
SAD: An Unsupervised System for
Subsequence Anomaly Detection

Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas
EDF R&D; LIPADE, Université de Paris

paul.boniol@edf.fr; {michele.linardi, federico.roncallo}@parisdescartes.fr; themis@mi.parisdescartes.fr

Abstract—Subsequence anomaly (or outlier) detection in long
sequences is an important problem with applications in a wide
range of domains. However, current approaches have severe
limitations: they either require prior domain knowledge, or
become cumbersome and expensive to use in situations with
recurrent anomalies of the same type. We recently proposed
NorM, a novel approach suitable for domain-agnostic anomaly
detection, which addresses the aforementioned problems by
detecting anomalies based on their (dis)similarity to a model
that represents normal behavior. The experimental results on
several real datasets demonstrate that the proposed approach
outperforms the current state-of-the art in terms of both accuracy
and execution time. In this demonstration, we present a system
for unsupervised Subsequence Anomaly Detection (SAD) that
uses the NorM method. Through various scenarios with real
datasets, we showcase the challenges of the problem, and we
demonstrate the advantages of the proposed system.

I. INTRODUCTION

Massive data series1 collections are a reality in virtually
every scientific and social domain, and there is a pressing
need for techniques that can efficiently analyze them [1]–[4].

Anomaly, or outlier detection is an old problem [5]–[7],
finding applications in a wide range of domains. In the specific
context of sequences, which is the focus of this paper, we
are interested in identifying anomalous subsequences, that is,
unlike the outlier, not a single value, but a sequence of values.

Existing techniques either explicitly look for a set of
pre-determined types of anomalies [8], [9], or identify as
anomalies the subsequences with the largest distances to their
nearest neighbors (termed discords) [7], [10]. We observe that
these approaches pose limitations to the subsequence anomaly
identification task, for several reasons, explained below.

First, the anomalous behavior is not always known. There-
fore, techniques that use specific domain knowledge for min-
ing anomalies (e.g., in cardiology [8], and engineering [11])
involve several finely-tuned parameters, and do not generalize
to new cases and domains. Second, in the case of general,
techniques for subsequence anomaly detection, the state-of-
the-art algorithms (e.g., [7], [10]) have been developed for
the case of a single anomaly in the dataset, or multiple
different (from one another) anomalies. The reason is that
these algorithms are based on the distance of a subsequence
to its Nearest-Neighbor (NN) in the dataset: the subsequence

1If the dimension that imposes the ordering of the sequence is time then
we talk about time series. In the rest of this paper, we will use the terms
sequence, data series, and time series interchangeably.

False	
Posi*ve	

MBA	(ECG)	820	

2000	0	 500	 1000	 1500	

(b)	

(a)	
(S)	

NEAREST	NEIGHBOR		EUCLIDEAN	
DISTANCE	OF	EACH	SUBSEQUENCE	

(S)	

Fig. 1. (a) MBA ECG (2000 points snippet from patient 820), with two
anomalous Supraventricular premature beats (S). (b) Euclidean distances of
each subsequence (length 75) to its best non-trivial match in the full sequence:
anomalies do not have the largest distance to their nearest neighbors.

that has the farthest NN is marked as an anomaly. Figure 1
depicts this situation. We show a snippet of the MIT-BIH
Supraventricular Arrhythmia Database (MBA) ECG record-
ing [12] of patient 820. This sequence includes repeated
anomalous subsequences (ventricular premature contractions,
marked by solid red rectangles). Following the state-of-the-art
approaches [7], [10], we plot in Figure 1(b) the distance of
each subsequence (of length 75) to its NN, and we observe
that the (known) anomalies do not correspond to the most
distant NN (i.e., the highest peak in Figure 1(b)). This is
because our dataset includes several anomalies that are similar
to one another (i.e., of the same type). At the same time, these
approaches mark as outliers subsequences that are normal
(dotted black rectangle), resulting in false positives.

