# STABILITY OF MINIMIZERS OF REGULARIZED LEAST SQUARES OBJECTIVE FUNCTIONS II: STUDY OF THE GLOBAL BEHAVIOR 

S. DURAND* AND M. NIKOLOVA ${ }^{\dagger}$


#### Abstract

We address estimation problems where the sought-after solution is defined as the minimizer of an objective function composed of a quadratic data-fidelity term and a regularization term. We especially focus on nonsmooth and/or nonconvex regularization terms because of their ability to yield good estimates. This work is dedicated to the stability of the minimizers of such nonsmooth and/or nonconvex objective functions. It is composed of two parts. In the previous part of this work, we considered general local minimizers. In this part, we derive results on global minimizers. We show that the data domain contains an open, dense subset such that for every data point therein, the objective function has a finite number of local minimizers, and a unique global minimizer which is stable under variations of the data.


Key words. stability analysis, regularized least-squares, non-smooth analysis, non-convex analysis, signal and image processing

1. Introduction. This is the second part of a work devoted to the stability of minimizers of regularized least squares objective functions as customarily used in signal and image reconstruction. In the previous part [5], we considered the behavior of local minimizers whereas now we draw conclusions about global minimizers.

Given data $y \in \mathbb{R}^{q}$, we consider the global minimizers $\hat{x} \in \mathbb{R}^{p}$ of an objective function $\mathcal{E}: \mathbb{R}^{p} \times \mathbb{R}^{q} \rightarrow \mathbb{R}$ of the form

$$
\begin{equation*}
\mathcal{E}(x, y):=\|L x-y\|^{2}+\Phi(x) \tag{1}
\end{equation*}
$$

where $L: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is a linear operator, $\|$.$\| denotes the Euclidean norm and$ $\Phi: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is a piecewise $\mathcal{C}^{m}$-smooth regularization term. More precisely,

$$
\begin{equation*}
\Phi(x):=\sum_{i=1}^{r} \varphi_{i}\left(G_{i} x\right) \tag{2}
\end{equation*}
$$

where for every $i \in\{1, \ldots, r\}$, the function $\varphi_{i}: \mathbb{R}^{s} \rightarrow \mathbb{R}$ is continuous on $\mathbb{R}^{s}$ and $\mathcal{C}^{m_{-}}$ smooth everywhere except at a given $\theta_{i} \in \mathbb{R}^{s}$, and $G_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{s}$ is a linear operator. The operators $G_{i}$ in the regularization term $\Phi$ usually provide the differences between neighboring samples of $x$. Typically, for all $i \in\{1, \ldots, r\}$, we have $\theta_{i}=0$ and $\varphi_{i}$ reads

$$
\begin{equation*}
\varphi_{i}(z)=\phi(\|z\|), \quad \forall i \in\{1, \ldots, r\} \tag{3}
\end{equation*}
$$

where $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is an increasing function, often called potential function. Several functions $\phi$, among the most popular, are the following $[6,1,7,9,8,11,3,12,2]$ :

| $\mathrm{L}^{\alpha}$ | $\phi(t)=\|t\|^{\alpha}, 1 \leq \alpha \leq 2$, |  |
| :--- | :--- | :--- |
| Lorentzian | $\phi(t)=\alpha t^{2} /\left(1+\alpha t^{2}\right.$, |  |
| Concave | $\phi(t)=\alpha\|t\| /(1+\alpha\|t\|)$, |  |
| Gaussian | $\phi(t)=1-\exp \left(-\alpha t^{2}\right)$, |  |
| Truncated quadratic | $\phi(t)=\min \left\{\alpha t^{2}, 1\right\}$, | if |
| Huber | $\phi(t)=\left\{\begin{array}{lll}t^{2} & \|t\| \leq \alpha, \\ \alpha(\alpha+2\|t-\alpha\|) & \text { if } & \|t\|>\alpha .\end{array}\right.$ |  |

[^0]The notations in this paper are the same as in part I. Recall that although $\mathcal{E}$ depends on two variables $(x, y), \nabla \mathcal{E}$ and $\nabla^{2} \mathcal{E}$ will systematically be used to denote gradient and Hessian with respect to the first variable $x$. By $B(x, \rho)$ we will denote a ball in $\mathbb{R}^{n}$ with radius $\rho$ and center $x$, and by $S$ the unit sphere in $\mathbb{R}^{n}$ centered at the origin, for whatever dimension $n$ appropriate to the context. For a subset $A \in \mathbb{R}^{q}$, its complementary in $\mathbb{R}^{q}$ will be denoted $A^{c}$.

We will consider minimizer functions with a special attention to those which yield the global minimum of the objective function.

Definition 1.1. A function $\mathcal{X}: O \rightarrow \mathbb{R}^{p}$, where $O$ is an open domain in $\mathbb{R}^{q}$, is said to be a minimizer function relevant to $\mathcal{E}$ if every $\mathcal{X}(y)$ is a strict (i.e. isolated) local minimizer of $\mathcal{E}(., y)$ whenever $y \in O$. Moreover, $\mathcal{X}$ is called a global minimizer function relevant to $\mathcal{E}$ if $\mathcal{E}(., y)$ reaches its global minimum at $\mathcal{X}(y)$ for every $y \in O$.

The goal of this second paper is to check first the uniqueness and then the smoothness of the global minimizer functions relevant to $\mathcal{E}$. We will make the same basic assumptions as in the previous part of this work.

H1. The operator $L: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ in (1) is injective, i.e. $\operatorname{rank} L=p$.
If $\Phi$ is $\mathcal{C}^{m}$-smooth, we will systematically assume the following:
H2. $\frac{\nabla \Phi(t v)}{t} \rightarrow 0$ uniformly with $v \in S$ as $t \rightarrow \infty$.
Otherwise, for $\Phi$ piecewise $\mathcal{C}^{m}$ and of the form (2), the latter assumption is reformulated in the following way:

H3. For every $i=1, \ldots, r$ and for $t \in \mathbb{R}$, we have $\frac{\nabla \varphi_{i}(t u)}{t} \rightarrow 0$ uniformly with $u \in S^{s}$ when $t \rightarrow \infty$.

The results presented in the following are meaningful if, for all $y \in \mathbb{R}^{q}$, the objective function $\mathcal{E}(., y)$ admits at least one minimizer.

Lemma 1.2. Consider $\mathcal{E}$ as given in (1) and assume that H1 is satisfied. Suppose that $\Phi$ satisfies one of the following conditions:

1. $\Phi$ is $\mathcal{C}^{m}$ on $\mathbb{R}^{p}$ with $m \geq 2$ and assumption H2 is satisfied;
2. $\Phi$ is of the form (2) where for all $i \in\{1, \ldots, r\}, \varphi_{i}$ is continuous on $\mathbb{R}$ and $\mathcal{C}^{m}$ on $\mathbb{R} \backslash\left\{\theta_{i}\right\}$ with $m \geq 2$, and the assumption H3 is satisfied.
Then for every $y \in \mathbb{R}^{q}$, the objective function $\mathcal{E}(., y)$ admits at least one global minimizer.

It is easy to see that our assumptions guarantee that $\mathcal{E}(., y)$ is coercive for every $y \in \mathbb{R}^{q}[4,10]$. Hence the conclusion of the lemma. However, $\mathcal{E}(., y)$ may have several global minimizers. From a practical point of view, this means that the estimation problem is not well formulated and that there is not enough information to pick out a unique stable solution. We will confine our attention to the subset of $\mathbb{R}^{q}$ composed of data $y$ for which $\mathcal{E}(., y)$ has a unique global minimizer, i.e. for which the global minimum of $\mathcal{E}(., y)$ is reached at a unique point:

$$
\Gamma:=\left\{y \in \mathbb{R}^{q}: \mathcal{E}(., y) \text { has a unique global minimizer }\right\} .
$$

Our main result states that the interior of $\Gamma$ is dense in $\mathbb{R}^{q}$. This result means that in a real-world problem there is no chance of getting data $y$ leading to an objective function having more than one global minimizers. On $\Gamma$, we will consider the global minimizer function $\hat{\mathcal{X}}: \Gamma \rightarrow \mathbb{R}^{p}$-the function which yields $\hat{\mathcal{X}}(y)$, the unique global minimizer of $\mathcal{E}(., y)$, for every $y \in \Gamma$. Under quite general assumptions, we show that $\hat{\mathcal{X}}$ is smooth on an open dense subset of $\Gamma$. The global minimizer function $\hat{\mathcal{X}}$ can also be extended beyond the latter set. However, this extension may not be defined in a unique way and it can be non-smooth and even discontinuous. An intermediate result
says that for almost every $y \in \mathbb{R}^{q}$, the objective function has a finite number of local minimizers, corresponding to the same number of $\mathcal{C}^{m-1}$ local minimizer functions.
2. $\mathcal{C}^{m}$-smooth objective function. The context of smooth objective functions allows us to see easily the main reasons yielding the result alluded to above without needing intricate developments.

