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Abstract

We consider the denoising of a function (an image or a signal) containing smooth regions and
edges. Classical ways to solve this problem are variational methods and shrinkage of a representation
of the data in a basis or a frame. We propose a method which combines the advantages of both
approaches. Following the wavelets shrinkage method of Donoho and Johnstone, we set to zero all
frame coefficients with respect to a reasonable threshold. The shrunk frame representation involves
both large coefficients corresponding to noise (outliers) and some coefficients, erroneously set to zero,
leading to Gibbs-like oscillations in the estimate. We design a specialized (non-smooth) objective
function allowing all these coefficients to be selectively restored, without modifying the other coef-
ficients which are nearly faithful, using regularization in the domain of the restored function. We
analyze the well-posedness and the main properties of this objective function. We also propose an
approximation of this method which is accurate enough and very fast. We present numerical ex-
periments with signals and images corrupted with white Gaussian noise, which are decomposed into
a wavelets basis. The obtained results demonstrate the advantages of our approach over the main
alternative methods.

1 Introduction

We consider the restoration of an original (unknown) function uo(s) defined on a (possibly finite) domain

Ω—an image or a signal containing smooth zones and edges—from noisy data

v = uo + n,

where n represents a perturbation. Restoration has to recover the features of uo, lost because of the

noise, according to prior smoothness constraints. In the literature, quite different approaches have been

developed in order to deal with this classical but yet unsolved problem. We will discuss only variational

methods and shrinkage estimators since they underly the method we propose in this paper. In variational

methods, the restored function is defined as the minimizer of an objective function Fv which balances

trade-off between closeness to data and smoothness constraints,

Fv(u) = µ

∫

Ω

|u(s) − v(s)|2ds+

∫

Ω

ϕ(|∇u(s)|) ds, (1)

where ∇ stands for gradient, ϕ : IR+ → IR+ is called a potential function and µ > 0 is a parameter. In

their pioneering work, Tikhonov and Arsenin [46] considered ϕ(t) = t2. However, this choice for ϕ leads

to smooth images with flattened edges. Under the usual assumptions that Ω is discrete and the noise n is

white and Gaussian, Bayesian maximum a posteriori estimators amount to minimize an objective function

of the same form as (1), see e.g. [7, 21, 30]. Modeling u as a Markov random field gave rise to many



different convex and nonconvex functions ϕ [27, 8, 11, 31]. Even if nonconvex potential functions can

yield minimizers involving sharp edges and smooth regions, there are no general methods to approximate

a global minimizer of Fv. Instead, there was an increasing interest to determine convex functions ϕ which

allow edges to be restored. Based on a fine analysis of the minimizers of Fv as solutions of PDE’s on a

continuous domain Ω, Rudin, Osher and Fatemi [42] exhibited that ϕ(t) = |t| leads to images involving

edges. Their method is at the origin of a large amount of papers dedicated to edge-preserving convex

potential functions, see e.g. [1, 16, 48]. A recent overview of variational methods can be found in [5].

A systematic default of the images and signals restored using edge-preserving convex functions ϕ is that

the amplitude of edges is underestimated. This is particularly annoying if the sought-after function has

spiky areas since the later are subjected to erosion; see for instance Fig. 4 in Section 7.

Shrinkage estimators operate on a decomposition of data v into a frame of L2(Ω), say {wi : i ∈ J}
where J is a set of indexes. Let W be the corresponding frame operator, i.e. (Wv)[i] = 〈v, wi〉, ∀i ∈ J ,

and W̃ be a left inverse of W , giving rise to the dual frame {w̃i : i ∈ J}. The frame coefficients of v

read y = Wv and are contaminated with noise Wn. The idea is to denoise them by shrinkage using a

symmetric function τ : IR → IR satisfying 0 ≤ τ(t) ≤ t for all t ≥ 0 and to generate a denoised function,

denoted vτ , according to

vτ =
∑

i∈J

τ((Wv)[i]) w̃i =
∑

i∈J

τ(y[i]) w̃i. (2)

Since the inaugural work of Donoho and Johnstone in [22], shrinkage estimators are a popular and fast

tool to denoise images and signals. The latter paper addresses orthogonal wavelets transforms for W and

discrete domains Ω of finite cardinality #Ω, and considers two different choices for τ : given T > 0, hard

thresholding corresponds to

τ(t) =

{
0 if |t| ≤ T,
t otherwise,

(3)

while soft-thresholding corresponds to

τ(t) =

{
0 if |t| ≤ T,
t− T sign(t) otherwise.

(4)

Both soft and hard thresholding are asymptotically optimal in the minimax sense if n is white Gaussian

noise of standard deviation σ and

T = σ
√

2 loge #Ω. (5)

This threshold is difficult to use in practice because it increases with the size of #Ω. Other limitations

of these methods are discussed later on. Refinements of these methods have been proposed where an

appropriate threshold T is used for each scale of the coefficients [23]. Denoising of coefficients has also

been considered using maximum a posteriori estimation [50, 44, 35, 6, 3]. The restored coefficients are

set to minimize an objective function similar to (1),

F (x) = ‖x− y‖2 +
∑

i

µiϕ(|xi|),

where ϕ : IR → IR is a potential function and {µi} are weights related to the scale so that the second

term in the above expression conveys a multiscale prior on x. The restored coefficients can be put into

the form x̂i = τ(yi) where τ : IR → IR is defined by

τ(yi) = argmin
t∈IR

{
(t− yi)

2 + µiϕ(|t|)
}
, (6)
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for every yi ∈ IR. This approach hence generalizes hard and soft thresholding, defined in (3)-(4), and

gives rise to many other shrinkage functions τ ; a review can be found in [3]. A particular interest has

been carried on priors defined by ϕ(t) = |t|α for 0 < α ≤ 2, see e.g. [6, 4].

Typically, the functions denoised by variational methods (1) or by shrinkage estimators as given in

(2) and (6), exhibit quite a different appearance. For illustration, on can compare Figures 3 and 4 in

Section 7. Nevertheless, striking equivalences between these methods in the case of total-variation or

Besov regularization, and soft thresholding (4), has been exhibited in [14, 17] and investigated further in

[45, 36].

The major problems with shrinkage methods is that shrinking large coefficients can entail oversmooth-

ing of edges, while shrinking small coefficients towards zero yields Gibbs-type oscillations in the vicinity

of edges. On the other hand, if shrinkage is not sufficiently strong, some coefficients bearing mainly the

noise will remain almost unchanged—we call such coefficients outliers—and (2) suggests they generate

artifacts with the shape of the functions w̃i of the frame. This effect can be observed in Fig. 1 in Sec-

tion 4. A lot of studies have been carried out in order to determine functions ϕ in (6) which faithfully

account for the statistical distribution of the coefficients xi. An inherent difficulty comes from the fact

that coefficients between different scales are not independent, as assumed in (6). Another limitation

comes from the necessity to use in practical methods only a limited number of scales and coefficients. It

turns out that priors on the coefficients x cannot adequately address important features of the restored

function such as the presence of edges and smooth regions.

In order to introduce such information in the restoration, several authors [10, 19, 15, 25, 33, 32, 12, 24]

investigated the idea to combine the information contained in the large coefficients y[i] with pertinent

priors directly on the sought-after function u. Although based on different motives, these “hybrid”

methods amount to define the restored function û as

minimize Φ(u) =

∫

Ω

ϕ(|∇u(s)|) ds subject to û ∈ {u : |(W (u− v)) [i]| ≤ µi, ∀i ∈ J} , (7)

where in a general way, {µi} are determined based on y. In the first such method, introduced in [10],

ϕ(t) = t2. General functions ϕ are considered in [19]. In order to remove pseudo-Gibbs oscillations,

the authors of [25, 33, 12, 24] focused on ϕ(t) = |t| and did various choices for the operator W . In

[10, 19, 25, 24], orthogonal bases have been used for W , [12] have focused on curvelets transform, while

[33] have considered unions of wavelet bases. These methods differ also in the choice of parameters

{µi}i∈J . In [33, 32], all µi are equal and determined by the level of the noise. In other methods, the

choice of µi takes into account the magnitude of data coefficients y[i] as well. In [19, 25], µi relevant to

large data coefficients y[i] are set to 0, while those corresponding to small coefficients are set to ∞ in [25].

If the use of an edge-preserving function for ϕ is clearly a pertinent choice, the strategy for the selection

of parameters {µi}i∈J remains an open question.

