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Abstract. Spatial electron paramagnetic resonance imaging (EPRI) is a
recent method to localize and characterize free radicals in vivo or in vitro,
leading to applications in material and biomedical sciences. To improve
the quality of the reconstruction obtained by EPRI, a variational method
is proposed to inverse the image formation model. It is based on a least-
square data-fidelity term and the total variation and Besov seminorm for
the regularization term. To fully comprehend the Besov seminorm, an
implementation using the curvelet transform and the L1 norm enforcing the
sparsity is proposed. It allows our model to reconstruct both image where
acquisition information are missing and image with details in textured areas,
thus opening possibilities to reduce acquisition times. To implement the
minimization problem using the algorithm developed by Chambolle and Pock,
a thorough analysis of the direct model is undertaken and the latter is inverted
while avoiding the use of filtered backprojection (FBP) and of non-uniform
Fourier transform. Numerical experiments are carried out on simulated data,
where the proposed model outperforms both visually and quantitatively the
classical model using deconvolution and FBP. Improved reconstructions on real
data, acquired on an irradiated distal phalanx, were successfully obtained.
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Introduction

Electron paramagnetic resonance (EPR) is a spectroscopy method that
characterizes and quantifies [43] molecules with paramagnetic properties, such as
free radicals or transition metals. Fields of application are various and englobe,
among others, pharmacy [29], chemistry [23], medicine [26] or dermatology [33].

Electron paramagnetic resonance imaging (EPRI) is a technology that
maps the spatial distribution of a paramagnetic species [16], making it part
of the molecular imaging technologies, by opposition and complementarity to
anatomic and functional imaging. Fields of application include oximetry [41],
cardiology [28], drug release [8], geology [7], redox [19] or batteries [13]. Similarly
to EPR, the sample is submitted to a specific magnetic field that triggers the
resonance phenomenon of the electronic spins of the paramagnetic molecule. In
order to retrieve the spatial repartition of the latter, a magnetic field gradient
is added. Spectroscopy acquisitions are conducted for each orientation of the
gradient, yielding a variety of spectrum. The set of raw data obtained by this
acquisition process is called a sinogram, and the object of this paper is to retrieve
from the sinogram the image featuring the spatial repartition of the paramagnetic
species.

The mathematical modelisation of the process turning an image u into a
sinogram S is the convolution

S = Ru ∗ h (1)

Quantity h stands for the spectrum of the paramagnetic species and Ru for the
Radon transform of u, first introduced a hundred years ago by Johann Radon [35].
Inverting the Radon transform is an ill-posed problem [3] and has been the subject
of many papers.

The classical approach for EPRI reconstruction is the filtered backprojection
(FBP), thoroughly explained for computed tomography (CT) [22], associated
with a deconvolution step. It is the choice made by commercial software for
EPRI reconstruction such as Xepr [1]. Even though the FBP is a simple and
time-efficient method [21], it admits some major drawbacks [32]: FBP requires
equally-spaced acquisition angles and is not robust to a low number of acquisition
angles. The current development of EPRI goes toward in vivo imaging and clinical
applications [14] [26]: because acquisition times are significantly long in EPRI,
it may be interesting to decrease the sampling, and it is not possible due to the
traditional post processing of the data.
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Improvements of the FBP have been proposed specifically for EPRI [5].
Unfortunately, the issues of backprojection, deconvolution, deblurring and
denoising are treated as separate problems, thus leading to approximation errors
that add to each other.

To consider the reconstruction as a whole issue instead of the sum of
subproblems, variational methods are well suited. Tikhonov and entropy-based
regularization have been proposed in [24] and [40], in which the desired image u
is retrieved from the data S by solving

arg min
u

1
2
||Cu− S||22 + λJ(u) (2)

where Cu = Ru ∗ h models the response of an EPRI device and S is the raw
data, or sinogram. The second term J(u) corresponds either to the Tikhonov
regularization [39] or to the Shannon entropy [24], ponderated by a coefficient λ.

