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Entities: an invaluable asset 
“Entities” is what a large part of our knowledge is about: 

Persons 

Organizations 

Projects 

Locations 

Products 
Events 
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However … 

How many names, descriptions or IDs (URIs) are  

used for the same real-world “entity”? 
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However … 

How many names, descriptions or IDs (URIs) are  

used for the same real-world “entity”? 

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン 
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain 

Londain Londe Londen Londen Londen Londinium 
London Londona Londonas Londoni Londono Londra 
Londres Londrez Londyn Lontoo Loundres Luân Đôn 
Lunden Lundúnir Lunnainn Lunnon  لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 … 

Papadakis & Palpanas, WWW 2018, April 2018 
4 



However … 

How many names, descriptions or IDs (URIs) are  

used for the same real-world “entity”? 

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン 
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain 

Londain Londe Londen Londen Londen Londinium 
London Londona Londonas Londoni Londono Londra 
Londres Londrez Londyn Lontoo Loundres Luân Đôn 
Lunden Lundúnir Lunnainn Lunnon  لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 … 

capital of UK, host city of the IV Olympic Games, host city 
of the XIV Olympic Games, future host of the XXX 
Olympic Games, city of the Westminster Abbey, city of 
the London Eye, the city described by Charles Dickens in 
his novels, … 
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How many names, descriptions or IDs (URIs) are  

used for the same real-world “entity”? 

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン 
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain 

Londain Londe Londen Londen Londen Londinium 
London Londona Londonas Londoni Londono Londra 
Londres Londrez Londyn Lontoo Loundres Luân Đôn 
Lunden Lundúnir Lunnainn Lunnon  لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 … 

capital of UK, host city of the IV Olympic Games, host city 
of the XIV Olympic Games, future host of the XXX 
Olympic Games, city of the Westminster Abbey, city of 
the London Eye, the city described by Charles Dickens in 
his novels, … 

http://sws.geonames.org/2643743/ 
http://en.wikipedia.org/wiki/London 
http://dbpedia.org/resource/Category:London 
… 
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◦ London, KY 

◦ London, Laurel, KY 

◦ London, OH 

◦ London, Madison, OH 

◦ London, AR 

◦ London, Pope, AR 

◦ London, TX 

◦ London, Kimble, TX 

◦ London, MO 

◦ London, MO 

◦ London, London, MI 

◦ London, London, Monroe, MI 

◦ London, Uninc Conecuh County, AL 

◦ London, Uninc Conecuh County, Conecuh, AL 

◦ London, Uninc Shelby County, IN 

◦ London, Uninc Shelby County, Shelby, IN 

◦ London, Deerfield, WI 

◦ London, Deerfield, Dane, WI 

◦ London, Uninc Freeborn County, MN 

◦ ... 

How many “entities” have the same name? 

… or … 
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◦ London, KY 

◦ London, Laurel, KY 

◦ London, OH 

◦ London, Madison, OH 

◦ London, AR 

◦ London, Pope, AR 

◦ London, TX 

◦ London, Kimble, TX 

◦ London, MO 

◦ London, MO 

◦ London, London, MI 

◦ London, London, Monroe, MI 

◦ London, Uninc Conecuh County, AL 

◦ London, Uninc Conecuh County, Conecuh, AL 

◦ London, Uninc Shelby County, IN 

◦ London, Uninc Shelby County, Shelby, IN 

◦ London, Deerfield, WI 

◦ London, Deerfield, Dane, WI 

◦ London, Uninc Freeborn County, MN 

◦ ... 

◦ London, Jack 
2612 Almes Dr 
Montgomery, AL 
(334) 272-7005 
 

◦ London, Jack R 
2511 Winchester Rd 
Montgomery, AL 36106-3327 
(334) 272-7005 
 

◦ London, Jack 
1222 Whitetail Trl 
Van Buren, AR 72956-7368 
(479) 474-4136 
 

◦ London, Jack 
7400 Vista Del Mar Ave 
La Jolla, CA 92037-4954 
(858) 456-1850 
 

◦ ... 

How many “entities” have the same name? 

… or … 
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Content Providers 

How many content types / applications provide  

valuable information about each of these “entities”? 

News about London 
reviews on hotels in London 

Pictures and tags about London 

Videos and tags for London 

Social networks in London 

Wiki pages about the London 
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Preliminaries on Entity Resolution 

Entity Resolution [Dong et al., Book 2015] [Elmagarmid et al., TKDE 2007] : 

 identifies and aggregates the different entity profiles/records that 
actually describe the same real-world object. 

 

Useful because: 

• improves data quality and integrity  

• fosters re-use of existing data sources 
 

Application areas: 

 Linked Data, Social Networks, census data,  

 price comparison portals 
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Types of Entity Resolution 

The input of ER consists of entity collections that can be of two  

types [Christen, TKDE 2011]: 

• clean, which are duplicate-free 

  e.g., DBLP, ACM Digital Library, Wikipedia, Freebase  

• dirty, which contain duplicate entity profiles in themselves 

 e.g., Google Scholar, CiteseerX 
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Types of Entity Resolution 

The input of ER consists of entity collections that can be of two  

types [Christen, TKDE 2011]: 

• clean, which are duplicate-free 

  e.g., DBLP, ACM Digital Library, Wikipedia, Freebase  

• dirty, which contain duplicate entity profiles in themselves 

 e.g., Google Scholar, CiteseerX 

 

Based on the quality of input, we distinguish ER into 3 sub-tasks: 

• Clean-Clean ER (a.k.a. Record Linkage in databases) 
 

• Dirty-Clean ER  
 

• Dirty-Dirty ER 

 

 

Equivalent to Dirty ER  
(a.k.a. Deduplication in databases) 
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Challenges for ER over Web Data 

• Volume 
– Millions of entities 
– Billions of name-value pairs describing them 
– LOD Cloud*: >5,5∙107 entities, ~1,5∙1011 triples 

• Variety 
– Semi-structured data → unprecedented levels of 

heterogeneity 
– Numerous entity types & vocabularies 
– LOD Cloud*: ~50,000 predicates, ~12,000 vocabularies 

• Velocity 
– New DBPedia version every ~6 months 
*http://stats.lod2.eu:  
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Computational cost 

ER is an inherently quadratic problem (i.e., O(n2)): 

every entity has to be compared with all others  

  

ER does not scale well to large entity collections (e.g., Web Data). 
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Computational cost 

ER is an inherently quadratic problem (i.e., O(n2)): 

every entity has to be compared with all others  

  

ER does not scale well to large entity collections (e.g., Web Data) 

 

Solution: Blocking 
• group similar entities into blocks 

• execute comparisons only inside each block 

• complexity is now quadratic to the size of the block (much smaller 
than dataset size!) 
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Computational cost 

|E| entities 

|E| entities 

Brute-force 
approach 

Duplicate 
Pairs 

Blocking 
Input:  
Entity Collection E 
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Example of Computational cost 

DBPedia 3.0rc ↔ DBPedia 3.4 
   1.2 million entities ↔ 2.2 million entities 

 
Entity matching: Jaccard similarity of all tokens 
Cost per comparison:  0.045 milliseconds (average of 0.1 billion comparisons) 
 

Brute-force approach 
Comparisons: 2.58 ∙ 1012 

Recall: 100% 
Running time: 1,344 days → 3.7 years 
 

Optimized Token Blocking Workflow 
Overhead time: 4 hours 
Comparisons: 8.95 ∙ 106 
Recall: 99% 
Total Running time: 10 hours 
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Scalable End-to-end ER workflow 

Block 
Building 

Block 
Processing 

Entity 
Matching 

Entity 
Clustering 

Step 3 Step 1 Step 2 Step 4 

Cluster 
together 
similar 
entities   

Refine blocks 
to increase 
precision at 

no significant 
cost in recall 

Compare the 
candidate 
matches 

Partition the 
compared 

profiles into 
real-world 

entities 
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Outline 

1. Introduction to Blocking  
2. Blocking Methods for Relational Data 
3. Blocking Methods for Web Data 
4. Block Processing Techniques  
5. Meta-blocking 
6. Entity Matching 
7. Entity Clustering 
8. Massive Parallelization Methods 
9. Progressive Entity Resolution 
10.Challenges 
11.JedAI Toolkit 
12.Conclusions 
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20 



Papadakis & Palpanas, WWW 2018, April 2018 

 

 

 

 

 Part 1: 

 Introduction to Blocking 
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Fundamental Assumptions 

1. Every entity profile consists of a uniquely identified set of 
name-value pairs. 
 

2. Every entity profile corresponds to a single real-world 
object. 
 

3. Two matching profiles are detected as long as they co-
occur in at least one block → entity matching is an 
orthogonal problem. 

