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Abstract

We address the denoising of images contaminated with multiplicative noise, e.g. speckle noise.
Classical ways to solve such problems are filtering, statistical (Bayesian) methods, variational meth-
ods, and methods that convert the multiplicative noise into additive noise (using a logarithmic func-
tion), apply a variational method on the log data or shrink their coefficients in a frame (e.g. a wavelet
basis), and transform back the result using an exponential function.

We propose a method composed of several stages: we use the log-image data and apply a reason-
able under-optimal hard-thresholding on its curvelet transform; then we apply a variational method
where we minimize a specialized hybrid criterion composed of an ℓ

1 data-fidelity to the thresholded
coefficients and a Total Variation regularization (TV) term in the log-image domain; the restored
image is an exponential of the obtained minimizer, weighted in a such way that the mean of the
original image is preserved. Our restored images combine the advantages of shrinkage and variational
methods and avoid their main drawbacks. Theoretical results on our hybrid criterion are presented.
For the minimization stage, we propose a properly adapted fast scheme based on Douglas-Rachford
splitting. The existence of a minimizer of our specialized criterion being proven, we demonstrate the
convergence of the minimization scheme. The obtained numerical results clearly outperform the main
alternative methods especially for images containing tricky geometrical structures.

1 Introduction

In various active imaging systems, such as synthetic aperture radar (SAR), laser or ultrasound imaging,

the data representing the underlying (unknown image) So : Ω → R+, Ω ⊂ R
2, are corrupted with

multiplicative noise. Such a noise severely degrades the image (see Fig. 2(a)-(b) as well as the noisy

images in section 6). In order to increase the chance to restore a better image, several independent

measurements for the same scene should be realized, thus yielding a set of data:

Σk = So ηk + nk, ∀k ∈ {1, · · · ,K}, K ≥ 1, (1)

where ηk : Ω → R+, and nk represent the multiplicative and the additive noise relevant to each mea-

surement k. The additive noise nk has usually a very weak effect and is systematically neglected in
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Figure 1: Noise distributions: K = 1 in (a), (b), (c) and K = 10 in (d), (e), (f). In (c) and (f) W is a
curvelet frame. Hist in (c) and (f) stands for histogram.

the literature. A commonly used realistic model for the distribution of ηk is the one-sided exponential

distribution, shown in Fig. 1(a):

ηk : pdf(ηk) = µ e−µηk 1lR+
(ηk) where 1lR+

(t)
def
=

{
1 if t ≥ 0,
0 otherwise.

(2)

The data used for denoising is the average of the set of all K measurements that could be realized (see

e.g. Fig. 2(b)). In classical SAR modeling one takes1 µ = 1 in (2), so the usual data production model

reads (see e.g. [3, 67,68,72] among many other references):

Σ =
1

K

K∑

k=1

Σk = So
1

K

K∑

k=1

ηk = So η . (3)

Since all ηk are independent, the resultant mean of the multiplicative noise η in (3) follows a Gamma

distribution, see Fig. 1(d) for K = 10:

η =
1

K

K∑

k=1

ηk : pdf(η) =
KKηK−1

Γ(K)
e−Kη, (4)

where Γ is the usual Gamma-function and pdf stands for probability density function.

Conversion of the multiplicative noise into additive noise. A large variety of methods—references

are given in § 1.1—rely on the conversion of the multiplicative noise into additive noise using

v = log Σ = logSo + log η = uo + n. (5)

In this case the probability density function of n reads (see Fig. 1(b)-(e)):

n = log η : pdf(n) =
KKeK(n−en)

Γ(K)
. (6)

In our experiments, we will consider noisy images for K = 1 (see e.g. Fig. 2(a)), in which case pdf(η)

and pdf(n) are trivial to derive from (4) and (6).

1.1 Preexisting restoration methods

Various adaptive filters for multiplicative noise removal have been proposed, see e.g. [41,73] and references

therein. Experiments have shown that filtering methods work well when the multiplicative noise is weak,

i.e. when K is large. However, in practice it is seldom possible to get a large K.

1Taking µ 6= 1 just amounts to re-scale S by µ.
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1.1.1 Bayesian MAP, regulrization and variational methods

Even though the methods belonging to this class are inspired by different motivations, it is well known

that given v, the general approach define the restored function û as

û = argmin
u

Fv(u),

where u is defined on a continuous or a finite domain Ω ⊂ R
2, Fv is a criterion combining data-fidelity

Ψ with priors (regularization) Φ balanced via a parameter ρ > 0:

Fv(u) = ρΨ(u) + Φ(u) for





Ψ(u) =

∫

Ω

ψ
(
u(ξ), v(ξ)

)
dξ,

Φ(u) =

∫

Ω

φ(|∇u(ξ)|) dξ,
ξ = (ξ1, ξ2) ∈ Ω. (7)

In what follows, the overscript “ .̂ ” denotes a minimizer of a given criterion and when there is no

ambiguity, the corresponding restored image. In (7), ψ : R+ → R+ assesses closeness to data, ∇ stands

for gradient (possibly in a distributional sense or a discrete approximation when Ω is finite), φ : R+ → R+

is an increasing function modeling the prior on |∇u| and | · | is a norm on the gradient field. Rudin, Osher

and Fatemi [61] proved that when Ω is finite, φ(t) = t yields solutions û that preserve edges. The resultant

(prior) regularization term, known as Total Variation (TV), is very popular. It reads

‖u‖TV
def
=

∫

Ω

|∇u(ξ)| dξ,

where |∇u| =
√

(∂u/∂ξ1)2 + (∂u/∂ξ2)2.

Next we sketch the main modern MAP or variational methods that were used for multiplicative noise

removal. Such methods were applied to raw-data (3)-(4) as well as to log-data (5)-(6). In [4], the authors

develop a Bayesian MAP estimator on the log-image where the data-fitting term Ψ is derived from (6)

and a specially designed prior term. The method of Aubert-Aujol (AA) [8] uses the raw data (3)-(4) and

Ψ is the log-likelihood derived from (4). The criterion reads

(AA) FΣ(S) = ρ

∫ (
logS(ξ) +

Σ(ξ)

S(ξ)

)
dξ + ‖S‖TV. (8)

The method proposed in [40] combines the log-likelihood associated to (6) and a smoothed TV regular-

ization. A simple and fast method using graph-cut minimization is proposed in [29].

The methods in [59, 60] consider white Gaussian multiplicative noise with mean 1 and a very small

variance. In [60], Rudin Lions and Osher (RLO) minimize a criterion of the form

FΣ(S) = ρ

∥∥∥∥
Σ

S
− 1

∥∥∥∥
2

2

+ ‖S‖TV . (9)

The methods proposed by Shi and Osher (SO) in [62] deal with various noises and provide iterative TV

regularization using relaxed inverse scale space (RISS) flows. The first one uses the log-data v and is

based on the criterion Fv(u) = ρ‖u− v‖2
2 + ‖u‖TV. The corresponding RISS flow reads

(SO)
ut = div

(
∇u

|∇u|

)
+ ρ(v − u+ v),

vt = α(v − u), α > 0, with v0 = 0 and u0 = mean(v).

(10)
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The second one generalizes several multiplicative noise models in the image domain [8, 28, 60] and the

RISS flow uses iterative TV regularization on exp (S) for convergence reasons. According to the authors,

both methods provide similar solution qualities. We focus on the first one mainly because of its simplicity.

Whatever smooth data-fidelity is chosen, it was proven [49, 52] that TV regularization yields images

containing numerous constant regions (the well known stair-casing effect), hence textures and fine de-

tails are removed; this is clearly visible in the restorations obtained using these methods as reported

in section 6. The results of [61] initiated a flood of papers to construct smooth edge-preserving convex

functions φ, see e.g. [2, 21, 69], and [9] for a recent overview. Even though smoothness at zero alleviates

stair-casing, it was proven in [53] that these functions φ lead to images with underestimated edges. This

is particularly annoying if the sought-after image has neat edges or spiky features since the latter are

eroded. Nevertheless, the good point is that these methods enable the introduction of priors in the image

domain.