More recently, [25] has proposed an objective function making most of the
sparsity induced by the L1 norm. It retrieves the image u solution of

arg min
u

1
2
||Cu− S||22 + λ1||u||1 + λ2 TV(u) (3)

where the second regularization term TV(u) ' ||∇u||1 stands for the total
variation of u. They obtain satisfying numerical results, although their
minimization scheme is not formally proven and may lead to false convergence
results. Indeed, [25] solves problem (3) by minimizing the objective function with
alternatively applying one step of FISTA algorithm to the objective function with
λ2 = 0 and then applying the proximal operator of λ2 TV.

Another reference [34] uses the total variation regularization for EPRI by
solving

min TV(u) s.t. S = Cu (4)

In this model, the hard constraint on the data consistency does not take the noise
created by the device into account. The minimization part is ensured with a
gradient descent applied to the objective function smoothed where the L1 norm
is not differentiable.

However, huge progress has been made recently in the field of optimization
and new algorithms have been developed to solve this kind of variational problems.
We propose a new regularization, especially adapted for images with textures, and
a thorough analysis of the direct problem which allow us to minimize efficiently
the objective function.
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Our first objective function is a simpler version of (3) with only the total
variation as regularization

arg min
u

1
2
||Cu− S||22 + λTV(u) (5)

Because this simple regularization is not subtle enough to deal with images
with textures, we propose a second model with another regularization term: a
combination of the total variation and a ponderated L1 norm on the curvelets
coefficients

arg min
u=u1+u2

||C(u1 + u2)− S||22 + λ1 TV(u1) + λ2||Wu2||1 (6)

where the additional regularization term has the interesting property to retrieve
the texture in the reconstructed image.

To efficiently solve problems (5) and (6), we undergo an analysis of the data-
consistency term which highlights the presence of C∗C as a Toeplitz operator [15].
It leads to acceleration properties that allow us to minimize the objective functions
with the algorithm recently developed by Chambolle and Pock [10]. Tests are
conducted on both simulated data and real data. Simulations are processed on
the Shepp-Logan phantom, both the original phantom and a textured phantom.
Real data are acquired on an irradiated distal phalanx. The irradiation map
retrieved with EPRI admits details whose existence is confirmed by a comparison
with an anatomic map of the bone density performed by a CT-scanner.

1. Model of spatial EPRI

1.1. Direct model

In the case of EPR spectroscopy, the magnetic field B inside the acquisition
cavity is spatially uniform and varies over time. In the case of EPRI,
an orientated field gradient µeθ is added inside the cavity, where eθ =

(cos θ1 cos θ2, sin θ1 cos θ2, sin θ2) represents the unit vector whose direction is
characterized in spherical coordinates by the angles θ = (θ1, θ2). At the point
x ∈ R3, the total magnetic field is the sum of the field B and the field gradient

B + µeθ · x (7)

The addition of a microwave causes the resonance phenomenon of the free
electrons. Due to the quantization of energy levels, the resonance property
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happens where the total magnetic field is equal to the resonance magnetic
field Bres. However, it is impossible to create a magnetic field with absolute
accuracy, and even in that case the precision would theoretically be limited by
the uncertainty principle. Therefore the resonance can happen shortly before
of after the expected resonance field Bres. The repartition of those non-exact
resonances has the shape of the distribution g0, which is a mixture of gaussian
and/or lorentzian distributions and characterizes the paramagnetic species.

To remove some noise from the acquisition data, the energy absorbed by the
electronic transitions is measured through the process of amplitude modulation.
It implies that the distribution of the inexact resonance has the shape of h0 the
derivative of g0. At spatial position x ∈ R3, the absorbed energy is directly
proportional to the quantity v(x) of the studied paramagnetic species

Eabs(x) = v(x)h0(B + µeθ · x) (8)

However, the measurement takes place all over the cavity and not only at
position x. Therefore the accessible raw data at magnetic field B and field gradient
orientation θ is the total amount of absorbed energy, whose sum over every spatial
position gives the sinogram

S0(B, θ) =

∫
R3

v(x)h0(B + µeθ · x)dx (9)

Any spatial position x can be uniquely decomposed into x = yeθ + z with
z ∈ Hθ where Hθ is the hyperplane passing through the point of spherical
coordinates (y, θ1, θ2) and orthogonal to eθ. It leads to the following expression
of the sinogram

S0(B, θ) =

∫
R

(∫
Hθ

v(yeθ + z)dz

)
h0(B + µy)dy (10)

because y = eθ · x. Here appears the 3D Radon transform of v at angle θ

Rθv(y) =

∫
Hθ

v(yeθ + z)dz (11)

which yields

S0(B, θ) =

∫
R
Rθv(y)h0

(
−µ(−B

µ
− y)