 

4. Focus on string values. 

Papadakis & Palpanas, WWW 2018, April 2018 
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General Principles 

1. Represent each entity by one or more blocking keys. 

2. Place into blocks all entities having the same or similar 
blocking key. 

 

Measures for assessing block quality [Christen, TKDE 2011]: 

– Pairs Completeness:  𝑃𝐶 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
   (optimistic recall) 

  

– Pairs Quality: 𝑃𝑄 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠
  (pessimistic precision) 

 

Trade-off! 
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Problem Definition 

Given one dirty (Dirty ER), or two clean (Clean-Clean ER)  

entity collections, cluster their profiles into blocks  

and process them so that both Pairs Completeness (PC) and 
Pairs Quality (PQ) are maximized. 

 
 

caution:   

• Emphasis on Pairs Completeness (PC).  
– if two entities are matching then they should coincide at some block 

Papadakis & Palpanas, WWW 2018, April 2018 
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Blocking Techniques Taxonomy 

1. Performance-wise 
• Exact methods 

• Approximate methods 

2. Functionality-wise 
• Supervised methods 

• Unsupervised methods 

3. Blocks-wise 
• Disjoint blocks 

• Overlapping blocks 

– Redundancy-neutral 

– Redundancy-positive 

– Redundancy-negative 

4. Signature-wise 
• Schema-based 

• Schema-agnostic 

Papadakis & Palpanas, WWW 2018, April 2018 
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Performance-wise Categorization 
1.  Exact Blocking Methods 

– Maximize PQ for PC = 100% 

– Closed-world assumption 

– E.g., for bibliographical records , s ≡ t if: 

 JaccardSimilarity(s.title, t.title) > 0.80 AND  

 EditDistance(s.venue, t.venue) < 3 

– Existing methods: 

• Silk → filtering technique for edit distance 

• LIMES → triangle inequality for similarity metrics  

2.  Approximate Blocking Methods 

– PC < 100% → high PQ 

– Open-world assumption 

26 
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Performance-wise Categorization 
1.  Exact Blocking Methods 

– Maximize PQ for PC = 100% 

– Closed-world assumption 

– E.g., for bibliographical records , s ≡ t if: 

 JaccardSimilarity(s.title, t.title) > 0.80 AND  

 EditDistance(s.venue, t.venue) < 3 

– Existing methods: 

• Silk → filtering technique for edit distance 

• LIMES → triangle inequality for similarity metrics  

2.  Approximate Blocking Methods 

– PC < 100% → high PQ 

– Open-world assumption our focus 
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Functionality-wise Categorization 
1. Supervised Methods 

• Goal: learn the best blocking keys from a training set 

• Approach: identify best combination of attribute names 
and transformations 

• E.g., CBLOCK [Sarma et. al, CIKM 2012],  

     [Bilenko et. al., ICDM 2006], [Michelson et. al., AAAI 2006] 

• Drawbacks:  
– labelled data 

– domain-dependent 

2. Unsupervised Methods 

• Generic, popular methods 

28 
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Block 
Building 

Comparison 
Cleaning 

E B Block 
Cleaning 

Lazy  

blocking 

methods 

Block-

refinement 

methods 

Comparison-

refinement 

methods 

Proactive blocking methods 

Blocking Workflow [Papadakis et. al., VLDB 2016] 
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Blocks- and Signature-wise Categorization 
of Block Building Methods 

Papadakis & Palpanas, WWW 2018, April 2018 

Disjoint 
Blocks 

Overlapping Blocks 

Redundancy- 
negative 

Redundancy- 
neutral 

Redundancy- 
positive 

Schema- 
based 

Standard 
Blocking 

(Extended) 
Canopy 

Clustering 

1. (Extended) 
Sorted 
Neighborhood 

2. MFIBlocks 

1. (Extended) Q-grams 
Blocking 
2. (Extended) Suffix Arrays 

Schema- 
agnostic 

- - - 

1. Token Blocking 
2. Agnostic Clustering 
3. TYPiMatch 
4. URI Semantics Blocking 

31 
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Block Processing Methods  
[Papadakis et. al., VLDB 2016] 

 

Mostly for redundancy-positive block building methods. 

 

Block Cleaning 

• Block-level 
– constraints on block characteristics 

• Entity-level 
– constraints on entity characteristics 

 

Comparison Cleaning 

• Redundant comparisons 
– repeated across different blocks 

• Superfluous comparisons 
– Involve non-matching entities 
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 Part 2: 

 Block Building for Relational Data 
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General Principles 

 

Mostly schema-based techniques. 

Rely on two assumptions: 

1. A-priori known schema → no noise in attribute names. 

2. For each attribute name we know some metadata: 

– level of noise (e.g., spelling mistakes, false or missing 
values) 

– distinctiveness of values 

Papadakis & Palpanas, WWW 2018, April 2018 
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Standard Blocking 

Sorted  
Neighborhood 

Extended Sorted  
Neighborhood 

Q-grams  
Blocking 

Extended 
Q-grams  
Blocking 

Suffix 
Arrays 

Canopy 
Clustering 

Extended 
Canopy 

Clustering 

Overview of Schema-based Methods 
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MFIBlocks 

Extended Suffix 
Arrays 
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Standard Blocking 

Sorted  
Neighborhood 

Extended Sorted  
Neighborhood 

Q-grams  
Blocking 

Extended 
Q-grams  
Blocking 

Suffix 
Arrays 

Canopy 
Clustering 

Extended 
Canopy 

Clustering 

Overview of Schema-based Methods 
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MFIBlocks 

Extended Suffix 
Arrays 

LAZY BLOCKING 
METHODS 
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Standard Blocking 

Sorted  
Neighborhood 

Extended Sorted  
Neighborhood 

Q-grams  
Blocking 

Extended 
Q-grams  
Blocking 

Suffix 
Arrays 

Canopy 
Clustering 

Extended 
Canopy 

Clustering 

Overview of Schema-based Methods 
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MFIBlocks 

Extended Suffix 
Arrays 

LAZY BLOCKING 
METHODS 

PROACTIVE  
BLOCKING 
METHODS 
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Standard Blocking 

Sorted  
Neighborhood 

Extended Sorted  
Neighborhood 

Q-grams  
Blocking 

Extended 
Q-grams  
Blocking 

Suffix 
Arrays 

Canopy 
Clustering 

Extended 
Canopy 

Clustering 

Overview of Schema-based Methods 
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MFIBlocks 

Extended Suffix 
Arrays 

LAZY BLOCKING 
METHODS 

PROACTIVE  
BLOCKING 
METHODS 
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Standard Blocking [Fellegi et. al., JASS 1969] 

Earliest, simplest form of blocking.  