Third, the mth discord approach [13], which was proposed
to remedy this situation, takes into account the multiplicity,
m, of the anomalous subsequences that are similar to one
another, and marks as anomalies all the subsequences in the
same group, by computing the mth (instead of the 1st) NNs
for each subsequence. However, this approach assumes that
we know the multiplicity m, which is not true in practice.

In order to address the aforementioned problems, we pro-
posed NorM [14], an unsupervised approach for subsequence
anomaly detection. Contrary to all previous approaches, NorM
detects anomalies based on their (dis)similarity to a model
that represents the normal (expected) behavior. NorM starts by
carefully selecting some of the subsequences of the dataset.
The selected set of subsequences are then used to build the
normal behavior model (itself a sequence). This process is
automated, with no user intervention, and is effective even
when the dataset contains multiple anomalies. Finally, NorM
detects anomalies by comparing candidate subsequences to

this normal model. An extensive evaluation has shown that
NorM is statistically significantly more accurate than the cur-
rent state-of-the art, and up to orders of magnitude faster [14].

In this demonstration, we present the Subsequence Anomaly
Detection (SAD) system that is based on NorM. It is a web
application that enables users to visualize data series, execute
NorM and change its internal parameters, as well as compare
to other anomaly detection algorithms.

II. NORM ANOMALY DETECTION FRAMEWORK

A. Problem Formulation

We formulate an approach for subsequence anomaly detec-
tion based on the notion of normal (expected) behavior. The
set of all subsequences of length ` in a given data series T is
defined as: T` = {Ti,`|∀i.0 ≤ i ≤ |T | − ` + 1}. We assume
that T` contains both normal and anomalous subsequences.
We define normal behavior as follows:

Definition 1 (Normal Model, NM): Given a data series T ,
NM is a model that represents the normal (i.e., not anomalous)
trends and patterns of T .

Subsequence anomalies can then be defined in a uniform
way: anomalies are the subsequences that have the largest
distances to NM (or their distance is above a set threshold).

Definition 2 (Subsequence Anomaly): Given a data series T ,
the set T` of all its subsequences of length `, and the Normal
Model NM of T , the subsequence Tj,` ∈ T` with a distance
to NM d = mini∈[0,`NM

−`]{dist(Tj,`, NMi,`
)} is an anomaly

if d is in the Top-k largest distances among all subsequences
in T`, or d > ε, where ε ∈ R>0 is a threshold.

Note that the only essential input parameter2 is the length `
of the anomaly (which is also one of the inputs in all relevant
algorithms in the literature [7], [10], [13], [15], [16]).

The definition of NM allows several interpretations. As
we summarize in the following subsection (and detail else-
where [14]), in this work we choose to define NM as a
sequence that summarizes normality in T , by representing
the average behavior of a set of (ideally only) normal se-
quences.Intuitively, NM is the data series, which tries to min-
imize the sum of Z-normalized Euclidean distances between
itself and some of the normal subsequences in T . Last but not
least, we need to compute NM in an unsupervised way, i.e.,
without having normal/abnormal labels for the subsequences
in T`.

Observe that this definition of NM implies the following
challenge: even though NM summarizes the normal behavior
only, it is computed based on T , which may include (several)
anomalies. In our work, we address this challenge by taking
advantage of the fact that anomalies are a minority class.

B. NorM framework

We now briefly describe the NorM framework [14] (refer
to Figure 2). NorM detects anomalies based on their distance

2Parameter k (or ε) is not essential, provided we can rank the anomalies.
In practice, experts first examine the most anomalous pattern, and then move
down in the list (there is no rigid threshold separating anomalous from non-
anomalous behavior [5]); anomaly discovery processes operate in this way.

80000 2000 4000 6000

!"

2000 50 100 150

|!"| = ℓ&'
()* +,,ℓ ./ +:

(!"⋈ℓ +),,4 = 5./67[9,ℓ:';ℓ] =.>?(+,,ℓ, !"@,A)

+B,ℓ

80000 2000 4000 6000

C +.5D >D*.D> +

1

0

E !" ⋈ℓ +

ℓ0 ℓ0

+BF,ℓ

G !)*5HI J)=DI !"