Theorem 2.1. Suppose $\mathcal{E}$ is of the form (1) where $\Phi$ is an arbitrary $\mathcal{C}^{m}$-function on $\mathbb{R}^{p}$, with $m \geq 2$. Let the assumptions $H 1$ and H2 be true. Then we have the following statements.
(i) The interior of $\Gamma$ is dense in $\mathbb{R}^{q}$.
(ii) The global minimizer function $\hat{\mathcal{X}}: \Gamma \rightarrow \mathbb{R}^{p}$ is $\mathcal{C}^{m-1}$ on an open, dense subset of $\Gamma$.
Before to proving this theorem, we exhibit two auxiliary propositions.
Proposition 2.2. Suppose also that $\Phi$ is $\mathcal{C}^{m}$ and that the assumptions $H 1$ and H2 are true. Then there exists $\Omega_{0}$ an open and dense subset of $\mathbb{R}^{q}$ such that every $y \in \Omega_{0}$ is contained in a neighborhood $N \in \mathbb{R}^{q}$, associated with an integer $n>0$, so that for every $y^{\prime} \in N$, the relevant objective function $\mathcal{E}\left(., y^{\prime}\right)$ admits at most $n$ local minimizers.

Proof. The set $\Omega_{0}$ evoked in the proposition can be taken as defined in (12) in the first part [5],

$$
\Omega_{0}:=\left\{y \in \mathbb{R}^{q}: 2 L^{T} y \notin \nabla \mathcal{E}\left(H_{0}, 0\right)\right\} \subset \Omega
$$

where we recall that

$$
H_{0}=\left\{x \in \mathbb{R}^{p}: \operatorname{det} \nabla^{2} \mathcal{E}(x, 0)=0\right\}
$$

As stated in Remark 3 in [5], the set $\Omega_{0}$ is indeed open and dense in $\mathbb{R}^{q}$. The proof of Proposition 2.2 relies on the following lemma.

Lemma 2.3. Let the assumptions of Proposition 2.2 hold. Then for every open and bounded subset $N \subset \mathbb{R}^{q}$, there exists a compact set $C \subset \mathbb{R}^{p}$ such that for every $y \in N$, every local minimizer $\hat{x}$ of $\mathcal{E}(., y)$ satisfies $\hat{x} \in C$.

Proof of Lemma 2.3. For every $y \in \mathbb{R}^{q}$, if $\hat{x} \in \mathbb{R}^{p}$ is a minimizer of $\mathcal{E}(., y)$, then $\nabla \mathcal{E}(\hat{x}, y)=0$, or equivalently,

$$
\nabla \mathcal{E}(\hat{x}, 0)=2 L^{T} y
$$

Then all minimizers of all functions $\mathcal{E}(., y)$ when $y$ ranges over $N$, are contained in the set

$$
\begin{equation*}
\left\{x \in \mathbb{R}^{p}: \nabla \mathcal{E}(x, 0) \in 2 L^{T} N\right\} \tag{5}
\end{equation*}
$$

The set $2 L^{T} N$ is clearly bounded. Moreover, by H 1 and H 2 we have $\nabla \mathcal{E}(x, 0) \sim$ $2 L^{T} L x$ as $\|x\| \rightarrow \infty$, where $2 L^{T} L$ is invertible. Hence the set given in (5) is bounded as well.

We will show that if for some $y \in \mathbb{R}^{q}$ the property stated in Proposition 2.2 is not satisfied, then this $y$ belongs to $\Omega_{0}^{c}$. So consider $y \in \mathbb{R}^{q}$ and suppose that for every integer $n>0$, there exists a point $y_{n} \in B(y, 1 / n)$ such that $\mathcal{E}\left(., y_{n}\right)$ admits at least $n$ different local minimizers. This gives rise to a sequence, indexed by $n$, every element
of which is a set of $n$ minimizers among all the minimizers of $\mathcal{E}\left(., y_{n}\right)$. For every $n$, let $d_{n}$ denote the smallest distance between two minimizers of $\mathcal{E}\left(., y_{n}\right)$ belonging to the selected set of $n$ minimizers. The set being finite, the distance $d_{n}$ is reached for a pair of minimizers, say $\hat{x}_{n}$ and $\hat{x}_{n}^{\prime}$. Any such two minimizers satisfy

$$
\begin{equation*}
\nabla \mathcal{E}\left(\hat{x}_{n}^{\prime}, y_{n}\right)=0=\nabla \mathcal{E}\left(\hat{x}_{n}, y_{n}\right) \tag{6}
\end{equation*}
$$

By the mean-value theorem, there is $\tilde{x}_{n} \in\left\{t \hat{x}_{n}^{\prime}+(1-t) \hat{x}_{n}: 0<t<1\right\}$ for which

$$
\operatorname{det} \nabla^{2} \mathcal{E}\left(\tilde{x}_{n}, y_{n}\right)=0
$$

Since $\nabla^{2} \mathcal{E}\left(\tilde{x}_{n}, y_{n}\right)=\nabla^{2} \mathcal{E}\left(\tilde{x}_{n}, 0\right)$, we deduce that $\tilde{x}_{n} \in H_{0}$.
On the other hand, Lemma 2.3 tells us that all the minimizers of $\mathcal{E}\left(., y_{n}\right)$, for every $n$, are contained in the same compact set, whose convex hull is also compact and will be denoted $C$. Then $\tilde{x}_{n} \in C$ as well. By the compacity of $C$, the sequence $\left\{\tilde{x}_{n}\right\}$ admits a subsequence which converges to a point $\tilde{x}$ as long as $n \rightarrow \infty$. Moreover, $C$ contains an increasing number (equal or larger than $n$ ) of minimizers when $n \rightarrow \infty$, so $d_{n}$ goes to zero when $n \rightarrow \infty$. Hence, $\hat{x}_{n} \rightarrow \tilde{x}$ when $n \rightarrow \infty$. At the same time, $y_{n} \rightarrow y$ by construction. Since $(x, y) \rightarrow \nabla \mathcal{E}(x, y)$ is continuous, at the limit when $n \rightarrow \infty$, the equation (6) yields

$$
\begin{equation*}
\nabla \mathcal{E}(\tilde{x}, y)=0 \tag{7}
\end{equation*}
$$

Moreover, since $H_{0}$ is closed, $\tilde{x} \in H_{0}$. Combining this fact with (7) shows that $y \in \Omega_{0}^{c}$.

Extending the arguments underlying this proof, we can see that local minimizer functions never cross on $\Omega_{0}$.

Remark 1. Let us consider two minimizer functions $\mathcal{X}_{1}$ and $\mathcal{X}_{2}$ defined on an open and connected domain $O \subset \Omega_{0}$. We claim that either $\mathcal{X}_{1} \equiv \mathcal{X}_{2}$ on $O$, or

$$
\begin{equation*}
\mathcal{X}_{1}(y) \neq \mathcal{X}_{2}(y), \quad \forall y \in O \tag{8}
\end{equation*}
$$

The reason is the following. Consider the set $\tilde{O}:=\left\{y \in O: \mathcal{X}_{1}(y)=\mathcal{X}_{2}(y)\right\}$ and suppose that $\tilde{O}$ is nonempty and different from $O$. By the continuity of $\mathcal{X}_{i}, i=1,2$, the set $\tilde{O}$ is closed in $O$. Focus on $y$ belonging to the boundary of $\tilde{O}$ in $O$. Then there is a sequence $\left\{y_{n}\right\}$ with $y_{n} \in O \backslash \tilde{O}$, converging to $y$ as $n \rightarrow \infty$, such that $\mathcal{X}_{1}\left(y_{n}\right) \neq \mathcal{X}_{2}\left(y_{n}\right)$. Since $\mathcal{X}_{1}$ and $\mathcal{X}_{2}$ are continuous, the points $\hat{x}_{n}:=\mathcal{X}_{1}\left(y_{n}\right)$ and $\hat{x}_{n}^{\prime}:=\mathcal{X}_{2}\left(y_{n}\right)$ come arbitrarily close to each other as long as $n \rightarrow \infty$. By applying the reasoning developed next to (6), we deduce that $\operatorname{det} \nabla^{2} \mathcal{E}(\mathcal{X} i(y), y)=0$, for $i=1,2$, which contradicts the fact that $y \in \Omega_{0}$. Hence the boundary of $\tilde{O}$ in $O$ is empty. Since $O$ is connected and open, the latter conclusion entails that either $\tilde{O}=O$, or $\tilde{O}$ is empty.