)
dy (12)
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By considering both sinogram and spectrum in spatial position instead of
magnetic field by S(x, θ) = S0(−µx, θ) and h(x) = h0(−µx), equation (12) yields
the convolution product

S(x, θ) = (Rθv ∗ h)(x)
def
:=

∫
R
Rθv(y)h(x− y)dy (13)

Similarly to [31], [39] and [4], we assume that the data is corrupted with
an additive independant gaussian white noise denoted n, thus yielding the direct
model of spatial EPRI acquisition

S(x, θ) = (h ∗Rθv)(x) + n(x, θ) (14)

However, EPRI acquisitions are not always made in 3D, but also in 1D and in
2D. For 2D acquisition, the angle θ2 is set to 0, and the field gradient is supported
by the vector eθ = (cos θ, sin θ) in the plane θ2 = 0. The retrieved 2D image u is
the projection of the 3D image v on the plane θ2 = 0. We have indeed

R2d
θ u = R3d

(θ,0)v (15)

where R2d represents the 2D Radon transform and R3d represents the 3D Radon
transform. All our simulation and experiences are in 2D, that’s why the following
work considers only the 2D Radon transform, still denoted Rθ with θ a single
angle, and the 2D image u. The following work can however be generalized to 3D
reconstructions.

1.2. Data-fidelity term

In order to retrieve the 2D image u from the data S whose relation is described
in equation (14), we employ the maximum a posteriori method. It requires the
definition of a data-difelity term and a regularization term.

The L2 norm is the log-likelihood estimate to remove the independent white
gaussian noise from the data, thus yielding the data-fidelity term

F (u) =
1

2
||h ∗Rθu− S||22. (16)

For simplicity, we will rewrite this equation in terms of the Fourier transform
of u which is defined, for u ∈ L1(R), by û(ξ) =

∫
u(x)e−2iπx·ξdx. By using the

associated Plancherel equality, we obtain

F (u) =
1

2
||ĥ · R̂θu− Ŝ||22. (17)
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Projection-slice theorem [11] states that, for all ξ ∈ R and θ ∈ [0, π],

R̂θu(ξ) = û(ξeθ), (18)

with eθ = (cos θ, sin θ). It means that, for every acquisition angle θ, the 1D Fourier
transform of the Radon transform of image u at angle θ is equal to the 2D Fourier
transform of image u evaluated on the line carried by eθ. Data-fidelity term (16)
has thus become

F (u) =
1

2
||Au− d||22 (19)

with d def
:= Ŝ and A being the linear operator in variable u

Au(ξ, θ)
def
:= ĥ(ξ)û(ξeθ) (20)

The Radon transform is typically defined on the Schwartz space S(R2) and
the same applies for A. The spectrum h that is used in its definition is however
the derivative of a function g that is a finite linear combination of Gaussian and
Lorentzian functions. The Fourier transforms ĥ and ĝ have therefore fast decay.
Contrary to the Radon transform alone, the mapping A can therefore be easily
extended onto L2(R2) by continuity, thus allowing to formally define its adjoint.

Proposition 1 The operator A defined on S(R2) admits a unique continuous
extension from L2(R2) to L2(R× [0, π]).

Proof. Observe that, since ĥ and ĝ are bounded, there exists c > 0 such that
for every ξ ∈ R

|ĥ(ξ)|2 = 4π2ξ2|ĝ(ξ)|2 6 min(4π2ξ2‖ĝ‖2∞, ‖ĥ‖2∞) 6 c|ξ|.

Hence, for every u ∈ S(Rn)∫ π

0

∫
R
|Au(ξ, θ)|2dξdθ =

∫ π

0

∫
R
|ĥ(ξ)û(ξeθ)|2dξdθ

6 c

∫ π

0

∫
R
|ξ| |û(ξeθ)|2dξdθ

= c

∫
R2

|û(ω)|2dω

= c

∫
R2

|u(x)|2dx

The conclusion follows from the density of S(R2) in L2(R2). �
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The following proposition gives a simple way to compute the operator A∗A,
where A∗ stands for the adjoint operator of A. This expression appears in the
minimization algorithms proposed thereafter.