1.1.2 Multiscale shrinkage for the log-data

Many authors—e.g. [3,5,37,55,72] and references therein—focus on restoring the log-data v in (5) using

decompositions into some multiscale frame for L2(R2). Let us remind that the analysis operator W of a

frame W =
{
wi : i ∈ I

}
, where I is a set of indices, i.e. (Wz)[i] = 〈z, wi〉, ∀i ∈ I, satisfies the generalized

Parseval condition c1 ‖z‖2
2 ≤

∑
i∈I |〈z, wi〉|

2 ≤ c2 ‖z‖2
2, ∀z ∈ L2(R2), where c2 ≥ c1 > 0 are the frame

bounds. When c1 = c2, the frame is said to be tight. In particular W can be a wavelet basis. The frame

is chosen so that uo admits a sparse representation, i.e. uo ≈
∑
i∈J ζiwi for some ζi ∈ R with #J ≪ #I.

The usual strategy is to decompose the log-data v into an well-adapted W :

y = Wv = Wuo +Wn . (11)

The rationale is that the noise Wn in y approaches a Gaussian distribution—see Figs. 1(c) and (f)—

according to the Central Limit Theorem. The tendency to normality gets better as K increases. Under

different frameworks, coefficients are denoised using shrinkage estimators:

yT [i] = T
(
(Wv)[i]

)
, ∀i ∈ I, (12)

where T : R → R is a symmetric function satisfying 0 ≤ T (t) ≤ t, ∀t ≥ 0. The most widely used examples

are soft and hard thresholding inaugurated in [30], and are given in (16) and (36) later on. Since then,

various shrinkage functions T have been explored, e.g. [6, 11, 31, 47, 64, 70] to name only a few. See also

those derived in a Bayesian framework and applied to multiplicative noise removal e.g. in [3, 5, 72].

Let W̃ = {w̃i : i ∈ I} be a dual frame. The associated dual operator W̃ : y 7→
∑
i∈I y[i] w̃i is a left

inverse of W , that is v =
∑
i∈I(Wv)[i] w̃i. Then a denoised log-image vT is generated by expanding the

shrunk coefficients yT in the dual frame reads

vT =
∑

i∈I

T ((Wv)[i]) w̃i =
∑

i∈I

T (y[i]) w̃i, (13)

and the sought-after image reads ST = exp(vT ).

The major problems with shrinkage denoising methods, as sketched in (12)-(13), is that shrinking

large coefficients entails an erosion of the spiky image features, while shrinking small coefficients towards
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zero yields Gibbs-like oscillations in the vicinity of edges and a loss of texture information. On the

other hand, if shrinkage is not strong enough, some coefficients bearing mainly noise will remain almost

unchanged—we call such coefficients outliers—and (13) suggests they generate artifacts with the shape

of the functions w̃i. An illustration can be seen in Fig. 2(b-h). Several improvements, such as translation

invariant thresholding [23] and block-Stein thresholding (BS) [22], were brought in order to alleviate these

artifacts. Results obtained using the BS method are presented in section 6: the above mentioned artifacts

remain visible. Another inherent difficulty comes from the fact that coefficients between different scales

are not independent, as usually assumed, see e.g. [7,11,47,63]. In summary, as shrinkage-based estimation

relies on sparsity of the representation, it is able to capture efficiently faint structures in the image. But

this comes at the price of an intricate choice of the shrinkage function and the associated parameters

(e.g. threshold).

1.2 Our approach is hybrid

We initially restore the log-data (5) and then derive the restored image Ŝ. Our objective is to avoid the

main drawbacks of variational and sparsity-based shrinkage methods and to take benefit of the best of both

worlds. A way to achieve such a goal is to combine the information brought by the coefficients of the

frame-transformed data along with pertinent regularization in the domain of the log-image. This idea for

the purpose of additive Gaussian noise removal have been investigated in several papers [13,15,20,24,33,

36,44,45].

Although guided by different arguments, hybrid methods amount to define the restored function û as

û ∈ argmin
u

Φ(u) subject to |(W (u− v)) [i]| ≤ µi, ∀i ∈ I .

If the use of an edge-preserving regularization, such as TV for Φ is a pertinent choice, the strategy for

the selection of parameters (µi)i∈I is more tricky since it must take into account the magnitude of the

data coefficients (y[i])i∈I . However, deciding on the value of µi based solely on y[i], as done in these

papers, is too rigid since there are either correct data coefficients that incur smoothing (µi > 0), or noisy

coefficients that are left unchanged (µi = 0). A way to deal with this situation is to determine (µi)i∈I

based both on the data and on the prior term Φ. According to the theoretical results derived in [50,51],

this objective can be carried out by defining a non-smooth data-fitting term for the coefficients, as done

by some of the authors of this paper in [32] which gave rise to very successful numerical results.

To the best of our knowledge, hybrid methods have never been applied to multiplicative noise removal

before, whereas the latter is a challenging problem: it arises in important applications but up to now, there is

no entirely satisfactory methods to solve it.

We propose a method where the restored log-image û is defined as the minimizer of a criterion

composed of an ℓ1-fitting to the (suboptimally) hard-thresholded frame coefficients of the log-data and

a TV regularization in the log-image domain (section 2). The rationale behind this choice and several

theoretical properties are presented as well. This method uses some ideas from a previous work of some

of the authors [32]. The minimization scheme to compute the log-restored image uses a Douglas-Rachford

splitting scheme specially adapted to our criterion (section 3). It involves original derivations and proofs.

The sought-after image is of the form B exp (û) where B is a bias-correction term derived from the noise
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distribution (section 4). The full algorithm to remove multiplicative noise is summarized in section 5. A

large variety of experiments and comparisons to other contemporary multiplicative noise removal methods

are presented in section 6. Concluding remarks and open questions are discussed in section 7.

2 Restoration of the frame coefficients of the log-data

In this section we consider how to restore the frame coefficients y = Wv of the log-data image v ob-

tained according to (5). We focus on methods which, for a given preprocessed data set, lead to convex

optimization problems. The denoised coefficients are denoted by x̂.

We assume that v ∈ L2(Ω) which ensures that y = Wv ∈ ℓ2(I).

2.1 Specific requirements to restore the coefficients

Given the log-data v obtained according to (5), we first apply a frame transform as in (11) to get

y[i] = 〈wi, v〉 = 〈wi, uo〉 + 〈wi, n〉, ∀i ∈ I, (14)

where uo denotes the unknown original log-image. The noise contained in the i-th datum reads 〈n,wi〉;

its distribution is of the form displayed in Fig. 1(c) or (f). However the signal to noise ratio (SNR) of the

coefficients is ill-assorted. When uo has a sparse representation in the frame, many coefficients contain

only noise. For this reason, we apply a hard-thresholding to all coefficients

yTH
[i]

def
= TH

(
y[i]

)
, ∀i ∈ I, (15)

where the hard-thresholding operator TH, with a threshold T , reads [30]

TH(t) =

{
0 if |t| ≤ T,
t otherwise.

(16)

The resultant set of coefficients is systematically denoted by yTH
. We choose an underoptimal threshold T

in order to preserve as much as possible the information relevant to edges and to textures, an important

part of which is contained in small coefficients. Let’s point out that with hard thresholding, all kept

coefficients are unaltered and thus contain the original information on the sought-after image.

Let us consider

vTH
=

∑

i∈I

yTH
[i] w̃i =

∑

i∈I1

y[i] w̃i, (17)

where

I1 = {i ∈ I : |y[i]| > T}. (18)

The image vTH
contains artifacts with the shape of the w̃i’s, for all y[i], that are dominated by noise and

above the threshold T , as well as a lot of information about the fine details in the original (unknown)

log-image uo. In all cases, whatever the choice of T , the image vTH
is unsatisfactory—see Fig. 2 (c)-(h).