In section 2 we provide a critical analysis of the strategies adopted by the authors cited above. Our

first conclusion is that the choice for each µi must take into account the magnitude of the relevant data

coefficient y[i], and it corroborates the approach followed by [19, 25]. However, deciding on the value of

µi based solely on y[i], as done in these papers, is too rigid since there are either correct data coefficients

that incur smoothing (µi > 0), or noisy coefficients that are left unchanged (µi = 0). A way to alleviate

to this situation is to determine {µi}i∈J based both on the data and on a prior regularization term. This

is precisely the project of this paper. It is carried out by defining restored coefficients x̂ to minimize an
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objective function of the form

Fy(x) = Ψ(x, y) + Φ(W̃x), (8)

where Ψ is a specially designed data-fitting term and Φ is of the form (7). More precisely, Fy is designed in

such a way that its minimizer x̂ involves a classification of the restored coefficients as faithful (x̂[i] = y[i]),

essentially noise (x̂[i] = 0) and coefficients restored by fitting to the regularization term. Following [39, 40],

we focus on a new family of objective functions where Ψ is non-smooth. The design of Fy is presented in

section 2. Section 3 is dedicated to the existence of a minimizer x̂ of Fy, and to its uniqueness. To do this

analysis, we essentially follow [47]. Our choice for Fy is justified in section 4. In section 5 we study some

properties of the minimizer x̂ of Fy which give rise to practical bounds for the parameters. Experiments

on denoising a signal and an image, presented in section 7, demonstrate the effectiveness of our method

over existing denoising schemes.

2 Design of an objective function

We start this section with an analysis of the information borne by the data coefficients

y[i] = 〈wi, u〉, ∀i ∈ J.

For normalized frame transforms, we can suppose that the noise on each coefficient

η[i] = 〈wi, n〉, ∀i ∈ J,

is zero mean and has constant variance, let it be denoted σ2. However, visual degradation induced by

noisy coefficients in different frequency bands is ill-assorted. Noise corresponding to a function w̃i is of

the form η[i]w̃i where η[i] is random, zero-mean and has a fixed variance. When w̃i is low frequency, then

it is nearly zero at each point since the frame is normalized. Hence the noise component η[i]w̃i is nearly

invisible. This suggests we can take x̂[i] = y[i]. An additional argument for such a choice is the following.

In many frame transforms (e.g. wavelets) all functions wi whose mean is non-zero are also low-frequency.

Taking x̂[i] = y[i] then allows the mean of the original uo to be preserved. Let I∗ ⊂ J denote the subset

of all such coefficients. If one restores all other coefficients, namely x̂[i] for i ∈ I = J \ I∗, the sought-after

function û reads

û =
∑

i∈I

x̂[i] w̃i +
∑

i∈I∗

y[i] w̃i = W̃ x̂+ W̃∗ y. (9)

In order to simplify the notations, we will write W̃ for the restriction of the frame operator to I, and

W̃∗ for its restriction to I∗. Another important observation is that for the classes of functions uo we

consider—composed of homogeneous regions and edges—the coefficients 〈wi, uo〉 corresponding to a low-

pass function wi have a large magnitude. In contrast, for the high-frequency functions wi we have

〈wi, uo〉 ≈ 0, for many indexes i, (10)

whereas 〈wi, uo〉 has a significative magnitude only in connection with to edges. In particular, the data

coefficients yi for all indexes i mentioned in (10) contain essentially noise, yi ≈ η[i]. E.g., the values of

more than 95% of them are contained in [−2σ, 2σ] if η is Gaussian noise. If there are other less noisy

data coefficients with values in the essential range of the noise, they cannot be distinguished from the
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former coefficients. No reliable information on uo can be extracted from data coefficients whose values

are in the essential range of the noise. This suggest we split the set I = J \ I∗ into I = I0 ∪ I1,

I0 = {i ∈ I : |y[i]| ≤ T }, (11)

I1 = I \ I0, (12)

where T > 0 (e.g. of the order of 2σ), and consider the restoration of the coefficients x̂[i] corresponding

to each subset separately. Our discussion allows us to characterize the goals of the restoration for each

subset as presented below.

(G0) The coefficients y[i] for i ∈ I0 are usually high-frequency components which can be

– Noise data coefficients, if they correspond to (10). The best restoration for these coefficients

is certainly x̂[i] = 0.

– Coefficients y[i] which correspond to edges and other details in uo. Since y[i] is difficult to

distinguish from the noise, the relevant x̂[i] will be restored based on the edge-preserving

priors conveyed by Φ in (8). Notice that a careful restoration certainly leads to a nonzero x̂[i],

since otherwise x̂[i] = 0 would generate Gibbs-like oscillations in û.

(G1) I1 addresses two types of coefficients y[i]:

– Large coefficients which bear the main features of the sought-after function. They verify

y[i] ≈ 〈wi, uo〉 and must be kept intact, i.e. x̂[i] = y[i].

– Coefficients which are highly contaminated by noise, characterized by |y[i]| ≫ |〈wi, uo〉|. We

call them outliers because if we had x̂[i] = y[i], then û would contain an artifact with the

shape of w̃i since
∑

j x̂[j]w̃j + (y[i] − 〈wi, uo〉) w̃i. Instead, x̂[i] will be restored according to

the prior carried by Φ.

Observe that dropping all data coefficients y[i] for i ∈ I0 amounts to consider

yT [i] =

{
0 if |y[i]| ≤ T,
y[i] otherwise.

(13)

In fact, yT is obtained from y by hard thresholding, yT [i] = τ(y[i]), where τ is the function given in (3).

We require hence that the minimizer x̂ of Fy achieves all the goals stated in (G0)-(G1). In particular,

x̂ must involve an implicit classification between coefficients that must fit to yT exactly and coefficients

that must be restored. For the latter, x̂ have to provide a pertinent restoration. Qualitatively speaking,

restored coefficients have to fit yT exactly if they are in accordance with the regularization term and

have to be restored else. In order to design an objective function whose minimizer satisfies (G0)-(G1) we

follow [39, 40] where objective functions with Ψ non-smooth at the origin are considered. These objective

functions were shown to have the property that a certain number of the restored coefficients satisfy

x̂[i] = yT [i] (in fact, if they are in accordance with the prior), whereas the other coefficients are restored

by fitting to the regularization term. Our attention being restricted to convex objective functions, the

most natural choice is Ψ(x, y) = ‖x− yT ‖1 where ‖.‖1 denotes the ℓ1 norm. So, Fy is of the form

Fy(x) =
∑

i∈I1

λi |(x− y)[i]| +
∑

i∈I0

λi |x[i]| + Φ(x), (14)

Φ(x) =

∫

Ω

ϕ(|∇W̃x|) ds, (15)
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and the sought-after solution x̂ minimizes Fy over the subset {x ∈ J : x[i] = y[i], ∀i ∈ I∗}. The

regularization Φ brings the priors about the local features of the restored function. Its role is critical on

the regions corresponding to wavelet coefficients which are either outliers or are erroneously set to zero.

The images and signals we wish to restore are supposed to involve smooth regions and edges. To this

end, we focus on edge-preserving convex potential functions ϕ which have been studied by many authors

[42, 11, 31, 9, 16]. An essential distinction between these potential functions is the differentiability of

t → ϕ(|t|) at the origin. Since [38], it is known that if t → ϕ(|t|) is non-smooth at zero, restored images

and signals W̃ x̂ involve constant regions. Such a property does not correspond to real-world images

and signals. In contrast, if Φ is smooth, they contain smoothly varying regions and possibly edges. We

hence focus on potential functions ϕ of the latter kind, which means that ϕ′(0+) = 0. Examples of such

functions are [28, 11, 9, 16, 49]

ϕ(t) = tα, 1 < α ≤ 2, (16)

ϕ(t) =
√
α+ t2, (17)

ϕ(t) = log(cosh (αt)), (18)

ϕ(t) = |t| − α log

(
1 +

|t|
α

)
, (19)

ϕ(t) =

{
t2/2 if |t| ≤ α,
α|t| − α2/2 if |t| > α,

(20)

where α > 0 is a parameter. Notice that α = 1 in (16) or α = 0 in (17) leads to ϕ(t) = |t| in which case

ϕ′(0+) = 1.

Remark 1 In (13), we would not recommend the use of another shrinkage function τ to construct yT

since it will alter all the data coefficients, without restoring them faithfully. In contrast, we base our

restoration on data preserving all the initial information on the sought-after image or signal. To this end,

we choose a threshold T considerably smaller than (5).