Proposition 2 For every u ∈ L2(R2)

A∗Au = k ∗ u (21)

where the point spread function k is defined by

k(x)
def
:=

∫ π

0

∫
R
|ĥ(ξ)|2e2iπξx·eθ dξdθ, ∀x ∈ R2 (22)

Proof. Let us first compute the adjoint operator A∗ : L2(R× [0, π])→ L2(R2)

that is well defined thanks to the continuous extension of proposition 1. For all
u ∈ L1(R2) ∩ L2(R2) and v ∈ L2(R2), we have∫

R2

∫ π

0

∫
R
|u(x) ĥ(ξ) v(ξ, θ)| dξdθdx ≤ ‖u‖L1(R2)

√
π‖ĥ‖L2(R)‖v‖L2(R×[0,π]) <∞

We can therefore apply Fubini’s theorem in order to show that

〈Au, v〉 =
∫ π
0

∫
RAu(ξ, θ) v(ξ, θ) dξdθ

=
∫ π
0

∫
R ĥ(ξ)

(∫
R2 u(x)e−2iπξx·eθ dx

)
v(ξ, θ)dξdθ

=
∫
R2 u(x)

(∫ π
0

∫
R ĥ(ξ) v(ξ, θ) e−2iπξx·eθ dξdθ

)
dx

where v(ξ, θ) denotes the complex conjugate of v(ξ, θ). Identifying the latter with
〈u,A∗v〉, for all u ∈ L1(R2)∩L2(R2) which is dense in L2(R2), yields the expression
of the adjoint operator

A∗v(x) =

∫ π

0

∫
R
ĥ(ξ) v(ξ, θ) e2iπξx·eθ dξdθ (23)

and allows to compute A∗Au. We have indeed, for all u ∈ L1(R2) ∩ L2(R2)

(A∗Au)(x) =
∫ π
0

∫
R ĥ(ξ) Au(ξ, θ) e2iπξx·eθ dξdθ

=
∫ π
0

∫
R ĥ(ξ) ĥ(ξ)

(∫
R2 u(y)e−2iπξy·eθ dy

)
e2iπξx·eθ dξdθ

=
∫
R2 u(y)

(∫ π
0

∫
R |ĥ(ξ)|2e2iπξ(x−y)·eθ dξdθ

)
dy

=
∫
R2 u(y)k(x− y) dy

= (u ∗ k)(x)
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where the third equality is a consequence of Fubini’s theorem again, since∫
R2

∫ π

0

∫
R
|u(y) ĥ(ξ)2| dξdθdy ≤ π‖u‖L1(R2)‖ĥ‖L2(R) <∞

It remains to show that (21) is still satisfied when u ∈ L2(R2). Observe that
|ĥ| is even because h is real valued. We infer that

k(x) =

∫ π

−π

∫ ∞
0

|ĥ(ξ)|2e2iπξx·eθ dξdθ

=

∫ π

−π

∫ ∞
0

ξ|ĝ(ξ)ĥ(ξ)|e2iπξx·eθ dξdθ

=

∫
R2

|ĝ(|ω|)ĥ(|ω|)|e2iπx·ω dω

Since ω 7→ |ĝ(|ω|)ĥ(|ω|)| belongs to L2(R2), its inverse Fourier transform k belongs
to L2(R2) as well, and the mapping u 7→ k ∗ u can be extended into a continuous
operator from L2(R2) to L∞(R2). On the other hand, A∗A is continuous from
L2(R2) to itself, and we can conclude the proof by a density argument. �

1.3. Regularization term

1.3.1. Total variation A first choice for the regularization term is the total
variation

TV(u) = sup

{∫
R2

u div φ | φ ∈ C∞c , |φ(x)| 6 1

}
(24)

whose interest regarding computer vision has first been discussed in [36]. The
expression for a discrete or W 1,1 image u is

TV(u) =

∫
|∇u| = ||∇u||1 (25)

An accurate inversion of equation (14) is obtained by solving

ū = arg min
u

F (u) + λTV(u) (26)

where λ is a trade-off parameter to balance the effect of the total variation
regularization with the data-fidelity term F , and allows to choose the remaining
level of noise.