 

Algorithm: 

1. Select the most appropriate attribute name(s) w.r.t. noise 
and distinctiveness. 

2. Transform the corresponding value(s) into a Blocking Key (BK) 

3. For each BK, create one block that contains all entities having 
this BK in their transformation. 

 

 

Works as a hash function! → Blocks on the equality of BKs 
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Example of Standard Blocking 

Papadakis & Palpanas, WWW 2018, April 2018 

Blocks on zip_code: 
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Standard Blocking 

Sorted  
Neighborhood 

Extended Sorted  
Neighborhood 

Q-grams  
Blocking 

Extended 
Q-grams  
Blocking 

Suffix 
Arrays 

Canopy 
Clustering 

Extended 
Canopy 

Clustering 

Overview of Schema-based Methods 
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MFIBlocks 

Extended Suffix 
Arrays 
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Standard Blocking 

Sorted  
Neighborhood 

Extended Sorted  
Neighborhood 

Q-grams  
Blocking 

Extended 
Q-grams  
Blocking 

Suffix 
Arrays 

Canopy 
Clustering 

Extended 
Canopy 

Clustering 

Overview of Schema-based Methods 
blocks contain entities with similar blocking keys 
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MFIBlocks 

Extended Suffix 
Arrays 
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Sorted Neighborhood [Hernandez et. al., SIGMOD 1995] 

Blocks on the similarity of BKs. 

1. Entities are sorted in  
alphabetic order of BKs. 

2. A window of fixed size  
slides over the sorted list of entities. 

3. At each iteration, it compares 
the entities that co-occur  
within the window. 
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Sorted Neighborhood [Hernandez et. al., SIGMOD 1995] 

Blocks on the similarity of BKs. 

1. Entities are sorted in  
alphabetic order of BKs. 

2. A window of fixed size  
slides over the sorted list of entities. 

3. At each iteration, it compares 
the entities that co-occur  
within the window. 

 

Extended Sorted Neighborhood [Christen, TKDE 2011] 

2’. A window of fixed size slides over the sorted list of BKs. 
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Standard Blocking 

Sorted  
Neighborhood 

Extended Sorted  
Neighborhood 

Q-grams  
Blocking 

Extended 
Q-grams  
Blocking 

Suffix 
Arrays 

Canopy 
Clustering 

Extended 
Canopy 

Clustering 

Overview of Schema-based Methods 
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MFIBlocks 

Extended Suffix 
Arrays 
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Standard Blocking 

Sorted  
Neighborhood 

Extended Sorted  
Neighborhood 

Q-grams  
Blocking 

Extended 
Q-grams  
Blocking 

Suffix 
Arrays 

Canopy 
Clustering 

Extended 
Canopy 

Clustering 

Overview of Schema-based Methods 
blocks contain entities with same, or similar blocking keys 
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MFIBlocks 

Extended Suffix 
Arrays 
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Q-grams Blocking [Gravano et. al., VLDB 2001] 

Blocks on equality of BKs. 

Converts every BK into the list of its q-grams. 

 

For q=2, the BKs 91456 and 94520 yield the following blocks: 

 

 

 

 

 

• Advantage: 

 robust to noisy BKVs 

• Drawback: 

 larger blocks → higher computational cost 
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Extended Q-grams Blocking [Baxter et. al., KDD 2003] 

BKs of higher discriminativeness: 
 instead of individual q-grams, BKs from combinations of q-grams. 
 

Additional parameter: 
 threshold t ∈ (0,1) specifies the minimum number of  
 q-grams per BK as follows: 𝒍𝒎𝒊𝒏 = 𝒎𝒂𝒙(𝟏, 𝐤 ∙ 𝒕 ),  
 where 𝑘 is the number of q-grams from the original BK 
 

Example: 
 for BK= 91456, q=2 and t=0.9,  
 we have lmin=3 and the following valid BKs:  
 91_14_45_56 
 91_14_45 
 91_14_56 
 91_45_56 
 14_45_56 
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MFIBlocks [Kenig et. al., IS 2013] 

Papadakis & Palpanas, WWW 2018, April 2018 

Based on mining Maximum Frequent Itemsets. 
 
Algorithm: 
• Place all entities in a pool 
• while (minimum_support > 2) 

– For each itemset that satisfies minimum_support 
• Create a block b 
• If b satisfies  certain constraints (Block Cleaning) 

– remove its entities from the pool 
– retain the best comparisons (Comparison Cleaning) 

– decrease minimum_support 
 
 

Pros: 
• Usually the most effective blocking method for relational data → 

maximizes PQ (precision) 
 

Cons: 
• Difficult to configure 
• Time consuming 54 
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Canopy Clustering [McCallum et. al., KDD 2000] 

Papadakis & Palpanas, WWW 2018, April 2018 

Blocks on similarity of BKs. 
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Extended Canopy Clustering [Christen, TKDE 2011] 

Canopy Clustering is too sensitive w.r.t. its weight thresholds:  

 - high values may leave many entities out of blocks. 

 

Solution: Extended Canopy Clustering [Christen, TKDE 2011] 

• cardinality thresholds instead of weight thresholds 

• for each center of a canopy: 

– the n1 nearest entities are placed in its block 

– the n2 (≤ n1) nearest entities are removed from the pool 

  

Papadakis & Palpanas, WWW 2018, April 2018 
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Suffix Arrays Blocking [Aizawa et. al., WIRI 2005] 

Blocks on the equality of BKs. 

Converts every BK to the list of its suffixes that are longer than a 
predetermined minimum length lmin. 

For lmin =3, the keys 91456 and 94520 yield the blocks: 

 

 

 

 

 

 

Frequent suffixes are discarded with the help of the parameter bM: 

 - specifies the maximum number of entities per block 

Papadakis & Palpanas, WWW 2018, April 2018 
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Extended Suffix Arrays Blocking [Christen, TKDE 2011] 

Goal: 

 support errors at the end of BKs 

Solution: 

 consider all substrings (not only suffixes) with more than lmin  

 characters. 

 

For lmin=3, the keys 91456 and 94520 are converted to the BKs: 

91456, 94520 

9145, 9452 

1456, 4520 

914,  945 

145,  452 

456  520 

 
Papadakis & Palpanas, WWW 2018, April 2018 
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Summary of Blocking for Databases [Christen, TKDE2011] 

1. They typically employ redundancy to ensure higher recall 
in the context of noise at the cost of lower precision (more 
comparisons). Still, recall remains low for many datasets. 

 

2. Several parameters to be configured  

  E.g., Canopy Clustering has the following parameters: 

I. String matching method 

II. Threshold t1 

III. Threshold t2 

 

3. Schema-dependent → manual definition of BKs 
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Improving Blocking for Databases [Papadakis et. al., VLDB 2015] 

Schema-agnostic blocking keys 

• Use every token as a key 

• Applies to all schema-based blocking methods 

• Simplifies configuration, unsupervised approach 

 

Performance evaluation 

• For lazy blocking methods →  
very high, robust recall at the cost of more comparisons 

• For proactive blocking methods → 
relative recall gets higher with more comparisons,  
absolute recall depends on block constraints 
 
 

Papadakis & Palpanas, WWW 2018, April 2018 
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Papadakis & Palpanas, WWW 2018, April 2018 
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 Characteristics of Web Data 

Voluminous, (semi-)structured datasets.  

• DBPedia 2014: 3 billion triples and 38 million entities 

• BTC09:  1.15 billion triples, 182 million entities. 

  

Users are free to add attribute values and/or attribute names  

 unprecedented levels of schema heterogeneity.  

• DBPedia 3.4: 50,000 attribute names 

• Google Base: 100,000 schemata for 10,000 entity types 

• BTC09:  136,000 attribute names 

 

Several datasets produced by automatic information extraction 
techniques  

 noise, tag-style values. 
 

