed. In 
addition, service performance met-
rics, such as key performance indica-
tors (KPIs), must be collected. In the 
case of the AutoInc Purchase Order 
Processing service, performance analy-
sis attributed a large percentage of the 
response time of the public (partner-
exposed) services to the communica-
tion overhead among different business 
unit services. A redesign of the services 

of AutoInc is therefore required, which 
triggers the life cycle’s next phase.

Phase 2
The second phase in Figure 2 (analyze 
the impact of changes) focuses on the 
actual analysis, redesign, or improve-
ment of existing services. The ultimate 
objective of service change analysis is 
to provide an in-depth understand-
ing of the functionality, scope, reuse, 
and granularity of services identifi ed 
for change. The problem lies in de-
termining the difference between ex-
isting and future service functional-
ity. To analyze and assess the impact 
of changes, organizations rely on the 
existence of an “as-is” and a “to-be” 
service model, rather than applying the 
changes directly on operational ser-
vices. Analysts rely on an “as-is” ser-
vice model to understand the portfolio 
of available services. This model serves 

Operational
service

Analyze impact
of changes

Need
to

evolve

Align,
re�ne,

and
  de�ne

Decide

Understand change logic

• Determine causes
• Scope extend of change
• Identify services in-scope
• Collect detailed service
   metrics

Change impact analysis

• Analyze changes
• Determine functionality
• Determine changes to 
   interdependent processes
• Determine whether key
   performance indicators
   are satis�ed
• Determine compliance with 
   regulations, business rules
• Estimate costs

Decide
to iterate

again or transfer
to new service design

Broader change context

• Test service interfaces
• De�ne/re�ne interfaces &
   points of integration
• Align with other services
• Measure alignment with strategy
• Run simulation & monitor
   performance

Design
new

service

FIGURE 2. The change-oriented life cycle. This service life cycle contains a set of 

interrelated phases, activities, and tasks that de� ne the change process from the beginning 

to end.



54	 IEEE SOFTWARE  | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM 
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FOCUS: SOFTWARE COMPONENTS: BEYOND PROGRAMMING

as the basis for conducting a thorough 
reengineering analysis of the current 
portfolio of available services that 
need to evolve. The “to-be” service 
model serves as the basis for describ-
ing the target service functionality and 
performance levels after applying the 
required changes.

To determine the differences be-
tween these two models, a gap analy-
sis model helps prioritize, improve, and 
measure the impact of service changes. 
Gap analysis uses a services realiza-
tion strategy by incrementally adding 
more implementation details to an ex-
isting service to bridge the gap between 
the “as-is” and “to-be” service models. 
Gap analysis commences with compar-
ing the “as-is” with the “to-be” service 
functionality to determine differences 
in terms of service performance (KPI 
measures) and capabilities. Service ca-
pabilities determine whether a pro-
cess can meet specifications, customer 
requirements, or product tolerances. 
The gap analysis for AutoInc revealed 

that, despite being able to reuse many 
existing services internal to the pro-
cess, composite services that depended 
on services in different units had to be 
redrawn. This resulted in proposing 
changes to public services, potentially 
impacting clients of the end-to-end ser-
vice. The resulting analysis, however, 
showed that the “to-be” model would 
perform better while respecting all ex-
isting SLAs.

Because service changes can spill 
over to other services in a service 
chain, one of the determining factors 
in service change analysis is the ability 
to recognize the scope of changes and 

functionality. When dealing with deep 
service changes several problems must 
be addressed:11

•	 Service flow. Typical problems in-
volve the logical completeness 
of a service upgrade, sequencing 
and duplication of activities, deci-
sion-making, and a lack of service 
measures.

•	 Service control. Service controls 
define or constrain how a service is 
performed. Broadly speaking, there 
are two general types of control 
problems: problems with policies 
and business rules, and problems 
with external services.

