
Blocking for BIG Data Integration

Challenges, Algorithms, Practical Examples

George Papadakis Themis Palpanas
 University of Athens Paris Descartes University

 gpapadis@di.uoa.gr themis@mi.parisdescartes.fr

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

updated: 12 May 2017

mailto:gpapadis@di.uoa.gr
mailto:themis@mi.parisdescartes.fr

Entities: an invaluable asset
“Entities” is what a large part of our knowledge is about:

Persons

Organizations

Projects

Locations

Products
Events

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

However …

How many names, descriptions or IDs (URIs) are

used for the same real-world “entity”?

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

However …

How many names, descriptions or IDs (URIs) are

used for the same real-world “entity”?

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain

Londain Londe Londen Londen Londen Londinium
London Londona Londonas Londoni Londono Londra
Londres Londrez Londyn Lontoo Loundres Luân Đôn
Lunden Lundúnir Lunnainn Lunnon لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 …

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

However …

How many names, descriptions or IDs (URIs) are

used for the same real-world “entity”?

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain

Londain Londe Londen Londen Londen Londinium
London Londona Londonas Londoni Londono Londra
Londres Londrez Londyn Lontoo Loundres Luân Đôn
Lunden Lundúnir Lunnainn Lunnon لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 …

capital of UK, host city of the IV Olympic Games, host city
of the XIV Olympic Games, future host of the XXX
Olympic Games, city of the Westminster Abbey, city of
the London Eye, the city described by Charles Dickens in
his novels, …

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

However …

How many names, descriptions or IDs (URIs) are

used for the same real-world “entity”?

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain

Londain Londe Londen Londen Londen Londinium
London Londona Londonas Londoni Londono Londra
Londres Londrez Londyn Lontoo Loundres Luân Đôn
Lunden Lundúnir Lunnainn Lunnon لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 …

capital of UK, host city of the IV Olympic Games, host city
of the XIV Olympic Games, future host of the XXX
Olympic Games, city of the Westminster Abbey, city of
the London Eye, the city described by Charles Dickens in
his novels, …

http://sws.geonames.org/2643743/
http://en.wikipedia.org/wiki/London
http://dbpedia.org/resource/Category:London
…

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

◦ London, KY

◦ London, Laurel, KY

◦ London, OH

◦ London, Madison, OH

◦ London, AR

◦ London, Pope, AR

◦ London, TX

◦ London, Kimble, TX

◦ London, MO

◦ London, MO

◦ London, London, MI

◦ London, London, Monroe, MI

◦ London, Uninc Conecuh County, AL

◦ London, Uninc Conecuh County, Conecuh, AL

◦ London, Uninc Shelby County, IN

◦ London, Uninc Shelby County, Shelby, IN

◦ London, Deerfield, WI

◦ London, Deerfield, Dane, WI

◦ London, Uninc Freeborn County, MN

◦ ...

How many “entities” have the same name?

… or …

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

◦ London, KY

◦ London, Laurel, KY

◦ London, OH

◦ London, Madison, OH

◦ London, AR

◦ London, Pope, AR

◦ London, TX

◦ London, Kimble, TX

◦ London, MO

◦ London, MO

◦ London, London, MI

◦ London, London, Monroe, MI

◦ London, Uninc Conecuh County, AL

◦ London, Uninc Conecuh County, Conecuh, AL

◦ London, Uninc Shelby County, IN

◦ London, Uninc Shelby County, Shelby, IN

◦ London, Deerfield, WI

◦ London, Deerfield, Dane, WI

◦ London, Uninc Freeborn County, MN

◦ ...

◦ London, Jack
2612 Almes Dr
Montgomery, AL
(334) 272-7005

◦ London, Jack R
2511 Winchester Rd
Montgomery, AL 36106-3327
(334) 272-7005

◦ London, Jack
1222 Whitetail Trl
Van Buren, AR 72956-7368
(479) 474-4136

◦ London, Jack
7400 Vista Del Mar Ave
La Jolla, CA 92037-4954
(858) 456-1850

◦ ...

How many “entities” have the same name?

… or …

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Content Providers

How many content types / applications provide

valuable information about each of these “entities”?

News about London
reviews on hotels in London

Pictures and tags about London

Videos and tags for London

Social networks in London

Wiki pages about the London

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Preliminaries on Entity Resolution

Entity Resolution [Christen, TKDE 2011]:
 identifies and aggregates the different entity profiles/records
that actually describe the same real-world object.

Useful because:

• improves data quality and integrity

• fosters re-use of existing data sources

Application areas:

 Linked Data, Social Networks, census data,

 price comparison portals

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Types of Entity Resolution

The input of ER consists of entity collections that can be of two

types [Christen, TKDE 2011]:

• clean, which are duplicate-free

 e.g., DBLP, ACM Digital Library, Wikipedia, Freebase

• dirty, which contain duplicate entity profiles in themselves

 e.g., Google Scholar, CiteseerX

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Types of Entity Resolution

The input of ER consists of entity collections that can be of two

types [Christen, TKDE 2011]:

• clean, which are duplicate-free

 e.g., DBLP, ACM Digital Library, Wikipedia, Freebase

• dirty, which contain duplicate entity profiles in themselves

 e.g., Google Scholar, CiteseerX

Based on the quality of input, we distinguish ER into 3 sub-tasks:

• Clean-Clean ER (a.k.a. Record Linkage in databases)

• Dirty-Clean ER

• Dirty-Dirty ER

Equivalent to Dirty ER
(a.k.a. Deduplication in databases)

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Computational cost

ER is an inherently quadratic problem (i.e., O(n2)):

every entity has to be compared with all others

ER does not scale well to large entity collections (e.g., Web Data).

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Computational cost

ER is an inherently quadratic problem (i.e., O(n2)):

every entity has to be compared with all others

ER does not scale well to large entity collections (e.g., Web Data)

Solution: Blocking
• group similar entities into blocks

• execute comparisons only inside each block

• complexity is now quadratic to the size of the block (much smaller
than dataset size!)

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Computational cost

|E| entities

|E| entities

Brute-force
approach

Duplicate
Pairs

Blocking
Input:
Entity Collection E

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Example of Computational cost

DBPedia 3.0rc ↔ DBPedia 3.4
 1.2 million entities ↔ 2.2 million entities

Entity matching: Jaccard similarity of all tokens
Cost per comparison: 0.045 milliseconds (average of 0.1 billion comparisons)

Brute-force approach
Comparisons: 2.58 ∙ 1012

Recall: 100%
Running time: 1,344 days → 3.7 years

Optimized Token Blocking Workflow
Overhead time: 4 hours
Comparisons: 8.95 ∙ 106
Recall: 99%
Total Running time: 10 hours

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Example of Computational cost

DBPedia 3.0rc ↔ DBPedia 3.4
 1.2 million entities ↔ 2.2 million entities

Entity matching: Jaccard similarity of all tokens
Cost per comparison: 0.045 milliseconds (average of 0.1 billion comparisons)

Brute-force approach
Comparisons: 2.58 ∙ 1012

Recall: 100%
Running time: 1,344 days → 3.7 years

Optimized Token Blocking Workflow
Overhead time: 4 hours
Comparisons: 8.95 ∙ 106
Recall: 99%
Total Running time: 10 hours

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Outline

1. Introduction to Blocking

2. Blocking Methods for Relational Data

3. Blocking Methods for Web Data

4. Block Processing Techniques

5. Meta-blocking

6. Challenges

7. JedAI Toolkit

8. Conclusions

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

 Part 1:

 Introduction to Blocking

Fundamental Assumptions

1. Every entity profile consists of a uniquely identified set of
name-value pairs.

2. Every entity profile corresponds to a single real-world
object.

3. Two matching profiles are detected as long as they co-
occur in at least one block → entity matching is an
orthogonal problem.