Given the under-thresholded data yTH
, we focus on hybrid methods where the restored coefficients x̂

minimize a function Fy : ℓ2(I) → R ∪ {∞} of the form:




x̂ = argmin
x∈ℓ2(I)

Fy(x)

Fy(x) = Ψ(x, yTH
) + Φ(W̃x),

(19)
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(a) Noisy for K = 1 (b) Noisy for K = 4 (c) T = 2σ (d) T = 3σ

(e) T = 4σ (f) T = 5σ (g) T = 6σ (h) T = 8σ

Figure 2: (a) Noisy Lena for K = 1. (b) Noisy Lena obtained via averaging, see (1), for K = 4. (c)-(h)
Denoising of data v shown in (b) where the curvelet transform of v are hard-thresholded according to (15)-
(17) for different choices of T where (see (61)). The displayed restorations correspond to vTH

= exp (vTH
),

as given in (17).

where Ψ is a data-fidelity term in the domain of the frame coefficients and Φ is an edge-preserving

regularization term in the log-image domain. The restored log-image û is of the form

û = W̃ x̂ . (20)

Let us denote

I0 = I \ I1 = {i ∈ I : |y[i]| ≤ T}, (21)

where I1 is given in (18). In order to specify the shape of Ψ and Φ, we analyze the information borne by

the coefficients yTH
[i] relevant to I0 and to I1.

(I0) The coefficients y[i] for i ∈ I0 usually correspond to high-frequency components which can be of

the two types described below.

(a) Coefficients y[i] containing essentially noise—in which case the best we can do is to keep them

null, i.e. x̂[i] = yTH
[i] = 0;

(b) Coefficients y[i] which correspond to faint edges and details in uo. Since y[i] is difficult to

distinguish from the noise, the relevant x̂[i] should be restored using the edge-preserving prior

conveyed by Φ. Let us emphasize that a careful restoration must find a nonzero x̂[i], since

otherwise x̂[i] = 0 would generate Gibbs-like oscillations in û.

(I1) The coefficients y[i] for i ∈ I1 are of the following two types:

7



(a) Large coefficients which carry the main features of the sought-after function û. They verify

y[i] ≈ 〈wi, uo〉 and can be kept intact, i.e. x̂[i] = yTH
[i] = y[i].

(b) Coefficients which are highly contaminated by noise, characterized by |y[i]| ≫ |〈wi, uo〉|. We

call them outliers: if we had x̂[i] = y[i], by (17) we get vTH
=

∑
j 6=i x̂[j]w̃j + y[i]w̃i which

shows that û would contain an artifact with the shape of w̃i. For this reason, x̂[i] must be

restored according to the prior Φ.

2.2 A specialized hybrid criterion

This analysis clearly defines the goals that the minimizer x̂ of Fy is expected to achieve. In particular, x̂

must involve an implicit classification between coefficients that fit to yTH
exactly and coefficients that are

restored according to the prior term Φ. In short, restored coefficients have to fit yTH
exactly if they are in

accordance with the regularization term Φ and have to be restored via the latter otherwise. Since [50,51]

it is known that criteria Fy where Ψ is non-smooth at the origin (e.g. ℓ1) can satisfy x̂[i] = yTH
[i] for

coefficients that are in accordance with the prior Φ, while the other coefficients are restored according to

Φ, see also [32]. For these reasons, we focus on a criterion of the form (19) where

Ψ(x) =
∑

i∈I1

λi |(x− y)[i]| +
∑

i∈I0

λi |x[i]| = ‖Λ(x− yTH
)‖1 , (22)

for Λ
def
= diag{λi : i ∈ I} , (23)

Φ(x) =

∫

Ω

∣∣∣∇W̃x
∣∣∣ dξ =

∥∥∥W̃x
∥∥∥
TV

. (24)

Remark 1 We should emphasize that the TV regularization term Φ in our criterion will not favor

minimizers û = W̃ x̂ that involve constant regions unlike the usual variational methods, as discussed in

§ 1.1.1. The reason is that the non differentiability of Ψ at yTH
ensures that x̂[i] = yTH

[i] for a certain

number of coefficients [50]. Then W̃ x̂ keeps some fixed structures of the form yTH
[i]w̃i which can prevent

from stair-casing in û, provided that there is no large sets of outliers corresponding to the same region

of the image all of which are restored according to the TV term Φ. Such an important benefit clearly

depends on the level of the noise, the threshold T and the choice of (λi)i∈I .

2.3 Well-posedness of the minimization problem

The theorem below ensures the existence of a minimizer of the criterion Fy defined above. Its proof can

be found in [32].

Theorem 1 [32] For y ∈ ℓ2(I) and T > 0 given, consider Fy as defined by (15), (19) and (22)-(24),

where Ω ∈ R
2 is open, bounded and its boundary ∂Ω is Lipschitz, and W =

{
wi : i ∈ I

}
is a frame of

L2(Ω). Suppose that

1. W̃ is the pseudo inverse of W , i.e. W̃ = (W ∗W )−1W ∗ where W ∗ is the adjoint operator;

2. λmin = min
i∈I

λi > 0.

Then Fy has a minimizer x̂ ∈ ℓ2(I).
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Remark 2 Since W is a multiscale frame for L2(R2) and x̂ ∈ ℓ2(I), the restored log-image û as given

in (20) satisfies û ∈ L2(Ω). Note that assumption 1 holds true in many cases, e.g. for tight frames this

choice of W̃ is standard since it leads to W̃ = c−1W ∗, where c ∈ (0,∞) is a constant.

Let us notice that the minimizer of Fy is not necessarily unique. Given y, we denote by Gy the set of

all minimizers of Fy:

Gy
def
=

{
x̂ ∈ ℓ2(I) : Fy(x̂) = min

x
Fy(x)

}
. (25)

For every yTH
, the set Gy is convex and corresponds to images û = W̃ x̂ which are visually very similar,

as stated in the theorem below whose proof can be found in [32].

Theorem 2 [32] Let the assumptions of Theorem 1 hold. If x̂1 and x̂2 are two minimizers of Fy (i.e.

x̂1 ∈ Gy and x̂2 ∈ Gy), then

∇W̃ x̂1 ∝ ∇W̃ x̂2, a.e. on Ω,

i.e. W̃ x̂1 and W̃ x̂2 have the same level lines.

In words, the images û1 = W̃ x̂1 and û2 = W̃ x̂2 share the same level lines, i.e. they are obtained from

each other by a local change of contrast. This is usually invisible to the naked eye.

Some guidelines for the choice of λi were investigated in [32]. The conclusions can be summarized as

follows.

(a) If i ∈ I1, the parameter λi should be close to, but below the upper bound ‖w̃i‖TV, since above

this bound, outliers y[i] cannot be restored.

(b) For i ∈ I0, a reasonable choice is

λi = max
k 6=i

∣∣∣∣
∫

Ω

(∇w̃i(ξ))
T ∇w̃k(ξ)

|∇w̃k(ξ)|
dξ

∣∣∣∣ ,

where .T stands for transposed. If λi is below this bound, some neighboring coefficients that are

erroneously set to zero might not be restored correctly, even though Gibbs-like oscillations are

reduced.

Another important remark is that, for some multiscale transforms, the bounds discussed above are con-

stant. This is for instance the case for the wavelet transform.

For the frame W =
{
wi : i ∈ I

}
we here focus on the second generation curvelet transform because

of the following facts.

• This transform is known to provide near-optimal non-adaptive sparse representation of piecewise

smooth images away from smooth edges. Thus it is a very good candidate to capture efficiently the

geometrical content of the log-data.

• The bounds on (λi)i∈I are nearly constant, so we use only two values for λi,

λi = λ̃0 > 0, ∀i ∈ I0 and λi = λ̃1 > 0, ∀i ∈ I1.

Then the diagonal matrix Λ in (23) satisfies Λ[i, i] ∈ {λ̃0, λ̃1}.

• This curvelet transform corresponds to a tight frame which will turn out to be helpful for the

subsequent optimization scheme, see in particular § 3.2.2.
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3 Minimization scheme

Let us rewrite the minimization problem defined by (15), (19) and (22)-(24) in a more compact form:

find x̂ such that Fy(x̂) = min
x
Fy(x) for Fy(x) = Ψ(x) + Φ(x) . (26)

Clearly, Ψ in (22) and Φ in (24) are proper lower-semicontinuous convex functions, hence the same holds

true for Fy. The set Gy introduced in (25) is non-empty by Theorem 1 and can be rewritten as

Gy = {x̂ ∈ ℓ2(I)
∣∣x̂ ∈ (∂Fy)

−1(0)},

where ∂Fy stands for subdifferential operator. Minimizing Fy amounts to solving the inclusion

0 ∈ ∂Fy(x) ,

or equivalently, to finding a solution to the fixed point equation

x = (Id + γ∂Fy)
−1(x) , ∀γ > 0, (27)

where (Id+γ∂Fy)
−1 is the resolvent operator associated to ∂Fy and Id is the identity map on the Hilbert

space ℓ2(I). The schematic algorithm resulting from (27), namely

x(k+1) = (Id + γ∂Fy)
−1(x(k)), (28)

is a fundamental tool for finding the root of any maximal monotone operator [34, 58], such as e.g. the

subdifferential of a convex function. By (28), γ > 0 can be seen as the stepsize of the algorithm.