The proposition below reinforces this observation.
Proposition 2.4. Let the assumptions of Proposition 2.2 be true. Every open set of $\mathbb{R}^{q}$ contains an open subset $O$ on which $\mathcal{E}$ admits exactly $n$ minimizer functions $\mathcal{X}_{i}: O \rightarrow \mathbb{R}^{p}, i=1, \ldots, n$, which are $\mathcal{C}^{m-1}$ and are such that for all $y \in O$, all the minimizers of $\mathcal{E}(., y)$ read

$$
\begin{equation*}
\mathcal{X}_{i}(y), i=1, \ldots, n \tag{9}
\end{equation*}
$$

and satisfy

$$
\begin{equation*}
\mathcal{E}\left(\mathcal{X}_{i}(y), y\right) \neq \mathcal{E}\left(\mathcal{X}_{j}(y), y\right), \forall i, j \in\{1, \ldots, n\} \text { with } i \neq j \tag{10}
\end{equation*}
$$

Proof. Since $\Omega_{0}$ is open and dense in $\mathbb{R}^{q}$, we can take our open set in $\Omega_{0}$. Let $y$ belong to this set. By Proposition 2.2, y has a neighborhood $O$ composed of elements $y^{\prime}$ for which $\mathcal{E}\left(., y^{\prime}\right)$ has at most $n$ local minimizers, where $n>0$ is the smallest integer for which this property holds. Even if it means interchanging two elements of $O$, we can assume that $\mathcal{E}(., y)$ has exactly $n$ local minimizers $\hat{x}_{i}, i=1, \ldots, n$. By $y \in \Omega_{0} \subset \Omega$, each minimizer $\hat{x}_{i}, i=1, \ldots, n$, results from the application of a $\mathcal{C}^{m}$ minimizer function $\mathcal{X}_{i}$, i.e. $\hat{x}_{i}=\mathcal{X}_{i}(y)$. Each $\mathcal{X}_{i}$ being defined on an open domain containing $y$, we can additionally restrict $O$ in such a way that it is connected and included in the intersection of these domains.

The statement (9) comes from the following two arguments. On the one hand, every $\mathcal{E}\left(., y^{\prime}\right)$, for $y^{\prime} \in O$, has at most $n$ minimizers. On the other hand, by Remark 1 , for every $y^{\prime} \in O$ and $i, j$ with $i \neq j$, we have $\mathcal{X}_{i}\left(y^{\prime}\right) \neq \mathcal{X}_{j}\left(y^{\prime}\right)$.

The proof of (10) relies on the following lemma.
Lemma 2.5. Let $\mathcal{X}_{1}$ and $\mathcal{X}_{2}$ be two differentiable local minimizer functions relevant to $\mathcal{E}$, defined on the same open domain $O \subset \Omega$. Suppose we have

$$
\begin{equation*}
\mathcal{E}\left(\mathcal{X}_{1}(y), y\right)=\mathcal{E}\left(\mathcal{X}_{2}(y), y\right), \quad \forall y \in O \tag{11}
\end{equation*}
$$

Then

$$
\mathcal{X}_{1}(y)=\mathcal{X}_{2}(y), \quad \forall y \in O
$$

Proof of Lemma 2.5. By differentiating the both sides of (11) with respect to $y$, we obtain

$$
\begin{align*}
& D_{1} \mathcal{E}\left(\mathcal{X}_{1}(y), y\right) D \mathcal{X}_{1}(y)+D_{2} \mathcal{E}\left(\mathcal{X}_{1}(y), y\right) \\
= & D_{1} \mathcal{E}\left(\mathcal{X}_{2}(y), y\right) D \mathcal{X}_{2}(y)+D_{2} \mathcal{E}\left(\mathcal{X}_{2}(y), y\right), \tag{12}
\end{align*}
$$

where $D_{i} \mathcal{E}$ denotes the differential of $\mathcal{E}$ with respect to its $i$ th argument-thus $D_{1} \mathcal{E}=$ $(\nabla \mathcal{E})^{T}$ - and $D \mathcal{X}_{i}$ is the Jacobian matrix of $\mathcal{X}_{i}$. Since, for $i \in\{1,2\}, \mathcal{X}_{i}$ is a minimizer function,

$$
D_{1} \mathcal{E}\left(\mathcal{X}_{i}(y), y\right)=0, \quad \forall y \in O
$$

On the other hand, differentiating $\mathcal{E}(x, y)$ in (1) with respect to $y$ leads to

$$
\begin{equation*}
D_{2} \mathcal{E}(x, y)=2 L x-2 y \tag{13}
\end{equation*}
$$

Introducing these last two expressions in (12), shows that

$$
L \mathcal{X}_{1}(y)=L \mathcal{X}_{2}(y), \quad \forall y \in O
$$

The conclusion follows from the injectivity of $L$.

We now pursue the proof of (10). For all $i, j \in\{1, \ldots, n\}$ with $i \neq j$ let us consider

$$
O_{i, j}:=\left\{y \in O: \mathcal{E}\left(\mathcal{X}_{i}(y), y\right)=\mathcal{E}\left(\mathcal{X}_{j}(y), y\right)\right\}
$$

Introduce then the subset

$$
\tilde{O}:=O \backslash\left(\bigcup_{i, j \in\{1, \ldots, n\}} O_{i, j}\right)
$$

Equivalently,

$$
\tilde{O}=\left\{y \in O: \mathcal{E}\left(\mathcal{X}_{i}(y), y\right) \neq \mathcal{E}\left(\mathcal{X}_{j}(y), y\right), \quad \forall i, j \in\{1, \ldots, n\} \text { with } i \neq j\right\}
$$

Since, for every $i=1, \ldots, n$, the function $y \rightarrow \mathcal{E}\left(\mathcal{X}_{i}(y), y\right)$ is continuous on $O$, every $O_{i, j}$ is closed in $O$. By the same argument, $\tilde{O}$ is open.

Suppose $\tilde{O}$ is empty. Since $O$ is open, its interior is nonempty. Hence, there exist $i, j \in\{1, \ldots, n\}$ for which the interior of $O_{i, j}$ is also nonempty. Associating $\mathcal{X}_{1}, \mathcal{X}_{2}$ and $O$ of Lemma 2.5 with $\mathcal{X}_{i}, \mathcal{X}_{j}$ and the interior of $O_{i, j}$, respectively, we obtain that $\mathcal{X}_{i}=\mathcal{X}_{j}$ on this interior. This contradicts the fact that $\mathcal{X}_{i}(y) \neq \mathcal{X}_{j}(y)$, for all $y \in O$. It follows that $\tilde{O}$ is nonempty. Then we can replace $O$ by $\tilde{O}$. The second statement of the proposition is proven.

Proof of Theorem 2.1. This proof follows directly from Proposition 2.4. Actually, we show a stronger result, namely that the theorem remains true if we replace $\Gamma$ by

$$
\Gamma_{0}:=\left\{y \in \Omega_{0}: \begin{array}{l}
\text { every local minimum of } \mathcal{E}(., y) \text { is } \\
\text { reached for a unique local minimizer }
\end{array}\right\} \subset \Gamma .
$$

So, $\Gamma_{0}$ is the set of all data points $y \in \Omega_{0}$ for which $\mathcal{E}(., y)$ reaches a different value at each local minimizer. Hence the uniqueness of the global minimizer, i.e. $\Gamma_{0} \subset \Gamma$.

We recall that for a local minimizer $\hat{x}$ of $\mathcal{E}(., y)$, the relevant local minimum is the scalar $\mathcal{E}(\hat{x}, y)$.

Let $y \in \mathbb{R}^{q}$ and consider a neighborhood of $y$ in $\mathbb{R}^{q}$. By Proposition 2.4, it contains an open set $O$ on which the conclusion of the proposition holds. Clearly, $O$ belongs to the interior of $\Gamma_{0}$. Since $O$ can be arbitrarily close to $y$, we have proved that the interior of $\Gamma_{0}$ is dense in $\mathbb{R}^{q}$.

Let us now consider an arbitrary $y^{\prime} \in O$. By (10), there is an index $i \in\{1, \ldots, n\}$ for which

$$
\mathcal{E}\left(\mathcal{X}_{i}\left(y^{\prime}\right), y^{\prime}\right)<\mathcal{E}\left(\mathcal{X}_{j}\left(y^{\prime}\right), y^{\prime}\right), \quad \forall j \in\{1, \ldots, n\} \backslash\{i\} .
$$

As the functions $y^{\prime \prime} \rightarrow \mathcal{E}\left(\mathcal{X}_{j}\left(y^{\prime \prime}\right), y^{\prime \prime}\right)$ are continuous on $O$, there is a neighborhood $N \subset O$ of $y^{\prime}$ such that

$$
\mathcal{E}\left(\mathcal{X}_{i}\left(y^{\prime \prime}\right), y^{\prime \prime}\right)<\mathcal{E}\left(\mathcal{X}_{j}\left(y^{\prime \prime}\right), y^{\prime \prime}\right), \forall y^{\prime \prime} \in N, \forall j \in\{1, \ldots, n\} \backslash\{i\} .
$$

Therefore $\hat{\mathcal{X}}=\mathcal{X}_{i}$ on $N$ which implies that $N$ belongs to the interior of $\left\{y^{\prime \prime} \in \Gamma\right.$ : $\hat{\mathcal{X}}$ is $\mathcal{C}^{m-1}$ at $\left.y^{\prime \prime}\right\}$. We get the conclusion by noticing that $N$ can be arbitrarily close to $y$.
3. Objective function involving nonsmooth regularization. We will now consider regularization terms of the form (2) where for every $i \in\{1, \ldots, r\}$, the potential function $\varphi_{i}: \mathbb{R}^{s} \rightarrow \mathbb{R}$ is continuous on $\mathbb{R}^{s}$ and $\mathcal{C}^{m}$ on $\mathbb{R}^{s} \backslash\left\{\theta_{i}\right\}$ for a given $\theta_{i} \in \mathbb{R}^{s}$, and $G_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{s}$ is a linear operator. For every $i \in\{1, \ldots, r\}$, the function $\varphi_{i}$ is supposed to satisfy the same conditions as in the first part [5]:

H4. For every net $h \in \mathbb{R}^{s}$ converging to 0 and such that $\lim _{h \rightarrow 0} \mathcal{N}(h)$ exists, the limit $\lim _{h \rightarrow 0} \nabla \varphi_{i}\left(\theta_{i}+h\right)$ exists and depends only on $\lim _{h \rightarrow 0} \mathcal{N}(h)$.