4. Focus on string values.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

General Principles

1. Represent each entity by one or more blocking keys.

2. Place into blocks all entities having the same or similar
blocking key.

Measures for assessing block quality [Christen, TKDE 2011]:

– Pairs Completeness: 𝑃𝐶 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
 (optimistic recall)

– Pairs Quality: 𝑃𝑄 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠
 (pessimistic precision)

Trade-off!

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Problem Definition

Given one dirty (Dirty ER), or two clean (Clean-Clean ER)

entity collections, cluster their profiles into blocks

and process them so that both Pairs Completeness (PC) and
Pairs Quality (PQ) are maximized.

caution:

• Emphasis on Pairs Completeness (PC).
– if two entities are matching then they should coincide at some block

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Blocking Techniques Taxonomy

1. Performance-wise
• Exact methods

• Approximate methods

2. Functionality-wise
• Supervised methods

• Unsupervised methods

3. Blocks-wise
• Disjoint blocks

• Overlapping blocks

– Redundancy-neutral

– Redundancy-positive

– Redundancy-negative

4. Signature-wise
• Schema-based

• Schema-agnostic

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Performance-wise Categorization
1. Exact Blocking Methods

– Maximize PQ for PC = 100%

– Closed-world assumption

– E.g., for bibliographical records , s ≡ t if:

 JaccardSimilarity(s.title, t.title) > 0.80 AND

 EditDistance(s.venue, t.venue) < 3

– Existing methods:

• Silk → filtering technique for edit distance

• LIMES → triangle inequality for similarity metrics

2. Approximate Blocking Methods

– PC < 100% → high PQ

– Open-world assumption

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Performance-wise Categorization
1. Exact Blocking Methods

– Maximize PQ for PC = 100%

– Closed-world assumption

– E.g., for bibliographical records , s ≡ t if:

 JaccardSimilarity(s.title, t.title) > 0.80 AND

 EditDistance(s.venue, t.venue) < 3

– Existing methods:

• Silk → filtering technique for edit distance

• LIMES → triangle inequality for similarity metrics

2. Approximate Blocking Methods

– PC < 100% → high PQ

– Open-world assumption our focus

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Functionality-wise Categorization
1. Supervised Methods

• Goal: learn the best blocking keys from a training set

• Approach: identify best combination of attribute names
and transformations

• E.g., CBLOCK [Sarma et. al, CIKM 2012],

 [Bilenko et. al., ICDM 2006], [Michelson et. al., AAAI 2006]

• Drawbacks:
– labelled data

– domain-dependent

2. Unsupervised Methods

• Generic, popular methods

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Functionality-wise Categorization
1. Supervised Methods

• Goal: learn the best blocking keys from a training set

• Approach: identify best combination of attribute names
and transformations

• E.g., CBLOCK [Sarma et. al, CIKM 2012],

 [Bilenko et. al., ICDM 2006], [Michelson et. al., AAAI 2006]

• Drawbacks:
– labelled data

– domain-dependent

2. Unsupervised Methods

• Generic, popular methods
our focus

Block
Building

Comparison
Cleaning

E B Block
Cleaning

Lazy

blocking

methods

Block-

refinement

methods

Comparison-

refinement

methods

Proactive blocking methods

Blocking Workflow [Papadakis et. al., VLDB 2016]

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Blocks- and Signature-wise Categorization
of Block Building Methods

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Disjoint
Blocks

Overlapping Blocks

Redundancy-
negative

Redundancy-
neutral

Redundancy-
positive

Schema-
based

Standard
Blocking

(Extended)
Canopy

Clustering

1. (Extended)
Sorted
Neighborhood

2. MFIBlocks

1. (Extended) Q-grams
Blocking
2. (Extended) Suffix Arrays

Schema-
agnostic

- - -

1. Token Blocking
2. Agnostic Clustering
3. TYPiMatch
4. URI Semantics Blocking

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Block Processing Methods
[Papadakis et. al., VLDB 2016]

Mostly for redundancy-positive block building methods.

Block Cleaning

• Block-level
– constraints on block characteristics

• Entity-level
– constraints on entity characteristics

Comparison Cleaning

• Redundant comparisons
– repeated across different blocks

• Superfluous comparisons
– Involve non-matching entities

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

 Part 2:

 Block Building for Relational Data

General Principles

Mostly schema-based techniques.

Rely on two assumptions:

1. A-priori known schema → no noise in attribute names.

2. For each attribute name we know some metadata:

– level of noise (e.g., spelling mistakes, false or missing
values)

– distinctiveness of values

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, ScaDS, Leipzig, July
2016

MFIBlocks

Extended Suffix
Arrays

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, ScaDS, Leipzig, July
2016

MFIBlocks

Extended Suffix
Arrays

LAZY BLOCKING
METHODS

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, ScaDS, Leipzig, July
2016

MFIBlocks

Extended Suffix
Arrays

LAZY BLOCKING
METHODS

PROACTIVE
BLOCKING
METHODS

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, ScaDS, Leipzig, July
2016

MFIBlocks

Extended Suffix
Arrays

LAZY BLOCKING
METHODS

PROACTIVE
BLOCKING
METHODS

Standard Blocking [Fellegi et. al., JASS 1969]

Earliest, simplest form of blocking.

Algorithm:

1. Select the most appropriate attribute name(s) w.r.t. noise
and distinctiveness.

2. Transform the corresponding value(s) into a Blocking Key (BK)

3. For each BK, create one block that contains all entities having
this BK in their transformation.

Works as a hash function! → Blocks on the equality of BKs

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Example of Standard Blocking

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Blocks on zip_code:

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, ScaDS, Leipzig, July
2016

MFIBlocks

Extended Suffix
Arrays

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods
blocks contain entities with similar blocking keys

Papadakis & Palpanas, ScaDS, Leipzig, July
2016

MFIBlocks

Extended Suffix
Arrays

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

Blocks on the similarity of BKs.

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list of entities.

3. At each iteration, it compares
the entities that co-occur
within the window.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

Blocks on the similarity of BKs.

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list of entities.

3. At each iteration, it compares
the entities that co-occur
within the window.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

Blocks on the similarity of BKs.

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list of entities.

3. At each iteration, it compares
the entities that co-occur
within the window.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

Blocks on the similarity of BKs.

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list of entities.

3. At each iteration, it compares
the entities that co-occur
within the window.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

Blocks on the similarity of BKs.

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list of entities.

3. At each iteration, it compares
the entities that co-occur
within the window.

Extended Sorted Neighborhood [Christen, TKDE 2011]

2’. A window of fixed size slides over the sorted list of BKs.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

Blocks on the similarity of BKs.

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list of entities.

3. At each iteration, it compares
the entities that co-occur
within the window.

Extended Sorted Neighborhood [Christen, TKDE 2011]

2’. A window of fixed size slides over the sorted list of BKs.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

Blocks on the similarity of BKs.