Unfortunately, the resolvent operator (Id + γ∂Fy)
−1 for Fy in (26) cannot be calculated in closed-form;

we focus on iterative splitting methods.

3.1 Generalities on splitting methods

Splitting methods do not attempt to evaluate (28) directly; instead, they are based on separate evaluations

of the resolvent operators (Id + γ∂Ψ)−1 and (Id + γ∂Φ)−1. The latter are usually easier and this turns

out to be true for our functionals Ψ and Φ in (26).

Splitting methods for monotone operators have numerous applications for convex optimization and

monotone variational inequalities. Even though the literature is abundant, these can basically be system-

atized into three main classes: the forward-backward [38, 65, 66], the Douglas/Peaceman-Rachford [43],

and the little-used double-backward [42, 54]. A recent theoretical overview of all these methods can be

found in [25, 35]. Forward-backward can be seen as a generalization of the classical gradient projection

method for constrained convex optimization, hence it inherits all its restrictions. Typically, one must

assume that either Ψ or Φ is differentiable with Lipschitz continuous gradient, and the stepsizes γ must

fall in a range dictated by the gradient modulus of continuity; see [27] for an excellent account. Since

both Ψ and Φ are non differentiable, forward-backward splitting is not adapted to our criterion (26).

We will focus on a Douglas/Peaceman-Rachford approach since differentiability of neither of the

functions Ψ or Φ is required. The derivation of our algorithm relies on the calculation of the proximity

operators as defined next.
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3.1.1 Proximity operators

Proximity operators were inaugurated in [46] as a generalization of convex projection operators.

Definition 1 (Moreau [46]) Let ϕ : H → R be a proper, lower-semicontinuous and convex function

where H is a Hilbert space. Then, for every z ∈ H, the function h 7→ ϕ(h) + ‖z − h‖2
2 /2, for h ∈ H,

achieves its infimum at a unique point denoted by proxϕz, i.e.

proxϕz = argmin
h∈H

{
ϕ(h) +

1

2
‖z − h‖2

2

}
. (29)

The operator proxϕ : H → H thus defined is called the proximity operator of ϕ.

It will be convenient in the sequel to introduce the reflection operator

rproxϕ
def
= 2proxϕ − Id. (30)

By the minimality condition for (29), it is straightforward that ∀z, p ∈ H we have

p = proxϕz ⇐⇒ z − p ∈ ∂ϕ(p). (31)

Then, for any ϕ, we have (Id + ∂ϕ)−1 = proxϕ, and we can write for all γ > 0,

(Id + γ∂Ψ)−1 = proxγΨ and (Id + γ∂Φ)−1 = proxγΦ. (32)

One can note that (28) can also be written as x(k+1) = proxγFy
(x(k)) for γ > 0.

3.1.2 Douglas-Rachford splitting algorithms

The Douglas/Peaceman-Rachford family is the most general preexisting class of maximal monotone op-

erator splitting methods. Given a fixed scalar γ > 0 and a sequence µk ∈ (0, 2), this class of methods

can be expressed via the following recursion written in the compact form

x(k+1) =
[(

1 −
µk
2

)
Id +

µk
2

(2proxγΨ − Id) ◦ (2proxγΦ − Id)
]
x(k) ,

=
[(

1 −
µk
2

)
Id +

µk
2

rproxγΨ ◦ rproxγΦ

]
x(k) .

(33)

Since our problem (26) admits solutions, the following result ensures that iteration (33) converges for

our criterion Fy.

Theorem 3 Let γ > 0 and µk ∈ (0, 2) be such that
∑
k∈N

µk(2 − µk) = +∞. Take x(0) ∈ ℓ2(I) and

consider the sequence of iterates defined by (33). Then, (x(k))k∈N converges weakly to some point x̄ ∈ ℓ2(I)

and proxγΦx̄ ∈ Gy.

This theorem is a straightforward consequence of [25, Corollary 5.2]. For instance, the sequence µk =

1,∀k ∈ N, satisfies the requirement of the theorem.

According to this theorem, the restored log-image x̂, as defined by (19) and (22)-(24), reads

x̂ = proxγΦx̄, (34)

where x̄ is the output of the Douglas-Rachford algorithm (33).
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3.2 Douglas-Rachford splitting algorithm for our criterion

To implement the Douglas-Rachford recursion (33) that solves our minimization problem (26), we need

to compute the proximity operators proxγΨ and proxγΦ. This is detailed in this subsection.

3.2.1 Proximity operator of Ψ

The proximity operator of γΨ is established in the lemma stated below.

Lemma 1 Let x ∈ ℓ2(I). Then

proxγΨ(x)[i] = yTH
[i] + TS

γλi (x[i] − yTH
[i]) , ∀i ∈ I , (35)

where TS
θ is the soft-thresholding operator with threshold θ

TS
θ(t) =

{
0 if |t| ≤ θ,
t− θsign(t) otherwise,

t ∈ R. (36)

Proof. Ψ as given in (22) is an additive separable function in each coordinate i ∈ I. Thus, solving the

proximal minimization problem of Definition 1 is also separable and amounts to solving independently

#I scalar minimization problems.

For any convex function ϕ and t ∈ R, s ∈ R, let ψ(s) = ϕ(s− t). Thus, using (31), it is straightfroward

to show that

p = proxψ(s) ⇐⇒ p = t+ proxϕ(s− t) . (37)

Furthermore, it is easy to find that for ϕ(h) = θ |h|

proxϕ(s) = TS
θ(s). (38)

Applying (37) to ψ(s) = θ |s− t| with θ = γλi, s = x[i] and t = yTH
[i] yields (35). �

Note that now

rproxγΨ(x) = 2
(
yTH

[i] + TS
γλi (x[i] − yTH

[i])
)
i∈I

− x . (39)

3.2.2 Proximity operator of Φ

Clearly, Φ(x) = ‖·‖TV ◦W̃ (x) is a pre-composition of the TV-norm with the linear operator W̃ . However,

computing the proximity operator of Φ for an arbitrary W̃ may be intractable. We then systematically

assume that our frame is tight with constant c ∈ (0,∞); i.e. W ∗W = c Id. An immediate consequence

is that W̃ = c−1W ∗.

The precise definition of the TV norm that we actually use depends on W̃x which belongs to L2(Ω).

Let X = L2(Ω)×L2(Ω) ⊂ L2(R2)×L2(R2) and 〈·, ·〉X be the inner product in X . For any q ∈ [1,∞], we

denote by
∣∣∣∣∣∣ ·

∣∣∣∣∣∣
q

the Lq norm on X . For any τ > 0, we define B∞(τ) as the closed L∞-ball of radius τ

in X ,

B∞(τ)
def
=

{
z = (z1, z2) ∈ X : |z(ξ)| ≤ τ,∀ξ ∈ Ω

}
. (40)
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Let us also define the set

C(τ)
def
=

{
div(z) ∈ L2(Ω) : z ∈ C∞

c (Ω × Ω) ∩B∞(τ)
}
. (41)

More precisely the TV regularization term we use reads

‖u‖TV = sup

{∫

Ω

u(ξ)w(ξ) dξ : w ∈ C(1)

}
. (42)

Let us remind that Φ(x) = ‖W̃x‖TV. The expression of proxγΦ is given in statement (i) of the next

lemma while the computation scheme to solve statement (ii) is established in Lemma 3.

Lemma 2 Let x ∈ ℓ2(I) and B∞(.) be as defined in (40).