 
Papadakis & Palpanas, WWW 2018, April 2018 
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Token Blocking [Papadakis et al., WSDM2011] 

Functionality: 

1. given an entity profile, extract all tokens that are contained in 
its attribute values. 

2. create one block for every distinct token → each block 
contains all entities with the corresponding token*. 

 

Attribute-agnostic functionality: 

• completely ignores all attribute names, but considers all 
attribute values 

• efficient implementation with the help of inverted indices 

• parameter-free! 
 

*Each block should contain at least two entities. 

Papadakis & Palpanas, WWW 2018, April 2018 
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Token Blocking Example 

Papadakis & Palpanas, WWW 2018, April 2018 
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Attribute-Clustering Blocking 
[Papadakis et. al., TKDE 2013] 

Goal: 

group attribute names into clusters s.t. we can apply Token Blocking 
independently inside each cluster, without affecting effectiveness 
→ smaller blocks, higher efficiency. 

Papadakis & Palpanas, WWW 2018, April 2018 
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Attribute-Clustering Blocking 
Algorithm 

• Create a graph, where every node represents an attribute name 
and its attribute values 

• For each attribute name/node ni 

– Find the most similar node nj 

– If sim(ni,nj) > 0, add an edge <ni,nj> 
• Extract connected components 
• Put all singleton nodes in a “glue” cluster 
 

 

Parameters 

1. Representation model 

– Character n-grams, Character n-gram graphs, Tokens 

2. Similarity Metric 

– Jaccard, Graph Value Similarity, TF-IDF 

Papadakis & Palpanas, WWW 2018, April 2018 
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Attribute-Clustering vs  
Schema Matching 

 

Similar to Schema Matching, …but fundamentally different: 

 

1. Associated attribute names do not have to be semantically 
equivalent. They only have to produce good blocks 

 

2. All singleton attribute names are associated with each other 

 

3. Unlike Schema Matching, it scales to the very high levels of 
heterogeneity of Web Data 
– because of the above simplifying assumptions 

 

Papadakis & Palpanas, WWW 2018, April 2018 
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TYPiMatch [Ma et. al., WSDM 2013] 

Goal:  

  cluster entities into overlapping types and apply Token    

  Blocking to the values of the best attribute for each type. 

Papadakis & Palpanas, WWW 2018, April 2018 
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TYPiMatch 

Algorithm: 

1. Create a directed graph G, where nodes correspond to 
tokens, and edges connect those co-occurring in the same 
entity profile, weighted according to conditional co-
occurrence probability. 

2. Convert G to undirected graph G’ and get maximal cliques 
(parameter θ). 

3. Create an undirected graph G’’, where nodes correspond to 
cliques and edges connect the frequently co-occurring 
cliques (parameter ε). 

4. Get connected components to form entity types. 

5. Get best attribute name for each type using an entropy-
based criterion. 

Papadakis & Palpanas, WWW 2018, April 2018 
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For Semantic Web data, three sources of evidence create blocks of 
lower redundancy than Token Blocking: 

1.Infix 
 

 

2. Infix Profile  

3.Literal Profile 
 

 

 

 

 
Algorithm for URI decomposition in PI(S)-form in [Papadakis et al., iiWAS 2010].  

Evidence for Semantic Web Blocking 

Papadakis & Palpanas, WWW 2018, April 2018 
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The above sources of evidence lead to 3 parameter-free blocking 
methods: 

1. Infix Blocking 
every block contains all entities whose URI has a specific Infix 

2. Infix Profile Blocking 
every block corresponds to a specific Infix (of an attribute value) and contains 
all entities having it in their Infix Profile 

3. Literal Profile Blocking 
every block corresponds to a specific token and contains all entities having it 
in their Literal Profile 
 

Individually, these atomic methods have limited coverage and,  

thus, low effectiveness (e.g., Infix Blocking does not cover blank  

nodes).  

However, they are complementary and can be combined  

into composite blocking methods with high robustness and  

effectiveness! 

URI Semantics Blocking [Papadakis et al., WSDM2012]  

Papadakis & Palpanas, WWW 2018, April 2018 
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Summary of Blocking for Web Data 
 

High Recall in the context of noisy entity profiles and extreme 
schema heterogeneity thanks to: 

1.  redundancy that reduces the likelihood of missed matches. 

2.  attribute-agnostic functionality that requires no schema 
semantics. 

 

Low Precision because: 

• the blocks are overlapping → redundant comparisons 

• high number of comparisons between irrelevant entities → 
superfluous comparisons 

Papadakis & Palpanas, WWW 2018, April 2018 
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Token Blocking Example 

Papadakis & Palpanas, WWW 2018, April 2018 

Superfluous  
Comparison 

Redundant  
Comparison 

79 



Papadakis & Palpanas, WWW 2018, April 2018 

 

 

 

 

 Part 4: 

 Block Processing Techniques 

80 



Outline 
1. Introduction to Blocking  
2. Blocking Methods for Relational Data 
3. Blocking Methods for Web Data 

4. Block Processing Techniques  
– Block Purging 
– Block Filtering 
– Block Clustering 
– Comparison Propagation 
– Iterative Blocking 

5. Meta-blocking 
6. Entity Matching 
7. Entity Clustering 
8. Massive Parallelization Methods 
9. Progressive Entity Resolution 
10. Challenges 
11. JedAI Toolkit 
12. Conclusions 
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General Principles 

Goals: 

1. eliminate all redundant comparisons 

2. avoid most superfluous comparisons 

without affecting matching comparisons (i.e., PC). 

 

Depending on the granularity of their functionality, they are 
distinguished into: 

1. Block-refinement 

2. Comparison-refinement 

• Iterative Methods 

 
 

Papadakis & Palpanas, WWW 2018, April 2018 
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Block Purging 

Exploits power-law distribution of block sizes. 

 

Targets oversized blocks (i.e., many comparisons, no duplicates) 

 
 

Discards them by setting an upper limit on: 

•   the size of each block [Papadakis et al., WSDM 2011],  

•  the cardinality of each block [Papadakis et al., WSDM 2012] 

 

Core method: 

• Low computational cost. 

• Low impact on effectiveness. 

• Boosts efficiency to a large extent. 
Papadakis & Palpanas, WWW 2018, April 2018 
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Distributions of Block Sizes and Duplicates 

Papadakis & Palpanas, WWW 2018, April 2018 
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Block Filtering [Papadakis et. al, EDBT 2016] 

Main ideas:  

• each block has a different importance for every entity it 
contains.  

• Larger blocks are less likely to contain unique duplicates 
and, thus, are less important. 

 

Algorithm  

• sort blocks in ascending cardinality 

• build Entity Index 

• retain every entity in r% of its smallest blocks 

• reconstruct blocks 
 

Papadakis & Palpanas, WWW 2018, April 2018 
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Block Filtering Example 

Papadakis & Palpanas, WWW 2018, April 2018 
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Block Clustering [Fisher et. al., KDD 2015] 

Main idea:  

• restrict the size of every block into [bmin, bmax] 

– necessary in applications like privacy-preserving ER 

– operates so that ||B|| increases linearly with |E| 

 

Algorithm  

• recursive agglomerative clustering  

– merge similar blocks with size lower than bmin 

– split blocks with size larger than bmax 

• until all blocks have the desired size 

 
 

Papadakis & Palpanas, WWW 2018, April 2018 
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Comparison Propagation [Papadakis et al., JCDL 2011]  

• Eliminate all redundant comparisons at no cost in recall. 

• Naïve approach does not scale. 

• Functionality: 

1. Build Entity Index 

2. Least Common Block Index condition. 

 

 

Papadakis & Palpanas, WWW 2018, April 
2018 
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Iterative Blocking [Whang et. Al, SIGMOD 2009] 

Main idea: 

integrate block processing with entity matching and reflect outcomes 
to subsequently processed blocks, until no new matches are detected. 
 