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list of entities.

3. At each iteration, it compares
the entities that co-occur
within the window.

Extended Sorted Neighborhood [Christen, TKDE 2011]

2’. A window of fixed size slides over the sorted list of BKs.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, ScaDS, Leipzig, July
2016

MFIBlocks

Extended Suffix
Arrays

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods
blocks contain entities with same, or similar blocking keys

Papadakis & Palpanas, ScaDS, Leipzig, July
2016

MFIBlocks

Extended Suffix
Arrays

Q-grams Blocking [Gravano et. al., VLDB 2001]

Blocks on equality of BKs.

Converts every BK into the list of its q-grams.

For q=2, the BKs 91456 and 94520 yield the following blocks:

• Advantage:

 robust to noisy BKVs

• Drawback:

 larger blocks → higher computational cost

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Extended Q-grams Blocking [Baxter et. al., KDD 2003]

BKs of higher discriminativeness:
 instead of individual q-grams, BKs from combinations of q-grams.

Additional parameter:
 threshold t ∈ (0,1) specifies the minimum number of
 q-grams per BK as follows: 𝒍𝒎𝒊𝒏 = 𝒎𝒂𝒙(𝟏, 𝐤 ∙ 𝒕),
 where 𝑘 is the number of q-grams from the original BK

Example:
 for BK= 91456, q=2 and t=0.9,
 we have lmin=3 and the following valid BKs:
 91_14_45_56
 91_14_45
 91_14_56
 91_45_56
 14_45_56

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

MFIBlocks [Kenig et. al., IS 2013]

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Based on mining Maximum Frequent Itemsets.

Algorithm:
• Place all entities in a pool
• while (minimum_support > 2)

– For each itemset that satisfies minimum_support
• Create a block b
• If b satisfies certain constraints (Block Cleaning)

– remove its entities from the pool
– retain the best comparisons (Comparison Cleaning)

– decrease minimum_support

Pros:
• Usually the most effective blocking method for relational data →

maximizes PQ (precision)

Cons:
• Difficult to configure
• Time consuming

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, ScaDS, Leipzig, July
2016

MFIBlocks

Extended Suffix
Arrays

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering
Papadakis & Palpanas, ScaDS, Leipzig, July

2016

MFIBlocks

Extended Suffix
Arrays

Overview of Schema-based Methods
blocks contain entities with similar blocking keys

Canopy Clustering [McCallum et. al., KDD 2000]

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Blocks on similarity of BKs.

Extended Canopy Clustering [Christen, TKDE 2011]

Canopy Clustering is too sensitive w.r.t. its weight thresholds:

 - high values may leave many entities out of blocks.

Solution: Extended Canopy Clustering [Christen, TKDE 2011]

• cardinality thresholds instead of weight thresholds

• for each center of a canopy:

– the n1 nearest entities are placed in its block

– the n2 (≤ n1) nearest entities are removed from the pool

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, ScaDS, Leipzig, July
2016

MFIBlocks

Extended Suffix
Arrays

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering
Papadakis & Palpanas, ScaDS, Leipzig, July

2016

MFIBlocks

Extended Suffix
Arrays

Overview of Schema-based Methods
blocks contain entities with same blocking keys

Suffix Arrays Blocking [Aizawa et. al., WIRI 2005]

Blocks on the equality of BKs.

Converts every BK to the list of its suffixes that are longer than a
predetermined minimum length lmin.

For lmin =3, the keys 91456 and 94520 yield the blocks:

Frequent suffixes are discarded with the help of the parameter bM:

 - specifies the maximum number of entities per block

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Extended Suffix Arrays Blocking [Christen, TKDE 2011]

Goal:

 support errors at the end of BKs

Solution:

 consider all substrings (not only suffixes) with more than lmin

 characters.

For lmin=3, the keys 91456 and 94520 are converted to the BKs:

91456, 94520

9145, 9452

1456, 4520

914, 945

145, 452

456 520

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Summary of Blocking for Databases [Christen, TKDE2011]

1. They typically employ redundancy to ensure higher recall
in the context of noise at the cost of lower precision (more
comparisons). Still, recall remains low for many datasets.

2. Several parameters to be configured

 E.g., Canopy Clustering has the following parameters:

I. String matching method

II. Threshold t1

III. Threshold t2

3. Schema-dependent → manual definition of BKs

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Improving Blocking for Databases [Papadakis et. al., VLDB 2015]

Schema-agnostic blocking keys

• Use every token as a key

• Applies to all schema-based blocking methods

• Simplifies configuration, unsupervised approach

Performance evaluation

• For lazy blocking methods →
very high, robust recall at the cost of more comparisons

• For proactive blocking methods →
relative recall gets higher with more comparisons,
absolute recall depends on block constraints

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

 Part 3:

 Block Building for Web Data

 Characteristics of Web Data

Voluminous, (semi-)structured datasets.

• DBPedia 2014: 3 billion triples and 38 million entities

• BTC09: 1.15 billion triples, 182 million entities.

Users are free to add attribute values and/or attribute names

 unprecedented levels of schema heterogeneity.

• DBPedia 3.4: 50,000 attribute names

• Google Base: 100,000 schemata for 10,000 entity types

• BTC09: 136,000 attribute names

Several datasets produced by automatic information extraction
techniques

 noise, tag-style values.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Example of Web Data

Noise

Attribute
Heterogeneity

Loose Schema
Binding

Split
values

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Token Blocking [Papadakis et al., WSDM2011]

Functionality:

1. given an entity profile, extract all tokens that are contained in
its attribute values.

2. create one block for every distinct token → each block
contains all entities with the corresponding token*.

Attribute-agnostic functionality:

• completely ignores all attribute names, but considers all
attribute values

• efficient implementation with the help of inverted indices

• parameter-free!

*Each block should contain at least two entities.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Token Blocking Example

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Attribute-Clustering Blocking
[Papadakis et. al., TKDE 2013]

Goal:

group attribute names into clusters s.t. we can apply Token Blocking
independently inside each cluster, without affecting effectiveness
→ smaller blocks, higher efficiency.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Building address

headquarters
hdq

Person address

address
residence

Attribute-Clustering Blocking
Algorithm

• Create a graph, where every node represents an attribute name
and its attribute values

• For each attribute name/node ni

– Find the most similar node nj

– If sim(ni,nj) > 0, add an edge <ni,nj>
• Extract connected components
• Put all singleton nodes in a “glue” cluster

Parameters

1. Representation model

– Character n-grams, Character n-gram graphs, Tokens

2. Similarity Metric

– Jaccard, Graph Value Similarity, TF-IDF

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Attribute-Clustering vs
Schema Matching

Similar to Schema Matching, …but fundamentally different:

1. Associated attribute names do not have to be semantically
equivalent. They only have to produce good blocks

2. All singleton attribute names are associated with each other

3. Unlike Schema Matching, it scales to the very high levels of
heterogeneity of Web Data
– because of the above simplifying assumptions

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

TYPiMatch [Ma et. al., WSDM 2013]

Goal:

 cluster entities into overlapping types and apply Token

 Blocking to the values of the best attribute for each type.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

persons

organizations

TYPiMatch

Algorithm:

1. Create a directed graph G, where nodes correspond to
tokens, and edges connect those co-occurring in the same
entity profile, weighted according to conditional co-
occurrence probability.