The considerations on the information content of noisy coefficients y provide a tool to make a critical

analysis of the hybrid methods mentioned in the Introduction, namely [10, 19, 25, 33, 12, 24]. Let us come

back to the formulation given in (8). If the use of an edge-preserving function for ϕ is clearly a pertinent

choice, the strategy for the selection of parameters {µi}i∈J remains an open question. In order to enable

noise removal, all µi corresponding to coefficients degraded by the noise must be large enough to allow

the noise to be smoothed by the regularization term. Then the residual |(Wv) [i] − (Wû) [i]| between

data and restored coefficients is non-zero and increases with the magnitude of the coefficients. Hence,

large µi for large data coefficients (Wv) [i] entail oversmoothing of important features in the restored

image or signal, as it can be observed in Fig. 11. This can be seen as a weakness of the method of [33].

A further observation, exploited in [19, 25], is that for each data coefficient, its signal-to-noise ratio is

better (i.e. higher) if its magnitude is larger, and vice-versa. The µi for data coefficients which are likely

to have a large SNR can be small, or null. The question of how to decide which coefficient is large and

less degraded, and which is small and highly degraded, is difficult to solve by thresholding. An optimistic

(i.e. low) thresholding rule gives µi = 0 for a large number of data coefficients; it is very likely that some

of them—typically those of medium magnitude—are highly corrupted, thus leading to “outliers” in the

restored coefficients. A pessimistic (i.e. high) thresholding rule gives µi > 0 for a large amount of data

coefficients, thus leading to oversmoothing in the restored û. More flexibility is hence necessary in the
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restoration of these coefficients. Furthermore, the restoration of small coefficients is important to avoid

Gibbs-type oscillations in the vicinity of edges and to obtain smooth regions between the edges; the latter

may need that some of these coefficients remain nearly null, or null.

3 Well-posedness of the minimization problem

In this section we focus on the existence and the uniqueness of the minimization problem formulated in

(14)-(15).

3.1 Existence

It is clear that Fy does have a minimizer when #Ω is finite. This question requires more investigation

when Ω is an open subset of IRd. For all u ∈ BV(Ω), denote by Du its weak derivative and recall the

Lebesgue decomposition

Du = ∇uLd +Dsu,

where Ld is the Lebesgue measure on IRd, ∇u ∈ (L1(Ω))d is the Radon-Nikodym derivative of Du and

Dsu is singular with respect to Ld. In order to ensure the existence of a minimizer we must change the

objective function in its relaxation on BV − w∗,

Fy(x) =
∑

i∈I1

λi |(x − y)[i]| +
∑

i∈I0

λi |x[i]| (21)

+ ϕ(|DW̃x|)(Ω),

where ϕ(|DW̃x|)(Ω) =
∫
Ω
ϕ(|∇W̃x|) ds + |DsW̃x|(Ω). We consider Fy as a function on ℓ2(J) although

ϕ(|DW̃x|)(Ω) is not finite for all x ∈ ℓ2(J). Hence the so defined Fy is IR valued.

Theorem 1 For y ∈ ℓ2(J) and T > 0 given, consider Fy as defined in (21), where Ω ∈ IRd is open and

bounded, its boundary ∂Ω is Lipschitz, ϕ is convex and there is a constant a > 0 such that

t− a ≤ ϕ(t) ≤ t+ a, ∀t ∈ IR+. (22)

Furthermore, we suppose that

wi ∈ L1(Ω) and

∫

Ω

wi(s)ds = 0, ∀i ∈ I. (23)

Suppose that either the assumptions in (B), or those in (F), are satisfied:

(B) 1. {wi}i∈J is a Riesz basis of L2(Ω) ;

2. we have d = 1 or d = 2 ;

(F) 1. {wi}i∈J is a frame of L2(Ω) and the operator W̃ is the pseudo-inverse of W ;

2. if d ≥ 2, wi ∈ Ld(Ω), for all i ∈ J ;

3. λmin = min
i∈I

λi > 0 .

Then Fy has a minimizer in {x ∈ ℓ2(J) : x[i] = y[i], ∀i ∈ I∗}.
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Recall that the pseudo-inverse of W reads W̃ = (W ∗W )−1W ∗ whereW ∗ is the adjoint operator. More

details can be found in [34]. The assumption (22) is general enough for edge-preserving regularization.

It holds for all functions given in (17)-(20), as well as for (16) if α = 1.

Proof. Our proof is essentially inspired by [47]. For simplicity, we denote by K a positive constant whose

value can change from an equation to another.

Let {xn}n≥1 be a minimizing sequence for (21). Then

|Fy(xn)| ≤ K, ∀n ≥ 1, (24)

and using (22),

K ≥
∫

Ω

ϕ(|∇W̃xn| ds) ≥
∫

Ω

|∇W̃xn| ds− a|Ω|, ∀n ≥ 1.

Combining this with the fact that Ω is bounded shows that

∫

Ω

|∇W̃xn| ds ≤ K, ∀n ≥ 1. (25)

From (24) yet again,
∣∣∣DsW̃xn

∣∣∣ (Ω) ≤ K, for all n ≥ 1, which combined with (25) shows that

∣∣∣DW̃xn

∣∣∣ (Ω) ≤ K, ∀n ≥ 1. (26)

Let χΩ denote the characteristic function of Ω. Put

c =
1

|Ω|

(∫

Ω

W̃xn

)
χΩ.

Notice that c is independent of n since the mean of W̃xn is fixed by the model (wi has zero mean for all

i ∈ I∗). Using the Poincaré-Wirtinger inequality,

‖W̃xn − c‖Lp(Ω) ≤ K, where p = 2 if d = 1 and p =
d

d− 1
if d ≥ 2.

Since Ω is bounded, we have ‖W̃xn‖Lp(Ω) ≤ K, and hence,

‖W̃xn‖L1(Ω) ≤ K.

It follows from (26) and the latter equation that W̃xn ∈ BV and that

‖W̃xn‖BV ≤ K, ∀n ≥ 1. (27)

Then there exist u ∈ BV and a subsequence, denoted {xn} again, such that

W̃xn ⇀ u in Lp, (28)

DW̃xn ⇀ Du in w ∗M(Ω), (29)

where M(Ω) is the set of signed measures on Ω with bounded total variation. Since ϕ(| . |)(Ω) is weak∗
lower semicontinuous on M(Ω), we have

ϕ(|Du|)(Ω) ≤ lim
n→∞

inf ϕ(|DW̃xn|)(Ω). (30)
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Suppose that there exists x̂ ∈ {x ∈ ℓ2(J) : x[i] = y[i], ∀i ∈ I∗} such that

{
u = W̃ x̂,
xn[i] → x̂[i], ∀i ∈ I.

(31)

By Fatou’s Lemma, ∑

i∈I

λi |x̂[i] − yT [i]| ≤ lim
n→∞

inf
∑

i∈I

λi |xn[i] − yT [i]| .

Combining this result with (30) shows that

Fy(x̂) ≤ lim
n→∞

inf Fy(xn).

In the following we will show that if either (B) or (F) holds, there is an x̂ and a subsequence of {xn}
such that (31) is satisfied.

• Consider that (B) holds. Using (28) for p = 2, we can write that

〈W̃xn, wi〉 → 〈u,wi〉, ∀i ∈ I.

From (B)-1, 〈W̃xn, wi〉 = xn[i], for all i ∈ J . If we put x̂[i] = 〈u,wi〉, for every i ∈ J , the above

expression yields that

xn[i] → x̂[i], ∀i ∈ I. (32)

• Consider that the assumptions (F) hold. Based on (24),

K ≥
∑

i∈I

λi |xn[i] − yT [i]|

≥ λmin

∑

i

|xn[i] − yT [i]|

= λmin ‖xn − yT ‖ℓ1(I)

≥ λmin ‖xn − yT ‖ℓ2(I)

≥ λmin ‖xn‖ℓ2(I) − λmin ‖yT ‖ℓ2(I) .

Using (F)-3, we deduce that ‖xn‖ℓ2(I) ≤ K for all n ≥ 1. It follows that there are x̂ ∈ {x ∈ ℓ2(J) :

x[i] = y[i], ∀i ∈ I∗} and a subsequence, denoted {xn} again, so that

xn ⇀ x̂ in ℓ2(J). (33)

In particular, we have

xn[i] → x̂[i], ∀i ∈ J, (34)

(WW̃xn)[i] → (WW̃x̂)[i], ∀i ∈ J, (35)

since WW̃ is the orthogonal projection onto ImW . Using that by (F)-2, we have wi ∈ (Lp)
′

for

every i, (28) leads to

〈W̃xn, wi〉 → 〈u,wi〉 ∀i ∈ J, (36)

which is equivalent to

(WW̃xn)[i] → (Wu) [i], ∀i ∈ J.
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From the last two results,

WW̃x̂ = Wu.