Algorithm 

• Put all blocks in a queue Q 

• While Q is not empty 

– Get first block 

– Get matches with an ER algorithm (e.g., R-Swoosh) 

• For each new pair of duplicates pi≡pj 

– Merge their profiles p’i = p’j =< pi, pj > and update them in 
all associated blocks 

– Place in Q all associated blocks that are not already in it 

Papadakis & Palpanas, WWW 2018, April 2018 
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Papadakis & Palpanas, WWW 2018, April 2018 
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Motivation 

 
 

DBPedia 3.0rc ↔ DBPedia 3.4 

 1.2 million entities ↔ 2.2 million entities 
 
  

Papadakis & Palpanas, WWW 2018, April 2018 
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 1.2 million entities ↔ 2.2 million entities 
 

Brute-force approach 

Comparisons: 2.58 ∙ 1012 

Recall: 100% 
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Overhead time: <30 mins 
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Recall: 99% 

Total Running time: 19 days  
  

Token Blocking + Block Filtering + ?? 
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Meta-blocking [Papadakis et. al., TKDE 2014] 

Goal: 

restructure a redundancy-positive block collection into a new 
one that contains substantially lower number of redundant 
and superfluous comparisons, while maintaining the original 
number of matching ones (ΔPC ≈ 0, ΔPQ >> 1) → 
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Meta-blocking [Papadakis et. al., TKDE 2014] 

Goal: 

restructure a redundancy-positive block collection into a new 
one that contains substantially lower number of redundant 
and superfluous comparisons, while maintaining the original 
number of matching ones (ΔPC ≈ 0, ΔPQ >> 1) → 

 

Main idea: 

common blocks provide valuable evidence for the similarity of 
entities  

→ the more blocks two entities share, the more similar and 
the more likely they are to be matching 

 

 
 Papadakis & Palpanas, WWW 2018, April 2018 
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Outline of Meta-blocking 
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Graph Building 

For every block: 

• for every entity → add a node 

• for every pair of co-occurring entities → add an undirected 
edge 

 

Blocking graph: 

• It eliminates all redundant comparisons →  
no parallel edges. 

• Low materialization cost →  
implicit materialization through inverted indices 

• Different from similarity graph! 

Papadakis & Palpanas, WWW 2018, April 2018 
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Edge Weighting 

Five generic, attribute-agnostic weighting schemes that rely on 
the following evidence: 

• the number of blocks shared by two entities 

• the size of the common blocks 

• the number of blocks or comparisons involving each entity. 

 

Computational Cost: 

• In theory, equal to executing all pair-wise comparisons in the 
given block collection. 

• In practice, significantly lower because it does not employ 
string similarity metrics.  

Papadakis & Palpanas, WWW 2018, April 2018 
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Weighting Schemes 

1. Aggregate Reciprocal Comparisons Scheme (ARCS) 

𝑤𝑖𝑗 =  
1

||𝑏𝑘||
𝑏𝑘∈𝐵𝑖𝑗

 

2. Common Blocks Scheme (CBS) 
𝑤𝑖𝑗 = |𝐵𝑖𝑗| 

3. Enhanced Common Blocks Scheme (ECBS)  

𝑤𝑖𝑗 = |𝐵𝑖𝑗| ∙ log
|𝐵|

|𝐵𝑖|
∙ log
|𝐵|

|𝐵𝑗|
 

4. Jaccard Scheme (JS) 

𝑤𝑖𝑗 =
|𝐵𝑖𝑗|

𝐵𝑖 + 𝐵𝑗 − |𝐵𝑖𝑗|
 

5. Enhanced Jaccard Scheme (EJS ) 

𝑤𝑖𝑗 =
|𝐵𝑖𝑗|

𝐵𝑖 + 𝐵𝑗 −|𝐵𝑖𝑗|
∙ log

|𝑉𝐺|

|𝑣𝑖|
 ∙ log

|𝑉𝐺|

|𝑣𝑗|
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Graph Pruning 

Pruning algorithms 

1. Edge-centric 

2. Node-centric 

 they produce directed blocking graphs 

 

Pruning criteria 

Scope: 

1. Global 

2. Local 

Functionality: 

1. Weight thresholds 

2. Cardinality thresholds 

Papadakis & Palpanas, WWW 2018, April 2018 
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Thresholds for Graph Pruning 

Experiments show robust behavior of the following 
configurations: 

 

1. Weighted Edge Pruning (WEP)  
 threshold: average weight across all edges 

2. Cardinality Edge Pruning (CEP)  
 threshold: K = BPE∙|E|/2 

3. Weighted Node Pruning (WNP)  
 threshold: for each node, the average weight of the 
 adjacent edges 

4. Cardinality Node Pruning (CNP)  
 threshold: for each node, k=BPE-1 

Papadakis & Palpanas, WWW 2018, April 2018 
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Back to Motivation 
 
 

DBPedia 3.0rc ↔ DBPedia 3.4 
Brute-force approach 

Comparisons: 2.58 ∙ 1012 

Recall: 100% 
Running time: 1,344 days → 3.7 years 
 

Token Blocking + Block Filtering + Comparison Propagation  
Overhead time: <30 mins 
Comparisons: 3.5 ∙ 1010 
Recall: 99% 
Total Running time: 19 days  
  

Token Blocking + Block Filtering + Meta-blocking 
Overhead time: 4 hours 
Comparisons: 8.95 ∙ 106 
Recall: 92% 
Total Running time: 5 hours 

Papadakis & Palpanas, WWW 2018, April 2018 
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Meta-blocking Challenges: Time Efficiency 

Bottleneck: edge weighting 

• Depends on 𝐵  & BPE 

– 𝐸 = 3.4 × 106 , 𝐵 = 4 × 1010, BPE=15 → 3 hours 

– 𝐸 = 7.4 × 106 , 𝐵 = 2 × 1011, BPE=40 → 186 hours 

Papadakis & Palpanas, WWW 2018, April 2018 
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Enhancing Meta-blocking Time Efficiency 

1. Block Filtering 

 r = 0.8 → 4 times faster processing, on average 

 reduces both ||B|| and BPE 

2. Optimized Edge Weighting [Papadakis et. al., EDBT 2016] 

 Entity-based instead of Block-based implementation 

 An order of magnitude faster processing, in combination with 
Block Filtering 

3. Multi-core Meta-blocking 

 Commodity hardware 

4. Parallel Meta-blocking 

 Hadoop Cluster 

Papadakis & Palpanas, WWW 2018, April 2018 
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Multi-core Meta-blocking [Papadakis et. al, Semantics 2017] 

Two types of methods: 

• Block-based 

• Entity-based 

 

Fork-join approach: 

• computational cost split into set of chunks* placed in an array, with 
an index indicating next chunk to be processed 

• Every thread retrieves current value of index and assigned to 
process corresponding chunk 

 

*chunk = individual items* or a non-overlapping set of items 

*item = an individual block or an individual entity 

Papadakis & Palpanas, WWW 2018, April 2018 
111 



Parallelization Strategies 

Depending on the definition of chunks, we defined the following 
parallelization strategies: 

1. Random parallelization → individual items in arbitrary order 

2. Naïve Parallelization → individual items sorted by cost 
(#comparisons) 

3. Partition Parallelization → an arbitrary number of non-overlapping 
groups of items with the same computational cost 

4. Segment Parallelization → #cores non-overlapping groups of items 
with the same computational cost 

 

Papadakis & Palpanas, WWW 2018, April 2018 
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Segment Parallelization 

Papadakis & Palpanas, WWW 2018, April 2018 

Input:  
• I = { 3, 5, 10, 6, 1, 9, 2, 4, 7,  8 } 
• number of segments (4) 
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Segment Parallelization 
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Time complexity: O(n log n) 
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Execution Plan 

Papadakis & Palpanas, WWW 2018, April 2018 

Total valid 
comparisons 

Merge 

Initialization 

MWEP MWNP MCEP MCNP 
Initialize chunk 
array and N 
threads. 