Fig. 2. NorM framework overview. The input time series (a) is used to build
the Normal Model NM (b). NM is then used to compute the anomaly score
NM./` T (c). Tj′,` (red subsequence) is an anomaly (large distance to NM),
but Tj,` (green subsequence) is not (small distance to NM).

from the Normal Model sequence. It takes as input a data
series T , and the length ` of the candidate anomalies. The
algorithm first computes the Normal Model NM based on
T , and subsequently detects and returns a ranked list of the
anomalous subsequences in T based on NM . We note that the
length of the anomalies, `, is a user-defined parameter in all
subsequence anomaly detection techniques, and can be set by
the domain expert (e.g., in the case of electrocardiogram data,
cardiologists are interested in analyzing heartbeats, which have
a known length). The length of the Normal Model, `NM

, is
automatically set to value larger than `.
[Computing the Normal Model] Recall that NM should
capture (summarize) the normal behavior of the data. This
may not be very hard to do for a sequence T that does not
contain any anomalous subsequences. In practice however, we
would like to apply the NorM approach in an unsupervised
way on any sequence, which may contain several anomalies.

We compute the NM sequence in three steps. First, we ex-
tract the subsequences that can serve as candidates for building
the NM . These candidates are either randomly selected from T
(NorM-smpl), or correspond to motifs3 (NorM-SJ). Then, we
group these subsequences according to their similarity in a set
of clusters C (we use hierarchical clustering and Minimum De-
scription Length to identify the right number of clusters). The
last step consists of scoring each cluster, and selecting the clus-
ter that best represents normal behavior. Formally, for a given
cluster c ∈ C, we select the cluster that maximizes the follow-
ing formula: Norm(c,C) = Frequency(c)2×Coverage(c)∑

x∈C dist(Center(c),Center(x)) ,

where Frequency(c) is the number of subsequences in c, and
Coverage(c) is the time interval between the first and the last
occurrence of a subsequence in c. Based on the subsequences
of the selected cluster, we build NM by computing its centroid
(mean subsequence), depicted in Figure 2(b).
[Normal Model Based Anomaly Detection] Intuitively,
the anomalous subsequences of the long series T are the
ones that are far away from NM . NorM first considers

3Motifs of T are the subsequences with the smallest distance to each other.

SAD

input
parameter

ℓ

Data series
storage

Compute
Anomaly Score

Visualize
(Dash and Plotly)

Select
candidates

Clustering

Compute
Normal Model

upload data series

interact

Build 𝑵𝑴

Fig. 3. SAD system architecture

the pairwise distances between each subsequence of length
` in T to subsequences of length ` in NM , resulting in
a meta-sequence, NM ./` T , where (NM ./` T)i,1 =
min(dist(Ti,`, NM,1,`), ..., dist(Ti,`, NM,|NM |−`+1,`)).
NM./` T (depicted in Figure 2(c)) contains at position i the
nearest neighbor distance between subsequence Ti,` and any
subsequence of the same length (`) in NM . These distances
correspond to the degree of abnormality: the larger the
distance is to NM , the more abnormal the subsequence is. We
then extract the k subsequences of length ` with the highest
distances in NM ./` T , and rank them according to their
distances. As such, Tj′,` (red subsequence in Figure 2(a)) is
marked as an anomaly, but not Tj,` (green subsequence) since
its distance to NM is small. Alternatively, we can extract all
subsequences with distance larger than a threshold.

III. SAD OVERVIEW

The SAD GUI is an (upbeat!) stand alone web application,
developed using Python 3.6 and the Dash framework. It
enables users to load their own data series, T , and compute
the normal model, NM , and subsequently the anomaly score.
The previous elements (T , NM and anomaly score) are then
inserted into a visualization frame, with which the user can
interact. The overall architecture is shown in Figure 3. The
front-screen of SAD is depicted in Figure 4.

