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Abstract. We address estimation problems where the sought-after solution is defined as the
minimizer of an objective function composed of a quadratic data-fidelity term and a regularization
term. We especially focus on nonsmooth and/or nonconvex regularization terms because of their
ability to yield good estimates. This work is dedicated to the stability of the minimizers of such
nonsmooth and/or nonconvex objective functions. It is composed of two parts. In the previous
part of this work, we considered general local minimizers. In this part, we derive results on global
minimizers. We show that the data domain contains an open, dense subset such that for every data
point therein, the objective function has a finite number of local minimizers, and a unique global
minimizer which is stable under variations of the data.
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1. Introduction. This is the second part of a work devoted to the stability
of minimizers of regularized least squares objective functions as customarily used in
signal and image reconstruction. In the previous part [5], we considered the behavior
of local minimizers whereas now we draw conclusions about global minimizers.

Given data y ∈ IRq, we consider the global minimizers x̂ ∈ IRp of an objective
function E : IRp × IRq → IR of the form

E(x, y) := ‖Lx − y‖2 + Φ(x),(1)

where L : IRp → IRq is a linear operator, ‖ . ‖ denotes the Euclidean norm and
Φ : IRp → IR is a piecewise Cm-smooth regularization term. More precisely,

Φ(x) :=
r

∑

i=1

ϕi(Gix),(2)

where for every i ∈ {1, . . . , r}, the function ϕi : IRs → IR is continuous on IRs and Cm-
smooth everywhere except at a given θi ∈ IRs, and Gi : IRp → IRs is a linear operator.
The operators Gi in the regularization term Φ usually provide the differences between
neighboring samples of x. Typically, for all i ∈ {1, . . . , r}, we have θi = 0 and ϕi reads

ϕi(z) = φ(‖z‖), ∀i ∈ {1, . . . , r},(3)

where φ : IR+ → IR is an increasing function, often called potential function. Several
functions φ, among the most popular, are the following [6, 1, 7, 9, 8, 11, 3, 12, 2]:

Lα φ(t) = |t|α, 1 ≤ α ≤ 2,
Lorentzian φ(t) = αt2/(1 + αt2),
Concave φ(t) = α|t|/(1 + α|t|),
Gaussian φ(t) = 1 − exp (−αt2),
Truncated quadratic φ(t) = min

{

αt2, 1
}

,

Huber φ(t) =

{

t2 if |t| ≤ α,
α(α + 2|t − α|) if |t| > α.

(4)
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The notations in this paper are the same as in part I. Recall that although E
depends on two variables (x, y), ∇E and ∇2E will systematically be used to denote
gradient and Hessian with respect to the first variable x. By B(x, ρ) we will denote a
ball in IRn with radius ρ and center x, and by S the unit sphere in IRn centered at the
origin, for whatever dimension n appropriate to the context. For a subset A ∈ IRq,
its complementary in IRq will be denoted Ac.

We will consider minimizer functions with a special attention to those which yield
the global minimum of the objective function.

Definition 1.1. A function X : O → IRp, where O is an open domain in IRq, is
said to be a minimizer function relevant to E if every X (y) is a strict (i.e. isolated)
local minimizer of E(., y) whenever y ∈ O. Moreover, X is called a global minimizer
function relevant to E if E(., y) reaches its global minimum at X (y) for every y ∈ O.

The goal of this second paper is to check first the uniqueness and then the smooth-
ness of the global minimizer functions relevant to E . We will make the same basic
assumptions as in the previous part of this work.

H1. The operator L : IRp → IRq in (1) is injective, i.e. rankL = p.
If Φ is Cm-smooth, we will systematically assume the following:

H2.
∇Φ(tv)

t
→ 0 uniformly with v ∈ S as t → ∞.

Otherwise, for Φ piecewise Cm and of the form (2), the latter assumption is
reformulated in the following way:

H3. For every i = 1, . . . , r and for t ∈ IR, we have
∇ϕi(tu)

t
→ 0 uniformly with

u ∈ Ss when t → ∞.
The results presented in the following are meaningful if, for all y ∈ IRq, the

objective function E(., y) admits at least one minimizer.
Lemma 1.2. Consider E as given in (1) and assume that H1 is satisfied. Suppose

that Φ satisfies one of the following conditions:
1. Φ is Cm on IRp with m ≥ 2 and assumption H2 is satisfied;
2. Φ is of the form (2) where for all i ∈ {1, . . . , r}, ϕi is continuous on IR and

Cm on IR \ {θi} with m ≥ 2, and the assumption H3 is satisfied.
Then for every y ∈ IRq, the objective function E(., y) admits at least one global

minimizer.
It is easy to see that our assumptions guarantee that E(., y) is coercive for every

y ∈ IRq [4, 10]. Hence the conclusion of the lemma. However, E(., y) may have several
global minimizers. From a practical point of view, this means that the estimation
problem is not well formulated and that there is not enough information to pick out
a unique stable solution. We will confine our attention to the subset of IRq composed
of data y for which E(., y) has a unique global minimizer, i.e. for which the global
minimum of E(., y) is reached at a unique point:

Γ := {y ∈ IRq : E(., y) has a unique global minimizer}.