(i) We have

proxγΦ(x) =
(
Id −W ◦

(
Id − proxc−1γ‖·‖TV

)
◦ W̃

)
(x) ; (43)

(ii) Furthermore,

proxc−1γ‖·‖TV
(u) = u− PC(c−1γ)(u) , ∀u ∈ L2(Ω) , (44)

where C(.) is defined in (41) and PC(.) is the orthogonal projector on C(.).

Proof. Since W̃ is bounded and linear, ‖ · ‖TV is continuous and convex, and there is u ∈ L2(Ω) such

that ‖u‖TV <∞, it is clear that all assumptions required in [26, Proposition 11] are satisfied. Applying

the same proposition yields statement (i).

We focus next on (ii). Note that for any τ > 0, C(τ) in (41) is a closed convex subset since B∞ (τ)

is closed and convex, and the operator div is linear; thus the projection PC(τ) is well defined.

Let us remind that the Legendre-Fenchel (known also as the convex-conjugate) transform of a function

ϕ : H → R, ϕ 6≡ ∞, where H is an Hilbert space, is defined by

ϕ⋆(h) = sup
z∈dom(ϕ)

{
〈h, z〉 − ϕ(z)

}
,

and that ϕ⋆ is a closed convex function. If ϕ is convex, proper and lower semi-continuous, the original

Moreau decomposition [46, Proposition 4.a] tells us that

proxϕ + proxϕ⋆ = Id . (45)

One can see also [27, Lemma 2.10] for an alternate proof of (45).

Let ıS denote the indicator function of a nonempty set S, i. e.

ıS(z) =

{
0 if z ∈ S ,

+∞ otherwise .

It is easy to see that from (41), (42) and the definition of the conjugate that

(
c−1γ‖ · ‖TV

)⋆
(z) = ıC(c−1γ) .
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On the other hand, by Definition 1, it is easy to check that

PC(c−1γ) = proxı
C(c−1γ)

.

Combining the last two equations yields

prox(
c−1γ‖.‖TV

)⋆ = PC(c−1γ).

Identifying c−1γ‖.‖TV with ϕ and
(
c−1γ‖.‖TV

)⋆
with ϕ⋆, equation (45) leads to statement (ii). The proof

is complete. �

Note that our argument (45) for the computation of proxc−1γ‖·‖TV
(u) is not used in [18], which instead

uses conjugates and bi-conjugates of the objective function.

Remark 3 In view of (44) and (41), one can see that the term between the middle parentheses in (43)

admits a simpler form:

Id − proxc−1γ‖·‖TV
= PC(c−1γ).

Using (30) along with (43)-(44) we easily find that

rproxγΦ(x) =
(
Id − 2W ◦ PC(c−1γ) ◦ W̃

)
(x) . (46)

Calculation of the projection PC(.) in (44) in a discrete setting. In what follows, we work in

the discrete setting. We consider that W ∈ R
M×N is the analysis matrix associated to a tight frame with

N < M = #I <∞. Note that now W ∗ = WT and thus W̃ = c−1WT .

Next we replace X by its discrete counterpart,

X = ℓ2(Ω) × ℓ2(Ω) where #Ω = N. (47)

We denote the discrete gradient by ∇̈ and consider Div : X → ℓ2(Ω) the discrete divergence defined by

analogy with the continuous setting 2 as the adjoint of the gradient Div = −∇̈∗; see e.g. [18].

Unfortunately, the projection in (44) does not admit an explicit form. The next lemma provides an

iterative scheme to compute the proximal points introduced in Lemma 2. In this discrete setting, the set

C(.) introduced in (41) admits a simpler expression:

C
(γ
c

)
=

{
Div(z) ∈ ℓ2(Ω)

∣∣ z ∈ B∞

(γ
c

)}
, (48)

where B∞(.) is defined according to (40).

2More precisely, let u ∈ ℓ2(Ω) be of size m × n, N = mn. We write

(∇̈u)[i, j] =
`

u[i + 1, j] − u[i, j], u[i, j + 1] − u[i, j]
´

with boundary conditions u[m + 1, i] = u[m, i], ∀i and u[i, n + 1] = u[i, n], ∀i; then for z ∈ X , we have

(Div(z))[i, j] =
`

z1[i, j] − z1[i − 1, j]
´

+
`

z2[i, j] − z2[i, j − 1]
´

along with z1[0, i] = z1[m, i] = z2[i, 0] = z2[i, n] = 0, ∀i.
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Lemma 3 We adapt all assumptions of Lemma 2 to the discrete setting, as explained above. Given

u ∈ ℓ2(Ω), consider the forward-backward iteration: z(0) ∈ B∞(1) and, for all k ∈ N,

z(k+1) = PB∞(1)

(
z(k) + βk∇̈

(
Div(z(k)) − cu/γ

))
where 0 < inf

k
βk ≤ sup

k

βk < 1/4, (49)

and, ∀(i, j) ∈ Ω,

PB∞(1)(z)[i, j] =




z[i, j] if |z[i, j]| ≤ 1;
z[i, j]

|z[i, j]|
otherwise .

(50)

Then

(i) (z(k))k∈N converges to a point ẑ ∈ B∞(1);

(ii)
(
u− c−1γDiv(z(k))

)
k∈N

converges to u− c−1γDiv(ẑ) = proxc−1γ‖·‖TV
(u) at the rate O(1/k).

Proof. Given u ∈ ℓ2(Ω), the projection ŵ = PC(c−1γ)(u), where C(.) is given in (48), is unique and

satisfies

ŵ = argmin
w∈C(c−1γ)

1

2
‖u− w‖2 = argmin

w∈ℓ2(Ω)

{
1

2

∥∥∥∥
c

γ
u− w

∥∥∥∥
2

subject to w = Div(z) for z ∈ B∞(1)

}

m

ŵ = Div(ẑ) where ẑ = argmin
z∈B∞(1)

1

2

∥∥∥∥
c

γ
u− Div(z)

∥∥∥∥
2

, (51)

where ‖.‖ denotes the Euclidian norm on ℓ2(Ω). This problem can be solved using a projected gradient

method (which is a special instance of the forward-backward splitting scheme) whose iteration is given by

(49). This iteration converges to a minimizer of (51)—see [25, Corollary 6.5]— provided that the stepsize

βk > 0 satisfies supk βk < 2/δ2, where δ is the spectral norm of the Div operator. It is easy to check that

δ2 ≤ 8—see e.g. [18]. Hence statement (i).

Next we focus on statement (ii). Set

ω(k) = cγ−1u− Div(z(k)),∀k ∈ N and ω̂ = cγ−1u− Div(ẑ).

Let J be the dual objective given in (51), namely

J = H ◦ Div +G, (52)

with

H : w 7→
1

2

∥∥∥∥
c

γ
u− w

∥∥∥∥
2

and G = ıB∞(1).

Let DH denote the the usual derivative of H. For an optimal solution ẑ ∈ B∞(1), we define the

Bregman-like distance as the functional

B(w) = G(w) −G(ẑ) +
〈
−∇̈(DH)(Div(ẑ)), w − ẑ

〉
X
, ∀ w ∈ X , (53)
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It is obvious that B(ẑ) = 0. We also have B(w) ≥ 0, ∀w ∈ X . This is checked by noting that the

minimality condition corresponding to (52) is equivalent to −∇̈(DH)(Div(ẑ)) ∈ ∂G(ẑ). Applying the

subgradient inequality to G proves the non-negativity claim.

As H ◦ Div is differentiable, the Taylor distance is the remainder of the Taylor expansion of H ◦ Div

near ẑ

T(w) = H(Div(w)) −H(Div(ẑ)) −
〈
−∇̈(DH)(Div(ẑ)), w − ẑ

〉
X
, ∀ w ∈ X . (54)

Reminding that Div = −∇̈∗ and that H is convex shows that T(w) ≥ 0, ∀w ∈ X , along with T(ẑ) = 0.