[Interactive and Configurable Framework] The SAD
GUI allows users to directly interact with the NorM framework
and interface across the entire range of steps of the algorithm
that executes under the hood. It first allows users to import
their own datasets via an upload tab (top right button in
Figure 4). If annotations (i.e., anomaly labels) are available,
they can also be uploaded to SAD, which will use them in
order to highlight the anomalous subsequences (in red) in the
time series plot. The second functionality enables users to
intervene and modify the operation of the NorM framework.
SAD visualizes each step of the process (Subsequences selec-
tion, Clustering, Normal Model selection), and allows users to
change the internal parameters of these steps of the algorithm.
Figure 5 depicts this scenario. In Figure 5(left) we show the
result of an execution of NorM; SAD displays the values for
the internal parameters that were automatically selected by

0

0.5

1
Precision@k

NormA STOMP
0

10

20

30
Exectution time

NormA STOMP

Fig. 4. Screenshot of SAD

NorM, along with NM and the subsequences that were used
to compute it. Figure 5(right) illustrates the result of a user
manually selecting a (non-appropriate) cluster to be used for
building NM : we observe that the selected cluster contains
very diverse subsequences, which lead to a non-representative
NM . Thus, SAD enables users to better understand how NorM
works.

[Performance Visualization] SAD also supports compar-
isons to four state-of-the-art methods (i.e., STOMP [7], Gram-
marViz [10], DAD [13] and LSTM-AD [17]), by allowing
users to execute multiple algorithms and superimpose their
results in the GUI (see top half of Figure 4). Both the anomaly
detection Top-k accuracy (if annotations were provided), and
the execution time of all methods are visualized for easy
comparison (e.g., see bottom right of Figure 4).

IV. DEMONSTRATION SCENARIOS

This demonstration has 3 goals: (i) show that SAD sig-
nificantly speeds up the process of unsupervised subsequence
anomaly detection; (ii) showcase the effectiveness of SAD and
compare it to competing approaches, as well as to manual in-
spection; (iii) invite users to look inside the NorM framework,
by visualizing each computational step and allowing them to
change the internal parameters. In all cases, participants may
select any of the available datasets, or upload their own.

[Scenario 1: Scalability] This exploration scenario begins
with the long data series (100,000 points for approximately
50 anomalies) coming from the record 803 of the MIT-
BIH Supraventricular Arrhythmia Database [12]. We will first
run the state-of-the-art approaches, and display their time
executions. We will then run NorM and compare the time
performance. We thus demonstrate that NorM is significantly
faster that previous state-of-the-art methods, and make it more
suitable for long data series analysis.

selected cluster
subsequences in
selected cluster

Bad cluster selected (manually)

bad Normal Model

percentage of total subsequences
to consider for 𝑁𝑀

number of clusters to consider for 𝑁𝑀
(change dendrogram cut)

dendrogram cut

good Normal Model

Good cluster selected (automatically)

subsequences in
selected cluster

selected cluster

Fig. 5. Screenshots NorM steps highlighted by SAD: (left) NorM steps when the user picked the Normal Model suggested by SAD; (right) NorM steps when
the user picked another cluster (bottom right plot).

[Scenario 2: Effectiveness] The second scenario will tackle
the effectiveness (accuracy). We will start with two different
data series coming from the MIT-BIH Supraventricular Ar-
rhythmia Database (records 803 and 805, both with 100K
points and 50-70 anomalies). We will run NorM and the
competing approaches, and compare their Precision@k. Par-
ticipants will observe that NorM outperforms the competitors,
and discover that this is mainly due to the multiple similar
anomalies that competitors cannot handle effectively.