2. Convert G to undirected graph G’ and get maximal cliques
(parameter θ).

3. Create an undirected graph G’’, where nodes correspond to
cliques and edges connect the frequently co-occurring
cliques (parameter ε).

4. Get connected components to form entity types.

5. Get best attribute name for each type using an entropy-
based criterion.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

For Semantic Web data, three sources of evidence create blocks of
lower redundancy than Token Blocking:

1.Infix

2. Infix Profile

3.Literal Profile

Algorithm for URI decomposition in PI(S)-form in [Papadakis et al., iiWAS 2010].

Evidence for Semantic Web Blocking

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

The above sources of evidence lead to 3 parameter-free blocking
methods:

1. Infix Blocking
every block contains all entities whose URI has a specific Infix

2. Infix Profile Blocking
every block corresponds to a specific Infix (of an attribute value) and contains
all entities having it in their Infix Profile

3. Literal Profile Blocking
every block corresponds to a specific token and contains all entities having it
in their Literal Profile

Individually, these atomic methods have limited coverage and,

thus, low effectiveness (e.g., Infix Blocking does not cover blank

nodes).

However, they are complementary and can be combined

into composite blocking methods with high robustness and

effectiveness!

URI Semantics Blocking [Papadakis et al., WSDM2012]

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Summary of Blocking for Web Data

High Recall in the context of noisy entity profiles and extreme
schema heterogeneity thanks to:

1. redundancy that reduces the likelihood of missed matches.

2. attribute-agnostic functionality that requires no schema
semantics.

Low Precision because:

• the blocks are overlapping → redundant comparisons

• high number of comparisons between irrelevant entities →
superfluous comparisons

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Token Blocking Example

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Superfluous
Comparison

Redundant
Comparison

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

 Part 4:

 Block Processing Techniques

Outline

1. Introduction to Blocking

2. Blocking Methods for Relational Data

3. Blocking Methods for Web Data

4. Block Processing Techniques
– Block Purging

– Block Filtering

– Block Clustering

– Comparison Propagation

– Iterative Blocking
5. Meta-blocking

6. Challenges

7. ER framework

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

General Principles

Goals:

1. eliminate all redundant comparisons

2. avoid most superfluous comparisons

without affecting matching comparisons (i.e., PC).

Depending on the granularity of their functionality, they are
distinguished into:

1. Block-refinement

2. Comparison-refinement

• Iterative Methods

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Block Purging

Exploits power-law distribution of block sizes.

Targets oversized blocks (i.e., many comparisons, no duplicates)

Discards them by setting an upper limit on:

• the size of each block [Papadakis et al., WSDM 2011],

• the cardinality of each block [Papadakis et al., WSDM 2012]

Core method:

• Low computational cost.

• Low impact on effectiveness.

• Boosts efficiency to a large extent.
Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Distributions of Block Sizes and Duplicates

0

5

10

15

20

25

30

1.0E+00 1.0E+03 1.0E+06 1.0E+09 1.0E+12

% of
Duplicates

Block Cardinality
Papadakis & Palpanas, ScaDS, Leipzig, July

2016

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+0 1E+4 1E+8 1E+12

N
u

m
b

er
 o

f
B

lo
ck

s

Block Cardinality

Distributions of Block Sizes and Duplicates

0

5

10

15

20

25

30

1.0E+00 1.0E+03 1.0E+06 1.0E+09 1.0E+12

% of
Duplicates

Block Cardinality
Papadakis & Palpanas, ScaDS, Leipzig, July

2016

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+0 1E+4 1E+8 1E+12

N
u

m
b

er
 o

f
B

lo
ck

s

Block Cardinality

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+0 1E+4 1E+8 1E+12

N
u

m
b

er
 o

f
B

lo
ck

s

Block Cardinality

Distributions of Block Sizes and Duplicates

0

5

10

15

20

25

30

1.0E+00 1.0E+03 1.0E+06 1.0E+09 1.0E+12

% of
Duplicates

Block Cardinality
Papadakis & Palpanas, ScaDS, Leipzig, July

2016

Block Filtering [Papadakis et. al, EDBT 2016]

Main ideas:

• each block has a different importance for every entity it
contains.

• Larger blocks are less likely to contain unique duplicates
and, thus, are less important.

Algorithm

• sort blocks in ascending cardinality

• build Entity Index

• retain every entity in r% of its smallest blocks

• reconstruct blocks

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Block Filtering Example

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Block Clustering [Fisher et. al., KDD 2015]

Main idea:

• restrict the size of every block into [bmin, bmax]

– necessary in applications like privacy-preserving ER

– operates so that ||B|| increases linearly with |E|

Algorithm

• recursive agglomerative clustering

– merge similar blocks with size lower than bmin

– split blocks with size larger than bmax

• until all blocks have the desired size

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Comparison Propagation [Papadakis et al., JCDL 2011]

• Eliminate all redundant comparisons at no cost in recall.

• Naïve approach does not scale.

• Functionality:

1. Build Entity Index

2. Least Common Block Index condition.

Papadakis & Palpanas, ScaDS, Leipzig, July
2016

Iterative Blocking [Whang et. Al, SIGMOD 2009]

Main idea:

integrate block processing with entity matching and reflect outcomes
to subsequently processed blocks, until no new matches are detected.

Algorithm

• Put all blocks in a queue Q

• While Q is not empty

– Get first block

– Get matches with an ER algorithm (e.g., R-Swoosh)

• For each new pair of duplicates pi≡pj

– Merge their profiles p’i = p’j =< pi, pj > and update them in
all associated blocks

– Place in Q all associated blocks that are not already in it

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

 Part 5:

 Meta-blocking

Motivation

DBPedia 3.0rc ↔ DBPedia 3.4

 1.2 million entities ↔ 2.2 million entities

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Block
Building

Comparison
Cleaning

E B Block
Cleaning

Motivation

DBPedia 3.0rc ↔ DBPedia 3.4

 1.2 million entities ↔ 2.2 million entities

Brute-force approach

Comparisons: 2.58 ∙ 1012

Recall: 100%

Running time: 1,344 days → 3.7 years

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Block
Building

Comparison
Cleaning

E B Block
Cleaning

Motivation

DBPedia 3.0rc ↔ DBPedia 3.4

 1.2 million entities ↔ 2.2 million entities

Brute-force approach

Comparisons: 2.58 ∙ 1012

Recall: 100%

Running time: 1,344 days → 3.7 years

Token Blocking + Block Filtering + Comparison Propagation

Overhead time: <30 mins

Comparisons: 3.5 ∙ 1010

Recall: 99%

Total Running time: 19 days

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Block
Building

Comparison
Cleaning

E B Block
Cleaning

Motivation

DBPedia 3.0rc ↔ DBPedia 3.4

 1.2 million entities ↔ 2.2 million entities

Brute-force approach

Comparisons: 2.58 ∙ 1012

Recall: 100%

Running time: 1,344 days → 3.7 years

Token Blocking + Block Filtering + Comparison Propagation

Overhead time: <30 mins

Comparisons: 3.5 ∙ 1010

Recall: 99%

Total Running time: 19 days

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Block
Building

Comparison
Cleaning

E B Block
Cleaning

Motivation

DBPedia 3.0rc ↔ DBPedia 3.4

 1.2 million entities ↔ 2.2 million entities

Brute-force approach

Comparisons: 2.58 ∙ 1012

Recall: 100%

Running time: 1,344 days → 3.7 years

Token Blocking + Block Filtering + Comparison Propagation

Overhead time: <30 mins

Comparisons: 3.5 ∙ 1010

Recall: 99%

Total Running time: 19 days

Token Blocking + Block Filtering + ??

 Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Block
Building

Comparison
Cleaning

E B Block
Cleaning

Meta-blocking [Papadakis et. al., TKDE 2014]

Goal:

restructure a redundancy-positive block collection into a new
one that contains substantially lower number of redundant
and superfluous comparisons, while maintaining the original
number of matching ones (ΔPC ≈ 0, ΔPQ >> 1) →

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Meta-blocking [Papadakis et. al., TKDE 2014]

Goal:

restructure a redundancy-positive block collection into a new
one that contains substantially lower number of redundant
and superfluous comparisons, while maintaining the original
number of matching ones (ΔPC ≈ 0, ΔPQ >> 1) →

Main idea:

common blocks provide valuable evidence for the similarity of
entities

→ the more blocks two entities share, the more similar and
the more likely they are to be matching

 Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Outline of Meta-blocking

n1 n3

n2 n4

n1 n3

n2 n4

n1 n3

n2 n4

3

3

2 2
2

1

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Graph Building

For every block:

• for every entity → add a node

• for every pair of co-occurring entities → add an undirected
edge

Blocking graph:

• It eliminates all redundant comparisons →
no parallel edges.

• Low materialization cost →
implicit materialization through inverted indices

• Different from similarity graph!

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Edge Weighting

Five generic, attribute-agnostic weighting schemes that rely on
the following evidence:

• the number of blocks shared by two entities

• the size of the common blocks

• the number of blocks or comparisons involving each entity.

Computational Cost:

• In theory, equal to executing all pair-wise comparisons in the
given block collection.

• In practice, significantly lower because it does not employ
string similarity metrics.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Weighting Schemes

1. Aggregate Reciprocal Comparisons Scheme (ARCS)

𝑤𝑖𝑗 =
1

||𝑏𝑘||
𝑏𝑘∈𝐵𝑖𝑗

2. Common Blocks Scheme (CBS)
𝑤𝑖𝑗 = |𝐵𝑖𝑗|

3. Enhanced Common Blocks Scheme (ECBS)

𝑤𝑖𝑗 = |𝐵𝑖𝑗| ∙ log
|𝐵|

|𝐵𝑖|
∙ log
|𝐵|

|𝐵𝑗|

4. Jaccard Scheme (JS)

𝑤𝑖𝑗 =
|𝐵𝑖𝑗|

𝐵𝑖 + 𝐵𝑗 − |𝐵𝑖𝑗|

5. Enhanced Jaccard Scheme (EJS)

𝑤𝑖𝑗 =
|𝐵𝑖𝑗|

𝐵𝑖 + 𝐵𝑗 −|𝐵𝑖𝑗|
∙ log

|𝑉𝐺|

|𝑣𝑖|
 ∙ log

|𝑉𝐺|

|𝑣𝑗|

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Graph Pruning

Pruning algorithms

1. Edge-centric

2. Node-centric

 they produce directed blocking graphs

Pruning criteria

Scope:

1. Global

2. Local

Functionality:

1. Weight thresholds

2. Cardinality thresholds

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Thresholds for Graph Pruning

Experiments show robust behavior of the following
configurations:

1. Weighted Edge Pruning (WEP)
 threshold: average weight across all edges

2. Cardinality Edge Pruning (CEP)
 threshold: K = BPE∙|E|/2

3. Weighted Node Pruning (WNP)
 threshold: for each node, the average weight of the
 adjacent edges

4. Cardinality Node Pruning (CNP)
 threshold: for each node, k=BPE-1

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Meta-blocking Challenges

1. Time Efficiency

• Bottleneck: edge weighting

• Depends on 𝐵 , BPE

– 𝐸 = 3.4 × 106 , 𝐵 = 4 × 1010, BPE=15 → 3 hours

– 𝐸 = 7.4 × 106 , 𝐵 = 2 × 1011, BPE=40 → 186 hours

2. Effectiveness

Simple pruning rules

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Enhancing Meta-blocking Efficiency

• Block Filtering
– r = 0.8 → 4 times faster processing, on average

– reduces both ||B|| and BPE

• Optimized Edge Weighting
[Papadakis et. al., EDBT 2016]

– Entity-based instead of Block-based implementation

– An order of magnitude faster processing, in combination with Block
Filtering

• Parallel Meta-blocking
[Efthymiou et. al., BigData 2015]

– Load-balanced, distributed approach based on MapReduce (Apache
Hadoop)

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Motivation

DBPedia 3.0rc ↔ DBPedia 3.4
Brute-force approach

Comparisons: 2.58 ∙ 1012

Recall: 100%
Running time: 1,344 days → 3.7 years

Token Blocking + Block Filtering + Comparison Propagation
Overhead time: <30 mins
Comparisons: 3.5 ∙ 1010
Recall: 99%
Total Running time: 19 days

Token Blocking + Block Filtering + Meta-blocking
Overhead time: 4 hours
Comparisons: 8.95 ∙ 106
Recall: 92%
Total Running time: 5 hours

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Block
Building

Comparison
Cleaning

E B Block
Cleaning

Motivation

DBPedia 3.0rc ↔ DBPedia 3.4
Brute-force approach

Comparisons: 2.58 ∙ 1012

Recall: 100%
Running time: 1,344 days → 3.7 years

Token Blocking + Block Filtering + Comparison Propagation
Overhead time: <30 mins
Comparisons: 3.5 ∙ 1010
Recall: 99%
Total Running time: 19 days

Token Blocking + Block Filtering + Meta-blocking
Overhead time: 4 hours
Comparisons: 8.95 ∙ 106
Recall: 99%
Total Running time: 10 hours

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Block
Building

Comparison
Cleaning

E B Block
Cleaning

Motivation

DBPedia 3.0rc ↔ DBPedia 3.4
Brute-force approach

Comparisons: 2.58 ∙ 1012

Recall: 100%
Running time: 1,344 days → 3.7 years

Token Blocking + Block Filtering + Comparison Propagation
Overhead time: <30 mins
Comparisons: 3.5 ∙ 1010
Recall: 99%
Total Running time: 19 days

Token Blocking + Block Filtering + Meta-blocking
Overhead time: 4 hours
Comparisons: 8.95 ∙ 106
Recall: 99%
Total Running time: 10 hours

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Block
Building

Comparison
Cleaning

E B Block
Cleaning

Parallel Meta-blocking

• Two strategies:

– Basic: explicitly creates the blocking graph

• it performs all weight computations and stores all edges
in disk

– Advanced: uses the blocking graph as a conceptual
model

• enriches the input of the pruning algorithms with all the
information necessary to compute the weights

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Meta-blocking (advanced)
Pre-processing

b1

[e1,b1,b4,b6],
[e2,b1],
[e3,b1,b4],...

… …

Key Value

b4

[e1,b1,b4,b6],
[e3,b1,b4],
[e4,b4,b5],...

... ...
G

ro
u

p
 b

y ke
y

M
ap

M

ap

e1 b1,b4,b6

e2 b1

e3 b1,b4

e4 b4,b5

... ...