In the expression above, $\mathcal{N}$ denotes the normalization application defined by $\mathcal{N}(v)=v /\|v\|$, for every vector $v$. We put again

$$
\begin{equation*}
\nabla^{+} \varphi_{i}\left(\theta_{i}\right)\left(\lim _{h \rightarrow 0} \mathcal{N}(h)\right):=\lim _{h \rightarrow 0} \nabla \varphi_{i}\left(\theta_{i}+h\right) \tag{14}
\end{equation*}
$$

and then extend this definition to every $u \in \mathbb{R}^{s}$,

$$
\nabla^{+} \varphi_{i}\left(\theta_{i}\right)(u)=\left\{\begin{array}{lll}
\nabla^{+} \varphi_{i}\left(\theta_{i}\right)(\mathcal{N}(u)) & \text { if } \quad u \neq 0  \tag{15}\\
0 & \text { if } & u=0
\end{array}\right.
$$

Recall that we have also the two following assumptions for $\varphi_{i}$ :
H5. $u \rightarrow \nabla^{+} \varphi_{i}\left(\theta_{i}\right)(u)$ is Lipschitz on $S^{s}$.
H6. $u \mapsto \nabla \varphi_{i}\left(\theta_{i}+h u\right)$ converges to $\nabla^{+} \varphi_{i}\left(\theta_{i}\right)$ as $h \searrow 0$, uniformly on $S^{s}$.
We will need two additional assumptions which are usually satisfied in practice. For all $i \in\{1, \ldots, r\}$, we assume that

H7. $\liminf _{z \rightarrow \theta_{i}} \inf _{v \in S^{s}} v^{T} \nabla^{2} \varphi_{i}(z) v>-\infty$, and

H8. $u^{T} \nabla^{+} \varphi_{i}\left(\theta_{i}\right)(u) \geq u^{T} \nabla^{+} \varphi_{i}\left(\theta_{i}\right)(v), \quad \forall u \in S^{s}$ and $\forall v \in S^{s}$.
Observe that by the definition of $\nabla^{+} \varphi_{i}$ in (15), the inequality in H 8 can be extended to all $u$ and $v$ in $\mathbb{R}^{s}$.

Example 1. To illustrate the two last assumptions, consider

$$
\varphi_{i}(z)=\phi\left(\left\|z-\theta_{i}\right\|\right) \text { for } z \in \mathbb{R}^{s},
$$

where $\phi \in \mathcal{C}^{m}\left(\mathbb{R}_{+}\right), m \geq 2$, and $\phi^{\prime}(0)>0$. By applying (14)-(15), it becomes

$$
\begin{cases}\nabla \varphi_{i}(z)=\phi^{\prime}\left(\left\|z-\theta_{i}\right\|\right) \frac{z-\theta_{i}}{\left\|z-\theta_{i}\right\|} & \text { if } z \neq \theta_{i} \\ \nabla^{+} \varphi_{i}\left(\theta_{i}\right)(u)=\phi^{\prime}\left(0^{+}\right) \frac{u}{\|u\|} & \text { if } z=\theta_{i}\end{cases}
$$

Differentiating $\nabla \varphi_{i}$ for $z \neq \theta_{i}$, we obtain
$\nabla^{2} \varphi_{i}(z)=\frac{\phi^{\prime}\left(\left\|z-\theta_{i}\right\|\right)}{\left\|z-\theta_{i}\right\|} I+\left(\phi^{\prime \prime}\left(\left\|z-\theta_{i}\right\|\right)-\frac{\phi^{\prime}\left(\left\|z-\theta_{i}\right\|\right)}{\left\|z-\theta_{i}\right\|}\right) \mathcal{N}\left(z-\theta_{i}\right) \quad\left(\mathcal{N}\left(z-\theta_{i}\right)\right)^{T}$
For any $v \in S^{s}$, we have

$$
\begin{aligned}
v^{T} \nabla^{2} \varphi_{i}(z) v & =\frac{\phi^{\prime}\left(\left\|z-\theta_{i}\right\|\right)}{\left\|z-\theta_{i}\right\|}+\left(\phi^{\prime \prime}\left(\left\|z-\theta_{i}\right\|\right)-\frac{\phi^{\prime}\left(\left\|z-\theta_{i}\right\|\right)}{\left\|z-\theta_{i}\right\|}\right)\left(v^{T} \mathcal{N}\left(z-\theta_{i}\right)\right)^{2} \\
& =\frac{\phi^{\prime}\left(\left\|z-\theta_{i}\right\|\right)}{\left\|z-\theta_{i}\right\|}\left(1-\left(v^{T} \mathcal{N}\left(z-\theta_{i}\right)\right)^{2}\right)+\phi^{\prime \prime}\left(\left\|z-\theta_{i}\right\|\right)\left(v^{T} \mathcal{N}\left(z-\theta_{i}\right)\right)^{2}
\end{aligned}
$$

The first term is always positive. So the assumption H7 amounts to saying that

$$
\liminf _{t \searrow 0} \phi^{\prime \prime}(t)>-\infty
$$

For instance, for the concave function cited in (4), we find that $\phi^{\prime \prime}(0)=-2 \alpha$. For $\alpha=1$, the $L^{\alpha}$-function is non-smooth at zero and we have $\phi^{\prime}(0)=1$ and $\phi^{\prime \prime}(0)=0$.

Furthermore, the inequality required in H 8 reads

$$
\phi^{\prime}\left(0^{+}\right) \geq \phi^{\prime}\left(0^{+}\right) u^{T} v, \quad \forall u, v \in S^{s}
$$

which amounts to Schwarz inequality.
Grossly speaking, the developments in the case of piecewise $\mathcal{C}^{m}$ regularization follow the same lines as those developed in the case of $\mathcal{C}^{m}$-functions in $\S 2$, and some details can therefore be skipped. The next theorem is an extension of Theorem 2.1 and gives the main result of this paper.

Theorem 3.1. Consider $\mathcal{E}$ represented by (1) where $\Phi$ has the form (2). For all $i \in\{1, \ldots, r\}$, let $\varphi_{i}$ be $\mathcal{C}^{m}$ on $\mathbb{R} \backslash\left\{\theta_{i}\right\}$ with $m \geq 2$ and continuous at $\theta_{i}$ and let the assumptions from H3 to H8 be true. Suppose that H1 is satisfied. Then we have the following statements.
(i) The interior of $\Gamma$ is dense in $\mathbb{R}^{q}$.
(ii) The global minimizer function $\hat{\mathcal{X}}: \Gamma \rightarrow \mathbb{R}^{p}$ is $\mathcal{C}^{m-1}$ on an open, dense subset of $\Gamma$.
The proof of Theorem 3.1 relies on the two propositions given below.
Proposition 3.2. Let $\Phi$ have the form (2) and let the assumptions H1, H3, $H_{4}, H^{7}$ and H8 be true. Then there exists $\Omega_{0}$ an open and dense subset of $\mathbb{R}^{q}$ such that every $y \in \Omega_{0}$ is contained in a neighborhood $N \in \mathbb{R}^{q}$, associated with an integer $n>0$, so that for every $y^{\prime} \in N$, the relevant objective function $\mathcal{E}\left(., y^{\prime}\right)$ admits at most $n$ local minimizers.

Proof. Let $\Pi_{T_{J}}$ be the orthogonal projection onto $T_{J}$. For $J \in \mathcal{P}(\{1, \ldots, r\})$, similarly to [5], we define

$$
\begin{align*}
H_{0}^{J} & :=\left\{x \in \Theta_{J}: \operatorname{det} \nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)(x, 0)=0\right\},  \tag{16}\\
W_{J} & :=\left\{w \in T_{J}^{\perp}: v^{T} w \leq \sum_{i \in J} v^{T} G_{i}^{T} \nabla^{+} \varphi_{i}\left(\theta_{i}\right)\left(G_{i} v\right), \forall v \in T_{J}^{\perp}\right\} . \tag{17}
\end{align*}
$$

The set $\Omega_{0}$ is now constructed in close relation with Corollary 4.4 in the first part of this work [5]:

$$
\begin{equation*}
\Omega_{0}:=\bigcap_{J \subset \mathcal{P}(\{1, \ldots, r\})}\left(A_{J}^{c} \cap B_{J}^{c}\right) \subset \Omega . \tag{18}
\end{equation*}
$$

where we recall that

$$
\begin{align*}
& A_{J}:=\left\{y \in \mathbb{R}^{q}: 2 \Pi_{T_{J}} L^{T} y \in \nabla\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)\left(H_{0}^{J}, 0\right)\right\}  \tag{19}\\
& B_{J}:=\left\{y \in \mathbb{R}^{q}: 2 L^{T} y \in \nabla \mathcal{E}_{J}\left(\Theta_{J}, 0\right)+\partial_{T_{J}^{\perp}} W_{J}\right\} \tag{20}
\end{align*}
$$

and $\partial_{T_{J}^{\perp}} W_{J}$ is the boundary of $W_{J}$ considered in $T_{J}^{\perp}$. As seen from Propositions 4.5 and 4.6, the interiors of the sets $A_{J}^{c}$ and $B_{J}^{c}$ are dense in $\mathbb{R}^{q}$. Hence the interior of $\Omega_{0}$ is dense in $\mathbb{R}^{q}$ as well. Next we need a lemma which generalizes Lemma 2.3 in $\S 2$.