•	 Overlapping services’ functional-
ity. In such cases, a service-in-scope 
might share identical business logic 
and rules with other related ser-
vices. Here, there’s a need to ratio-
nalize services and determine the 
proper level of service commonal-
ity. During this procedure, service 
design principles12 such as service 

coupling and cohesion must be em-
ployed to achieve success.

•	 Conflicting services’ functional-
ity (including bottlenecks or con-
straints in the service value stream). 
Conflicts include problems where a 
service-in-scope isn’t aligned with 
the business strategy, a service pur-
sues a strategy that’s in conflict 
with, or is incompatible with its 
value chain, and cases where intro-
ducing a new policy or regulation 
would make it impossible for the 
service-in-scope to function.

•	 Service input and output problems. 
These problems include low QoS in-

put or output, and delayed input or 
output.

Cost estimation involves identify-
ing and weighing the services under 
consideration for the reengineering 
project to determine the approximate 
cost. When costs prove prohibitive for 
in-house implementation, outsourc-
ing is worth considering. In the case of  
AutoInc, cost estimation showed that 
the implementation of the “to-be” 
model was within budget. Neverthe-
less, the analysis determined that part 
of the migration cost was borne by the 
end-to-end service clients because they 
needed to adapt to the new services’ de-
sign. Therefore, it seemed appropriate 
to modify the service-charging policies.

Phase 3
During the third and final phase (the 
align, refine, and define phase shown in 
Figure 2), the new services are aligned, 
integrated, simulated, tested, and then 
put into production. To achieve this, 
service developers create a service in-
tegration model to help implement the 
service integration strategy. The model 
establishes, among other things, inte-
gration relationships between service 
consumers and providers involved in 
business interactions. It also includes 
steps that determine message distri-
bution needs, parties responsible for 
delivery, and provides a service de-
livery map. Finally, the service inte-
gration model considers message and 
process orchestration needs. The re-
sulting service integration strategy in-
cludes service design models, policies, 
SOA governance options, and reliance 
on organizational and industry best-
practices. All these concerns should be 
considered when designing integrated 
end-to-end services that span organiza-
tional boundaries.

The role of the services integration 
model ends when an upgraded service 
architecture is completely expressed 
and validated against technological 

Broadly speaking, there are  
two general types of control problems: 

problems with policies and business rules, 
and problems with external services.



 MAY/JUNE 2011  | IEEE SOFTWARE  55

specifi cations from infrastructure, 
management, monitoring, and techni-
cal utility services. For AutoInc, the 
services integration model resulted in 
a comprehensive plan for restructuring 
and reorganizing the services compris-
ing the end-to-end service, resulting 
in a more effective and cost-effi cient 
product.

O ur causal model for address-
ing service changes deals 
with the effects of both shal-

low and deep changes. In the case of 
shallow changes, we defi ned a theo-
retical approach to decide whether a 
change is shallow and a versioning 
strategy to support multiple versions of 
services.

To address the problems of deep 
changes, we introduced a change-
oriented service life-cycle methodology 
and described its phases. In particular, 
we discussed when a change in a ser-
vice is triggered, how to analyze its im-
pact, and the possible implications of 
the implementation of the change for 
the service provider and consumers. 
Because of its wide scope and the mul-
titude of issues related to the change-
oriented life cycle, further research on 
this subject is essential. A formal model 
for deep changes (based on the one for 
shallow changes) is the main goal of 
our future work. Of particular inter-
est is the transition between the formal 
models for shallow and deep changes 
and the way they handle changes 
according to contractual service 
specifi cations.13

Acknowledgments
The research leading to these results has re-
ceived funding from the European Com-
munity’s Seventh Framework Programme 
FP7/2007-2013 under grant agreement 
215483 (S-Cube).

References
  1. M.P. Papazoglou, “The Challenges of Service 

Evolution,” Proc.	Int’l	Conf.	Advanced	Infor-

mation	Systems	Eng., Springer-Verlag, 2008, 
pp. 1–15.