Then

W̃ x̂ = W̃WW̃ x̂ = W̃Wu = u.

⋄

Remark 2 In the case of a signal or an image (d = 1 or 2, respectively), assumptions (B)-(F) boil down

to write that either {wi}i∈J is a Riesz basis of L2(Ω) or λmin > 0.

Remark 3 In the case of frames, assumption (F)-2 saying that wi ∈ Ld(Ω) is usually satisfied since in

practice wi ∈ L∞(Ω) ∪BV (Ω).

3.2 Uniqueness

The following theorem applies eather when Ω is finite or when Ω and Fy are as in Theorem 1.

Theorem 2 Suppose ϕ is convex. If x̂1 and x̂2 are two minimizers of Fy, then

∇W̃ x̂1 ∝ ∇W̃ x̂2, a.e. on Ω. (37)

Moreover, if ϕ is strictly convex, then

∇W̃ x̂1 = ∇W̃ x̂2, a.e. on Ω. (38)

Before to prove the theorem, we comment its meaning in the situations where any solution û = W̃ x̂

is smooth (e.g. J is finite and W̃ is smooth). In these cases Dû = ∇û, so (37) or (38) hold everywhere

on Ω. As the gradient of an image at any point is orthogonal to the level line passing through this point,

Theorem 2 means that W̃ x̂1 and W̃ x̂2 have the same level lines. In other words, these two images are

obtained one from another by a local change of contrast. Noticing also that in practice
∫
Ω
w̃i ds = 0, for

all i ∈ I, choosing ϕ strictly convex ensures that there is a unique smooth û = W̃ x̂.

Proof. Let us decompose Fy as follows:

Fy = G(x) +Hy(x),

where

G(x) =

∫

Ω

ϕ(|∇(W̃x)(s)|) ds, (39)

Hy(x) =
∑

i∈I1

λi |(x− y)[i]| +
∑

i∈I0

λi |x[i]| +
∣∣∣Ds(W̃x)

∣∣∣ (Ω). (40)

Since Fy is convex, (x̂1 + x̂2)/2 is a minimizer of Fy as well. We can write that

Fy

(
x̂1 + x̂2

2

)
=
Fy(x̂1) + Fy(x̂2)

2
. (41)

From the convexity of G and Hy,

G

(
x̂1 + x̂2

2

)
≤ G(x̂1) +G(x̂2)

2
,

Hy

(
x̂1 + x̂2

2

)
≤ Hy(x̂1) +Hy(x̂2)

2
.

10



If one of these inequalities is strict, (41) shows that the other inequality cannot be satisfied. It follows

that both inequalities are in fact equalities. In particular,

∫

Ω

ϕ

(∣∣∣∣∇
(
W̃
x̂1 + x̂2

2

)
(s)

∣∣∣∣
)
ds =

∫

Ω

ϕ(|∇(W̃ x̂1)(s)|) + ϕ(|∇(W̃ x̂2)(s)|)
2

ds. (42)

Using that ϕ is convex, the inequality below holds for almost every s ∈ Ω:

ϕ

(∣∣∣∣∇
(
W̃
x̂1 + x̂2

2

)
(s)

∣∣∣∣
)

≤ ϕ(|∇(W̃ x̂1)(s)|) + ϕ(|∇(W̃ x̂2)(s)|)
2

.

If the last inequality was strict on a subset of Ω of positive measure, we would find that the left-hand

side of (42) is strictly smaller than its right-hand side. We deduce that for almost every s ∈ Ω,

ϕ

(∣∣∣∣∇
(
W̃
x̂1 + x̂2

2

)
(s)

∣∣∣∣
)

=
1

2
ϕ(|∇(W̃ x̂1)(s)|) +

1

2
ϕ(|∇(W̃ x̂2)(s)|).

Using a triangular inequality,

∣∣∣∣∇
(
W̃
x̂1 + x̂2

2

)
(s)

∣∣∣∣ ≤

∣∣∣∇(W̃ x̂1)(s)
∣∣∣ +

∣∣∣∇(W̃ x̂2)(s)
∣∣∣

2
.

Using that ϕ is increasing, this entails that

ϕ

(∣∣∣∣∇
(
W̃
x̂1 + x̂2

2

)
(s)

∣∣∣∣
)

≤ ϕ

(
1

2

∣∣∣∇(W̃ x̂1)(s)
∣∣∣ +

1

2

∣∣∣∇(W̃ x̂2)(s)
∣∣∣
)

≤ 1

2
ϕ(|∇(W̃ x̂1)(s)|) +

1

2
ϕ(|∇(W̃ x̂2)(s)|) (43)

= ϕ

(∣∣∣∣∇
(
W̃
x̂1 + x̂2

2

)
(s)

∣∣∣∣
)
.

The above inequalities are therefore equalities. Using that ϕ is strictly increasing, it follows that for

almost every s ∈ Ω,
∣∣∣∇(W̃ x̂1)(s) + ∇(W̃ x̂2)(s)

∣∣∣ =
∣∣∣∇(W̃ x̂1)(s)

∣∣∣ +
∣∣∣∇(W̃ x̂2)(s)

∣∣∣ .

We conclude that, for almost every s ∈ Ω,

∇(W̃ x̂1)(s) ∝ ∇(W̃ x̂2)(s).

If ϕ is strictly convex, (43) leads to the result in (38). The proof is complete. ⋄

4 Rationale of the objective function

The function Fy in (21) belongs to the family

Fy(x) =
∑

i∈I1

ψi(|(x− y)[i]|) +
∑

i∈I0

ψi(|x[i]|) (44)

+ ϕ(|DW̃x|)(Ω),

where ψi : IR+ → IR+, i ∈ I0 ∪ I1 are C1, convex and increasing functions, and ϕ is convex as well, as

specified above. To simplify the presentation, we take ψi(0) = 0 for all i. The justification of the choice

we made in (21) relies on an analysis of the necessary and sufficient conditions for a minimum of Fy as

given in (44). Following [29], Fy reaches its minimum at x̂ if and only if 0 ∈ ∂Fy(x̂) where the set ∂Fy(x̂)

is the subdifferential of Fy at x̂. In our case, this condition yields
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• ∀i ∈ I1,

x̂[i] = y[i] ⇒ ∃g ∈ ∂iΦ(x̂) : |g| ≤ ψ′
i(0), (45)

x̂[i] 6= y[i] ⇒ −ψ′
i

(
|(x̂ − y)[i]|

)
sign

(
(x̂− y)[i]

)
∈ ∂iΦ(x̂), (46)

• ∀i ∈ I0,

x̂[i] = 0 ⇒ ∃g ∈ ∂iΦ(x̂) : |g| ≤ ψ′
i(0), (47)

x̂[i] 6= 0 ⇒ −ψ′
i(|x̂[i]|)sign

(
x̂[i]

)
∈ ∂iΦ(x̂), (48)

where ∂iΦ(x) is the subdifferential of Φ at x̂ on the subspace spanned by ei defined by

ei[i] = 1 and ei[j] = 0 if j 6= i.

Notice that these conditions for a minimum hold both for Fy smooth and nonsmooth. If Φ is differentiable

on a neighborhood of x in the direction of ei, then g = ∂iΦ(x) is the ith partial derivative, namely

∂iΦ(x) = ∂Φ/∂x[i] (x) =

∫

Ω

ϕ′(|∇W̃x|) (∇w̃i)
T ∇W̃x∣∣∣∇W̃x

∣∣∣
ds. (49)

For simplicity, in the expression above we consider that w̃i is differentiable. If t → ψi(|t|) are smooth

functions we have ψ′
i(0) = 0 for all i, in which case (45) and (47) become equalities. Let us emphasize

that the classical choice for ψi is ψi(t) = t2, for all i. The clue of our method concerns the choice of ψi

in (44). Below we derive a set of necessary conditions for ψi enabling the basic desiderata (G0 −G1) in

section 2 to be satisfied.

4.1 Restoration of large noisy coefficients (I1).

First we consider all coefficients y[i] for i ∈ I1 where I1 is defined by (11)-(12). Let us recall that

|y[i]| > T ⇔ i ∈ I1.

• Preservation of significant coefficients. Consider that for some i ∈ I1 we have

y[i] ≈ (W̃uo)[i].