Lemma 3.3. Let $\Phi$ be as in (2) and let the assumptions H1 and H3 hold. Then for every open and bounded set $N \subset \mathbb{R}^{q}$, there exists a compact set $C \subset \mathbb{R}^{p}$ such that for every $y \in N$, every local minimizer $\hat{x}$ of $\mathcal{E}(., y)$ satisfies $\hat{x} \in C$.

Proof of Lemma 3.3. Let $\hat{x} \in \Theta_{J}$ be a minimizer of $\mathcal{E}(., y)$. Then we can write down that

$$
\nabla\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)(\hat{x}, y)=0
$$

Equivalently,

$$
\nabla\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)(\hat{x}, 0)=2 \Pi_{T_{J}} L^{T} y
$$

Then all minimizers of all functions $\mathcal{E}(., y)$ when $y$ ranges over $N$, are contained in the set

$$
\bigcup_{J \in \mathcal{P}(\{1, \ldots, n\})}\left\{x \in \Theta_{J}: \nabla\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)(x, 0) \in 2 \Pi_{T_{J}} L^{T} N\right\}
$$

Each one of the sets composing this union is bounded because $2 L^{T} N$ is bounded and $x \rightarrow\left\|\nabla\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)(x, 0)\right\|$ is coercive due to H 1 and H 3 . Hence their union is bounded as well.

Below we develop the proof of Proposition 3.2. Similarly to Proposition 2.2, we shall show that if $y \in \mathbb{R}^{q}$ does not satisfy the conclusion, then it is not in $\Omega_{0}$. Consider therefore a point $y \in \mathbb{R}^{q}$ such that for every integer $n>0$, there is a point $y_{n} \in B(y, 1 / n)$ for which $\mathcal{E}\left(., y_{n}\right)$ has at least $n$ different local minimizers. This gives rise to a sequence, indexed by $n$, every element of which is a set of $n$ minimizers among all the minimizers of $\mathcal{E}\left(., y_{n}\right)$. Notice that for every $J$, the set $\Theta_{J}$ is composed of a finite number of convex subsets. For instance, we can consider the following decomposition:

$$
\begin{aligned}
\Theta_{J} & =\left\{x \in \mathbb{R}^{p}: G_{i} x=\left[\begin{array}{ll}
\theta_{i}, & \forall i \in J \\
G_{k} x \neq \theta_{k}, & \forall k \in J^{c}
\end{array}\right\}\right. \\
& =\left\{x \in \mathbb{R}^{p}: G_{i} x=\left[\begin{array}{ll}
\theta_{i}, \forall i \in J \\
\forall k \in J^{c}, \exists j_{k} \in\{1, \ldots, s\} \text { such that }\left[G_{k} x\right]_{j_{k}} \neq\left[\theta_{k}\right]_{j_{k}}
\end{array}\right\}\right. \\
& =\bigcup_{\left\{j_{k}\right\} \in\{1, \ldots, s\}^{J^{c}}} \bigcup_{\lambda \in\{-1,1\}}\left\{x \in \mathbb{R}^{p}: G_{i} x=\left[\begin{array}{ll}
\theta_{i}, & \forall i \in J \\
\lambda\left[G_{k} x-\theta_{k}\right]_{j_{k}}>0, & \forall k \in J^{c}
\end{array}\right\}\right.
\end{aligned}
$$

where for a vector $z,[z]_{k}$ denotes its $k$ th entry. Using also the fact that $\mathcal{P}(\{1, \ldots, n\})$ is finite, it is easy to see that there exist a set $J$ of indexes and a subsequence of $\left\{y_{n}\right\}$, denoted by $\left\{y_{n}\right\}$ again, such that for every integer $n>0$, the function $\mathcal{E}\left(., y_{n}\right)$ has at least $n$ local minimizers belonging to the same convex subset $\tilde{\Theta}_{J}$ of $\Theta_{J}$. Using the same arguments as in the proof of Proposition 2.2, we see that there are two convergent subsequences of local minimizers of $\mathcal{E}\left(., y_{n}\right)$ in $\tilde{\Theta}_{J}$, say $\left\{\hat{x}_{n}\right\}$ and $\left\{\hat{x}_{n}^{\prime}\right\}$ such that the distance between them $\left\|\hat{x}_{n}-\hat{x}_{n}^{\prime}\right\|$ goes to zero as long as $n \rightarrow \infty$. Similarly, the convexity of $\tilde{\Theta}_{J}$ allows the mean-value theorem to be applied. Then we see that there exists $\tilde{x}_{n} \in\left\{t \hat{x}_{n}^{\prime}+(1-t) \hat{x}_{n}: 0<t<1\right\}$ for which

$$
\begin{gather*}
\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)^{T} \nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)\left(\tilde{x}_{n}, y_{n}\right)\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)=0  \tag{21}\\
9
\end{gather*}
$$

As $\left\|\hat{x}_{n}-\hat{x}_{n}^{\prime}\right\| \rightarrow 0$ when $n \rightarrow \infty$, all the three sequences, $\left\{\hat{x}_{n}\right\},\left\{\hat{x}_{n}^{\prime}\right\}$ and $\left\{\tilde{x}_{n}\right\}$ converge to the same point $\tilde{x}$ whereas $y_{n} \rightarrow y$ by construction. Now, two situations can occur according to the position of $\tilde{x}$. These are considered in Lemmas 3.4 and 3.5 below.

Lemma 3.4. Suppose that $\tilde{x} \in \Theta_{J}$. Then $y \in A_{J} \subset \Omega_{0}^{c}$.
Proof of Lemma 3.4. Coming back to the definitions of $A_{J}$ and $H_{0}^{J}$, we have to show that $\nabla\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)(\tilde{x}, y)=0$ and $\operatorname{det} \nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)(\tilde{x}, y)=0$. As to the gradient, the continuity of the function

$$
(x, y) \rightarrow \nabla\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)(x, y)=\Pi_{T_{J}}\left(2 L^{T}(L x-y)+\sum_{i \in J^{c}} G_{i}^{T} \nabla \varphi_{i}\left(G_{i} x\right)\right)
$$

on $\Theta_{J} \times \mathbb{R}^{q}$ entails that

$$
\nabla\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)(\tilde{x}, y)=\lim _{n \rightarrow \infty} \nabla\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)\left(\hat{x}_{n}, y_{n}\right)=0
$$

Let us now check that $\nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)(\tilde{x}, y)$ is semi-positive definite. Since every $\hat{x}_{n}$ is a local minimizer of $\mathcal{E}\left(., y_{n}\right)$ and $\hat{x}_{n} \in \Theta_{J}$, it is a local minimizer of $\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)\left(., y_{n}\right)$. Then

$$
v^{T} \nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)\left(\hat{x}_{n}, y_{n}\right) v \geq 0, \quad \forall v \in T_{J}
$$

The continuity of the function

$$
(x, y) \rightarrow \nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)(x, y)=\Pi_{T_{J}}\left(2 L^{T} L+\sum_{i \in J^{c}} G_{i}^{T} \nabla^{2} \varphi_{i}\left(G_{i} x\right) G_{i}\right) \Pi_{T_{J}}^{T}
$$

shows that at the limit when $n \rightarrow \infty$,

$$
v^{T} \nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)(\tilde{x}, y) v \geq 0, \quad \forall v \in T_{J}
$$

Yet consider subsequences of $\left\{\hat{x}_{n}\right\}$ and $\left\{\hat{x}_{n}^{\prime}\right\}$ such that $\left\{\mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)\right\}$ converges, and denote

$$
u:=\lim _{n \rightarrow \infty} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)
$$

The facts that $\hat{x}_{n}$ and $\hat{x}_{n}^{\prime}$ are in $T_{J}$, for every $n$, shows that $u \in T_{J}$. Next we divide (21) by $\left\|\hat{x}_{n}-\hat{x}_{n}^{\prime}\right\|^{2} \neq 0$ and take the limit when $n \rightarrow \infty$. This yields

$$
u^{T} \nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)(\tilde{x}, y) u=0
$$

It follows that $\operatorname{det} \nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)(\tilde{x}, y)=0$. Hence the result.

The other possibility is that $\tilde{x}$ belongs to the boundary of $\Theta_{J}$ in $\overline{\Theta_{J}}$, which means that $\tilde{x} \in \Theta_{\tilde{J}}$ with $\tilde{J} \supset J, \tilde{J} \neq J$.