It is easy to verify that

B(z(k)) + T(z(k)) = J(z(k)) − J(ẑ) ,∀k ∈ N . (55)

Using [56] or [48, Theorem 4], the convergence rate over J satisfies

J(z(k)) − J(ẑ) ≤
2δ2R2

k + 2
, ∀ k ∈ N , (56)

where R
def
= max

{
‖z − ẑ‖ : J(z) ≤ J(z(0))

}
for z(0) ∈ B∞(1). R is obviously finite since B∞(1) is

bounded. Using (55), along with the facts that B(z(k)) ≥ 0 and that δ2 ≤ 8 leads to

T(z(k)) ≤ J(z(k)) − J(ẑ) ≤
16R2

k + 2
, ∀ k ∈ N . (57)

On the other hand, by the definition of H, which is a quadratic (strongly convex of modulus 1), we

have

T(z(k)) = H(Div(z(k))) −H(Div(ẑ)) −
〈
−∇̈(DH)(Div(ẑ)), z(k) − ẑ

〉
X

= H(Div(z(k))) −H(Div(ẑ)) −
〈
(DH)(Div(ẑ)),Div(z(k)) − Div(ẑ)

〉

=
1

2

∥∥∥Div(z(k)) − Div(ẑ)
∥∥∥

2

=
1

2

∥∥∥ω(k) − ω̂
∥∥∥

2

. (58)

Piecing together (58) and (57), we obtain

∥∥∥ω(k) − ω̂
∥∥∥

2

= 2T(z(k)) ≤
32R2

k + 2
, ∀ k ∈ N , (59)

This completes the proof.

�

Note that computing prox‖·‖TV
amounts to solving a discrete L2-TV-denoising (the criterion given in

(10)).

The forward-backward splitting-based iteration proposed in (49) to compute the proximity operator

of the TV-norm is different from the projection algorithm of [18]. A similar iteration was suggested in [19]

without a proof. The forward-backward splitting allows to derive a sharper upper-bound on the stepsize

βk than the one proposed in [18]—actually twice as large. What is more, our proof is simpler than the

16



one in [18] since it uses well known properties of proximity operators, and we have a convergence rate on

the iterates.

Our iteration to solve this problem is one possibility among others. While this paper was submitted,

our attention was drawn to an independent work of [10] who, using a different framework, derive an

iteration similar to (49) to solve the L2-TV-denoising. Another parallel work of [74] propose an application

of gradient projection to solving the dual problem (51), and the authors of [71] applied the multi-step

Nesterov scheme to (51). See also [12] for yet another multi-step iteration to solve (51). We are of

course aware of max-flow/min-cut type algorithms, for instance the one in [16]. We have compared our

whole denoising procedure using our implementation of prox‖·‖TV
and the max-flow based implementation

that we adapted from the code available at [17]. We obtained similar results, although the max-flow-

based algorithm was faster, mainly because it uses the ℓ1 approximation of the discrete gradient, namely∥∥∥(∇̈u)[i, j]
∥∥∥

1
=

∣∣u[i+ 1, j] − u[i, j]
∣∣ +

∣∣u[i, j + 1] − [i, j]
∣∣. Let us remind that this approximation for the

discrete gradient does not inherit the rotational invariance property of the L2 norm of the usual gradient;

we observed that the quality of the resultant restorations is slightly reduced, compared to those involving

the L2 norm of the discrete gradient.

3.3 Comments on the Douglas-Rachford scheme for Fy

The bottleneck of the minimization algorithm is in the computation of the proximity-operator of the TV-

norm (Lemma 2). However, when inserted in the whole numerical scheme, this is not a real drawback as

we explain it below. A crucial property of the Douglas-Rachford splitting scheme (33) is its robustness

to numerical errors that may occur when computing the proximity operators proxΨ and proxΦ, see [25].

We have deliberately omitted this property in (33) for the sake of simplicity. This robustness property

has important consequences: e.g. it allows us to run the forward-backward sub-recursion (49) only a

few iterations to compute an approximate of the TV-norm proximity operator in the inner iterations,

and the Douglas-Rachford is still guaranteed to converge provided that these numerical errors are under

control. More precisely, let ak ∈ ℓ2(I) be an error term that models the inexact computation of proxγΦ in

(43), as the latter is obtained through (49). If the sequence of error terms (ak)k∈N
and step-sizes (µk)k∈N

defined in Theorem 3 obey
∑
k∈N

µk ‖ak‖ < +∞, then the Douglas-Rachford algorithm (33) converges [25,

Corollary 6.2]. In our case, noting that the convergence rate of Lemma 3 yields ‖ak‖ = O(1/k), one can

easily derive a rule on the number of inner iterations at each outer iteration k such that the summability

condition is verified.

4 Bias correction to recover the sought-after image

Recall from (5) that uo = logSo and set û = W̃ x̂ as the estimator of uo, where x̂ is a minimizer of

Fy obtained from the Douglas-Rachford iteration. Unfortunately, the estimator û is prone to bias, i.e.

E [û] = uo − bû. A problem that classically arises in statistical estimation is how to correct such a bias.

More importantly is how this bias affects the estimate after applying the inverse transformation, here the

exponential. Our goal is then to ensure that for the estimate Ŝ of the image satisfies E

[
Ŝ

]
= So.

To this end we need the expectation and the variance of the log-noise n in (5)-(6). One can prove
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that

E [n] = ψ0(K) − logK , (60)

Var [n] = ψ1(K), (61)

where

ψk(z) =

(
d

dz

)k+1

log Γ(z) (62)

is the polygamma function [1].

Expanding exp û in the neighborhood of E [û], we have

exp û = exp (E [û])

(
1 + (û− E [û]) +

(û− E [û])2

2
+R2

)
,

and therefore

E [exp û] = exp (E [û])(1 + Var [û] /2 + E [R2])

= So exp (−bû)(1 + Var [û] /2 + E [R2]) , (63)

where R2 is the Lagrange remainder in the Taylor series. One can observe that the posterior distribution

of û is nearly symmetric, in which case E [R2] ≈ 0. That is, bû ≈ log(1+Var [û] /2) to ensure unbiasedness.

Consequently, finite sample (nearly) unbiased estimates of uo and So are respectively û+log(1+Var [û] /2),

and exp (û) (1 + Var [û] /2). Var [û] can be reasonably estimated by ψ1(K), the variance of the noise n

in (5) being given in (61). Thus, given the restored log-image û, our restored image reads:

Ŝ = exp (û) (1 +ψ1(K)/2) . (64)

The authors of [72] propose a direct estimate of the bias bû using the obvious argument that the

noise n in the log-transformed image has a non-zero mean ψ0(K)− logK. A quick study shows that the

functions (1 +ψ1(K)/2) and exp(logK −ψ0(K)) are very close for K reasonably large.

We should emphasize that the bias correction approach we propose can be used in a more general

setting.

5 Full algorithm to suppress multiplicative noise

Now, piecing together Lemma 1, Lemma 2 and Theorem 3, we arrive at the multiplicative noise removal

algorithm:

Task: Denoise an image S contaminated with multiplicative noise according to (3).

Parameters: The observed noisy image S, number of iterationsNDR (Douglas-Rachford outer iterations)

and NFB (Forward-Backward inner iterations), stepsizes µk ∈ (0, 2), 0 < βs < 1/4 and γ > 0, tight-frame

transform W and initial threshold T (e.g. T = 2
√
ψ1(K)), regularization parameters λ0,1 associated to

the sets I0,1.

Specific operators:

• Soft-thresholding TS
γλi in (36).
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• Projector PB∞(1) in (50).

• The discrete gradient ∇̈ and divergence Div.

• ψ1(·) defined according to (62) (built-in Matlab function, otherwise see [57]).

Initialization:

• Compute v = logS and transform coefficients y = Wv. Hard-threshold y at T to get yTH
. Choose

an initial x(0).

Main iteration:

For k = 0 to NDR,

(1) Inverse curvelet transform of x(k) according to u(k) = W̃x(k).

(2) Initialize z(0); For s = 0 to NFB − 1

z(s+1) = PB 1
∞

(X )

(
z(s) + βs∇̈

(
Div(z(s)) − c

γ
u(k)

))
.

(3) Set z(k) = z(NFB).

(4) Compute w(k) = c−1γ Div(z(k)).

(5) Forward curvelet transform: α(k) = Ww(k).

(6) From (46) compute r(k) = rproxγΦ(x(k)) = x(k) − 2α(k).