In order to prevent û from erosion, a good choice for x̂[i] is certainly x̂[i] = y[i]. In words, x̂[i] is

required to satisfy (45) where we have ψ′
i(0) ≥ 0 because ψi is increasing on IR+. If it happens

that y[i] fits the prior in such a way that 0 ∈ ∂iΦ(x̂), then (45) holds for any ψi. However, having

0 ∈ ∂iΦ(x̂) along with x̂[i] = y[i] is a highly special case. It is enough to see this in the scalar case

when Fy : IR → IR+ reads Fy(x) = ψ(|x − y|) + ϕ(|wx|). If y 6= 0, the function x → ϕ(|wx|) is

differentiable on a neighborhood of y and the above requirement, namely 0 = ϕ′(|wy|), cannot be

satisfied when ϕ is convex and increasing on IR+. We can have x̂ = y only for y = 0. The general

situation corresponds to 0 6∈ ∂iΦ(x̂) if x̂[i] = y[i], hence a necessary condition enabling (45) to hold

is that the constant λi below,

λi = ψ′
i(0) (50)

satisfies λi > 0. Since all ψi are convex and ψi(0) = 0, this implies that

ψi(t) ≥ λit ∀t > 0. (51)
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• Suppression of outliers. The noise n being unbounded, for any choice of T in (13) we can have

highly corrupted coefficients y[i] for i ∈ I1 corresponding to

∣∣(Wuo)[i]
∣∣ ≪ T.

Any such y[i] bears no information on the true (Wuo)[i], so the best choice is that x̂[i] fits the prior

as well as possible. By (44) this will occur if the contribution of ψi to Fy is as small as possible.

Given that ψi satisfies (51), we are induced to choose

ψi(t) = λit for all t ≥ 0, (52)

where λi > 0.

4.2 Restoration of coefficients in I0.

Now we focus on all coefficients y[i] for i ∈ I0 where I0 is defined by (11). For reminder,

∣∣y[i]
∣∣ ≤ T ⇔ i ∈ I0.

These coefficients usually correspond to high-frequency components in the restored signal or image.

• Suppression of noise coefficients in I0. A pertinent choice of a frame means that we have a

sparse representation, that is

|(Wuo)[i]| ≈ 0,

for many coefficients i. Most of the relevant coefficients y[i] are likely to satisfy |y[i]
∣∣ ≤ T . For

all these coefficients, we claim that the most reasonable choice is x̂[i] = 0. If ψi = 0 on IR+

for all i ∈ I0, these coefficients will be restored according to the prior Φ, but then there is no

guarantee they are close to zero. The argument is that Φ promotes signals and arguments that

are locally homogeneous (or even locally constant in the case of TV regularization), separated by

edges. Unconstrained coefficients can hence yield spurious edges in regions where the gradient is

important, in order to break them into regions with a smaller gradient.

The above reasoning is illustrated in Fig. 1. The ramp-shaped data in (a) contain many coefficients

indexed by I0 (i.e. smaller than T ) as well as one outlier that gives rise to a wavelet-shaped artifact

in WyT . Both solutions in (b) correspond to the minimization of an F as given in (44) where

∀i ∈ I1 we take ψi(t) = λit with λi > 0, as proposed in § 4.1. Furthermore, the solution plotted

with a dashed line corresponds to ψi(t) = 0 on IR ∀i ∈ I0 while the solution plotted with a solid

line corresponds to ψi(t) = λit with λi =const> 0 ∀i ∈ I0 ∪ I1. As explained in § 4.1, this outlier

is restored in both solutions. However, the solution corresponding to ψi = 0, ∀i ∈ I0 exhibits a

spurious edge near the restored outlier and several coefficients indexed by I0 have large values. In

contrast, the solution corresponding to λi > 0, ∀i ∈ I0 pushes these coefficients to zero and thus

the continuity of the restored ramp is preserved.

Trivial necessary conditions enabling to keep null the noise coefficients in I0 are that for every i ∈ I0

we have

ψi(0) < ψi(t), ∀t > 0.

This, combined with the convexity of ψi yields

ψ′
i(t) > 0 ∀t > 0, ∀i ∈ I0. (53)
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(a) Noisy data (....) corresponding to an original slope (- - -) (b) Solution for λi = 0 for all i ∈ I0 (- - -);

and the solution WyT (—) obtained by hard thresholding. Solution for λi =const, ∀i ∈ I0 ∪ I1 (—-).

Figure 1: Data in (a) and restorations using (14) in (b).

• Suppression of Gibbs-like effect. Even if T in (13) is small compared to the optimal (5), we

can have coefficients y[i] for i ∈ I0 corresponding to large (Wuo)[i] whose magnitude is just below

T , i.e. ∣∣∣(Wuo)[i]
∣∣∣ <≈ T.

As mentioned in section 2, keeping x̂[i] = 0 would entail Gibbs-like oscillations in the restored û. A

reasonable choice for x̂[i] is certainly non-zero, in which case x̂[i] should be restored with the aid of

equation (48) and realize a good fit to the prior, in spite of the fact that ψ′
i(|x̂[i]|) > 0 according to

(53). Hence the requirements that the equation (48) holds, namely −ψ′
i(|x̂[i]|)sign(x̂[i]) ∈ ∂iΦ(x̂),

where ψ′
i(|x̂[i]|) > 0 remains close to zero even if x̂[i] has a large value. The latter requirement

suggests we fix ψ′
i(t) = λi > 0 for all t > 0 and finally

ψi(t) = λit ∀t ≥ 0, ∀i ∈ I0.

4.3 On the choice of ϕ

We have already explained in section 2 why ϕ must be a convex edge-preserving function as those given

in (16)-(20). For all of them, the function t → ϕ(|t|) is smooth (i.e. ϕ′(0) = 0), except for ϕ(t) = t

which corresponds to the total-variation regularization. The smoothness of t → ϕ(|t|) at the origin

has important consequences on the solution. Since [37, 38, 41], it is well known why the minimizers

corresponding to a non-smooth at zero t → ϕ(|t|) tend to be constant on some regions. Such a stair-

casing effect is undesirable in our context. This effect is weakened by our ℓ1 data-fidelity term since it

constrains many coefficients to fit exactly the data rather than the regularization term. Nevertheless,

each time we have “neighboring” outliers, corresponding to functions w̃i that address the same region of

u (i.e. whose supports overlap), the solution is again prone to exhibit stair-casing, especially in the case

of signals. This argument suggests a preference for functions ϕ satisfying ϕ′(0) = 0—for instance (17),

in which case t→ ϕ(|t|) can also be seen as a smooth approximation of |t|.
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5 Some practical properties of the solution

Let us focus on Fy as given in (14) where t → ϕ(|t|) can be either smooth or non-smooth at zero. The

conditions for a minimum presented in section 4 now have a simpler form:

• ∀i ∈ I1 x̂[i] = y[i] ⇒ ∃g ∈ ∂iΦ(x̂) : |g| ≤ λi, (54)

x̂[i] 6= y[i] ⇒ −λisign
(
(x̂− y)[i]

)
∈ ∂iΦ(x̂). (55)

• ∀i ∈ I0 x̂[i] = 0 ⇒ ∃g ∈ ∂iΦ(x̂) : |g| ≤ λi, (56)

x̂[i] 6= 0 ⇒ −λisign
(
x̂[i]

)
∈ ∂iΦ(x̂), (57)

where ∂iΦ(x)—the subdifferential of Φ at x̂ on the subspace spanned by ei—reads

∂iΦ(x) =

∫

Ω

ϕ′(|∇W̃x|) (∇w̃i)
T ∇W̃x∣∣∣∇W̃x

∣∣∣
ds+ ϕ′(0)

∫

Ωx

|∇w̃i| ds× [−1, 1], (58)

where Ωx is the complement of the support of ∇W̃x and we systematically define

∇u
|∇u| = 0 if ∇u = 0.

A detailed analysis of these formulas is contained in [2]. Notice that the second term in the expression

for ∂iΦ(x) is null if t→ ϕ(|t|) is smooth since then ϕ′(0) = 0.

5.1 Bounds for λi

Some orientations for the choice of λi can be derived from the conditions for minimum (54)-(57). The

next proposition gives a bound for λi over which the method boils down to a hard thresholding of the

coefficients.

Proposition 1 Let ϕ : IR+ → IR+ be convex, differentiable and satisfy (22). If λi >
∫
Ω |∇w̃i|ds then for

every y we have

x̂[i] =

{
y[i] if i ∈ I1
0 if i ∈ I0

Proof. From the assumptions on ϕ,

ϕ′(t) ≤ 1, ∀t ≥ 0. (59)

Hence the first term in (58) satisfies

∣∣∣∣∣∣

∫

Ω

ϕ′(|∇W̃x|) (∇w̃i)
T ∇W̃x∣∣∣∇W̃x

∣∣∣
ds

∣∣∣∣∣∣
≤

∫

Ω

∣∣∇w̃i

∣∣ds, ∀x.