The main advantages of this regularization choice are the sharpness of the
reconstructed images and its ability to reconstruct images from incomplete data.
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It also tends to recreate images that are piecewise constant, due to the enforced
sparsity of the L1 norm applied to the gradient. Therefore, the total variation
regularization is well adapted to images without oscillations.

However, textured areas suffer from the use of total variation regularization
and tends to become homogeneous with this reconstruction. This is why another
prior is presented along with it.

1.3.2. Total variation and curvelets The second regularization model harnesses
the idea of [30] to decompose an image u into its cartoon part u1 and its textured
part u2. The reconstructed image u is then the sum of the two images u1 and u2

u = u1 + u2 (27)

While it is generally acknowledged that the total variation allows to efficiently
model cartoon images, several criteria, nearing more or less the dual norm of
the total variation, have been proposed in order to characterize the texture
component, or more precisely the oscillating component. Among the most notable
ones, we can quote div(BMO) [30], div(L∞) [30], the homogeneous Besov norm
Ḃ-1
∞,∞ [30] and the homogeneous Sobolev norm Ḣ -1 [42].

Contrarily to [42] or [6], our objective is not to obtain the best decomposition
into a cartoon and a texture part, but to retrieve the sum u1 + u2 from the noisy
data. We propose therefore to use a criterion that allows to separate efficiently
the texture and the noise and that is based, to this end, on a sparse representation
of the texture. To our knowledge, the closest model to ours was introduced by
Frühauf, Pontow and Scherzer [18] who characterized the textured part u2 with
the L1 norm of its weighted curvelet transform Wu2 = (wj〈u2, φj,k〉)j,k, the index
j being the scale parameter and k standing for the translation and direction
parameters of the curvelet φj,k. However, unlike [18], we set wj = 2−

n+2
2
j where

n is the dimension of the space on which the image is defined. Hence, for 2D
images, we have

‖Wu2‖1 =
∑
j,k

4−j|〈u2, φj,k〉| (28)

If the curvelet frame is changed into a wavelet basis, it is equivalent to the
homogeneous Besov Ḃ-1

1,1 norm [30] that is close to the Sobolev Ẇ -1
1 norm.

The reconstructed image ū is thus solution of the problem

ū = arg min
u=u1+u2

(F (u1 + u2) + λ1 TV(u1) + λ2‖Wu2‖1) (29)
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where λ1 and λ2 are parameters associated with each prior. They can be adapted
to the level of cartoon or textured effect desired in the image ū.

2. Minimization algorithm

2.1. First-order primal-dual algorithm

Chambolle and Pock [10] give an efficient iterative algorithm to minimize problems
of the form

arg min
u

f(u) + g(Ku) (30)

with f and g proper, positive, lower semi-continuous and convex functions, and
K a continuous linear operator. The minimization algorithm consists of the steps

Initialization Initialize σ, τ > 0, u0 ∈ Rn, p0 ∈ Rn × Rn and set v0 = u0.
Iterations For k > 0, iterate
(a) pk+1 = (I + σ∂g?)−1 (pk + σKvk)

(b) uk+1 = (I + τ∂f)−1 (uk − τK∗pk+1)

(c) vk+1 = 2uk+1 − uk

where I stands for the identity operator, ∂f the subgradient of f and g? the
conjugate function of g, according to the Legendre-Fenchel duality

g?(u) = sup
v
〈u, v〉 − g(v) (31)

Step (a) is a gradient ascent in the dual space composed with the proximal
operator of σg?. Step (b) is a gradient descent in the primal space composed with
the proximal operator of τf . Step (c) is an acceleration step by extrapolating the
point to which apply step (a). Under the condition στ ||K||2 < 1, this algorithm
converges to a minimizer of problem (30). For convergence acceleration, those
parameters may be modified during the run of the algorithm, mimicking a new
minimization problem initialized with the previous u obtained.

By choosing f(u) = F (u), Ku = λ∇u and g(p) = ||p||1 with p = (p1, p2)

the dual variable of ∇u, the primal-dual algorithm converges to a solution of
problem (26). By choosing f(u1, u2) = F (u1 + u2), K(u1, u2) = (λ1∇u1, λ2Wu2)

and g(p, w) = ||p||1 + ||w||1 with p the adjoint variable of ∇u1 and w the adjoint
variable of Wu2, it converges to a solution of problem (29).