Key Value

b1 [e1,b1,b4,b6]

b4 [e1,b1,b4,b6]

b6 [e1,b1,b4,b6]

b1 [e2,b1]
... …

Value

b1 [e3,b1,b4]

b4 [e3,b1,b4]

b4 [e4,b4,b5]

b5 [e4,b4,b5]
... …

Key Key Value

b1 [e1,b1,b4,b6]

b1 [e2,b1]

b1 [e3,b1,b4]
... …

b4 [e1,b1,b4,b6]

b4 [e3,b1,b4]

b4 [e4,b4,b5]
... …

b5
[e4,b4,b5],...

... ...

R
e

d
u

ce

b5 [e4,b4,b5]
... …

R
e

d
u

ce

R
e

d
u

ce

b6 [e1,b1,b4,b6],
...

... ...

R
e

d
u

ce

b6 [e1,b1,b4,b6]
... …

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Meta-blocking (advanced)
Weighted Edge Pruning (WEP) & Jaccard Scheme (JS)

e1.e2 1/3

e1.e3 2/3

e2.e3 1/2

... …

Key Value

G
ro

u
p

 b
y ke

y

R
e

d
u

ce

e1.e4 1/4

e3.e4 1/3

... …

Count #keys

Sum up values

e1.e2 1/3

... ...

e1.e3 2/3

... …

Key Value

e1.e4 1/4

... ...

e3.e4 1/3

... …

e2.e3 1/2

... ...

e1.e3 2/3

... …

e2.e3 1/2

... …

... …

R
e

d
u

ce

R
e

d
u

ce

b1

[e1,b1,b4,b6],
[e2,b1],
[e3,b1,b4]

… …

b4

[e1,b1,b4,b6],
[e3,b1,b4],
[e4,b4,b5]

... ...

Key Value

M
ap

M

ap

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Meta-blocking (advanced)
Weighted Edge Pruning (WEP) & Jaccard Scheme (JS)

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Meta-blocking (advanced)
Weighted Edge Pruning (WEP) & Jaccard Scheme (JS)

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Parallel Meta-blocking achieves linear scale-up!

Enhancing Meta-blocking Effectiveness

Supervised Meta-blocking [Papadakis et. al., VLDB 2014]

Goal:

 more accurate and comprehensive methodology for

 pruning the edges of the blocking graph.

Solution:

 - model edge pruning as a classification task per edge

 - two classes: “likely match”, “unlikely match”

 - associate each edge with a set of features that are:

• generic

• effective

• efficient

• minimal
Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Enhancing Meta-blocking Effectiveness
Feature Engineering

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Examined all 63 possible combinations to find the minimal set of
features, which comprises the first four features.
We combined them with state-of-the-art classification algorithms:
 C4.5, SVM, Naïve Bayes, Bayesian Networks.
Robust performance w.r.t. algorithm parameters.

BLAST: Loosely Schema-aware Meta-blocking
[Simonini et. al., VLDB 2017]

• Goal:
improve the edge weighting and pruning in unsupervised
WNP with loose schema information

• Solution:

It works for Dirty ER, as well.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

BLAST Algorithm

1. Attributes Partitioning accelerates Attribute Clustering by
using LSH for token-based Jaccard similarity between
attribute names

2. BLAST improves edge weighting based on the following
relationships:
every edge → several blocking keys (tokens) → multiple
attribute names → aggregate entropy ∙ Pearson’s χ2

3. BLAST improves edge pruning in two ways:
1. Local weight threshold independent of the size of each node

neighborhood (i.e., number of edges):

𝜃𝑖 =
𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑤(𝑒𝑖𝑗)

2

2. An edge 𝑒𝑖𝑗 is retained if 𝑤(𝑒𝑖𝑗) ≥
𝜃𝑖+𝜃𝑗

2
 .

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Comparative Analysis of Approximate
Blocking Techniques [Papadakis et. al., VLDB 2016]

• employed 3 sub-tasks of blocking

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Block
Building

Comparison
Cleaning

E B Block
Cleaning

Lazy

blocking

methods

Block-refinement

methods

Comparison-

refinement

methods

Proactive blocking methods

• considered 5 lazy and 7 proactive blocking methods

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Comparative Analysis of Approximate
Blocking Techniques [Papadakis et. al., VLDB 2016]

Experimental Analysis Setup

• Block Cleaning methods:

1. Block Purging

2. Block Filtering

• Comparison Cleaning methods:

1. Comparison Propagation

2. Iterative Blocking

3. Meta-blocking

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Experimental Analysis Setup

• Exhaustive parameter tuning to identify two
configurations for each method:
1. Best configuration per dataset → maximizes

𝒂 𝑩, 𝑬 = 𝑹𝑹 𝑩,𝑬 ∙ 𝑷𝑪(𝑩, 𝑬)

2. Default configuration → highest average 𝒂 across all
datasets

• Extensive experiments measuring effectiveness and
time efficiency over 5 real datasets (up to 3.3M
entities).

• Scalability analysis over 7 synthetic datasets (up to 2M
entities).

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Effectiveness of Lazy Methods on DBPedia

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Effectiveness of Lazy Methods on DBPedia

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Token-blocking and
Meta-blocking

Time Efficiency of Lazy Methods on DBPedia

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Time Efficiency of Lazy Methods on DBPedia

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Token-blocking and
Meta-blocking

Effectiveness of Proactive methods on DBPedia

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Effectiveness of Proactive methods on DBPedia

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Suffix-arrays and
Meta-blocking

Time Efficiency of Proactive Methods on DBPedia

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Time Efficiency of Proactive Methods on DBPedia

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Suffix-arrays and
Meta-blocking

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

 Part 6:

 Challenges

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Automatic Configuration

Facts:

• Several parameters in every blocking workflow

– Both for lazy and proactive methods

• Blocking performance sensitive to internal configuration

– Experimentally verified in [Papadakis et. al., VLDB 2016]

• Manual fine-tuning required

Open Research Directions:

• Plug-and-play blocking

• Data-driven configuration

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Progressive Blocking

Facts:

• Progressive, or Pay-as-you-go ER comes is useful

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Progressive Blocking

Facts:

• Progressive, or Pay-as-you-go ER comes is useful

 get most of the benefit
much earlier

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Progressive Blocking

Facts:

• Progressive, or Pay-as-you-go ER comes is useful

 get most of the benefit
much earlier

may require some
pre-processing

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Progressive Blocking

Facts:

• Progressive, or Pay-as-you-go ER comes is useful

• Progressive Blocking in its infancy

– Static methods
[Whang et. al., TKDE 2013]

– Dynamic methods
[Papenbrock et. al., TKDE 2015]

• Only for relational data (schema-aware)

Open Research Directions:

• Schema-agnostic Progressive Blocking

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Privacy Preserving Blocking

Facts:

• several applications ask for privacy-preserving ER

• lots of interest in this area [Christen, PADM 2006][Karakasidis et

al., 2012][Ziad et al, BTW 2015]

Open Research Directions:

• What is the role of blocking workflow techniques?

– block building, block filtering, comparison cleaning

• How can existing blocking techniques be adjusted?