Lemma 3.5. Suppose that $\tilde{x} \in \Theta_{\tilde{J}}$. Then $\nabla\left(\left.\mathcal{E}\right|_{\Theta_{\tilde{J}}}\right)(\tilde{x}, y)=0$.
Proof of Lemma 3.5. By $\tilde{J} \supset J$, we have $T_{\tilde{J}} \subset T_{J}$, and hence $\Pi_{T_{\tilde{J}}} \circ \Pi_{T_{J}}=\Pi_{T_{\tilde{J}}}$. This allows us to write

$$
\Pi_{T_{\tilde{J}}} \nabla\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)\left(\hat{x}_{n}, y_{n}\right)=\Pi_{T_{\tilde{J}}} \circ \Pi_{T_{J}}\left(2 L^{T}\left(L \hat{x}_{n}-y_{n}\right)+\sum_{i \in J^{c}} G_{i}^{T} \nabla \varphi_{i}\left(G_{i} \hat{x}_{n}\right)\right)
$$

$$
\begin{aligned}
& =\Pi_{T_{\tilde{J}}}\left(2 L^{T}\left(L \hat{x}_{n}-y_{n}\right)+\sum_{i \in \tilde{J} c} G_{i}^{T} \nabla \varphi_{i}\left(G_{i} \hat{x}_{n}\right)\right) \\
& +\sum_{i \in \tilde{J} \backslash J} \Pi_{T_{\tilde{J}}} G_{i}^{T} \nabla \varphi_{i}\left(G_{i} \hat{x}_{n}\right) .
\end{aligned}
$$

Since $\Pi_{T_{\tilde{J}}} G_{i}^{T}=0, \forall i \in \tilde{J}$, the last term above vanishes, hence

$$
\Pi_{T_{\tilde{J}}} \nabla\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)\left(\hat{x}_{n}, y_{n}\right)=\Pi_{T_{\tilde{J}}}\left(2 L^{T}\left(L \hat{x}_{n}-y_{n}\right)+\sum_{i \in \tilde{J}^{c}} G_{i}^{T} \nabla \varphi_{i}\left(G_{i} \hat{x}_{n}\right)\right)
$$

The obtained function is continuous with respect to $\left(\hat{x}_{n}, y_{n}\right) \in\left\{x \in \mathbb{R}^{p}: G_{i} x \neq\right.$ $\left.\theta_{i}, \forall i \in \tilde{J}^{c}\right\} \times \mathbb{R}^{q}$. Since $\nabla\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)\left(\hat{x}_{n}, y_{n}\right)=0, \forall n$, at the limit when $n \rightarrow \infty$ we get

$$
\Pi_{T_{\tilde{J}}}\left(2 L^{T}(L \tilde{x}-y)+\sum_{i \in \tilde{J}^{c}} G_{i}^{T} \nabla \varphi_{i}\left(G_{i} \tilde{x}\right)\right)=0
$$

This completes the proof.

Hence, $\tilde{x}$ satisfies the necessary condition for minimum of $\left.\mathcal{E}\right|_{\Theta_{\tilde{J}}}$. Next we will exhibit a direction $u \in T_{J}$ which shows that either $y \in A_{\tilde{J}}$ or $y \in B_{\tilde{J}}$. As above, we will take a convergent subsequence of $\mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)$ and consider

$$
\begin{equation*}
u:=\lim _{n \rightarrow \infty} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right) \tag{22}
\end{equation*}
$$

Since $\hat{x}_{n} \in \Theta_{J}$ and $\hat{x}_{n}^{\prime} \in \Theta_{J}, \forall n$, we see that $u \in T_{J}$. Two cases now arise which are considered in the two following lemmas.

Lemma 3.6. Suppose that $\tilde{x} \in \Theta_{\tilde{J}}$ and $u \in T_{\tilde{J}}$. Then $y \in A_{\tilde{J}} \subset \Omega_{0}^{c}$.
Proof of Lemma 3.6. By developing (21) and dividing by $\left\|\hat{x}_{n}-\hat{x}_{n}^{\prime}\right\|^{2} \neq 0$, we obtain
$\mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)^{T} 2 L^{T} L \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)+\sum_{i \in J^{c}} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)^{T} G_{i}^{T} \nabla^{2} \varphi_{i}\left(G_{i} \tilde{x}_{n}\right) G_{i} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)=0$.
Noticing that $J^{c}=\tilde{J}^{c} \cup(\tilde{J} \backslash J)$, we put the last equation into the form

$$
\begin{align*}
& \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)^{T} 2 L^{T} L \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)  \tag{23}\\
& +\sum_{i \in \tilde{J}^{c}} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)^{T} G_{i}^{T} \nabla^{2} \varphi_{i}\left(G_{i} \tilde{x}_{n}\right) G_{i} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)  \tag{24}\\
=- & \sum_{i \in \tilde{J} \backslash J} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)^{T} G_{i}^{T} \nabla^{2} \varphi_{i}\left(G_{i} \tilde{x}_{n}\right) G_{i} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right) . \tag{25}
\end{align*}
$$

We will consider separately the limit of (23)-(24) and (25) when $n \rightarrow \infty$. Noticing that $G_{i} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right) \rightarrow G_{i} u,(23)-(24)$ becomes

$$
u^{T} 2 L^{T} L u+\sum_{i \in \tilde{J}^{c}} u^{T} G_{i}^{T} \nabla^{2} \varphi_{i}\left(G_{i} \tilde{x}\right) G_{i} u=u^{T} \nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{\tilde{J}}}\right)(\tilde{x}, 0) u
$$

Noticing that for every $n$, the point $\hat{x}_{n} \in \Theta_{\tilde{J}}$ is a local minimizer of $\mathcal{E}\left(., y_{n}\right)$, and so it is a minimizer of $\left.\mathcal{E}\right|_{\Theta_{\tilde{J}}}\left(., y_{n}\right)$ as well. Consequently,

$$
v^{T} \nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{\tilde{J}}}\right)\left(\hat{x}_{n}, 0\right) v=v^{T} \nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{\tilde{J}}}\right)\left(\hat{x}_{n}, y_{n}\right) v \geq 0, \quad \forall n, \quad \forall v \in T_{\tilde{J}}
$$

As $n \rightarrow \infty$,

$$
\begin{equation*}
v^{T} \nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{\tilde{J}}}\right)(\tilde{x}, 0) v \geq 0, \quad \forall v \in T_{\tilde{J}} \tag{26}
\end{equation*}
$$

In particular, for $v=u$ we deduce that (23)-(24) has a positive limit which is

$$
\begin{equation*}
u^{T} \nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{\tilde{J}}}\right)(\tilde{x}, 0) u \geq 0 \tag{27}
\end{equation*}
$$

Let us now examine the upper bound of (25) as $n \rightarrow \infty$. Using the identity $G_{i} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)=\left\|G_{i} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)\right\| \mathcal{N}\left(G_{i}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)\right)$, we obtain

$$
\begin{aligned}
& \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)^{T} G_{i}^{T} \nabla^{2} \varphi_{i}\left(G_{i} \tilde{x}_{n}\right) G_{i} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right) \\
= & \left\|G_{i} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)\right\|^{2} \mathcal{N}\left(G_{i}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)\right)^{T} \varphi_{i}\left(G_{i} \tilde{x}_{n}\right) \mathcal{N}\left(G_{i}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)\right) \\
\geq & \left\|G_{i} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)\right\|^{2} \inf _{v \in S^{s}} v^{T} \varphi_{i}\left(G_{i} \tilde{x}_{n}\right) v .
\end{aligned}
$$

Furthermore, for every $i \in \tilde{J} \backslash J$ we have $G_{i} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right) \rightarrow 0$ and $G_{i} \tilde{x}_{n} \rightarrow \theta_{i}$ as long as $n \rightarrow \infty$. At this point, assumption H 7 shows that

$$
\liminf _{n \rightarrow \infty} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)^{T} G_{i}^{T} \nabla^{2} \varphi_{i}\left(G_{i} \tilde{x}_{n}\right) G_{i} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right) \geq 0
$$

It follows that the limit of (25) satisfies

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}-\sum_{i \in \tilde{J} \backslash J} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)^{T} G_{i}^{T} \nabla^{2} \varphi_{i}\left(G_{i} \tilde{x}_{n}\right) G_{i} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right) \\
= & -\sum_{i \in \tilde{J} \backslash J} \liminf _{n \rightarrow \infty} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right)^{T} G_{i}^{T} \nabla^{2} \varphi_{i}\left(G_{i} \tilde{x}_{n}\right) G_{i} \mathcal{N}\left(\hat{x}_{n}-\hat{x}_{n}^{\prime}\right) \leq 0 .
\end{aligned}
$$

As (23)-(24) and (25) have the same limit when $n \rightarrow \infty$, the latter result, combined with (27), shows that

$$
\begin{equation*}
u^{T} \nabla^{2}\left(\left.\mathcal{E}\right|_{\Theta_{\tilde{J}}}\right)(\tilde{x}, 0) u=0 . \tag{28}
\end{equation*}
$$

Joining (26) to (28) and the fact that $\left.\nabla^{2} \mathcal{E}\right|_{\Theta_{J}}(\tilde{x}, 0)$ is symmetric, we see that $\tilde{x} \in H_{0}^{\tilde{J}}$ where $H_{0}^{\tilde{J}}$ was defined in (16). The latter, combined with Lemma 3.5 shows that $y \in A_{\tilde{J}}$. By (18), $y \in \Omega_{0}^{c}$.