Note that by choosing K(u) = (λ1∇u, λ2u) instead, the algorithm converges
to a solution of (3). This method is a more general and flexible method, and
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furthermore the convergence of the Chambolle and Pock algorithm is formally
proven in [10].

2.2. Implementation

2.2.1. TV model For step (a), the computation of the resolvent (I + σ∂g?)−1 for
g(p) = ||p||1 applied to p̃ = pk +σλ∇vn is detailed in [9]. The computation yields

pk+1 = (I + σ∂G∗)−1 (p̃) ⇐⇒ pk+1
i,j =

p̃i,j
max(1, |p̃i,j|)

(32)

with |pi,j| =
√

(p1[i, j])2 + (p2[i, j])2

Step (b) involves K∗(p) = −λ div(p) the adjoint operator of K(u) = λ∇u.
The computation of the resolvent (I + τ∂F )−1 for the data-fidelity term F (u) =
1
2
||Au− d||22 applied to ũ = uk + τλ div pn+1 is the solution of

uk+1 = arg min
u

1

2
||u− ũ||22 + τF (u) (33)

which is the minimizer of H(u) = 1
2
||u− ũ||22 + τ

2
||Au− d||22. Its derivative is

H ′(u) = (u− ũ) + τA∗(Au− d) (34)

and the minimizer uk+1 verify Euler-Lagrange equation

H ′(uk+1) = 0 ⇐⇒ (I + τA∗A)uk+1 = ũ+ τA∗d (35)

Assuming we know how to invert I + τA∗A, an immediate solution of (35)
follows. As the computation of section 1.2 can be generalized to the discrete case,
A is here a Vandermonde hypermatrix, and thus A∗A a Toeplitz hypermatrix.
Therefore, the operator A∗A is a non-periodic convolution with the point spread
function k. This property was first used by Kostov for the inversion of the
Radon transform alone [27] and by Feichtinger, Gröchenig and Strohmer for the
restoration of irregularly sampled images [15]. To be able to use the Fast Fourier
Transform (FFT), we make here the assumption that the non-periodic convolution
can be approximated by a periodic convolution. It is however justified by the
physical properties of an EPR acquisition: the sinogram on the border of the
acquisition area is an almost null signal.
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Thanks to the convolution theorem, equation (35) is equivalent in the Fourier
space to

uk+1 + τk ? uk+1 = ũ+ τA∗d ⇐⇒
(
1 + τ f̂

)
ûk+1 = ̂̃u+ τÂ∗g

⇐⇒ ûk+1 =
̂̃u+ τÂ∗d

1 + τ f̂

2.2.2. TV-Curvelets model To implement the TV-Curvelets model in step (a)
of the minimization algorithm, one needs to adapt the result of equation (32)
for the dual variable (p, w). The computation of the resolvent (pk+1, wk+1) =

(I + σ∂g?)−1 (p̃, w̃) consists of projecting (p̃, w̃) = (pk + σλ1∇vk1 , wk + σλ2Wvk2)

onto the set {
(p, w) : (p1[i, j])

2 + (p2[i, j])
2 6 1 and |wr,s,t| 6 1

}
(36)

Step (b) involves K∗(p, w) = (−λ1 div(p), λ2W
∗u2) which is the adjoint

operator of K(u) = (λ1∇u1, λ2Wu2). Thanks to the tight frame property of
the curvelet transform described in [12], the adjoint of W is equal to the inverse
curvelet transform W−1, thus yielding K∗(p, w) = (−λ1 div(p), λ2W

−1u2).
The computation of the resolvent (I + τ∂F )−1 is similar to the resolution of

equation (33), except that the variable u is now equal to (u1, u2) instead. In this
case, the Euler-Lagrange equation is(

I + τA∗A τA∗A

τA∗A I + τA∗A

)(
u1
u2

)
=

(
ũ1 + τA∗d

ũ2 + τA∗d

)
(37)

with ũ = uk − τK∗(pk+1, wk+1).
Again, by considering operator A∗A as a convolution with the point spread

function k and computing it in the Fourier space, the resolution of system 37
yields

û1 =
(1 + τ k̂)v̂1 − τ k̂v̂2

1 + 2τ k̂
and û2 =

(1 + τ k̂)v̂2 − τ k̂v̂1
1 + 2τ k̂

(38)

with (
v1
v2

)
=

(
ũ1 + τA∗d

ũ2 + τA∗d

)
(39)
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3. Results and discussion

Numerical simulations are processed with Matlab [2]. Discrete Fourier
transforms are computed using FFTW [17]. When computation is required on
a polar raster, we use the NUFFT [20]. The curvelet part requires the package
described in [12]. Real data are loaded using Easyspin [38].