Our main result states that the interior of Γ is dense in IRq. This result means that
in a real-world problem there is no chance of getting data y leading to an objective
function having more than one global minimizers. On Γ, we will consider the global
minimizer function X̂ : Γ → IRp—the function which yields X̂ (y), the unique global
minimizer of E(., y), for every y ∈ Γ. Under quite general assumptions, we show that
X̂ is smooth on an open dense subset of Γ. The global minimizer function X̂ can also
be extended beyond the latter set. However, this extension may not be defined in a
unique way and it can be non-smooth and even discontinuous. An intermediate result
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says that for almost every y ∈ IRq, the objective function has a finite number of local
minimizers, corresponding to the same number of Cm−1 local minimizer functions.

2. Cm-smooth objective function. The context of smooth objective functions
allows us to see easily the main reasons yielding the result alluded to above without
needing intricate developments.

Theorem 2.1. Suppose E is of the form (1) where Φ is an arbitrary Cm-function
on IRp, with m ≥ 2. Let the assumptions H1 and H2 be true. Then we have the
following statements.

(i) The interior of Γ is dense in IRq.
(ii) The global minimizer function X̂ : Γ → IRp is Cm−1 on an open, dense subset

of Γ.
Before to proving this theorem, we exhibit two auxiliary propositions.
Proposition 2.2. Suppose also that Φ is Cm and that the assumptions H1 and

H2 are true. Then there exists Ω0 an open and dense subset of IRq such that every
y ∈ Ω0 is contained in a neighborhood N ∈ IRq, associated with an integer n > 0, so
that for every y′ ∈ N , the relevant objective function E(., y′) admits at most n local
minimizers.

Proof. The set Ω0 evoked in the proposition can be taken as defined in (12) in
the first part [5],

Ω0 := {y ∈ IRq : 2LT y 6∈ ∇E(H0, 0)} ⊂ Ω,

where we recall that

H0 =
{

x ∈ IRp : det∇2E(x, 0) = 0
}

.

As stated in Remark 3 in [5], the set Ω0 is indeed open and dense in IRq. The proof
of Proposition 2.2 relies on the following lemma.

Lemma 2.3. Let the assumptions of Proposition 2.2 hold. Then for every open
and bounded subset N ⊂ IRq, there exists a compact set C ⊂ IRp such that for every
y ∈ N , every local minimizer x̂ of E(., y) satisfies x̂ ∈ C.

Proof of Lemma 2.3. For every y ∈ IRq, if x̂ ∈ IRp is a minimizer of E(., y), then
∇E(x̂, y) = 0, or equivalently,

∇E(x̂, 0) = 2LT y.

Then all minimizers of all functions E(., y) when y ranges over N , are contained in
the set

{x ∈ IRp : ∇E(x, 0) ∈ 2LT N}.(5)

The set 2LT N is clearly bounded. Moreover, by H1 and H2 we have ∇E(x, 0) ∼
2LT Lx as ‖x‖ → ∞, where 2LT L is invertible. Hence the set given in (5) is bounded
as well. 2

We will show that if for some y ∈ IRq the property stated in Proposition 2.2 is not
satisfied, then this y belongs to Ωc

0. So consider y ∈ IRq and suppose that for every
integer n > 0, there exists a point yn ∈ B(y, 1/n) such that E(., yn) admits at least n
different local minimizers. This gives rise to a sequence, indexed by n, every element
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of which is a set of n minimizers among all the minimizers of E(., yn). For every n,
let dn denote the smallest distance between two minimizers of E(., yn) belonging to
the selected set of n minimizers. The set being finite, the distance dn is reached for a
pair of minimizers, say x̂n and x̂′

n. Any such two minimizers satisfy

∇E(x̂′
n, yn) = 0 = ∇E(x̂n, yn).(6)

By the mean-value theorem, there is x̃n ∈ {tx̂′
n + (1 − t)x̂n : 0 < t < 1} for which

det∇2E(x̃n, yn) = 0.

Since ∇2E(x̃n, yn) = ∇2E(x̃n, 0), we deduce that x̃n ∈ H0.
On the other hand, Lemma 2.3 tells us that all the minimizers of E(., yn), for

every n, are contained in the same compact set, whose convex hull is also compact
and will be denoted C. Then x̃n ∈ C as well. By the compacity of C, the sequence
{x̃n} admits a subsequence which converges to a point x̃ as long as n → ∞. Moreover,
C contains an increasing number (equal or larger than n) of minimizers when n → ∞,
so dn goes to zero when n → ∞. Hence, x̂n → x̃ when n → ∞. At the same time,
yn → y by construction. Since (x, y) → ∇E(x, y) is continuous, at the limit when
n → ∞, the equation (6) yields

∇E(x̃, y) = 0.(7)

Moreover, since H0 is closed, x̃ ∈ H0. Combining this fact with (7) shows that y ∈ Ωc
0.

2

Extending the arguments underlying this proof, we can see that local minimizer
functions never cross on Ω0.

Remark 1. Let us consider two minimizer functions X1 and X2 defined on an
open and connected domain O ⊂ Ω0. We claim that either X1 ≡ X2 on O, or

X1(y) 6= X2(y), ∀ y ∈ O.(8)

The reason is the following. Consider the set Õ := {y ∈ O : X1(y) = X2(y)} and
suppose that Õ is nonempty and different from O. By the continuity of Xi, i = 1, 2,
the set Õ is closed in O. Focus on y belonging to the boundary of Õ in O. Then
there is a sequence {yn} with yn ∈ O \ Õ, converging to y as n → ∞, such that
X1(yn) 6= X2(yn). Since X1 and X2 are continuous, the points x̂n := X1(yn) and
x̂′

n := X2(yn) come arbitrarily close to each other as long as n → ∞. By applying the
reasoning developed next to (6), we deduce that det∇2E(Xi(y), y) = 0, for i = 1, 2,
which contradicts the fact that y ∈ Ω0. Hence the boundary of Õ in O is empty.
Since O is connected and open, the latter conclusion entails that either Õ = O, or Õ
is empty.