Lemma 3.7. Suppose that $\tilde{x} \in \Theta_{\tilde{J}}$ and $u \in T_{J} \backslash T_{\tilde{J}}$. Then $y \in B_{\tilde{J}} \subset \Omega_{0}^{c}$.
Proof of Lemma 3.7. Being a minimizer of $\mathcal{E}\left(., y_{n}\right)$, for every $n$, the point $\hat{x}_{n}$ satisfies

$$
\begin{equation*}
d^{+} \mathcal{E}\left(\hat{x}_{n}, y_{n}\right)(v) \geq 0, \quad \forall v \in \mathbb{R}^{p} . \tag{29}
\end{equation*}
$$

We now expand this side-derivative.

$$
\begin{aligned}
d^{+} \mathcal{E}\left(\hat{x}_{n}, y_{n}\right)(v) & =2 v^{T} L^{T}\left(L \hat{x}_{n}-y_{n}\right)+\sum_{i \in \tilde{J}^{c}} v^{T} G_{i}^{T} \nabla \varphi_{i}\left(G_{i} \hat{x}_{n}\right) \\
& +\sum_{i \in \tilde{J} \backslash J} v^{T} G_{i}^{T} \nabla \varphi_{i}\left(G_{i} \hat{x}_{n}\right)+K,
\end{aligned}
$$

where $K=\sum_{i \in J} v^{T} G_{i}^{T} \nabla^{+} \varphi_{i}\left(\theta_{i}\right)\left(G_{i} v\right)$ is independent of $n$. Take a subsequence $\left\{\hat{x}_{n}\right\}$ for which $\mathcal{N}\left(G_{i} \hat{x}_{n}-\theta_{i}\right)$ converges for every $i \in \tilde{J} \backslash J$. When $n \rightarrow \infty$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} d^{+} \mathcal{E}\left(\hat{x}_{n}, y_{n}\right)(v) & =2 v^{T} L^{T}(L \tilde{x}-y)+\sum_{i \in \tilde{J}^{c}} v^{T} G_{i}^{T} \nabla \varphi_{i}\left(G_{i} \tilde{x}\right) \\
& +\sum_{i \in \tilde{J} \backslash J} v^{T} G_{i}^{T} \nabla^{+} \varphi_{i}\left(\theta_{i}\right)\left(\lim _{n \rightarrow \infty} \mathcal{N}\left(G_{i} \hat{x}_{n}-\theta_{i}\right)\right)+K
\end{aligned}
$$

Using assumption H8, the last term can be upper-bounded:

$$
v^{T} G_{i}^{T} \nabla^{+} \varphi_{i}\left(\theta_{i}\right)\left(\lim _{n \rightarrow \infty} \mathcal{N}\left(G_{i} \hat{x}_{n}-\theta_{i}\right)\right) \leq v^{T} G_{i}^{T} \nabla^{+} \varphi_{i}\left(\theta_{i}\right)\left(G_{i} v\right)
$$

It follows that $d^{+} \mathcal{E}(\tilde{x}, y)(v) \geq \lim _{n \rightarrow \infty} d^{+} \mathcal{E}\left(\hat{x}_{n}, y_{n}\right)(v)$. Putting this together with (29) we see that

$$
\begin{equation*}
d^{+} \mathcal{E}(\tilde{x}, y)(v) \geq 0, \quad \forall v \in \mathbb{R}^{p} \tag{30}
\end{equation*}
$$

In other words, $\tilde{x}$ satisfies the necessary condition for minimum.
Consider convergent subsequences of $\left\{\mathcal{N}\left(\hat{x}_{n}-\tilde{x}\right)\right\}$ and of $\left\{\mathcal{N}\left(\hat{x}_{n}^{\prime}-\tilde{x}\right)\right\}$. Since $u \notin T_{\tilde{J}}$, at least one of the following limits, $v:=\lim _{n \rightarrow \infty} \mathcal{N}\left(\hat{x}_{n}-\tilde{x}\right)$ and $v^{\prime}:=$ $\lim _{n \rightarrow \infty} \mathcal{N}\left(\hat{x}_{n}^{\prime}-\tilde{x}\right)$, does not belong to $T_{\tilde{J}}$. For definiteness, suppose $v \notin T_{\tilde{J}}$. By the latter, the projection of $v$ onto $T_{\tilde{J}}^{\perp}$ is non-null. Put $w:=\mathcal{N}\left(\Pi_{T_{\tilde{J}}} v\right)$ and notice that $w \in T_{J}$, because $v \in T_{J}$ and $T_{\tilde{J}} \subset T_{J}$. Since $\nabla\left(\left.\mathcal{E}\right|_{\Theta_{J}}\right)\left(\hat{x}_{n}, y_{n}\right)=0$, we deduce that

$$
\begin{equation*}
d^{+} \mathcal{E}\left(\hat{x}_{n}, y_{n}\right)(w)=0, \quad \forall n \tag{31}
\end{equation*}
$$

Moreover, noticing that $G_{i} w=0$ for every $i \in J$, we have

$$
\sum_{i \in J} w^{T} G_{i}^{T} \nabla^{+} \varphi_{i}\left(\theta_{i}\right)\left(G_{i} w\right)=0
$$

Thus we obtain
$d^{+} \mathcal{E}\left(\hat{x}_{n}, y_{n}\right)(w)=2 w^{T} L^{T}\left(L \hat{x}_{n}-y_{n}\right)+\sum_{i \in \tilde{J}^{c}} w^{T} G_{i}^{T} \nabla \varphi_{i}\left(G_{i} \hat{x}_{n}\right)+\sum_{i \in \tilde{J} \backslash J} w^{T} G_{i}^{T} \nabla \varphi_{i}\left(G_{i} \hat{x}_{n}\right)$.
We will calculate the limit of all the terms in $d^{+} \mathcal{E}\left(\hat{x}_{n}, y_{n}\right)(w)$ when $n \rightarrow \infty$. The limit of the first two terms on the right side of the equation given above is easily obtained by continuity. Let us focus now on the limit of $\nabla \varphi_{i}\left(G_{i} \hat{x}_{n}\right)$ for $i \in \tilde{J} \backslash J$. We start by considering the case when $G_{i} w \neq 0$. We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathcal{N}\left(G_{i} \hat{x}_{n}-\theta_{i}\right) & =\lim _{n \rightarrow \infty} \mathcal{N}\left(G_{i} \mathcal{N}\left(\hat{x}_{n}-\tilde{x}\right)\right) \\
& =\mathcal{N}\left(G_{i} \lim _{n \rightarrow \infty} \mathcal{N}\left(\hat{x}_{n}-\tilde{x}\right)\right) \\
& =\mathcal{N}\left(G_{i} v\right)=\mathcal{N}\left(G_{i} w\right)
\end{aligned}
$$

The last equality comes from the fact that for $i \in \tilde{J}$ we have $G_{i} v=G_{i} \Pi_{T_{\grave{J}}} v+$ $G_{i} \Pi_{T_{\tilde{J}}} v=G_{i} \Pi_{T_{\vec{J}}^{\perp}} v=G_{i} w\left\|\Pi_{T_{\vec{J}}^{\perp}} v\right\|$, since $\Pi_{T_{\tilde{J}}} v \in T_{\tilde{J}}$ and hence $G_{i} \Pi_{T_{\tilde{J}}} v=0$. Thus, for $i \in \tilde{J} \backslash J$ and $G_{i} w \neq 0$, we find that $w^{T} G_{i}^{T} \nabla \varphi_{i}\left(G_{i} \hat{x}_{n}\right) \rightarrow w^{T} G_{i}^{T} \nabla^{+} \varphi_{i}\left(\theta_{i}\right)\left(G_{i} w\right)$.

Otherwise, if $G_{i} w=0$ for some $i \in \tilde{J} \backslash J$, obviously $w^{T} G_{i}^{T} \nabla \varphi_{i}\left(G_{i} \hat{x}_{n}\right)=0=$ $w^{T} G_{i}^{T} \nabla^{+} \varphi_{i}\left(\theta_{i}\right)\left(G_{i} w\right)$. Consequently,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} d^{+} \mathcal{E}\left(\hat{x}_{n}, y_{n}\right)(w) & =2 w^{T} L^{T}(L \tilde{x}-y)+\sum_{i \in \tilde{J}^{c}} w^{T} G_{i}^{T} \nabla \varphi_{i}\left(G_{i} \tilde{x}\right) \\
& +\sum_{i \in \tilde{J} \backslash J} w^{T} G_{i}^{T} \nabla^{+} \varphi_{i}\left(\theta_{i}\right)\left(G_{i} w\right) \\
& =d^{+} \mathcal{E}(\tilde{x}, y)(w)
\end{aligned}
$$

Using (31), at the limit we get $d^{+} \mathcal{E}(\tilde{x}, y)(w)=0$. However, $w \in T_{\tilde{J}}^{\perp}$ which shows that $\tilde{x}$, although being a local minimizer of $\left.\mathcal{E}\right|_{\Theta_{\tilde{J}}}(., y)$, does not satisfy the condition (B) of Proposition 4.3 in the previous part [5]. Then $y \in B_{\tilde{J}}$ as given in (20). Using (18) we see that $y \in \Omega_{0}^{c}$.