3.1. Simulated data

3.1.1. Robustness to few angle acquisitions First tests and simulations have been
conducted on the Shepp-Logan phantom introduced in [37]. Figure 1a presents
the Shepp-Logan phantom. Figure 1b presents the spectrum h, simulated as a
derivative of a gaussian distribution. Figure 1c is the simulated sinogram S,
created as the Radon transform of the Shepp-Logan transform, implemented
with Matlab’s function radon with 100 angles and then convoluted with the
spectrum h. Both spectrum and sinogram are then corrupted with a gaussian
noise of variance σ = 0.03 proportionally to their amplitudes.

(a) Shepp-Logan phantom
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(b) Simulated spectrum (c) Sinogram

Figure 1: Simulated EPRI data on Shepp-Logan phantom

Our model with a TV regularization is compared to the reconstruction
algorithm implemented in Xepr [1], the commercial software provided by Bruker
with EPRI devices. It consists of a deconvolution step followed by a backprojection
step.

Figure 2 presents the reconstruction results of the two methods applied
to an input data admitting a decreasing number of acquisition angles. The
TV reconstructions are computed with the parameter λ = 0.05. The Xepr
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deconvolution is made with a gaussian window of width 0.1 and threshold
0.5. The backprojection step is made with the parameters Reduce = 512 and
ImageSize = 512.

The proposed TV model outperforms the Xepr model in figure 2a both
visually: the TV reconstruction is sharp whereas the Xepr image is noisy, and
quantitatively: the PSNR of the TV reconstruction compared to the original
phantom is 18.6, whereas it is only 16.4 for the Xepr image. As the number
of angles decreases significantly in figures 2b and 2c, the Xepr reconstruction
admits visible artifacts whereas the TV reconstruction is very robust to the lack of
information in between acquisition lines. In figure 2c, the PSNR or the TV model
is 15.4 where it is only 10.9 for the Xepr image. This numerical experiment thus
validates our first model with the total variation as a regularization for simulated
sinograms of piecewise-constant images.

Because the acquisition time of an EPRI device is a strong limitation for in
vivo measurements, the ability to correctly reconstruct an image from a small
number of acquisition lines is a real improvement for small animals and human
EPR imaging.

T
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j

X
ep
r

(a) 100 angles (b) 50 angles (c) 20 angles

Figure 2: Reconstructions with a decreasing number of acquisition angles.
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3.1.2. Retrieval of simulated textures The TV model has been validated on
acquisitions with very few angles. This section justifies the need for a second
choice of regularization for textured data: the TV-Curvelets model. Henceforth,
some texture of various kinds has been added to the phantom of Shepp-Logan.
Input simulated data are shown in figure 3a, along with their reconstruction with
the TV model in figure 3b with parameter λ = 10−2.

(a) Original (b) Reconstruction

Figure 3: Reconstruction of textured Shepp-Logan with TV model

Although the global shape of the phantom is retrieved, the details of the
textures are lost through the reconstruction process. This is due to the simplicity
of the TV model. Therefore, a more sophisticated model is applied in order to
retrieve the strongly oscillating textures : the TV-Curvelets model, described in
section 1.3.2 with parameters λ1 = 5.10−2 and λ2 = 5.10−5.

Results are shown in figure 4 and a zoomed comparison of the TV vs TV-
Curvelets model stands in figure 5. Figure 5c visually shows a finer reconstruction
of the details of the textures than in figure 5b.
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(a) Reconstruction (b) Cartoon part u1 (c) Textured part u2

Figure 4: Reconstruction with TV-Curvelets model

(a) Original (b) TV model (c) TV-Curvelets model

Figure 5: Details of the Shepp-Logan phantom with texture

3.2. Experimental data

Further tests were conducted on real experimental data. The sample was an
irradiated distal phalanx kindly furnished by Philippe Lévèque from REMA,
Louvain La Neuve University, Bruxelles. Irradiation of solid part in the body
leads to paramagnetic defaults which can be used for retrospective irradiation
dosimetry and are observable using EPRI [26].