[Scenario 3: Manual Anomaly Detection] The third sce-
nario begins with two datasets. The first one corresponds
to the New York City Taxi and Limousine Commissions
dataset (NTC)4 (10,000 points for 8 anomalies) and the record
820 of the MIT-BIH Supraventricular Arrhythmia Database
(300,000 points for approximatively 100 anomalies). We will
challenge participants to look for and identify anomalies in
these datasets. The participants will be able to visualize the
entire sequences, as well as zoom in/out and pan left/right.
This exercise will help participants appreciate the difficulties
and challenges of subsequence anomaly detection, especially
when there are multiple anomalies, when these anomalies are
subtle, and when the overall size of the sequence is large.
Participants that perform well in the task, will receive a prize!

[Scenario 4: System Internals] The last scenario will allow
the user to examine the way NorM works. It will expose to the
user the inner-workings of the algorithm, and will allow them
to change several internal parameters (number of subsequences
selected as candidates, number of clusters, and which cluster
to pick as the normal model). These changes will be applied
in real time and will enable the user to understand how they
affect the operation of NorM and the final results.

V. CONCLUSIONS

We propose SAD, a novel system, applicable to any domain,
for subsequence anomaly detection that is based on the repre-

4http://www.nyc.gov/html/tlc/html/about/trip record data.shtml

sentation of normal behavior, which enables us to detect both
single and recurrent anomalies, and leads to superior accuracy
and time performance.

REFERENCES

[1] T. Palpanas, “Data series management: The road to big sequence
analytics,” SIGMOD Rec., vol. 44, no. 2, pp. 47–52, 2015.

[2] T. Palpanas and V. Beckmann, “Report on the first and second interdis-
ciplinary time series analysis workshop (itisa),” SIGMOD Rec., 2019.

[3] A. J. Bagnall, R. L. Cole, T. Palpanas, and K. Zoumpatianos, “Data
Series Management (Dagst. Sem. 19282),” Dagstuhl Reports, 9(7), 2019.

[4] T. Palpanas, “Evolution of a Data Series Index,” CCIS, 2020.
[5] V. Barnet, T. Lewis, Outliers in Statistical Data. J.Wiley & Sons, 1994.
[6] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and

D. Gunopulos, “Online outlier detection in sensor data using non-
parametric models,” in VLDB, 2006.

[7] C. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. Dau, D. Silva,
A. Mueen, and E. Keogh, “Matrix profile I: all pairs similarity joins
for time series: A unifying view that includes motifs, discords and
shapelets,” in ICDM, 2016.

[8] M. Hadjem, F. Naı̈t-Abdesselam, and A. A. Khokhar, “St-segment
and t-wave anomalies prediction in an ECG data using rusboost,” in
Healthcom, 2016.

[9] D. Abboud, M. Elbadaoui, W. Smith, and R. Randall, “Advanced bearing
diagnostics: A comparative study of two powerful approaches,” MSSP,
vol. 114, 2019.

[10] P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P. Boedihardjo,
C. Chen, and S. Frankenstein, “Time series anomaly discovery with
grammar-based compression,” in EDBT, 2015.

[11] J. Antoni and P. Borghesani, “A statistical methodology for the design of
condition indicators,” Mechanical Systems and Signal Processing, 2019.

[12] G. B. Moody and R. G. Mark, “The impact of the mit-bih arrhythmia
database,” IEEE Engineering in Medicine and Biology Magazine, 2001.

[13] D. Yankov, E. Keogh, and U. Rebbapragada, “Disk aware discord
discovery: Finding unusual time series in terabyte sized datasets,” in
ICDM, 2007.

[14] P. Boniol, M. Linardi, F. Roncallo, and T. Palpanas, “Automated anomaly
detection in large sequence,” in ICDE, 2020.

[15] Y. Liu, X. Chen, and F. Wang, “Efficient Detection of Discords for Time
Series Stream,” Advances in Data and Web Management, 2009.

[16] W. Luo and M. Gallagher, “Faster and parameter-free discord search in
quasi-periodic time series,” in PAKDD, 2011.

[17] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” in ESANN,
2015.