• Novel blocking methods for this context

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Incremental Blocking

Facts:

• Velocity in Web Data

• Dynamic ER

• Incremental ER [Gruenheid et. al., VLDB 2014]

– Blocking → black box

Open Research Directions:

• Incremental (Meta-)Blocking

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Distributed Blocking

Facts:

• Velocity in Big Data

• Need for even faster/more scalable ER solutions

Open Research Directions:

• What is the best way to use the modern distributed
platforms/paradigms?

– Flink/Spark

• How can we further improve performance of Parallel Meta-
blocking?

– Gelly/Gradoop/GraphX

• Minimize both time performance and total CPU cycles

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

 Part 7:

 JedAI Toolkit

What is the JedAI Toolkit?

JedAI can be used in three ways:

1. As an open source library that implements
numerous state-of-the-art methods for all steps
of an established end-to-end ER workflow.

2. As a desktop application for ER with an intuitive
Graphical User Interface that is suitable for both
expert and lay users.

3. As a workbench for comparing all performance
aspects of various (configurations of) end-to-end
ER workflows.

How does the JedAI Toolkit work?

JedAI implements the following schema-agnostic, end-
to-end workflow for both Clean-Clean and Dirty ER:

Data
Reading

Block
Building

Block
Cleaning

Comparison
Cleaning

Entity
Matching

Entity
Clustering

Evaluation
& Storing

Step 5 Step 2 Step 3 Step 4 Step 6 Step 1 Step 7

Reads files
containing
the entity

profiles and
the golden
standard.

Creates
overlapping

blocks.

Optional step
that cleans
blocks from

useless
comparisons

(repeated,
superfluous).

Optional step
that operates on

the level of
individual

comparisons to
remove the

useless ones.

Executes all
retained

comparisons.

Partitions the
similarity graph
into equivalence

clusters.

Stores and
presents

performance
results
w.r.t.

numerous
measures.

How is the JedAI Toolkit structured?

• Modular architecture:
one module per
workflow step.

• Extensible architecture
(e.g., ontology
matching)

???

How can I build an ER workflow?

JedAI supports several established methods for each
workflow step:

Data
Reading

Block
Building

Block
Cleaning

Comparison
Cleaning

Entity
Matching

Entity
Clustering

Evaluation
& Storing

Step 5 Step 2 Step 3 Step 4 Step 6 Step 1 Step 7

Possible to
read CSV,

RDF/XML files
& relational
DBs in any

combination!

Choose
1 out of 8
methods.

Specify any
combination of

3 (4)
complementary

methods for
Dirty (Clean-

Clean) ER.

Choose
1 out of 7
methods
(including

Meta-blocking).

Combine
1 out of 2

methods with
12 textual

representation
models and 10

similarity
measures.

Choose
1 out of 6

methods for
Dirty ER. For

Clean-Clean ER,
1 method is

available.

Store results
as a CSV file.

Which Blocking Methods are included?

Block Building Block Cleaning Comparison Cleaning

Token Blocking Block Filtering Comparison Propagation

Sorted Neighborhood Size-based Block Purging Cardinality Edge Pruning (CEP)

Extended Sorted
Neighborhood

Cardinality-based Block
Purging

Cardinality Node Pruning (CNP)

Attribute Clustering Block Scheduling Weighted Edge Pruning (WEP)

Q-Grams Blocking Weighted Node Pruning (WNP)

Extended Q-Grams Blocking Reciprocal CNP

Suffix Arrays Reciprocal WNP

Extended Suffix Arrays

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Where can I find JedAI Toolkit?
• Project website: http://jedai.scify.org .

• Github repository of JedAI Library:
https://github.com/scify/JedAIToolkit .

• Github repository of JedAI Desktop Application and
Workbench: https://github.com/scify/jedai-ui .
– All code is implemented using Java 8.
– All code is publicly available under Apache License V2.0.

• Documentation (slides, videos, etc) available at
https://github.com/scify/JedAIToolkit/tree/master/documentation .

• When using JedAI, please cite:

George Papadakis, Leonidas Tsekouras, Emmanouil Thanos, George
Giannakopoulos, Themis Palpanas and Manolis Koubarakis: "JedAI:
The Force behind Entity Resolution", in ESWC 2017.

http://jedai.scify.org/
https://github.com/scify/JedAIToolkit
https://github.com/scify/jedai-ui
https://github.com/scify/jedai-ui
https://github.com/scify/jedai-ui
https://github.com/scify/jedai-ui
https://github.com/scify/JedAIToolkit/tree/master/documentation
https://github.com/scify/JedAIToolkit/tree/master/documentation

Which datasets are available for testing?

Clean-Clean ER
(real)

D1
Entities

D2
Entities

Abt-Buy 1,076 1,076

DBLP-ACM 2,616 2,294

DBLP-Scholar 2,516 61,353

Amazon-GP 1,354 3,039

Movies 27,615 23,182

DBPedia 1,190,733 2,164,040

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Dirty ER
(synthetic)

Entities

10K 10,000

50K 50,000

100K 100,000

200K 200,00

300K 300,00

1M 1,000,000

2M 2,000,000

Can be used for Dirty
ER, as well.

Several datasets are available for testing
at https://github.com/scify/JedAIToolkit .

https://github.com/scify/JedAIToolkit

What are the next steps?

• Version 2.0:
– Includes support for SPARQL endpoints, multicore

functionality and configuration optimization.

– Available at the end of September, 2017.

• Version 3.0:
– Includes support for ontology matching, progressive

ER as well as a workflow builder.

– Available at the end of December, 2017.

• Version 4.0:
– All functionality is implemented in Apache Spark.

– Available at the end of December, 2018.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

 Part 8:

 Conclusions

Conclusions – Block Building

• Traditional proactive blocking methods only suitable
for relational data

– background schema knowledge should be available for their
configuration

• Recent lazy blocking methods scale well to
heterogeneous, semi-structured Big Data

– Variety is addressed with schema-agnostic keys

– Volume is addressed with Block and Comparison Cleaning
methods → they trade slightly lower recall, for much higher
precision

– Token Blocking → the only parameter-free blocking method
Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Conclusions – Block Cleaning

• Coarse-grained functionality:
• operation at the level of entire blocks

• low cost (fast) methods

• Only applicable to lazy blocking methods

• They boost the overall performance to a large
extent:
– comparisons drop by orders of magnitude

– recall drops to a controllable extent (~1-2%)

• Mostly complementary methods
– multiple Block Cleaning methods can be combined in a

single workflow
Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Conclusions – Comparison Cleaning

• Fine-grained functionality:

– operate at the level of individual comparisons →
computationally intensive process

• Apply to both lazy and proactive methods

• Meta-blocking is the current state-of-the-art

– Discards both superfluous and redundant comparisons

– Necessary for reducing comparisons to manageable levels
for single-threaded ER workflows

• reduces comparisons by orders of magnitude, with recall > 98%

– Naturally parallelizable
Papadakis & Palpanas, ScaDS, Leipzig, July 2016

Big Data Research (BDR) Journal
http://www.journals.elsevier.com/big-data-research/

• New Elsevier journal on topics related to big data

– advances in big data management/processing

– interdisciplinary applications

• Editor in Chief for BDR

– submit your work

– propose special issues

• google: bdr journal
Papadakis & Palpanas, ScaDS, Leipzig, July 2016

http://www.journals.elsevier.com/big-data-research/
http://www.journals.elsevier.com/big-data-research/
http://www.journals.elsevier.com/big-data-research/
http://www.journals.elsevier.com/big-data-research/
http://www.journals.elsevier.com/big-data-research/
http://www.journals.elsevier.com/big-data-research/

thank you!

questions?

http://sourceforge.net/projects/erframework

google: themis palpanas

-> publications -> tutorials

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

http://sourceforge.net/projects/erframework

References – Part A
[Aizawa et. al., WIRI 2005] Akiko N. Aizawa, Keizo Oyama, "A Fast Linkage Detection Scheme for Multi-
Source Information Integration" in WIRI, 2005.