(7) By (39) compute q(k) =
(
rproxγΨ ◦ rproxγΦ

)
(x(k)) = 2

(
yTH

[i] + TS
γλi

(
r(k)[i] − yTH

[i]
))

i∈I
− r(k) .

(8) Update x(k+1) using (33): x(k+1) =
(
1 −

µk
2

)
x(k) +

µk
2
q(k) .

End main iteration

Output: Using (34) and (43), get the denoised image Ŝ = exp
(
W̃ (x(NDR) − α(NDR))

)
(1 + ψ1(K)/2).

Remark 4 (Computation load) The bulk of computation of our denoising algorithm is invested in

applying W and its pseudo-inverse W̃ . These operators are of course never constructed explicitly, rather

they are implemented as fast implicit analysis and synthesis operators. Each application of W or W̃

cost O(N logN) for the second generation curvelet transform of an N -pixel image [14]. If we define

NDR and NFB as the number of iterations in the Douglas-Rachford algorithm and the forward-backward

sub-iteration, the computational complexity of the denoising algorithm is of order NDRNFB2N logN

operations.

6 Experiments

In all experiments carried out in this paper, our algorithm was run using second-generation curvelet tight

frame along with the following set of parameters: ∀t, µk ≡ 1, βs = 0.24, γ = 10 and NDR = 50. For

comparison purposes, some very recent multiplicative noise removal algorithms from the literature are

considered. We compare our method with the most recent successful algorithms, namely:

19



• BS Algorithm proposed in [22]: this is a Stein-Block thresholding method in the curvelet domain,

applied on the log transformed image. It is a sophisticated shrinkage-based denoiser that thresholds

the coefficients by blocks rather than individually, and has been shown to be nearly minimax

over a large class of images in presence of additive bounded noise (not necessarily Gaussian nor

independent). This algorithm has one threshold parameter T, and in all our experiments, we set it

to the theoretical value T = 4.50524 devised in [22].

• AA Algorithm proposed in [8]: it is sketched in (8); the algorithm was applied using 1000 iterations

and stepsize dt = 0.1, as recommended by the authors;

• SO Algorithm proposed in [62]: the first algorithm proposed in [62], see (10). As recommended

in [62] the stopping rule is to reach k∗ such that k∗ = max{k ∈ N : Var [uk − uo] ≥ Var [n] = ψ1(K)}

where uo is the underlying log-image and n the relevant noise; see (61) for the variance. We

systematically used stepsize dt = 0.001 (except for Fig. 3 where dt = 0.0005).

The denoising algorithms were tested on three images: Cameraman (N = 2562 pixels), an image of

Fields (N = 5122 pixels) and an aerial picture of the French city Nı̂mes (N = 5122 pixels). All images

were normalized so that their gray-scale is in the range [1, 256]. For each image, a noisy observation is

generated by multiplying the original image by a realization of noise according to the model in (3)-(4)

with the choice µ = 1 and K ∈ {1, 4, 10}. For a N -pixel noise-free image So and its denoised version by

any algorithm Ŝ, the denoising performance is measured in terms of peak signal to noise ratio (PSNR)

in decibels (dB)

PSNR = 10 log10

N
∣∣∣ maxSo − minSo

∣∣∣
2

∥∥∥Ŝ − So

∥∥∥
2

2

dB ,

where
∣∣∣ maxSo − minSo

∣∣∣ gives the gray-scale range of the original image, and mean absolute-deviation

error MAE

MAE =
1

N

∥∥∥Ŝ − So

∥∥∥
1
.

6.1 Qualitative results

The results are depicted in Fig. 3-6 for the Fields image, Fig. 7-9 for the Nı̂mes picture, and Fig. 10-12 for

Cameraman. Our denoiser does a good job at restoring faint geometrical structures of the images even

for low values of K, see for instance the results on Nı̂mes and Fields for K = 1 and K = 4. As expected,

our hybrid method is less prone to staircasing artifacts and takes benefit from the curvelet transform for

capturing efficiently the geometrical content of the images. Our algorithm performs among the best and

even outperforms its competitors most of the time both visually and quantitatively as revealed by the

PSNR and MAE values. Note also that a systematic behavior of AA and SO methods for low values of

K is their tendency to lose some important details and the persistence of a low-frequency ghost as it can

be seen on the residual images on Fig. 4. For SO method, the number of iterations necessary to satisfy

the stopping rule rapidly increases when K decreases.
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6.2 Quantitative results

The above visual results were confirmed by Monte Carlo simulations where, for each tested image and

each value of K ∈ {1, 4, 10}, ten noisy realizations were generated. Then the compared algorithms were

applied to the same noisy versions. The output PSNR and MAE were averaged over the ten denoised

realizations.

For fair comparison, the parameters of SO and AA were tweaked manually to reach their best per-

formance level. For SO, α = 0.25 was recommended by the authors. Their values are summarized in

Table 1. Notice that the parameters of our method are very stable with respect to the image, except

for Cameraman with small K. Curvelet based methods are indeed quite inadequate to this image since

the thresholding step generates Gibbs-like oscillations and outliers that are strongly visible on the nearly

uniform background (see the image restored by BS method). In order to remove these artifacts, we used

different values for T , λ0 and mostly λ1. Despite this drawback, our method yields quite good results on

Cameraman.

The denoising performance results are tabulated in Table 2 where the best PSNR and MAE value is

shown in boldface. By inspection of this table, the PSNR improvement brought by our approach can be

quite high particularly for K = 1 (see e.g. the Fields image) and the visual resolution is quite respectable.

This is an important achievement since in practice K has a small value, usually 1, rarely above 4. This

improvement becomes less salient as K increases which is intuitively expected. But even for K = 10,

the PSNR of our algorithm can be higher by ∼ 0.45dB to more than 10dB compared to AA, SO and BS

methods, depending on the image.

Fields 512 × 512

Algorithm
Parameters

K = 1 K = 4 K = 10

Ours T = 2
√
ψ1(K), λ0 =

1.2, λ1 = 10
T = 2

√
ψ1(K), λ0 =

1.3, λ1 = 10
T = 2

√
ψ1(K), λ0 =

1.3, λ1 = 10
AA ρ = 125 ρ = 400 ρ = 480
SO ρ = 0.05, α = 0.25 ρ = 0.1, α = 0.25 ρ = 0.8, α = 0.25

Nı̂mes 512 × 512

Algorithm
Parameters

K = 1 K = 4 K = 10

Ours T = 2
√
ψ1(K), λ0 =

1.5, λ1 = 10
T = 2

√
ψ1(K), λ0 =

1.5, λ1 = 10
T = 2

√
ψ1(K), λ0 =

1.3, λ1 = 10
AA ρ = 60 ρ = 120 ρ = 130
SO ρ = 0.05, α = 0.25 ρ = 0.3, α = 0.25 ρ = 1.2, α = 0.25

Cameraman 256 × 256

Algorithm
Parameters

K = 1 K = 4 K = 10

Ours T = 2.6
√
ψ1(K), λ0 =

1.8, λ1 = 5.7
T = 2.5

√
ψ1(K), λ0 =

1.8, λ1 = 5.7
T = 2.1

√
ψ1(K), λ0 =

1.3, λ1 = 10
AA ρ = 120 ρ = 240 ρ = 390
SO ρ = 0.04, α = 0.25 ρ = 0.1, α = 0.25 ρ = 1, α = 0.25

Table 1: Parameters used in the comparison study of Table 2.
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Noisy: K = 1 in (3) SO: PSNR=9.59, MAE=196

AA: PSNR=15.74, MAE=76.66 BS: PSNR=22.52, MAE=35.22

Ours: PSNR=22.89, MAE=33.67 Original (512×512)

Figure 3: Fields (512 × 512) for K = 1 in (3). Restorations using different methods. Parameters:
SO algorithm for ρ = 0.05, α = 0.25 and dt = 0.0005; AA algorithm for ρ = 125; our algorithm
T = 2

√
ψ1(K), λ0 = 1.2, λ1 = 10.
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SO: residual, K = 1 AA: residual, K = 1