A picture of the sample is shown on figure 6b and a slice of a CT scan with
the same orientation is shown on figure 6b. Micro-CT imaging was obtained using
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a 1178 X-ray Skyscan computed tomograph with settings at 50 kV, 615 mA, pixel
size 80 µm. Raw micro-CT images were processed using the Skyscan software
suite Nrecon, CTAn, and CTVol.

(a) Picture (b) Micro-CT scan

Figure 6: Irradiated phalanx

3.2.1. Long acquisition time An EPRI acquisition was recorded at 10 GHz using
a X-Band Bruker E540 spectrometer fitted with a TMS resonator. The settings
of the device were 0.3 mT for the amplitude of field modulation and 100 kHz
for its frequency, a conversion time of 163.84ms and an identical time constant.
The X-band EPR images were obtained using 1.75 T/m gradient strength, with
117 tomographic projections on theta angle to obtain a 2D image. The whole
experiment lasted 11 hours. The obtained spectrum and sinogram are shown on
figure 7.
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Figure 7: Acquisition data on the phalanx

Figure 8a presents the reconstruction with the TV-Curvelets model. The
associated decomposition in cartoon and texture parts is shown in figures 8b and
8c respectively. Due to the high amplitude of the data compared to the Shepp-
Logan simulation, the parameters were set to λ1 = 109 and λ2 = 106. Many
textures are retrieved in the reconstruction, as expected after the simulations on
the Shepp-Logan phantom.

For comparison, reconstructions made with Xepr and TV model are shown
in figure 9. The parameter λ was set to 1012. As shown by the results obtained on
simulated data, the TV model outperforms Xepr, especially regarding the noise
level, but does not reconstruct the textures enough to take into account some
details of the phalanx. Subjective evaluation yields a clear preference for the
TV-Curvelets model.

Furthermore, the small details of the texture retrieved by the TV-Curvelets
model in figure 9c are coherent with the ones visible on the CT scan of the phalanx
in figure 6b. It means that the effects of the curvelet regularization did not
create false texture, but instead retrieved existing textures. Because the CT is an
anatomic imaging device whereas the EPRI is a molecular imaging device, we can
assume that the lasting effects of the irradiation is correlated with the anatomic
map of the bones. Those similarities strongly validate our TV-Curvelets model.
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(a) Reconstruction (b) Cartoon part u1 (c) Textured part u2

Figure 8: Reconstruction with TV-Curvelets model

3.2.2. Reduction of the experimental data As the acquisition of the sinogram of
the phalanx lasted 11 hours, reconstructions were conducted on the same sinogram
by taking only a fifth of the projection angles and a quarter of the acquisition
points, thus mimicking an acquisition time reduced by a factor 20. The parameters
were adapted to λ1 = 5.107 and λ2 = 105. Reconstructions are shown in figure
10. Although the textures do not appear as clearly as with the whole set of data,
the TV-Curvelets model succeeds in retrieving the global shape of the phalanx,
whereas Xepr fails to reconstruct the border of the phalanx. Therefore, the TV-
Curvelets model proves its efficiency for preliminary acquisitions, when the zone
on which to concentrate the longer acquisition has to be specified.
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(a) Xepr (b) TV model (c) TV-Curvelets model

Figure 9: Three reconstruction models and zoom
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(a) Xepr (b) TV-Curvelets

Figure 10: Reconstruction with reduced data

Conclusion

Our contribution to EPRI is a thorough analysis of the direct model. It leads
to properties that allow us to efficiently minimize an objective function specially
designed for the EPRI problem. The proposed algorithm is fast and admits a
proof of convergence towards the minimizer of the objective function.

Our choices regarding the data-fidelity term and regularization term are
validated by simulated experiments. When no texture is present in the image, the
TV model outperforms the classic Xepr reconstruction. And the TV-Curvelets
model turns out to be very satisfying when applied to real acquisition data: the
curvelet regularization retrieves textures that strongly match the CT anatomic
image of the phalanx bone, where both Xepr and our simpler model with the TV
regularization do not provide as much details.
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