Initialize chunk 
array and N 
threads. 

Initialize chunk  
array and N threads. 
Estimate K. 

Each thread 
computes local 
aggregate edge 
weight and 
#comparisons 

Estimate average 
edge weight 

Each thread  
stores the total 
weight and 
#comparisons per 
entity in two arrays 

Check and keep 
valid 
comparisons 
above the 
weight threshold 

Output total 
valid 
comparisons 

Merge the 2 
arrays to compute 
the average edge 
weight of each 
node 

Check and keep 
valid comparisons 
above the weight 
threshold  of any 
adjacent node 

Output total valid 
comparisons 

Every thread stores 
the k top-weighted 
edges for every 
processed entity in 
a priority queue 

Output the comparisons 
that are among the k 
top-weighted ones for 
any of the adjacent 
entities 

Stage 1 

Stage 2 

Each thread stores the 
K top-weighted edges 
in the processed 
chunks in a priority 
queue 

Output the overall 
K top-weighted 
comparisons  

Initialize chunk 
array and N threads. 
Estimate k. 

th1 th2 th3 thN … 

th1 th2 th3 
thN … 
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Experimental Evaluation - Datasets 

Original  
Datasets 

DBPedia 
3.0rc 

DBPedia 
3.4 

Entities 1,190,733 2,164,040 

Duplicates 892,579 

Triples 1.69∙107 3.50∙107 

Predicates 30,757 52,554 

Brute-force 2.58∙1012 

Papadakis & Palpanas, WWW 2018, April 2018 

Blocks Input 
Output 
(CNP) 

Blocks 1,239,066 1,190,733 

Comparisons 1.30∙1010 3.30∙107 

Detected 
Matches 

890,817 859,554 

Recall 0.998 0.963 

Precision 6.86∙10−5 2.61∙10−2 

System: Server running Ubuntu 12.04, 32GB RAM and 2 Intel Xeon E5620 
processors, each having 4 physical cores and 8 logical cores at 2.40GHz. 

125 

token blocking + 
block purging + 
block filtering 

token blocking + 
block purging +  
block filtering + 

meta-blocking CNP 



Experimental Evaluation – CNP Wall Clock Time  

Papadakis & Palpanas, WWW 2018, April 2018 

Single-threaded time = 3.5 hours RB=Random, block-based 
parallelization 
NB=Naïve, block-based 
parallelization 
PB=Partition, block-based 
parallelization 
SB=Segment, block-based 
parallelization 
RE=Random, entity-based 
parallelization 
NE=Naïve, entity-based 
parallelization 
PE=Partition, entity-based 
parallelization 
SE=Segment, entity-based 
parallelization 15 min 
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Experimental Evaluation – CNP Speedup 

Papadakis & Palpanas, WWW 2018, April 2018 

RB=Random, block-based 
parallelization 
NB=Naïve, block-based 
parallelization 
PB=Partition, block-based 
parallelization 
SB=Segment, block-based 
parallelization 
RE=Random, entity-based 
parallelization 
NE=Naïve, entity-based 
parallelization 
PE=Partition, entity-based 
parallelization 
SE=Segment, entity-based 
parallelization 
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Meta-blocking Challenges: Effectiveness 

Problem:  

• Simple pruning rules 

 

Solutions: 

• Unsupervised methods 
– BLAST 

• Integrates schema information  

• Supervised methods 
– Supervised Meta-blocking (SMB) 

•  utilizes feature-based classification of blocking-graph edges 

– BLOSS  

• minimizes the size of the required training set 

Papadakis & Palpanas, WWW 2018, April 2018 
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BLAST [Simonini et. al., VLDB 2017] 

• Goal:  
improve the edge weighting and pruning in unsupervised WNP with loose 
schema information 

• Solution: 

 

 

 

 

 

 
 

It works for Dirty ER, as well. 

Papadakis & Palpanas, WWW 2018, April 2018 
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Courtesy of Giovanni Simonini 



 

Similar to Attribute Clustering: 

1. Each attribute is represented as the set of its possible values 

2. Builds a (bipartite*) graph with one node for every attribute 

3. There is an edge for every pair of attributes with similarity > 0 

4. Each connected component is an attribute cluster 

 

* In the case of Clean-Clean ER. 

The original Attribute Clustering does 

not scale to thousands of attributes 

→ very inefficient 
 

BLAST employs LSH to reduce the 

time complexity (for JaccardSim) 

• Scales well to hundred of 

thousands attributes 

• Simultaneously estimates 

aggregate entropy per cluster 

Loose Schema Information Extraction 

Papadakis & Palpanas, WWW 2018, April 2018 
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Loosely Schema-aware Meta-blocking 

1. BLAST improves edge weighting as follows:  
every edge → several blocking keys (tokens) → multiple attribute 
names → w(eij)=aggregate entropy∙Pearson’s χ2 

 

 

 

2. BLAST improves edge pruning in two ways: 
– Local weight threshold independent of the size of each node neighborhood 

(i.e., number of edges): 
 

𝜃𝑖 =
𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑤(𝑒𝑖𝑗)

2
 

– An edge  𝑒𝑖𝑗  is retained if  𝑤(𝑒𝑖𝑗) ≥
𝜃𝑖+𝜃𝑗

2
 . 

Papadakis & Palpanas, WWW 2018, April 2018 
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Example – Original Meta-blocking 

Papadakis & Palpanas, WWW 2018, April 2018 

Entity Collection Token Blocking 

Blocking Graph New Collection Pruned Graph 

132 
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Example – Meta-blocking over Attribute Clustering 

Papadakis & Palpanas, WWW 2018, April 2018 

Entity Collection Attribute Clustering 

Blocking Graph 

name,f.name, 

 s.name 

Other 

Attributes 

C1 C2 
New Collection Pruned Graph 

Attribute Clusters 

133 
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Example - BLAST 

Papadakis & Palpanas, WWW 2018, April 2018 

Entity Collection Attribute Clustering 

Blocking Graph 

name,f.name, 

 s.name 

Other 

Attributes 

C1 C2 
New Collection Pruned Graph 

Attribute Clusters 
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Supervised Meta-blocking [Papadakis et. al., VLDB 2014] 

Goal: 

 more accurate and comprehensive methodology for    

 pruning the edges of the blocking graph 

 

Solution: 

 - model edge pruning as a classification task per edge 

 - two classes: “likely match”, “unlikely match” 

 

Open issues: 

• Classification Features 

• Training Set 

• Classification Algorithms & Configuration 

Papadakis & Palpanas, WWW 2018, April 2018 
135 



 

Requirements: 

1. Generic  2. Effective 

3. Efficient 4. Minimal 

Classification Features 

Papadakis & Palpanas, WWW 2018, April 2018 
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Feature Engineering 

CF-IBF = # of Common Blocks × Inverse Block Frequency per entity 
RACCB = Sum of Inverse Block Sizes 
 
We examined all 63 possible combinations to find the minimal set of 
features, which comprises the first four features. 
 

Papadakis & Palpanas, WWW 2018, April 2018 
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Training Set 

Challenge:  

  binary classification with heavily imbalanced classes 

 

Solutions: 

1. Oversampling 

2. Cost-sensitive learning 

3. Ensemble learning 

4. Undersampling 

– Sample size equal to 5% of the minority class. 