The proposition below reinforces this observation.
Proposition 2.4. Let the assumptions of Proposition 2.2 be true. Every open

set of IRq contains an open subset O on which E admits exactly n minimizer functions
Xi : O → IRp, i = 1, . . . , n, which are Cm−1 and are such that for all y ∈ O, all the
minimizers of E(., y) read

Xi(y), i = 1, . . . , n(9)
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and satisfy

E(Xi(y), y) 6= E(Xj(y), y), ∀i, j ∈ {1, . . . , n} with i 6= j.(10)

Proof. Since Ω0 is open and dense in IRq, we can take our open set in Ω0. Let y
belong to this set. By Proposition 2.2, y has a neighborhood O composed of elements
y′ for which E(., y′) has at most n local minimizers, where n > 0 is the smallest
integer for which this property holds. Even if it means interchanging two elements
of O, we can assume that E(., y) has exactly n local minimizers x̂i, i = 1, . . . , n. By
y ∈ Ω0 ⊂ Ω, each minimizer x̂i, i = 1, . . . , n, results from the application of a Cm

minimizer function Xi, i.e. x̂i = Xi(y). Each Xi being defined on an open domain
containing y, we can additionally restrict O in such a way that it is connected and
included in the intersection of these domains.

The statement (9) comes from the following two arguments. On the one hand,
every E(., y′), for y′ ∈ O, has at most n minimizers. On the other hand, by Remark 1,
for every y′ ∈ O and i, j with i 6= j, we have Xi(y

′) 6= Xj(y
′).

The proof of (10) relies on the following lemma.
Lemma 2.5. Let X1 and X2 be two differentiable local minimizer functions rele-

vant to E, defined on the same open domain O ⊂ Ω. Suppose we have

E(X1(y), y) = E(X2(y), y), ∀y ∈ O.(11)

Then

X1(y) = X2(y), ∀y ∈ O.

Proof of Lemma 2.5. By differentiating the both sides of (11) with respect to y,
we obtain

D1E(X1(y), y)DX1(y) + D2E(X1(y), y)

= D1E(X2(y), y)DX2(y) + D2E(X2(y), y),(12)

where DiE denotes the differential of E with respect to its ith argument—thus D1E =
(∇E)T —and DXi is the Jacobian matrix of Xi. Since, for i ∈ {1, 2}, Xi is a minimizer
function,

D1E(Xi(y), y) = 0, ∀y ∈ O.

On the other hand, differentiating E(x, y) in (1) with respect to y leads to

D2E(x, y) = 2Lx − 2y.(13)

Introducing these last two expressions in (12 ), shows that

LX1(y) = LX2(y), ∀y ∈ O.

The conclusion follows from the injectivity of L. 2

We now pursue the proof of (10). For all i, j ∈ {1, . . . , n} with i 6= j let us
consider

Oi,j := {y ∈ O : E(Xi(y), y) = E(Xj(y), y)}.
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Introduce then the subset

Õ := O \





⋃

i,j∈{1,...,n}

Oi,j



 .

Equivalently,

Õ = {y ∈ O : E(Xi(y), y) 6= E(Xj(y), y), ∀i, j ∈ {1, . . . , n} with i 6= j}.

Since, for every i = 1, . . . , n, the function y → E(Xi(y), y) is continuous on O, every
Oi,j is closed in O. By the same argument, Õ is open.

Suppose Õ is empty. Since O is open, its interior is nonempty. Hence, there exist
i, j ∈ {1, . . . , n} for which the interior of Oi,j is also nonempty. Associating X1, X2

and O of Lemma 2.5 with Xi, Xj and the interior of Oi,j , respectively, we obtain that
Xi = Xj on this interior. This contradicts the fact that Xi(y) 6= Xj(y), for all y ∈ O.

It follows that Õ is nonempty. Then we can replace O by Õ. The second statement
of the proposition is proven. 2

Proof of Theorem 2.1. This proof follows directly from Proposition 2.4. Actually,
we show a stronger result, namely that the theorem remains true if we replace Γ by

Γ0 :=

{

y ∈ Ω0 :
every local minimum of E(., y) is
reached for a unique local minimizer

}

⊂ Γ.

So, Γ0 is the set of all data points y ∈ Ω0 for which E(., y) reaches a different value
at each local minimizer. Hence the uniqueness of the global minimizer, i.e. Γ0 ⊂ Γ.

We recall that for a local minimizer x̂ of E(., y), the relevant local minimum is
the scalar E(x̂, y).

Let y ∈ IRq and consider a neighborhood of y in IRq. By Proposition 2.4, it
contains an open set O on which the conclusion of the proposition holds. Clearly, O
belongs to the interior of Γ0. Since O can be arbitrarily close to y, we have proved
that the interior of Γ0 is dense in IRq.

Let us now consider an arbitrary y′ ∈ O. By (10), there is an index i ∈ {1, . . . , n}
for which

E(Xi(y
′), y′) < E(Xj(y

′), y′), ∀j ∈ {1, . . . , n} \ {i}.