[Baxter et. al., KDD 2003] R. Baxter, P. Christen, T. Churches, “A comparison of fast blocking methods for
record linkage”, in Workshop on Data Cleaning, Record Linkage and Object Consolidation at KDD, 2003.

[Bilenko et. al., ICDM 2006] Mikhail Bilenko, Beena Kamath, Raymond J. Mooney, "Adaptive Blocking:
Learning to Scale Up Record Linkage", in ICDM 2006.

[Christen, PADM 2006] Christen P: Privacy-preserving data linkage and geocoding: Current approaches and
research directions. PADM held at IEEE ICDM, Hong Kong, 2006.

[Christen, TKDE 2011] P. Christen, " A survey of indexing techniques for scalable record linkage and
deduplication.” in IEEE TKDE 2011.

[Efthymiou et. al., BigData 2015] Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas
Stefanidis, Themis Palpanas, "Parallel meta-blocking: Realizing scalable entity resolution over large,
heterogeneous data", in IEEE Big Data 2015.

[Fellegi et. al., JASS 1969] P. Fellegi, A. Sunter, “A theory for record linkage,” in Journal of the American
Statistical Society, vol. 64, no. 328, 1969.

[Fisher et. al., KDD 2015] Jeffrey Fisher, Peter Christen, Qing Wang, Erhard Rahm, "A Clustering-Based
Framework to Control Block Sizes for Entity Resolution" in KDD 2015.

[Gravano et. al., VLDB 2001] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan, D. Srivastava,
“Approximate string joins in a database (almost) for free’, in VLDB, 2001.

[Gruenheid et. al., VLDB 2014] Anja Gruenheid, Xin Luna Dong, Divesh Srivastava, "Incremental Record
Linkage", in PVLDB 2014.

[Hernandez et. al., SIGMOD 1995] M. Hernandez, S. Stolfo, “The merge/purge problem for large databases”,
in SIGMOD, 1995.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

References – Part B
[Karakasidis et al., SAC 2012] Karakasidis A and Verykios VS: Reference table based k-anonymous private
blocking. Symposium on Applied Computing, 2012.

[Kenig et. al., IS 2013] Batya Kenig, Avigdor Gal, "MFIBlocks: An effective blocking algorithm for entity
resolution", in Inf. Syst. 2013.

[Ma et. Al., WSDM 2013] Y. Ma, T. Tran, "TYPiMatch: type-specific unsupervised learning of keys and key
values for heterogeneous web data integration", in WSDM 2013.

[McCallum et. al., KDD 2000] A. McCallum, K. Nigam, L. Ungar, “Efficient clustering of high-dimensional data
sets with application to reference matching”, in KDD, 2000.

[Michelson et. al., AAAI 2006] Matthew Michelson, Craig A. Knoblock, "Learning Blocking Schemes for
Record Linkage", in AAAI 2006.

[Papadakis et. al., EDBT 2016] George Papadakis, George Papastefanatos, Themis Palpanas, Manolis
Koubarakis, "Scaling Entity Resolution to Large, Heterogeneous Data with Enhanced Meta-blocking", in EDBT
2016.

[Papadakis et al., iiWAS 2010] G. Papadakis, G. Demartini, P. Fankhauser, P. Karger, "The missing links:
discovering hidden same-as links among a billion of triples”, in iiWAS 2010.

[Papadakis et al., JCDL 2011] G. Papadakis, E. Ioannou, C. Niederee, T. Palpanas, W. Nejdl, “Eliminating the
redundancy in blocking-based entity resolution methods”, in JCDL 2011.

[Papadakis et al., SWIM 2011] G. Papadakis, E. Ioannou, C. Niederee, T. Palpanas, W. Nejdl, “To Compare or
Not to Compare: making Entity Resolution more Efficient”, in SWIM workshop (collocated with SIGMOD),
2011.

[Papadakis et. al., TKDE 2013] George Papadakis, Ekaterini Ioannou, Themis Palpanas, Claudia Niederee,
Wolfgang Nejdl, "A Blocking Framework for Entity Resolution in Highly Heterogeneous Information Spaces",
in IEEE TKDE 2013.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

References – Part C
[Papadakis et. al., TKDE 2014] George Papadakis, Georgia Koutrika, Themis Palpanas, Wolfgang Nejdl, "Meta-
Blocking: Taking Entity Resolution to the Next Level", in IEEE TKDE 2014.

[Papadakis et. al., VLDB 2014] G. Papadakis, G. Papastefanatos, G. Koutrika, "Supervised Meta-blocking", in PVLDB
2014.

[Papadakis et. al., VLDB 2015] George Papadakis, George Alexiou, George Papastefanatos, Georgia Koutrika,
“Schema-agnostic vs Schema-based Configurations for Blocking Methods on Homogeneous Data”, in PVLDB 2015.

[Papadakis et. al., VLDB 2016] George Papadakis, Jonathan Svirsky, Avigdor Gal, Themis Palpanas, “Comparative
Analysis of Approximate Blocking Techniques for Entity Resolution”, in PVLDB 2016.

[Papadakis et al., WSDM 2011] G. Papadakis, E. Ioannou, C. Niederee, P. Fankhauser, “Efficient entity resolution for
large heterogeneous information spaces”, in WSDM 2011.

[Papadakis et al., WSDM 2012] G. Papadakis, E. Ioannou, C. Niederee, T. Palpanas, W. Nejdl, “Beyond 100 million
entities: large-scale blocking-based resolution for heterogeneous data”, in WSDM 2012.

[Papenbrock et. al., TKDE 2015] Thorsten Papenbrock, Arvid Heise, Felix Naumann, "Progressive Duplicate
Detection", in IEEE TKDE 2015.

[Sarma et. al, CIKM 2012] Anish Das Sarma, Ankur Jain, Ashwin Machanavajjhala, Philip Bohannon, "An automatic
blocking mechanism for large-scale de-duplication tasks" in CIKM 2012.

[Simonini et. al, VLDB 2017] Giovanni Simonini, Sonia Bergamaschi and H.V. Jagadish, "Blast: a Loosely schema-
aware Meta-blocking Approach for Entity Resolution" in VLDB 2017.

[Whang et. Al, SIGMOD 2009] Whang, D. Menestrina, G. Koutrika, M. Theobald, H. Garcia-Molina, "Entity
resolution with iterative blocking", in SIGMOD 2009.

[Whang et. al., TKDE 2013] Steven Euijong Whang, David Marmaros, Hector Garcia-Molina, "Pay-As-You-Go Entity
Resolution", in IEEE TKDE 2013.

[Ziad et al, BTW 2015] Ziad Sehili, Lars Kolb, Christian Borgs, Rainer Schnell, Erhard Rahm: Privacy Preserving Record
Linkage with PPJoin. BTW 2015.

Papadakis & Palpanas, ScaDS, Leipzig, July 2016