Using (58) yet again,

sup
{
|g| : g ∈ ∂iΦ(x), ∀x

}
≤

∫

Ω

∣∣∇w̃i

∣∣ds.

It then follows that for every x,

g ∈ ∂iΦ(x) ⇒ |g| < λi.
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The conclusion is obtained with the aid of (54)-(57). ⋄
Conversely, if we wish that the coefficient x̂[i] can be restored at least for some noisy data, it is

necessary that

λi ≤
∫

Ω

|∇w̃i|ds, ∀i ∈ I0 ∪ I1. (60)

A qualitative argument explained next gives rise to a lower bound for λi. The minimizer x̂ of Fy can

also be expressed as

x̂ = lim
t→∞

xt

where for every t > 0,
dxt

dt
∈ −∂Fy(xt) (61)

and x0 =
∑

i∈I1
y[i]ei. We focus on a restricted regions of the signal or the image

∑
i∈I1

y[i]w̃i such that

there is an isolated outlier, say y[k] = δ0 > T . Locally, we can then assume that ∇W̃x0 ≈ δ0∇w̃k. By

the continuity of the evolution scheme (61), x0[k] = δ0 and xt[k] will be progressively smoothed as far

as t increases. It is reasonable to require that this evolution does not affect the neighboring coefficients

xt[i] (where i is such that suppw̃i ∩ suppw̃k is significant) since they are not outliers: we simply wish to

avoid the situation seen in Fig. 1(a). This means that 0 ∈ ∂iFy(xt), so that

λi + ϕ′(0)

∫

Ωx

|∇w̃i| ds ≥

∣∣∣∣∣∣

∫

Ω

ϕ′(∇W̃xt) (∇w̃i)
T ∇W̃xt∣∣∣∇W̃xt

∣∣∣
ds

∣∣∣∣∣∣

≈
∣∣∣∣
∫

Ω

ϕ′(δt|∇w̃k|) (∇w̃i)
T ∇w̃k

|∇w̃k|
ds

∣∣∣∣ .

While δt is large enough, we can say that ϕ′(δt|∇w̃k|) ≈ 1. This suggests it is reasonable to require that

∣∣∣∣
∫

Ω

(∇w̃i)
T ∇w̃k

|∇w̃k|
ds

∣∣∣∣ ≤ λi. (62)

Based on (60) and (62), parameters λi will be chosen in such a way that

∣∣∣∣
∫

Ω

∇w̃T
i

∇w̃k

|∇w̃k|
ds

∣∣∣∣ ≤ λi ≤
∫

Ω

|∇w̃i| ds, ∀k ∈ I \ {i}. (63)

Parameters when {wk} is a wavelet basis. We consider henceforth a wavelet basis generated by

2d − 1 mother wavelets wm, for m ∈ {1, . . . , 2d − 1}, with dual wavelets w̃m and defined on Ω ⊂ IRd.

Let j and κ denote the scale and the space (or time) parameters, respectively. In such a case, I is an

arrangement of all indexes (j, κ,m) and w̃k is of the form

w̃m
j,κ(s) = 2−

dj

2 w̃m(2−js− κ).

Using a change of variables, the upper bound in (63) is

∫

Ω

|∇(w̃m
j,κ)| ds = 2( d

2
−1)j

∫

Ω

|∇w̃m| ds.

This suggests we take, for i ∈ {0, 1},

λm
j,κ = 2(d

2
−1)jλm

i , ∀(j, κ,m) ∈ Ii,
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where ∣∣∣∣
∫

Ω

(∇(w̃m′

k,j))
T ∇w̃m

|∇w̃m| ds
∣∣∣∣ ≤ λm

i ≤
∫

Ω

|∇w̃m(s)| ds, ∀(j, κ,m′) 6= (0, 0,m).

More generally, for any frame {w̃i}i∈J , the parameters {λi} can be chosen proportionally to
∫
Ω
|∇w̃i(s)| ds.

We have observed that the minimizers x̂ of Fy are very stable with respect to the choice of the

parameters {λi}. This can be explained by the fact that since Fy is nonsmooth, minimizers x̂ are located

at “kinks” which are stable with respect to parameters and data.

5.2 An analytical example

Let 1l be a constant vector. Suppose that on a neighborhood of the index k, our input data yT , obtained

by (13), are of the form

yT = W1l + δek, (64)

where y[k] = δ > T is an outlier. The function denoised by hard-thresholding is

W̃yT = W̃W1l + δW̃ ek = 1l + δw̃k. (65)

Clearly, it contains an artifact with the shape of w̃k. This artifact can be suppressed if we choose the

total-variation regularization, as seen below.

Proposition 2 Let Fy be as in (14) where ϕ(t) = t and for every i ∈ I, (60) is satisfied. Consider that

yT reads as in (64). Then Fy reaches its minimum at

x̂ = W1l. (66)

Proof. For every i ∈ I we have

∂iΦ(x̂) =

∫

Ω

|∇w̃i|ds× [−1, 1].

For every i 6= k we can choose g = 0, then g ∈ ∂iΦ(x̂) and |g| ≤ λi, which show that (54) and (56) hold.

Applying (60) for λk shows that (55) holds as well. Hence 0 ∈ ∂iFy(x̂), for all i ∈ I. Then Fy reaches its

minimum at x̂. ⋄

When ϕ′(0) = 0 it is easy to see that ∂iΦ(W1l) = 0, for all i ∈ I which shows that ∂kΦ(W1l) 6= λk

and hence x̂ 6= W1l. Nevertheless, the artifact in (65) can be smoothed arbitrarily well if ϕ is a good

edge-preserving function. We will show that under mild conditions, the minimizer x̂ of Fy reads

x̂ = W1l + εw̃k, (67)

where ε satisfies ∫

Ω

ϕ′(|ε ∇w̃k|) |∇w̃k| ds = λk. (68)

It is important to notice that we have ε ≈ 0 if ϕ has a steep increase near to zero which is the case for

edge-preserving functions ϕ. E.g., when ϕ is of the form (17), we have ε =
√
α/C where C is the unique

solution of the equation ∫

Ω

|∇w̃k|2√
|∇w̃k|2 + C

ds = λk.
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Clearly, ε decreases to zero when αց 0. For ϕ of the form (16), the equation in (68) yields

αεα−1

∫

Ω

|∇w̃k|α = λk.

Then

ε =

(
λk

α
∫
Ω |∇w̃k|α

) 1

α−1

.

If we choose that the inequality in (60) is strict, then the term between the parentheses is strictly smaller

than 1. Then εց 0 if αց 1.

The assumption mentioned above is that
∣∣∣∣
∫

Ω

ϕ′(|ε ∇w̃k|) (∇w̃i)
T ∇w̃k

|∇w̃k|
ds

∣∣∣∣
<≈

∣∣∣∣
∫

Ω

(∇w̃i)
T ∇w̃k

|∇w̃k|
ds

∣∣∣∣ , ∀i 6= k, (69)

which is realist since ϕ′(t)
<≈ 1 when t is beyond a restricted neighborhood of zero. Let us now verify

that x̂ as given in (67) does indeed minimize Fy. We have

∂iΦ(x̂) =

∫

Ω

ϕ′(|ε ∇w̃k|) (∇w̃i)
T ∇w̃k

|∇w̃k|
ds.

Combining (69) and (63) shows that

|∂iΦ(x̂)| ≤ λi, ∀i 6= k,

so that (54) and (56) hold. The kth entry of x̂ is x̂[k] = ε since (68) is in fact the condition given in (55).

Hence Fy reaches its minimum at x̂ as given in (67).

6 Minimization schemes

For practical calculation, the signal or image u is defined on a discrete finite grid, so we can consider that

u ∈ IRp. The discrete equivalent of the regularization term ϕ in (15) reads

Φ(x) =

p∑

i=1

ϕ
(
|∇iW̃x|

)
, (70)

where for every u ∈ IRp, ∇iu ∈ IR2 is a discrete approximation of the gradient of u at i if
(
∇iu

)
[1] is the

difference between the pixel u[i] and its north adjacent neighbor and
(
∇iu

)
[2] is the difference between

u[i] and its left adjacent neighbor. When u is a signal, we can formally write that
(
∇iu

)
[2] = 0, for all i.

Let us also mention that the norm |.| in (70) is defined as

|z| =
√
z[1]2 + z[2]2, ∀z ∈ IR2. (71)

Then discrete equivalent of (58) is

∂iΦ(x) =
∑

j

ϕ′(|∇jW̃x|)
(
∇jw̃i

)T ∇jW̃x

|∇jW̃x|
.