As the functions y′′ → E(Xj(y
′′), y′′) are continuous on O, there is a neighborhood

N ⊂ O of y′ such that

E(Xi(y
′′), y′′) < E(Xj(y

′′), y′′),∀y′′ ∈ N, ∀j ∈ {1, . . . , n} \ {i}.

Therefore X̂ = Xi on N which implies that N belongs to the interior of {y′′ ∈ Γ :
X̂ is Cm−1 at y′′}. We get the conclusion by noticing that N can be arbitrarily close
to y. 2
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3. Objective function involving nonsmooth regularization. We will now
consider regularization terms of the form (2) where for every i ∈ {1, . . . , r}, the
potential function ϕi : IRs → IR is continuous on IRs and Cm on IRs \ {θi} for a given
θi ∈ IRs, and Gi : IRp → IRs is a linear operator. For every i ∈ {1, . . . , r}, the function
ϕi is supposed to satisfy the same conditions as in the first part [5]:

H4. For every net h ∈ IRs converging to 0 and such that limh→0 N (h) exists, the
limit limh→0 ∇ϕi(θi + h) exists and depends only on limh→0 N (h).

In the expression above, N denotes the normalization application defined by
N (v) = v/‖v‖, for every vector v. We put again

∇+ϕi(θi)

(

lim
h→0

N (h)

)

:= lim
h→0

∇ϕi(θi + h),(14)

and then extend this definition to every u ∈ IRs,

∇+ϕi(θi)(u) =

{

∇+ϕi(θi) (N (u)) if u 6= 0,
0 if u = 0.

(15)

Recall that we have also the two following assumptions for ϕi:
H5. u → ∇+ϕi(θi)(u) is Lipschitz on Ss.
H6. u 7→ ∇ϕi(θi + hu) converges to ∇+ϕi(θi) as h ց 0, uniformly on Ss.

We will need two additional assumptions which are usually satisfied in practice. For
all i ∈ {1, . . . , r}, we assume that

H7. lim inf
z→θi

inf
v∈Ss

vT∇2ϕi(z)v > −∞,

and
H8. uT∇+ϕi(θi)(u) ≥ uT∇+ϕi(θi)(v), ∀u ∈ Ss and ∀v ∈ Ss.
Observe that by the definition of ∇+ϕi in (15), the inequality in H8 can be

extended to all u and v in IRs.
Example 1. To illustrate the two last assumptions, consider

ϕi(z) = φ(‖z − θi‖) for z ∈ IRs,

where φ ∈ Cm(IR+), m ≥ 2, and φ′(0) > 0. By applying (14)-(15), it becomes



















∇ϕi(z) = φ′(‖z − θi‖)
z − θi

‖z − θi‖
if z 6= θi,

∇+ϕi(θi)(u) = φ′(0+)
u

‖u‖
if z = θi.

Differentiating ∇ϕi for z 6= θi, we obtain

∇2ϕi(z) =
φ′(‖z − θi‖)

‖z − θi‖
I +

(

φ′′(‖z − θi‖) −
φ′(‖z − θi‖)

‖z − θi‖

)

N (z − θi) (N (z − θi))
T

For any v ∈ Ss, we have

vT∇2ϕi(z)v =
φ′(‖z − θi‖)

‖z − θi‖
+

(

φ′′(‖z − θi‖) −
φ′(‖z − θi‖)

‖z − θi‖

)

(

vT N (z − θi)
)2

=
φ′(‖z − θi‖)

‖z − θi‖

(

1 −
(

vT N (z − θi)
)2

)

+ φ′′(‖z − θi‖)
(

vT N (z − θi)
)2
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The first term is always positive. So the assumption H7 amounts to saying that

lim inf
tց0

φ′′(t) > −∞.

For instance, for the concave function cited in (4), we find that φ′′(0) = −2α. For
α = 1, the Lα-function is non-smooth at zero and we have φ′(0) = 1 and φ′′(0) = 0.

Furthermore, the inequality required in H8 reads

φ′(0+) ≥ φ′(0+)uT v, ∀u, v ∈ Ss,

which amounts to Schwarz inequality.
Grossly speaking, the developments in the case of piecewise Cm regularization

follow the same lines as those developed in the case of Cm-functions in § 2, and some
details can therefore be skipped. The next theorem is an extension of Theorem 2.1
and gives the main result of this paper.

Theorem 3.1. Consider E represented by (1) where Φ has the form (2). For all
i ∈ {1, . . . , r}, let ϕi be Cm on IR \ {θi} with m ≥ 2 and continuous at θi and let the
assumptions from H3 to H8 be true. Suppose that H1 is satisfied. Then we have the
following statements.

(i) The interior of Γ is dense in IRq.
(ii) The global minimizer function X̂ : Γ → IRp is Cm−1 on an open, dense subset

of Γ.
The proof of Theorem 3.1 relies on the two propositions given below.
Proposition 3.2. Let Φ have the form (2) and let the assumptions H1, H3,

H4, H7 and H8 be true. Then there exists Ω0 an open and dense subset of IRq such
that every y ∈ Ω0 is contained in a neighborhood N ∈ IRq, associated with an integer
n > 0, so that for every y′ ∈ N , the relevant objective function E(., y′) admits at most
n local minimizers.