  2. M.M. Lehman, “Laws of Software Evolution 
Revisited,” Proc.	5th	European	Workshop	
Software	Process	Technology, Springer-
Verlag, 1996, pp. 108–124.

  3. K.H. Bennett and V.T. Rajlich, “Software 
Maintenance and Evolution: A Roadmap,” 
Proc.	Conf.	Future	of	Software	Eng., ACM 
Press, 2000, pp. 73–87.

  4. A. Stuckenholz, “Component Evolution and 
Versioning State of the Art,” Proc.	Sigsoft	
Software	Eng.	Notes, vol. 30, no. 1, 2005, 
p. 7.

   5. V. Andrikopoulos, A	Theory	and	Model	for	
the	Evolution	of	Software	Services, doctoral 
dissertation, Center for Economic Research 
dissertation series no. 262, Tilburg University, 
2010.

  6. D. Orchard, ed., “Extending and Versioning 
Languages,” World Wide Web (W3C) Tech. 
Architecture Group, Nov. 2007; 
www.w3.org/2001/tag/doc/versioning.

  7. D. Booth and C.K. Liu, eds., “Web Services 
Description Language (WSDL) Version 
2.0 Part 0: Primer,” W3C, June 2007; 
www.w3.org/TR/wsdl20-primer.

  8. G. Castagna, “Covariance and 
Contravariance: Confl ict without a Cause,” 
ACM	Trans.	Programming	Languages	and	

Systems, vol. 17, no. 3, 1995, pp. 431–447.
  9. S. Ryu et al., “Supporting the Dynamic 

Evolution of Web Service Protocols in 
Service-Oriented Architectures,” ACM	
Trans.	Web, vol. 2, no. 2, article 13, 2008; 
http://doi.acm.org/10.1145/1346237.1346241.

  10. K. Jerijærvi and J.-J. Dubray, “Contract 
Versioning, Compatibility and Com-
posability,” InfoQ	Magazine, Dec. 
2008; www.infoq.com/articles/contract
-versioning-comp2.

  11. P. Harmon, Business	Process	Change, 
Morgan Kaufmann, 2007.

  12. M.P. Papazoglou, Web	Services:	Principles	
and	Technology, Prentice Hall, 2007.

  13. V. Andrikopoulos, S. Benbernou, and M.P. 
Papazoglou, “Evolving Services from a 
Contractual Perspective,” Proc.	Int’l	Conf.	
Advanced	Information	Systems	Eng., 
Springer-Verlag, 2009, pp. 290–304.

MICHAEL P. PAPAZOGLOU is the chair of the Computer Science 
Department at Tilburg University. He’s also the scientifi c director of 
the European Research Institute in Service Science (ERISS) and the 
EC’s Network of Excellence, S-Cube. His research interests include 
service-oriented computing, Web services, large-scale data sharing, 
business process management, and federated information systems 
and distributed computing. Papazoglou has a PhD in microcomputers 
systems engineering from the University of Dundee, Scotland. He’s a 

Golden Core Member and a Distinguished Visitor of the IEEE Computer Society. Contact him 
at m.p.papazoglou@uvt.nl.

VASILIOS ANDRIKOPOULOS works as a postdoctoral researcher 
for ERISS at Tilburg University. His research interests include service-
oriented architecture and computing, with an emphasis on the evolution 
of services. Andrikopoulos received his PhD in information management 
from Tilburg University. Contact him at v.andrikopoulos@uvt.nl.

SALIMA BENBERNOU is a full professor of computer science at 
Paris Descartes University. Her research interests include formal mod-
els for service-oriented computing, privacy in information systems and 
databases, data sharing, and knowledge representation. Benbernou 
has a PhD in computer science from the Université de Valenciennes et 
du Hainaut-Cambrésis. Contact her at salima.benbernou@parisdes-
cartes.fr.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns 
are also available for free at 
http://ComputingNow.computer.org.