 

Papadakis & Palpanas, WWW 2018, April 2018 
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Classification Algorithms 
 

Weighted Edge Pruning (WEP) 
• compatible with any classifier 

• we selected 4 state-of-the-art:  

1. Naïve Bayes 

2. Bayesian Networks 

3. C4.5 Decision Trees 

4. Support Vector Machines 

 

Cardinality Edge Pruning (CEP) & 

Cardinality Node Pruning (CNP) 
• compatible with probabilistic classifiers 

• we selected Naïve Bayes, Bayesian Networks 

Configuration 
For selected features and 
sample size, classifiers are 
robust with respect to their 
internal parameters 

Papadakis & Palpanas, WWW 2018, April 2018 
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Experiments 

Papadakis & Palpanas, WWW 2018, April 2018 
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Experiments 

recall almost unaffected 

Papadakis & Palpanas, WWW 2018, April 2018 
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Experiments 

recall almost unaffected 

running time 

Papadakis & Palpanas, WWW 2018, April 2018 
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Experiments 

recall almost unaffected 

running time up to 6x faster 
(than original meta-blocking)  

Papadakis & Palpanas, WWW 2018, April 2018 
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BLOSS [Dal Bianco et al., Information Systems, 2018] 

 

Goal: 

 minimize the labelling effort  
 for training Supervised Meta-blocking 

 

Solution: 

 meta-BLOcking Sampling Selection 

 - involves a novel sampling methodology  

 - combines it with active learning  

 

Key feature: 

• removes outliers to improve recall 

Papadakis & Palpanas, WWW 2018, April 2018 
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BLOSS Outline  

It comprises three steps: 

 

1. Definition of Similarity Levels and Random Sampling 
– pre-selects candidate pairs using a metric that assesses the potential 

of a pair being a match 

– level-based sampling ensures diversity 

 

2. Selection of Pairs for Labeling 
– applies active learning applied to the pre-selected pairs 

 

3. Pruning Non-Matching Outliers 
– filters out noisy non-matching pairs that have been labeled 

Papadakis & Palpanas, WWW 2018, April 2018 145 Courtesy of Guilherme Dal Bianco 



Group candidate pairs 
into L layers 

Random selection N pairs 
inside each level 

CF_IBF Entity 1 Entity 2 

30 A B C D A E F G 

30 C T U Z E W U V 

80 A I V X A E P X 

80 L M Q X S M P X 

160 D E F G D E F G 

160 A L W X A L W X 

CF_IBF Entity 1 Entity 2 

30 C T U Z E W U V 

80 A I V X A E P X 

160 A L W X A L W X 

Level L 

Level 1 

Level 0 

BLOSS First Stage 

Relies on CF_IBF, which is proportional to matching likelihood. 

Courtesy of Guilherme Dal Bianco Papadakis & Palpanas, WWW 2018, April 2018 146 



BLOSS First Stage – Layers distribution 

• first levels probably include more non-matching pairs 
• last levels group more matching pairs 

Courtesy of Guilherme Dal Bianco 

increasing CF_IBF 

Papadakis & Palpanas, WWW 2018, April 2018 147 



Random selection 
of unlabeled pairs  

u1 A  C V 

u2 A C U 

u3 T C R 

l1 T B R 

l2 L K N 

l3 O C M 

l4 P R V 

lu3 C 

lu4 V 

lu3 C 

lu1 T R 

lu3 C 

Unlabeled Dataset 
Already Labeled Dataset 

Projected Set 

2 Rules 

1 Rules 

5 Rules 

Pair u2 is the most dissimilar instance compared to the actual training set.  

Rule-based active 
learning 

Reduced sample 
of labeled pairs 

BLOSS Second Stage: Pairs Selection 

Courtesy of Guilherme Dal Bianco Papadakis & Palpanas, WWW 2018, April 2018 148 



BLOSS Third Stage: Outliers Pruning 

Goal: remove noise, while maximizing recall. 

Courtesy of Guilherme Dal Bianco Papadakis & Palpanas, WWW 2018, April 2018 149 



Pruning Threshold:  
average Jaccard similarity of non-matching labelled instances. 

BLOSS Third Stage – Part B 

DBLP-Scholar  DBLP-ACM Synthetic Dataset 

Courtesy of Guilherme Dal Bianco Papadakis & Palpanas, WWW 2018, April 2018 150 



Measures: 
RRT = Relative running time wrt to original blocking (without Meta-blocking) 
ΔPC = Reduction in recall wrt to original blocking 
ΔPQ = Increase in precision wrt to original blocking 

BLOSS achieves a reduction in the training set size of 
around 40 times. 

BLOSS Effectiveness & Time Efficiency 

Courtesy of Guilherme Dal Bianco 
Papadakis & Palpanas, WWW 2018, April 2018 151 



Comparative Analysis of Approximate 
Blocking Techniques [Papadakis et. al., VLDB 2016] 

• employed 3 sub-tasks of blocking 

 

 

 

Papadakis & Palpanas, WWW 2018, April 2018 

Block 
Building 

Comparison 
Cleaning 

E B Block 
Cleaning 

Lazy  

blocking 

methods 

Block-refinement 

methods 

Comparison-

refinement 

methods 

Proactive blocking methods 
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• considered 5 lazy and 7 proactive blocking methods 
 

Papadakis & Palpanas, WWW 2018, April 2018 

Comparative Analysis of Approximate 
Blocking Techniques [Papadakis et. al., VLDB 2016] 

153 



Experimental Analysis Setup 

 

• Block Cleaning methods:  
1. Block Purging 

2. Block Filtering 

 

• Comparison Cleaning methods:  
1. Comparison Propagation 

2. Iterative Blocking 

3. Meta-blocking 

Papadakis & Palpanas, WWW 2018, April 2018 
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Experimental Analysis Setup 

 

• Exhaustive parameter tuning to identify two configurations for 
each method: 

1. Best configuration per dataset → maximizes  
𝒂 𝑩, 𝑬 = 𝑹𝑹 𝑩, 𝑬 ∙ 𝑷𝑪(𝑩, 𝑬) 

2. Default configuration → highest average 𝒂 across all datasets 

 

• Extensive experiments measuring effectiveness and time 
efficiency over 5 real datasets (up to 3.3M entities). 

 

• Scalability analysis over 7 synthetic datasets (up to 2M entities). 

Papadakis & Palpanas, WWW 2018, April 2018 
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Effectiveness of Lazy Methods on DBPedia 

Papadakis & Palpanas, WWW 2018, April 2018 
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Effectiveness of Lazy Methods on DBPedia 

Papadakis & Palpanas, WWW 2018, April 2018 

Token-blocking and  
Meta-blocking 
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Time Efficiency of Lazy Methods on DBPedia 

Papadakis & Palpanas, WWW 2018, April 2018 
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Time Efficiency of Lazy Methods on DBPedia 

Papadakis & Palpanas, WWW 2018, April 2018 

Token-blocking and  
Meta-blocking 

159 



Effectiveness of Proactive methods on DBPedia 

Papadakis & Palpanas, WWW 2018, April 2018 
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Effectiveness of Proactive methods on DBPedia 

Papadakis & Palpanas, WWW 2018, April 2018 

Suffix-arrays and  
Meta-blocking 
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Time Efficiency of Proactive Methods on DBPedia 

Papadakis & Palpanas, WWW 2018, April 2018 
162 



Time Efficiency of Proactive Methods on DBPedia 

Papadakis & Palpanas, WWW 2018, April 2018 

Suffix-arrays and  
Meta-blocking 
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Papadakis & Palpanas, WWW 2018, April 2018 

 

 

 

 

 Part 6: 

 Entity Matching 
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Preliminaries 

• Estimates the similarity of candidate matches. 
 