Proof. Let ΠTJ
be the orthogonal projection onto TJ . For J ∈ P({1, . . . , r}),

similarly to [5], we define

HJ
0 := {x ∈ ΘJ : det∇2(E|ΘJ

)(x, 0) = 0},(16)

WJ :=

{

w ∈ T⊥
J : vT w ≤

∑

i∈J

vT GT
i ∇

+ϕi(θi)(Giv), ∀v ∈ T⊥
J

}

.(17)

The set Ω0 is now constructed in close relation with Corollary 4.4 in the first part of
this work [5]:

Ω0 :=
⋂

J⊂P({1,...,r})

(Ac
J ∩ Bc

J) ⊂ Ω.(18)

where we recall that

AJ :=
{

y ∈ IRq : 2ΠTJ
LT y ∈ ∇ (E|ΘJ

) (HJ
0 , 0)

}

,(19)

BJ :=
{

y ∈ IRq : 2LT y ∈ ∇EJ (ΘJ , 0) + ∂T⊥
J

WJ

}

,(20)

and ∂T⊥
J

WJ is the boundary of WJ considered in T⊥
J . As seen from Propositions 4.5

and 4.6, the interiors of the sets Ac
J and Bc

J are dense in IRq. Hence the interior of Ω0

is dense in IRq as well. Next we need a lemma which generalizes Lemma 2.3 in § 2.
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Lemma 3.3. Let Φ be as in (2) and let the assumptions H1 and H3 hold. Then
for every open and bounded set N ⊂ IRq, there exists a compact set C ⊂ IRp such that
for every y ∈ N , every local minimizer x̂ of E(., y) satisfies x̂ ∈ C.

Proof of Lemma 3.3. Let x̂ ∈ ΘJ be a minimizer of E(., y). Then we can write
down that

∇(E|ΘJ
)(x̂, y) = 0.

Equivalently,

∇(E|ΘJ
)(x̂, 0) = 2ΠTJ

LT y.

Then all minimizers of all functions E(., y) when y ranges over N , are contained in
the set

⋃

J∈P({1,...,n})

{

x ∈ ΘJ : ∇(E|ΘJ
)(x, 0) ∈ 2ΠTJ

LT N
}

.

Each one of the sets composing this union is bounded because 2LT N is bounded and
x → ‖∇(E|ΘJ

)(x, 0)‖ is coercive due to H1 and H3. Hence their union is bounded as
well. 2

Below we develop the proof of Proposition 3.2. Similarly to Proposition 2.2,
we shall show that if y ∈ IRq does not satisfy the conclusion, then it is not in Ω0.
Consider therefore a point y ∈ IRq such that for every integer n > 0, there is a point
yn ∈ B(y, 1/n) for which E(., yn) has at least n different local minimizers. This gives
rise to a sequence, indexed by n, every element of which is a set of n minimizers
among all the minimizers of E(., yn). Notice that for every J , the set ΘJ is composed
of a finite number of convex subsets. For instance, we can consider the following
decomposition:

ΘJ =

{

x ∈ IRp : Gix =

[

θi, ∀i ∈ J
Gkx 6= θk, ∀k ∈ Jc

}

=

{

x ∈ IRp : Gix =

[

θi,∀i ∈ J
∀k ∈ Jc, ∃jk ∈ {1, . . . , s} such that [Gkx]jk

6= [θk]jk

}

=
⋃

{jk}∈{1,...,s}Jc

⋃

λ∈{−1,1}

{

x ∈ IRp : Gix =

[

θi, ∀i ∈ J
λ[Gkx − θk]jk

> 0, ∀k ∈ Jc

}

where for a vector z, [z]k denotes its kth entry. Using also the fact that P({1, . . . , n})
is finite, it is easy to see that there exist a set J of indexes and a subsequence of
{yn}, denoted by {yn} again, such that for every integer n > 0, the function E(., yn)
has at least n local minimizers belonging to the same convex subset Θ̃J of ΘJ . Using
the same arguments as in the proof of Proposition 2.2, we see that there are two
convergent subsequences of local minimizers of E(., yn) in Θ̃J , say {x̂n} and {x̂′

n}
such that the distance between them ‖x̂n − x̂′

n‖ goes to zero as long as n → ∞.
Similarly, the convexity of Θ̃J allows the mean-value theorem to be applied. Then we
see that there exists x̃n ∈ {tx̂′

n + (1 − t)x̂n : 0 < t < 1} for which

(x̂n − x̂′
n)T∇2 (E|ΘJ

) (x̃n, yn)(x̂n − x̂′
n) = 0.(21)
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As ‖x̂n − x̂′
n‖ → 0 when n → ∞, all the three sequences, {x̂n}, {x̂′

n} and {x̃n}
converge to the same point x̃ whereas yn → y by construction. Now, two situations
can occur according to the position of x̃. These are considered in Lemmas 3.4 and
3.5 below.

Lemma 3.4. Suppose that x̃ ∈ ΘJ . Then y ∈ AJ ⊂ Ωc
0.

Proof of Lemma 3.4. Coming back to the definitions of AJ and HJ
0 , we have to

show that ∇ (E|ΘJ
) (x̃, y) = 0 and det∇2 (E|ΘJ

) (x̃, y) = 0. As to the gradient, the
continuity of the function

(x, y) → ∇ (E|ΘJ
) (x, y) = ΠTJ

(

2LT (Lx − y) +
∑

i∈Jc

GT
i ∇ϕi(Gix)

)

on ΘJ × IRq entails that

∇ (E|ΘJ
) (x̃, y) = lim

n→∞
∇ (E|ΘJ

) (x̂n, yn) = 0.