The function Fy in (14) is non-smooth and several approaches can be envisaged for its minimization. The

subgradient descent scheme is quite easy to implement. Put x0 = yT and, for all k ∈ IN, compute

xk+1 = xk − tkgk,
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where gk is a subgradient of Fy at xk and tk > 0. Using classical results on minimization methods (see

[43]), we can prove that, if limk→∞ tk = 0 and
∑∞

k=0 tk = ∞, then

lim
k→∞

xk = x̂.

A better alternative is the adaptive level-set method proposed in [20].

Instead, we focus on a relaxation-based method, proposed in [40], which is properly adapted to ℓ1

data-fidelity terms as those involved in (14), even if it requires that the regularization Φ is smooth. The

main interest of this method is the facility to recover the components i of I1 such that x̂i = yi and the

components i of I0 satisfying x̂[i] = 0, as well as the relative easiness of implementation.

Let x0 = yT be the starting point. As each iteration k = 1, 2, ..., the new iterate xk is obtained from

xk−1 by updating successively each one of its components xk[i] using one-dimensional minimization. Let

the solution obtained at step i− 1 of iteration k read

(xk[1], . . . , xk[i− 1], xk−1[i], . . . , xk−1[p]).

The new entry xk[i] is determined according to the following rule:

• if i ∈ I1, compute

K = ∂iΦ
(
xk[1], . . . , xk[i− 1], y[i], xk−1[i+ 1], . . . , xk−1[p]

)
(72)

– if |K| < λi then xk[i] = y[i]

– else xk[i] is the unique solution of the equation in t

∂iΦ
(
xk[1], . . . , xk[i− 1], t, xk−1[i+ 1], . . . , xk−1[p]

)
= λisign(K) (73)

where we know that sign(xk[i] − y[i]) = −sign(K)

• if i ∈ I0, compute

K = ∂iΦ
(
xk[1], . . . , xk[i− 1], 0, xk−1[i+ 1], . . . , xk−1[p]

)
(74)

– if |K| < λi then xk[i] = 0

– else xk[i] is the unique solution of the equation

∂iΦ
(
xk[1], . . . , xk[i− 1], t, xk−1[i+ 1], . . . , xk−1[p]

)
= λisign(K) (75)

where it is known that sign(xk[i]) = −sign(K)

Observe that the components x[i]k that fit exactly the data (i.e. x[i]k = y[i] for i ∈ I1 and x[i]k = 0

for i ∈ I0) are easily found by checking only the sign of an inequality. Their computation is hence

very accurate. Moreover, in practice most of the components of the solution fit exactly the data-fidelity

term. Conversely, at each iteration, most of the components are easily and accurately found. The other

components, corresponding to (73) and (75), are obtained using one-dimensional line-search. Here, the

knowing of the sign of sign(xk[i] − y[i]) and sign(xk[i]) constitutes an important simplification. The

finding of these signs uses the fact that since Φ is convex, the function Si given below

Si(t) = ∂iΦ
(
xk[1], . . . , xk[i− 1], t, xk−1[i+ 1], . . . , xk−1[p]

)
, ∀t ∈ IR,
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is monotonous increasing on IR. Consider that xk[i], i ∈ I1, has to satisfy (46). Then x̂[i] 6= y[i]. Consider

first that

xk[i] > y[i],

in which case Si(x
k[i]) ≥ Si(y[i]). The equation in (46) now reads λi + Si(x

k[i]) = 0, hence we can write

Si(y[i]) ≤ Si(x
k[i]) < 0.

The result follows from the observation that K in (72) satisfies K = Si(y[i]). The case when xk[i] < y[i]

in established in a symmetric way. The reasoning in the case when xk[i], i ∈ I0, has to satisfy (75) is

basically the same, so we skip it. The convergence of xk towards x̂ has been established in [40].

If Φ corresponds to a TV regularization, we have to take a smooth approximation of it—for instance

ϕ(t) =
√
t2 + α for α

>≈ 0—in order to apply the method above. An alternative that allows to use TV

regularization without smooth approximation is the method proposed in [26, 13]. Let us notice that the

implementation of the last method is tricky.

7 Experiments

7.1 Denoising of a signal

We consider the restoration of the 512-length original signal in Fig. 2 from the data shown there,

contaminated with white Gaussian noise with standard deviation σ = 10. The restoration in Fig. 3 is

obtained using the sure-shrink method [23] and the toolbox WaveLab. The result displayed in Fig. 4 is

the minimizer of a function Fv of the form (1) where ϕ is as given in (17), for α = 0.1 and λ = 0.01.

Smooth zones are rough, edges are slightly smoothed and spikes are eroded, while some diffused noise is

still visible on the signal.

The restorations presented next are based on wavelet coefficients where W is an orthogonal basis of

Daubechies wavelets with 8 vanishing moments and thresholded data yT are obtained according to (13).

The optimal T , as given in (5), reads T = 35. The wavelet-thresholding estimate W̃yT is shown in Fig. 5.

It involves important Gibbs artifacts, as well as wavelet-shaped oscillations due to aberrant coefficients.

Using the same coefficients yT , we calculated the minimizer x̂ of Fy as given in (14) where ϕ is as given

in (17), α = 0.05, λj,κ = 0.5 × 2−j/2 if (j, κ) ∈ I0 and λj,κ = 1.5 × 2−j/2 if (j, κ) ∈ I1. The resultant

restoration û = W̃ x̂, shown in Fig. 6, involves sharp edges and well denoised smooth pieces.

The noisy signal v is also restored by translation invariant wavelet thresholding with optimal threshold

T = 35. The obtained result is displayed in Fig. 7. Comparing to the signal restored with decimated

wavelets shown in Fig. 5, we observe that wavelet shaped artifacts and Gibbs oscillations are reduced,

but they remain still well visible.

We show in Fig. 8 the minimizer obtained with the model given in (7) for µi = 30, ∀i ∈ J . Recall

that for large µi, spikes are oversmoothed, while if µi is too small, aberrant coefficients are not properly

restored. Both artifacts are visible on the displayed signal which corresponds to an intermediate choice

for µi.

Next we consider yT , obtained by (13) for T = 23. These coefficients have a richer information

content, but the relevant estimate W̃yT , seen in Fig. 9, manifests Gibbs artifacts and many wavelet-

shaped artifacts. Below we compare restorations where Fy is of the form (44) for different choices of ψi. In

spite of the considerations developed in section 4, it seems intuitive to take ψj,κ(t) = λj,κt
2 in (44). Such
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Figure 2: Original signal (dotted line) and noisy data (solid line).

1 250 500

0

100

Figure 3: Denoising using the Donoho-Johnstone’s Sure-shrink method.

a restoration is displayed in Fig. 10 where α = 0.05 λj,κ = 0.1 if (j, κ) ∈ I0, and λj,κ = 0.2 if (j, κ) ∈ I1.

The Gibbs oscillations are well removed but, because of the quadratic form of ψj,κ for (j, κ) ∈ I1, outliers

overcontribute to Fy and biases the estimate. Another possibility which may seem reasonable is to cancel

the term indexed by I0, i.e. to consider ψj,κ(t) = 0 for (j, κ) ∈ I0. The result can be seen in Fig. 11

where ψj,κ(t) = 0.2 t for all (j, κ) ∈ I1 and α = 0.05. Once again, the thresholded coefficients are well

restored but we observe that leaving too much freedom to these coefficients prevents the method from

removing the outliers efficiently. Fig. 12 illustrates the proposed method: Fy is of the form (14) with ϕ

as given in (17), and the same parameters as in Fig. 6, namely α = 0.05, λj,κ = 0.5× 2−j/2 if (j, κ) ∈ I0

and λj,κ = 1.5 × 2−j/2 if (j, κ) ∈ I1. In this restoration, edges are neat and polynomial parts are well

recovered. Fig. 10 illustrates how restored coefficients x̂ are placed with respect to yT and the coefficients

of the original signal Wuo. In particular, we observe how erroneously thresholded coefficients are restored

and how outliers are smoothed.
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Figure 4: Denoising by minimizing Fv as given in (1) where ϕ(t) =
√

0.05 + t2 and λ = 0.01.
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Figure 5: Denoising using wavelets thresholding with Donoho-Johnstone’s optimal threshold T = 35.
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Figure 6: Denoising by restoration of the wavelet coefficients relevant to Fig. 5 using Fy in (14) with
ϕ(t) =

√
0.05 + t2, λj,κ = 0.5 × 2−j/2 if (j, κ) ∈ I0, λj,κ = 1.5 × 2−j/2 if (j, κ) ∈ I1.
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Figure 7: Denoising by translation invariant wavelets thresholding with Donoho-Johnstone’s optimal
threshold T = 35.