BS: residual, K = 1 Ours: residual, K = 1

Figure 4: Residuals (So − Ŝ) for the restorations in Fig. 3 (K = 1).
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Noisy: K = 4 in (3) SO: PSNR=19.78, MAE=55.42

AA: PSNR=16.83, MAE=67.74 BS: PSNR=25.53, MAE=23.75

Ours: PSNR=26.32, MAE=21.92 Original (512×512)

Figure 5: Fields (512 × 512) for K = 4 in (3). Restorations using different methods. Parameters:
SO algorithm for ρ = 0.1, α = 0.25 and dt = 0.001; AA algorithm for ρ = 400; our algorithm T =
2
√
ψ1(K), λ0 = 1.3, λ1 = 10.
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Noisy: K = 10 in (3) SO: PSNR=25.36, MAE=25.14

AA: PSNR=17.13, MAE=65.40 BS: PSNR=27.24, MAE=19.61

Ours: PSNR=28.04, MAE=18.19 Original (512×512)

Figure 6: Fields (512 × 512) for K = 10 in (3). Restorations using different methods. Parameters:
SO algorithm for ρ = 0.8, α = 0.25 and dt = 0.001; AA algorithm for ρ = 480; our algorithm T =
2
√
ψ1(K), λ0 = 1.3, λ1 = 10.
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Noisy: K = 1 in (3) SO: PSNR=18.39, MAE=24.08

AA: PSNR=22.18, MAE=13.71 BS: PSNR=22.25, MAE=13.96

Ours: PSNR=22.64, MAE=13.39 Original (512×512)

Figure 7: Aerial image of the French city of Nı̂mes (512 × 512) for K = 1 in (3). Restorations using
different methods. Parameters: SO algorithm for ρ = 0.05, α = 0.25 and dt = 0.001; AA algorithm for
ρ = 60; our algorithm T = 2

√
ψ1(K), λ0 = 1.5, λ1 = 10.
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Noisy: K = 4 in (3) SO: PSNR=24.40, MAE=10.76

AA: PSNR=24.55, MAE=10.06 BS: PSNR=24.92, MAE=9.87

Ours: PSNR=25.84, MAE=9.09 Original (512×512)

Figure 8: Aerial image of the town of Nı̂mes (512 × 512) for K = 4 in (3). Restorations using different
methods. Parameters: SO algorithm for ρ = 0.3, α = 0.25 and dt = 0.001; AA algorithm for ρ = 120;
our algorithm T = 2

√
ψ1(K), λ0 = 1.5, λ1 = 10.
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Noisy: K = 10 in (3) SO: PSNR=27.32, MAE=7.41

AA: PSNR=25.26, MAE=8.83 BS: PSNR=27.0, MAE=7.69

Ours: PSNR=27.80, MAE=7.21 Original (512×512)

Figure 9: Aerial image of Nı̂mes (512 × 512) for K = 10 in (3). Restorations using different methods.
Parameters: SO algorithm for ρ = 1.2, α = 0.25 and dt = 0.001; AA algorithm for ρ = 130; our algorithm
T = 2

√
ψ1(K), λ0 = 1.3, λ1 = 10.
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Noisy: K = 1 in (3) SO: PSNR=12.74, MAE=48.59

AA: PSNR=18.76, MAE=22.36 BS: PSNR=19.39, MAE=17.49

Ours: PSNR=19.82, MAE=16.33 Original (256×256)

Figure 10: Cameraman (256 × 256) for K = 1 in (3). Restorations using different methods. Parameters:
SO algorithm for ρ = 0.04, α = 0.25 and dt = 0.001; AA algorithm for ρ = 125; our algorithm T =
2.6

√
ψ1(K), λ0 = 1.8, λ1 = 5.7.
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Noisy: K = 4 in (3) SO: PSNR=20.12, MAE=18.64

AA: PSNR=21.97, MAE=14.26 BS: PSNR=22.36, MAE=12.14

Ours: PSNR=22.98, MAE=10.61 Original (256×256)

Figure 11: Cameraman (256 × 256) for K = 4 in (3). Restorations using different methods. Parameters:
SO algorithm for ρ = 0.1, α = 0.25 and dt = 0.001; AA algorithm for ρ = 125; our algorithm T =
2.5

√
ψ1(K), λ0 = 1.8, λ1 = 5.7.
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Noisy: K = 10 in (3) SO: PSNR=25.64, MAE=7.42

AA: PSNR=24.48, MAE=9.9 BS: PSNR=24.43, MAE=9.44

Ours: PSNR=26.08, MAE=7.4 Original (256×256)

Figure 12: Cameraman (256×256) for K = 10 in (3). Restorations using different methods. Parameters:
SO algorithm for ρ = 1, α = 0.25 and dt = 0.001; AA algorithm for ρ = 125; our algorithm T =
2.1

√
ψ1(K), λ0 = 1.3, λ1 = 10.
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Fields 512 × 512
PSNR MAE

K 1 4 10

Ours 23.13 (0.14) 26.31 (0.08) 27.99 (0.05)
BS 22.60 (0.10) 25.50 (0.06) 27.21 (0.05)
AA 15.75 (0.004) 16.82 (0.004) 17.14 (0.004)
SO 10.11 (0.21) 19.70 (0.23) 25.33 (0.08)

K 1 4 10

Ours 32.67 (0.68) 22.00 (0.18) 18.24 (0.10)
BS 35.00 (0.58) 23.95 (0.22) 19.66 (0.12)
AA 76.64 (0.04) 67.77 (0.05) 65.36 (0.04)
SO 189.24 (2.96) 55.80 (1.45) 25.26 (0.22)

Nı̂mes 512 × 512
PSNR MAE

K 1 4 10

Ours 22.66 (0.09) 25.86 (0.03) 27.78 (0.03)
BS 22.18 (0.03) 24.90 (0.03) 26.95 (0.02)
AA 22.01 (0.04) 24.33 (0.01) 25.06 (0.02)
SO 18.26 (0.03) 24.25 (0.04) 26.84 (0.03)

K 1 4 10

Ours 13.27 (0.07) 8.98 (0.03) 7.11 (0.02)
BS 13.88 (0.04) 9.75 (0.03) 7.59 (0.01)
AA 14.05 (0.09) 10.37 (0.02) 9.03 (0.02)
SO 24.54 (0.08) 10.99 (0.04) 7.83 (0.02)

Cameraman 256 × 256
PSNR MAE

K 1 4 10

Ours 19.61 (0.12) 22.94 (0.07) 26.09 (0.10)
BS 19.22 (0.09) 22.31 (0.07) 24.40 (0.05)
AA 18.65 (0.12) 21.93 (0.09) 24.42 (0.07)
SO 12.62 (0.28) 19.96 (0.12) 25.61 (0.07)

K 1 4 10

Ours 16.78 (0.25) 10.67 (0.07) 7.44 (0.09)
BS 17.94 (0.25) 12.14 (0.12) 9.51 (0.06)
AA 22.61 (0.34) 14.39 (0.15) 9.99 (0.10)
SO 49.33 (1.56) 19.04 (0.32) 7.43 (0.04)

Table 2: Average PSNR and MAE (over ten noisy realizations) to denoise different images using the SO,
AA BS and our algorithm as a function of K. The standard deviation of PSNR and MAE over the ten
realizations are in parentheses. The best PSNR and MAE value is shown in boldface. The parameters
used for each denoising algorithm are summarized in Table 1.

7 Conclusions

This work proposes quite an original, efficient and fast method for multiplicative noise removal. The

latter is a difficult problem that arises in various applications relevant to active imaging system, such as

laser imaging, ultrasound imaging, SAR and many others. Multiplicative noise contamination involves

inherent difficulties that severely restrict the main restoration algorithms.

The main ingredients of our method are: (1) consider the log-data to restore a log-image; (2) preprocess

the log-data using and under-optimal hard-thresholding of its tight frame coefficients; (3) restore the log-

image using a hybrid criterion composed of an ℓ1 data-fitting for the coefficients and a TV regularization

in the log-image domain; (4) restore the sought-after image using an exponential transform along with

a pertinent bias correction. The resultant algorithm is fast, its consistency and convergence are proved

theoretically.

The obtained numerical results are really encouraging since they outperform the most recent methods

in this field.
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