Let us now check that ∇2 (E|ΘJ
) (x̃, y) is semi-positive definite. Since every x̂n

is a local minimizer of E(., yn) and x̂n ∈ ΘJ , it is a local minimizer of (E|ΘJ
) (., yn).

Then

vT∇2 (E|ΘJ
) (x̂n, yn) v ≥ 0, ∀v ∈ TJ .

The continuity of the function

(x, y) → ∇2 (E|ΘJ
) (x, y) = ΠTJ

(

2LT L +
∑

i∈Jc

GT
i ∇

2ϕi(Gix)Gi

)

ΠT
TJ

shows that at the limit when n → ∞,

vT∇2 (E|ΘJ
) (x̃, y) v ≥ 0, ∀v ∈ TJ .

Yet consider subsequences of {x̂n} and {x̂′
n} such that {N (x̂n − x̂′

n)} converges, and
denote

u := lim
n→∞

N (x̂n − x̂′
n).

The facts that x̂n and x̂′
n are in TJ , for every n, shows that u ∈ TJ . Next we divide

(21) by ‖x̂n − x̂′
n‖

2 6= 0 and take the limit when n → ∞. This yields

uT∇2 (E|ΘJ
) (x̃, y)u = 0.

It follows that det ∇2 (E|ΘJ
) (x̃, y) = 0. Hence the result. 2

The other possibility is that x̃ belongs to the boundary of ΘJ in ΘJ , which means
that x̃ ∈ ΘJ̃ with J̃ ⊃ J , J̃ 6= J .

Lemma 3.5. Suppose that x̃ ∈ ΘJ̃ . Then ∇
(

E|Θ
J̃

)

(x̃, y) = 0.

Proof of Lemma 3.5. By J̃ ⊃ J , we have TJ̃ ⊂ TJ , and hence ΠT
J̃
◦ ΠTJ

= ΠT
J̃
.

This allows us to write

ΠT
J̃
∇ (E|ΘJ

) (x̂n, yn) = ΠT
J̃
◦ ΠTJ

(

2LT (Lx̂n − yn) +
∑

i∈Jc

GT
i ∇ϕi(Gix̂n)

)

10



= ΠT
J̃



2LT (Lx̂n − yn) +
∑

i∈J̃c

GT
i ∇ϕi(Gix̂n)





+
∑

i∈J̃\J

ΠT
J̃
GT

i ∇ϕi(Gix̂n).

Since ΠT
J̃
GT

i = 0, ∀i ∈ J̃ , the last term above vanishes, hence

ΠT
J̃
∇ (E|ΘJ

) (x̂n, yn) = ΠT
J̃



2LT (Lx̂n − yn) +
∑

i∈J̃c

GT
i ∇ϕi(Gix̂n)



 .

The obtained function is continuous with respect to (x̂n, yn) ∈ {x ∈ IRp : Gix 6=
θi, ∀i ∈ J̃c} × IRq. Since ∇ (E|ΘJ

) (x̂n, yn) = 0, ∀n, at the limit when n → ∞ we get

ΠT
J̃



2LT (Lx̃ − y) +
∑

i∈J̃c

GT
i ∇ϕi(Gix̃)



 = 0.

This completes the proof. 2

Hence, x̃ satisfies the necessary condition for minimum of E|Θ
J̃
. Next we will

exhibit a direction u ∈ TJ which shows that either y ∈ AJ̃ or y ∈ BJ̃ . As above, we
will take a convergent subsequence of N (x̂n − x̂′

n) and consider

u := lim
n→∞

N (x̂n − x̂′
n)(22)

Since x̂n ∈ ΘJ and x̂′
n ∈ ΘJ , ∀n, we see that u ∈ TJ . Two cases now arise which are

considered in the two following lemmas.
Lemma 3.6. Suppose that x̃ ∈ ΘJ̃ and u ∈ TJ̃ . Then y ∈ AJ̃ ⊂ Ωc

0.
Proof of Lemma 3.6. By developing (21) and dividing by ‖x̂n − x̂′

n‖
2 6= 0, we

obtain

N (x̂n − x̂′
n)T 2LT LN (x̂n − x̂′

n) +
∑

i∈Jc

N (x̂n − x̂′
n)T GT

i ∇
2ϕi(Gix̃n)GiN (x̂n − x̂′

n) = 0.

Noticing that Jc = J̃c ∪
(

J̃ \ J
)

, we put the last equation into the form

N (x̂n − x̂′
n)T 2LT LN (x̂n − x̂′

n)(23)

+
∑

i∈J̃c

N (x̂n − x̂′
n)T GT

i ∇
2ϕi(Gix̃n)GiN (x̂n − x̂′

n)(24)

= −
∑

i∈J̃\J

N (x̂n − x̂′
n)T GT

i ∇
2ϕi(Gix̃n)GiN (x̂n − x̂′

n).(25)

We will consider separately the limit of (23)-(24) and (25) when n → ∞. Noticing
that GiN (x̂n − x̂′

n) → Giu, (23)-(24) becomes

uT 2LT Lu +
∑

i∈J̃c

uT GT
i ∇

2ϕi(Gix̃)Giu = uT∇2
(

E|Θ
J̃

)

(x̃, 0)u.
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Noticing that for every n, the point x̂n ∈ ΘJ̃ is a local minimizer of E(., yn), and so
it is a minimizer of E|Θ

J̃
(., yn) as well. Consequently,

vT∇2
(

E|Θ
J̃

)

(x̂n, 0) v = vT∇2
(

E|Θ
J̃

)

(x̂n, yn) v ≥ 0, ∀n, ∀v ∈ TJ̃ .