1 200 500

−50

0

100

Figure 8: Denoising using (7) with ϕ(t) =
√

0.05 + t2 and µi = 30.
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Figure 9: Denoising using wavelets thresholding with an under-optimal threshold T = 23.
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Figure 10: Restoration of the wavelet coefficients relevant to Fig. 9 by minimizing Fy in (44) with
ϕ(t) =

√
0.05 + t2, ψi(t)=0.1t2 if i∈I0 and ψi(t)=0.2t2 if i∈I1.
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Figure 11: Restoration of Fig. 9 using Fy in (44) where ϕ(t) =
√

0.05 + t2, ψi(t) = 0 if i ∈ I0 and
ψi(t) = 0.2t if i ∈ I1.
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Figure 12: The proposed method: restoration of Fig. 9 using Fy in (14) with ϕ(t) =
√

0.05 + t2,
λj,κ = 0.5 × 2−j/2 if (j, κ) ∈ I0 and λj,κ = 1.5 × 2−j/2 if (j, κ) ∈ I1.

410 425

23

50

Figure 13: Magnitude of wavelet coefficients: ∗ signal restored by the proposed method (Fig. 9), ◦
original signal, × thresholded noisy signal (Fig. 6).
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7.2 Denoising of an image

In this experiment we consider the denoising of the 256×256 picture of Lena, Fig. 14 (a), from noisy data

obtained by adding white Gaussian noise with standard deviation 20. The restoration in Fig. 15 (a) is

obtained by thresholding the wavelet coefficients, see (13), with respect to Donoho-Johnstone’s threshold,

given in (5), which now reads T = 100. This image is very smooth, a lot of details are lost, and Gibbs

oscillations are visible near the edges. In Fig. 15 (b) we show the result from total-variation restoration

which corresponds to Fv of the form (1) with ϕ(t) = t and λ = 0.03. As expected, this restoration

exhibits a stair-casing effect since it is constant on many regions. The image in Fig. 16 (a) is obtained by

thresholding the wavelet coefficients with respect to T = 50. This T is smaller than Donoho-Johnstone’s

threshold and the image presents many wavelet-shaped oscillations due to aberrant wavelet coefficients,

as well as some Gibbs oscillations. It is used as input data for the specialized objective function Fy given

in (14), where ϕ is as given in (17). The restoration in Fig. 16 (b) is obtained for λi = 0.5 if i ∈ I0,

λi = 1.5 if i ∈ I0. This image has a quite natural appearance, and edges and texture are better preserved.

The numerical cost of variational methods become a real burden when images have a large size. In

order to circumvent this problem, we have tested an approximation of the proposed method. Let yT be

the wavelet transform of the thresholded image. According to (45), the minimizer x̂ of Fy satisfy

|∂iΦ(x̂)| ≤ λi, ∀i ∈ I1.

The idea of this approximation is to test for every i ∈ I1 whether or not |∂iΦ(yT )| > λi. If |∂iΦ(yT )| ≤ λi,

we take simply x̂[i] = yT [i]. Otherwise, if |∂iΦ(yT )| > λi, we consider that yT [i] is an outlier. To restore

such an outlier, we can take for the relevant x̂[i] either the median or the mean of the neighboring

coefficients at the same scale. When outliers arise in homogeneous regions, we can just set x̂[i] = 0. The

Gibbs oscillations are not considered in this approximated method, so we have x̂[i] = yT [i] = 0 for all

i ∈ I0. The image obtained by this method for T = 50 and λi = 5 for all i ∈ I1, is displayed on Fig. 17 (a).

Let us emphasize that the image of the error vτ−û, presented in Fig. 17 (b), exhibits the oscillations due to

aberrant wavelet coefficients and that it does not present any structural information. This approximated

method being computationally fast, it can be extended to translation invariant wavelets [18]. In Fig.

18 (a) we show the restoration obtained by the standard translation invariant wavelets thresholding,

corresponding to T = 50 again. Although its quality is improved with respect to the image in Fig. 16 (a),

it involves a lot of wavelet-shaped artifacts. This image is used as input data to our fast approximated

method. The obtained restoration, shown in Fig. 18 (b), is of high quality, since edges and details are

nicely recovered.

8 Conclusion

We proposed a method to denoise images and signals by restoring the thresholded frame coefficients of the

noisy data. The restored coefficients minimize a specially designed objective function which allows the

erroneously thresholded coefficients to be restored and the outliers to be removed, without substantially

modifying the remaining coefficients. Our method is not sensitive to the probability distribution of

the noise. We present numerical experiments with orthogonal bases of Daubechies wavelets. These

experiments demonstrate the effectiveness of our method over alternative denoising methods.
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(a) Original image. (b) Noisy image.

Figure 14: Original and noisy images.

(a) Wavelets thresholding with (b) Total-variation restoration:
the optimal thereshold T = 100. Fv as in (1) with ϕ(t) = t.

Figure 15: Classical denoising methods.

(a) Wavelets thresholding (b) Restoration of (a) by the
with T = 50 proposed method (ϕ(t) = t)

Figure 16: The proposed method.
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(a) Restoration of Fig. 16 (a) (b) Outliers detected
by the fast method by the fast method

Figure 17: Fast approximation of the proposed method.

(a) Translation invariant (b) Fast method adapted to
wavelet thresholding (T =50) translation invariant wavelets

Figure 18: Translation invariant wavelets.
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[16] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, Deterministic edge-preserving regularization in
computed imaging, IEEE Transactions on Image Processing, 6 (1997), pp. 298–311.

[17] A. Cohen, R. DeVore, P. Petrushev, and H. Xu, Nonlinear approximation and the space BV(IR2), American
Journal of Mathematics, 121 (1999).

[18] R. R. Coifman and D. Donoho, Translation-invariant de-noising, Tech. Report Report 475, Stanford University,
Dept. of Statistics, 1995.

[19] R. R. Coifman and A. Sowa, Combining the calculus of variations and wavelets for image enhancement, Applied
and Computational Harmonic Analysis, 9 (2000).

[20] P. Combettes and J. Luo, An adaptive level set method for nondifferentiable constrained image recovery, IEEE
Transactions on Image Processing, 11 (2002), pp. 1295–1304.

[21] G. Demoment, Image reconstruction and restoration : Overview of common estimation structure and problems, IEEE
Transactions on Acoustics Speech and Signal Processing, ASSP-37 (1989), pp. 2024–2036.

[22] D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81 (1994), pp. 425–455.

[23] , Adapting to unknown smoothness via wavelet shrinkage, Journal of Acoustical Society America, 90 (1995).

[24] S. Durand and J. Froment, Reconstruction of wavelet coefficients using total variation minimization, SIAM Journal
on Scientific Computing, 24 (2003), pp. 1754–1767.

[25] J. Froment and S. Durand, Artifact free signal denoising with wavelets, in Proceedings of the IEEE Int. Conf. on
Acoustics, Speech and Signal Processing, vol. 6, 2001.

[26] H. Fu, M. Ng, Michael K.and Nikolova, and J. L. Barlow, Efficient minimization methods of mixed ℓ1 − ℓl and
ℓ2 − ℓ1 norms for image restoration, SIAM Journal on Scientific Computing, 27 (2005), pp. 1881–1902.

[27] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-6 (1984), pp. 721–741.

[28] P. J. Green, Bayesian reconstructions from emission tomography data using a modified em algorithm, IEEE Trans-
actions on Medical Imaging, MI-9 (1990), pp. 84–93.

29
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(1997), pp. 665–670.

[38] , Local strong homogeneity of a regularized estimator, SIAM Journal on Applied Mathematics, 61 (2000), pp. 633–
658.

[39] , Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers,
SIAM Journal on Numerical Analysis, 40 (2002), pp. 965–994.

[40] , A variational approach to remove outliers and impulse noise, Journal of Mathematical Imaging and Vision, 20
(2004).

[41] W. Ring, Structural properties of solutions of total variation regularization problems, ESSAIM: Mathematical Mod-
elling and Numerical Analysis, 34 (2000), pp. 799–810.

[42] L. Rudin, S. Osher, and C. Fatemi, Nonlinear total variation based noise removal algorithm, Physica, 60 D (1992),
pp. 259–268.

[43] N. Z. Shor, Minimization Methods for Non-Differentiable Functions, vol. 3, Springer-Verlag, 1985.

[44] E. P. Simoncelli and E. H. Adelson, Noise removal via Bayesian wavelet coding, in Proceedings of the IEEE
International Conference on Image Processing, Lausanne, Switzerland, Sep. 1996, pp. 379–382.
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