We can now extend Remark 1 to the class of objective functions considered in this section.

Remark 2. Consider two minimizer functions $\mathcal{X}_{1}$ and $\mathcal{X}_{2}$ defined on an open and connected domain $O \subset \Omega_{0}$. The we have either $\mathcal{X}_{1} \equiv \mathcal{X}_{2}$ on $O$, or

$$
\mathcal{X}_{1}(y) \neq \mathcal{X}_{2}(y), \quad \forall y \in O
$$

The arguments are similar to those given in Remark 1. Put $\tilde{O}:=\left\{y \in O: \mathcal{X}_{1}(y)=\right.$ $\left.\mathcal{X}_{2}(y)\right\}$ and suppose that $\tilde{O} \neq \emptyset$ and $\tilde{O} \neq O$. Clearly, $\tilde{O}$ is closed in $O$. Focus on $y$ belonging to the boundary of $\tilde{O}$ in $O$. Then there is a sequence $\left\{y_{n}\right\}$ with $y_{n} \in O \backslash \tilde{O}$ and $y_{n} \rightarrow y$ when $n \rightarrow \infty$, such that $\mathcal{X}_{1}\left(y_{n}\right) \neq \mathcal{X}_{2}\left(y_{n}\right)$. Since $\mathcal{X}_{1}$ and $\mathcal{X}_{2}$ are continuous, the points $\hat{x}_{n}:=\mathcal{X}_{1}\left(y_{n}\right)$ and $\hat{x}_{n}^{\prime}:=\mathcal{X}_{2}\left(y_{n}\right)$ come arbitrarily close to each other as long as $n \rightarrow \infty$. Then we apply the same reasoning developed after (21) and deduce that $y \in \Omega_{0}^{c}$. This contradicts the fact that $O \subset \Omega_{0}$.

Proposition 3.8. Let the assumptions of Proposition 3.2 hold. Then every open set of $\mathbb{R}^{q}$ contains an open subset $O$ on which $\mathcal{E}$ admits $n$ minimizer functions $\mathcal{X}_{i}: O \rightarrow \mathbb{R}^{p}, i=1, \ldots, n$, which are $\mathcal{C}^{m-1}$ and such that for all $y \in O$, all the minimizers of $\mathcal{E}(., y)$ read

$$
\begin{equation*}
\mathcal{X}_{i}(y), i=1, \ldots, n \tag{32}
\end{equation*}
$$

and satisfy

$$
\begin{equation*}
\mathcal{E}\left(\mathcal{X}_{i}(y), y\right) \neq \mathcal{E}\left(\mathcal{X}_{j}(y), y\right), \forall i, j \in\{1, \ldots, n\} \text { with } i \neq j \tag{33}
\end{equation*}
$$

Proof. We take into consideration that the smoothness of $\Phi$ is not exploited in the proof of Proposition 2.4, but is in the proofs of Proposition 2.1, Remark 1 and Lemma 2.5. The generalization of these statements to the conditions of Proposition 3.8 is then sufficient to prove this proposition. The first two statements have been generalized in Proposition 3.2 and Remark 2, the last one is given in Lemma 3.9 below.

Lemma 3.9. Let $\mathcal{X}_{1}$ and $\mathcal{X}_{2}$ be two differentiable local minimizer functions relevant to $\mathcal{E}$ and defined on the same open domain $O \subset \Omega$. Suppose, we have

$$
\begin{equation*}
\underset{14}{\mathcal{E}\left(\mathcal{X}_{1}(y), y\right)=\mathcal{E}\left(\mathcal{X}_{2}(y), y\right), \quad \forall y \in O .} \tag{34}
\end{equation*}
$$

Then

$$
\mathcal{X}_{1}(y)=\mathcal{X}_{2}(y), \quad \forall y \in O
$$

Proof of the lemma. Let us consider $y \in O$. Then there are two sets of indexes $J_{1}$ and $J_{2}$ such that we have $\mathcal{X}_{1}(y) \in Q_{J_{1}}$ and $\mathcal{X}_{2}(y) \in Q_{J_{2}}$. By Proposition 4.3 of the previous part [5], $y$ is contained in a neighborhood $N \subset O$ such that for all $y^{\prime} \in N$ we have in addition $\mathcal{X}_{1}\left(y^{\prime}\right) \in Q_{J_{1}}$ and $\mathcal{X}_{2}\left(y^{\prime}\right) \in Q_{J_{2}}$. On this neighborhood, (34) can equivalently be written

$$
\begin{equation*}
\left.\mathcal{E}\right|_{Q_{J_{1}}}\left(\mathcal{X}_{1}\left(y^{\prime}\right), y^{\prime}\right)=\left.\mathcal{E}\right|_{Q_{J_{2}}}\left(\mathcal{X}_{2}\left(y^{\prime}\right), y^{\prime}\right), \quad \forall y^{\prime} \in N \tag{35}
\end{equation*}
$$

By differentiating both sides of (35) with respect to $y^{\prime}$, we obtain

$$
\begin{align*}
& D_{1}\left(\left.\mathcal{E}\right|_{Q_{J_{1}}}\right)\left(\mathcal{X}_{1}\left(y^{\prime}\right), y^{\prime}\right) D \mathcal{X}_{1}\left(y^{\prime}\right)+D_{2} \mathcal{E}\left(\mathcal{X}_{1}\left(y^{\prime}\right), y^{\prime}\right)  \tag{36}\\
= & D_{1}\left(\left.\mathcal{E}\right|_{Q_{J_{2}}}\right)\left(\mathcal{X}_{2}\left(y^{\prime}\right), y^{\prime}\right) D \mathcal{X}_{2}\left(y^{\prime}\right)+D_{2} \mathcal{E}\left(\mathcal{X}_{2}\left(y^{\prime}\right), y^{\prime}\right), \tag{37}
\end{align*}
$$

Since, for $i \in\{1,2\}, \mathcal{X}_{i}$ is a minimizer function relevant to $\left.\mathcal{E}\right|_{Q_{J_{i}}}$,

$$
D_{1}\left(\left.\mathcal{E}\right|_{Q_{J_{i}}}\right)\left(\mathcal{X}_{i}\left(y^{\prime}\right), y^{\prime}\right)=0, \quad \forall y^{\prime} \in N
$$

By using also the expression of $D_{2} \mathcal{E}$ given in (13), equation (37) yields

$$
L \mathcal{X}_{1}\left(y^{\prime}\right)=L \mathcal{X}_{2}\left(y^{\prime}\right), \quad \forall y^{\prime} \in N
$$

The conclusion follows from the injectivity of $L$.

## REFERENCES

[1] J. E. Besag, On the statistical analysis of dirty pictures (with discussion), Journal of the Royal Statistical Society B, 48 (1986), pp. 259-302.
[2] M. Black, G. Sapiro, D. Marimont, and D. Heeger, Robust anisotropic diffusion, IEEE Transactions on Image Processing, 7 (1998), pp. 421-432.
[3] C. Bouman and K. Sauer, A generalized Gaussian image model for edge-preserving map estimation, IEEE Transactions on Image Processing, IP-2 (1993), pp. 296-310.
[4] P. G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation, Collection mathématiques appliquées pour la maîtrise, Masson, Paris, 1990.
[5] S. Durand and M. Nikolova, Stability of minimizers of regularized least squares objective functions $i$ : study of the local behaviour, tech. report, TSI-ENST, Paris, France, 2001.
[6] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6 (1984), pp. 721-741.
[7] S. Geman and D. McClure, Statistical methods for tomographic image reconstruction, in Proc. of the 46 -th Session of the ISI, Bulletin of the ISI, vol. 52, 1987, pp. 22-26.
[8] P. J. Green, Bayesian reconstructions from emission tomography data using a modified EM algorithm, IEEE Transactions on Medical Imaging, MI-9 (1990), pp. 84-93.
[9] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-12 (1990), pp. 629-639.
[10] R. T. Rockafellar and J. B. Wets, Variational analysis, Springer-Verlag, New York, 1997.
[11] L. Rudin, S. Osher, and C. Fatemi, Nonlinear total variation based noise removal algorithm, Physica, 60 D (1992), pp. 259-268.
[12] S. Teboul, L. Blanc-Féraud, G. Aubert, and M. Barlaud, Variational approach for edgepreserving regularization using coupled PDE's, IEEE Transactions on Image Processing, 7 (1998), pp. 387-397.


[^0]:    * CMLA UMR 8536-ENS de Cachan, 61 av. President Wilson, 94235 Cachan Cedex, France \& LAMFA, Université de Picardie, 33 rue Saint-Leu, 90039 Amien Cedex, France, sdurand@cmla.enscachan.fr
    ${ }^{\dagger}$ CNRS URA820-ENST Dpt. TSI, ENST, 46 rue Barrault, 75634 Paris Cedex 13, France \& CMLA-ENS Cachan, France, nikolova@tsi.enst.fr.