As n → ∞,

vT∇2
(

E|Θ
J̃

)

(x̃, 0) v ≥ 0, ∀v ∈ TJ̃(26)

In particular, for v = u we deduce that (23)-(24) has a positive limit which is

uT∇2
(

E|Θ
J̃

)

(x̃, 0)u ≥ 0.(27)

Let us now examine the upper bound of (25) as n → ∞. Using the identity
GiN (x̂n − x̂′

n) = ‖GiN (x̂n − x̂′
n)‖N (Gi(x̂n − x̂′

n)), we obtain

N (x̂n − x̂′
n)T GT

i ∇
2ϕi(Gix̃n)GiN (x̂n − x̂′

n)

= ‖GiN (x̂n − x̂′
n)‖2 N (Gi(x̂n − x̂′

n))
T

ϕi(Gix̃n)N (Gi(x̂n − x̂′
n))

≥ ‖GiN (x̂n − x̂′
n)‖2 inf

v∈Ss
vT ϕi(Gix̃n)v.

Furthermore, for every i ∈ J̃ \ J we have GiN (x̂n − x̂′
n) → 0 and Gix̃n → θi as long

as n → ∞. At this point, assumption H7 shows that

lim inf
n→∞

N (x̂n − x̂′
n)T GT

i ∇
2ϕi(Gix̃n)GiN (x̂n − x̂′

n) ≥ 0.

It follows that the limit of (25) satisfies

lim sup
n→∞

−
∑

i∈J̃\J

N (x̂n − x̂′
n)T GT

i ∇
2ϕi(Gix̃n)GiN (x̂n − x̂′

n)

= −
∑

i∈J̃\J

lim inf
n→∞

N (x̂n − x̂′
n)T GT

i ∇
2ϕi(Gix̃n)GiN (x̂n − x̂′

n) ≤ 0.

As (23)-(24) and (25) have the same limit when n → ∞, the latter result, combined
with (27), shows that

uT∇2
(

E|Θ
J̃

)

(x̃, 0)u = 0.(28)

Joining (26) to (28) and the fact that ∇2E|ΘJ
(x̃, 0) is symmetric, we see that

x̃ ∈ H J̃
0 where H J̃

0 was defined in (16). The latter, combined with Lemma 3.5 shows
that y ∈ AJ̃ . By (18), y ∈ Ωc

0. 2

Lemma 3.7. Suppose that x̃ ∈ ΘJ̃ and u ∈ TJ \ TJ̃ . Then y ∈ BJ̃ ⊂ Ωc
0.

Proof of Lemma 3.7. Being a minimizer of E(., yn), for every n, the point x̂n

satisfies

d+E(x̂n, yn)(v) ≥ 0, ∀v ∈ IRp.(29)

We now expand this side-derivative.

d+E(x̂n, yn)(v) = 2vT LT (Lx̂n − yn) +
∑

i∈J̃c

vT GT
i ∇ϕi(Gix̂n)

+
∑

i∈J̃\J

vT GT
i ∇ϕi(Gix̂n) + K,
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where K =
∑

i∈J vT GT
i ∇

+ϕi(θi)(Giv) is independent of n. Take a subsequence {x̂n}

for which N (Gix̂n − θi) converges for every i ∈ J̃ \ J . When n → ∞, we have

lim
n→∞

d+E(x̂n, yn)(v) = 2vT LT (Lx̃ − y) +
∑

i∈J̃c

vT GT
i ∇ϕi(Gix̃)

+
∑

i∈J̃\J

vT GT
i ∇

+ϕi(θi)( lim
n→∞

N (Gix̂n − θi)) + K.

Using assumption H8, the last term can be upper-bounded:

vT GT
i ∇

+ϕi(θi)( lim
n→∞

N (Gix̂n − θi)) ≤ vT GT
i ∇

+ϕi(θi)(Giv)

It follows that d+E(x̃, y)(v) ≥ limn→∞ d+E(x̂n, yn)(v). Putting this together with
(29) we see that

d+E(x̃, y)(v) ≥ 0, ∀v ∈ IRp.(30)

In other words, x̃ satisfies the necessary condition for minimum.
Consider convergent subsequences of {N (x̂n − x̃)} and of {N (x̂′

n − x̃)}. Since
u 6∈ TJ̃ , at least one of the following limits, v := limn→∞ N (x̂n − x̃) and v′ :=
limn→∞ N (x̂′

n − x̃), does not belong to TJ̃ . For definiteness, suppose v 6∈ TJ̃ . By the
latter, the projection of v onto T⊥

J̃
is non-null. Put w := N (ΠT⊥

J̃

v) and notice that

w ∈ TJ , because v ∈ TJ and TJ̃ ⊂ TJ . Since ∇ (E|ΘJ
) (x̂n, yn) = 0, we deduce that

d+E(x̂n, yn)(w) = 0, ∀n.(31)

Moreover, noticing that Giw = 0 for every i ∈ J , we have

∑

i∈J

wT GT
i ∇

+ϕi(θi)(Giw) = 0.

Thus we obtain

d+E(x̂n, yn)(w) = 2wT LT (Lx̂n−yn)+
∑

i∈J̃c

wT GT
i ∇ϕi(Gix̂n)+

∑

i∈J̃\J

wT GT
i ∇ϕi(Gix̂n).

We will calculate the limit of all the terms in d+E(x̂n, yn)(w) when n → ∞. The limit
of the first two terms on the right side of the equation given above is easily obtained
by continuity. Let us focus now on the limit of ∇ϕi(Gix̂n) for i ∈ J̃ \ J . We start by
considering the case when Giw 6= 0. We have

lim
n→∞

N (Gix̂n − θi) = lim
n→∞

N (GiN (x̂n − x̃))

= N (Gi lim
n→∞

N (x̂n − x̃))

= N (Giv) = N (Giw).

The last equality comes from the fact that for i ∈ J̃ we have Giv = GiΠT⊥
J̃

v +

GiΠT
J̃
v = GiΠT⊥

J̃

v = Giw‖ΠT⊥
J̃

v‖, since ΠT
J̃
v ∈ TJ̃ and hence GiΠT

J̃
v = 0. Thus,

for i ∈ J̃ \ J and Giw 6= 0, we find that wT GT
i ∇ϕi(Gix̂n) → wT GT

i ∇
+ϕi(θi)(Giw).
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Otherwise, if Giw = 0 for some i ∈ J̃ \ J , obviously wT GT
i ∇ϕi(Gix̂n) = 0 =

wT GT
i ∇

+ϕi(θi)(Giw). Consequently,

lim
n→∞

d+E(x̂n, yn)(w) = 2wT LT (Lx̃ − y) +
∑

i∈J̃c

wT GT
i ∇ϕi(Gix̃)

+
∑

i∈J̃\J

wT GT
i ∇

+ϕi(θi)(Giw)

= d+E(x̃, y)(w).

Using (31), at the limit we get d+E(x̃, y)(w) = 0. However, w ∈ T⊥
J̃

which shows that
x̃, although being a local minimizer of E|Θ

J̃
(., y), does not satisfy the condition (b)

of Proposition 4.3 in the previous part [5]. Then y ∈ BJ̃ as given in (20). Using (18)
we see that y ∈ Ωc

0. 2

We can now extend Remark 1 to the class of objective functions considered in
this section.

Remark 2. Consider two minimizer functions X1 and X2 defined on an open and
connected domain O ⊂ Ω0. The we have either X1 ≡ X2 on O, or

X1(y) 6= X2(y), ∀ y ∈ O.

The arguments are similar to those given in Remark 1. Put Õ := {y ∈ O : X1(y) =
X2(y)} and suppose that Õ 6= ∅ and Õ 6= O. Clearly, Õ is closed in O. Focus
on y belonging to the boundary of Õ in O. Then there is a sequence {yn} with
yn ∈ O \ Õ and yn → y when n → ∞, such that X1(yn) 6= X2(yn). Since X1 and X2

are continuous, the points x̂n := X1(yn) and x̂′
n := X2(yn) come arbitrarily close to

each other as long as n → ∞. Then we apply the same reasoning developed after (21)
and deduce that y ∈ Ωc

0. This contradicts the fact that O ⊂ Ω0.
Proposition 3.8. Let the assumptions of Proposition 3.2 hold. Then every

open set of IRq contains an open subset O on which E admits n minimizer functions
Xi : O → IRp, i = 1, . . . , n, which are Cm−1 and such that for all y ∈ O, all the
minimizers of E(., y) read

Xi(y), i = 1, . . . , n(32)

and satisfy

E(Xi(y), y) 6= E(Xj(y), y), ∀i, j ∈ {1, . . . , n} with i 6= j.(33)

Proof. We take into consideration that the smoothness of Φ is not exploited in
the proof of Proposition 2.4, but is in the proofs of Proposition 2.1, Remark 1 and
Lemma 2.5. The generalization of these statements to the conditions of Proposi-
tion 3.8 is then sufficient to prove this proposition. The first two statements have
been generalized in Proposition 3.2 and Remark 2, the last one is given in Lemma 3.9
below.

Lemma 3.9. Let X1 and X2 be two differentiable local minimizer functions rele-
vant to E and defined on the same open domain O ⊂ Ω. Suppose, we have

E(X1(y), y) = E(X2(y), y), ∀y ∈ O.(34)
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Then

X1(y) = X2(y), ∀y ∈ O.

Proof of the lemma. Let us consider y ∈ O. Then there are two sets of indexes J1

and J2 such that we have X1(y) ∈ QJ1
and X2(y) ∈ QJ2

. By Proposition 4.3 of the
previous part [5], y is contained in a neighborhood N ⊂ O such that for all y′ ∈ N
we have in addition X1(y

′) ∈ QJ1
and X2(y

′) ∈ QJ2
. On this neighborhood, (34) can

equivalently be written

E|QJ1
(X1(y

′), y′) = E|QJ2
(X2(y

′), y′), ∀y′ ∈ N.(35)

By differentiating both sides of (35) with respect to y′, we obtain

D1

(

E|QJ1

)

(X1(y
′), y′)DX1(y

′) + D2E(X1(y
′), y′)(36)

= D1

(

E|QJ2

)

(X2(y
′), y′)DX2(y

′) + D2E(X2(y
′), y′),(37)

Since, for i ∈ {1, 2}, Xi is a minimizer function relevant to E|QJi
,

D1

(

E|QJi

)

(Xi(y
′), y′) = 0, ∀y′ ∈ N.

By using also the expression of D2E given in (13), equation (37) yields

LX1(y
′) = LX2(y

′), ∀y′ ∈ N.

The conclusion follows from the injectivity of L. 2
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