• Input 
– Pruned Blocking Graph 

• Nodes → entities 

• Edges → candidate matches 

– Or, a set of blocks 

• Every comparison in any block is a candidate match 
 

• Output 
– Similarity Graph 

• Nodes → entities 

• Edges → candidate matches 

• Edge weights → similarity of entity profiles (+neighbors) 

Papadakis & Palpanas, WWW 2018, April 2018 



Naïve Approach 

• For each pair of entities, e1-e2 

– Estimate aggregate similarity based on: 
• attribute values 

• neighbors 

• external knowledge 

• combination of above 

– If similarity > threshold → match! (unsupervised) 

– If classifierDecision(e1,e2) = true → match! (supervised) 

 

 

Papadakis & Palpanas, WWW 2018, April 2018 
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Group Linkage [On et al., ICDE 2007] 

• Often, “entity” is represented as a uniquely identified 
group of information 

• In structured data: 

– An author with a group of publication records 

– A household in a census survey with a group of family 
members 

• In semi-structured data: 

– Every entity is a group of name-value pairs. 

Group Linkage Problem: to determine if two entities 
represented as groups are approximately the same or not 

Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Dongwon Lee 
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Group Linkage:  
Popular Group Similarity 

 

Jaccard 

• Intuitive, cheap to run 

• Error-prone 

 

 21

21
21 ),(

gg

gg
ggsim






Bipartite Matching 

 Cardinality 

 Weighted 

 Rich 

 Expensive to run 

Q: Can we combine 
Jaccard and Bipartite 
Matching for Group 
Linkage? 

Papadakis & Palpanas, WWW 2018, April 2018 
Courtesy of Dongwon Lee 



 
169 

Group Linkage:  
Intuition for Better Similarity 

 

• Two groups are similar if: 

 

– A large fraction of elements in 
the two groups form matching 
element pairs 

 

– There is high enough similarity 
between matching pairs of 
individual elements that 
constitute the two groups 

 

Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Dongwon Lee 
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Group Linkage: Group Similarity 

• Two groups of elements: 

– g1 = {r11, r12, …, r1m1}, g2 = {r21, r22, …, r2m2} 

– The group measure BM is the normalized weight of 
the maximum bipartite matching M in the bipartite 
graph (N = g1 U g2, E=g1 X g2) 

 

 

 

     such that 

 

– BM(g1, g2) ≥ θ 

 

Mmm

rrsim
ggBM

Mrr ji

sim

ji



 

21

),( 21
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Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Dongwon Lee 

user-defined parameters 
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Group Linkage:  
Example (                       ) 

3.0

9.0,3.0 

0.7 
0.4 
0.5 
0.9 
0.2 
0.3 
 g1 g2 

0.7 

0.4 

0.5 

0.9 

M: max-weight  
bipartite matching 

0.7 

0.4 

0.5 

0.9 

sparse bipartite graph 









 

53.0
3

6.1

223

7.09.0

)),((
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Therefore, g1 <> g2 ! 

Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Dongwon Lee 
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Group Linkage: Challenge 
 

• Each BM group measure uses the 
maximum weight bipartite 
matching 
– Bellman-Ford: O(V2E)  

– Hungarian: O(V3) 

 

• Large number of groups to match 
– O(NM) 

 …
 

…
 

N M 
Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Dongwon Lee 
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Group Linkage: 
Solution: Greedy matching 

 

• Bipartite matching computation is expensive because 
of the requirement 

– No node in the bipartite graph can have more than one 
edge incident on it 

 

• Let’s relax this constraint: 

– For each element ei in g1, find an element ej in g2 with the 
highest element-level similarity  S1 

– For each element ej in g2, find an element ei in g1 with the 
highest element-level similarity  S2 

 
Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Dongwon Lee 



Papadakis & Palpanas, WWW 2018, April 2018 
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Upper/Lower Bounds 
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Theorem & Algorithm 

• ELSE IF LB(g1,g2) ≥ θ → BM(g1,g2) ≥ θ → g1≈ g2 

• ELSE, compute BM(g1,g2) 

 IF UB(g1,g2) < θ → BM(g1,g2) < θ → g1 ≠ g2 

)()( 2,1,2,1, ggBMggLB simsim  

)()( 2,1,2,1, ggUBggBM simsim  

Goal: BM(g1,g2) ≥ θ 

Theorem 1 

Theorem 2 

Courtesy of Dongwon Lee 



Iterative Approaches [Stefanidis et al., WWW 2014] 

• Increase recall by updating related entities upon 
detection of a new match 
 

• Core principles: 

– Transitivity: if match(e1,e2)=true & match(e2,e3)=true → 
match(e1,e3)=true 

– Duplicate dependency: if entities of one type (e.g., authors) 
are matches, related entities of another type (e.g., 
publications) are more likely to be matches, too. 

– Merge dependency: if match(e1,e2)=true, replace e1 & e2 

with e12 and compare again with all other similar entities. 
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Swoosh [Benjelloun et al., VLDBJ 2009] 

• Iterative approach crafted for relational data. 
• Relies on two functions: match (m) and merge (μ) 
• Algorithm outline: 
    while the input list I is not empty 

– e1 ← I.removeFirstRecord() 
– matchFound = false 
– for each record in the output list , e2 ∈ 𝑶  

• if m (e1, e2 ) == true then 
– O.remove ( e2 ) 
– I .add( μ ( e1 , e2 ) ) 
– matchFound = true 
– break 

– if matchFound == false 
– O.add( e1 ) 
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Swoosh Efficiency [Benjelloun et al., VLDBJ 2009] 

• Higher efficiency (fewer calls to match & merge) 
when specific properties hold: 
– Idempotence:  

m(ei, ei) = true, μ(ei, ei) = ei 

– Commutativity:  

 m(ei, ej) = M(ej, ei), μ(ei, ej) = μ(ej, ei) 

– Associativity:  

 μ(ei, μ(ej, ek)) = μ(μ(ei,ej), ek) 

– Representativity:  

 if μ(ei, ei) = ek & m(ei, el) = true → m(ek, el) = true 
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Simple Greedy Matching (SiGMa) 
[Lacoste-Julien et al., KDD 2013] 

• relies on the 1-1 assumption of Clean-Clean ER 
– once a match is identified, it never needs to be compared to other entities 

• exploits relationship graph to score decisions and to propose 
candidates 

• can easily use tailored similarity measures 

• iterative algorithm 
– provides natural tradeoff between precision & recall as well as between 

computation and recall 

• simplicity & greediness → high time efficiency  

• exhibits high effectiveness, as well 
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SiGMa intuition 

SiGMa uses neighbors for: 1) scoring candidates 

2) suggest candidates (iterative blocking) 
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Quadratic Assignment objective 

pairwise similarity score graph compatibility score: 

counts the number of valid 
neighbors which are currently 
matched (context) 

normalizing weight 
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SiGMa similarity scores 
• Increase in objective when matching pair (i,j): 

 

 

• Pairwise similarity score (could use others):  

 

• Similarity on string representation of entities: 
– Jaccard measure on words in common + smoothing  + weights (TF-IDF 

weights) 

 
 

– Property similarity measure: also smoothed weighted Jaccard 
similarity measure between sets of properties, with additional 
similarity on literals: 
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SiGMa Algorithm 

1. Start with seed match 
2. Put neighbors in S 
3. At each iteration: 

a) pick new pair in S which 
max. increase  
b) add new neighbors in S 

4. Stop when variation below 
threshold 
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PARIS [Suchanek et al., PVLDB 2011]  

• Probabilistic, iterative, parameter-free method 

• Collective approach for holistically aligning entities, relations 
and classes  
– applicable to Clean-Clean ER (for knowledge graphs) 

• Algorithm outline: 
1. Fix equalities for literals (numbers, or strings) 

2. Set equalities for relations to a small initial value 

3. Iterate the estimations for relations and entities until convergence (*) 

4. Compute the estimations for classes 

 
(*) There is no proof for convergence, but it seems to happen 
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PARIS – Part B 
• Equality of Literals 

– Pr(x ≡ y) := (x = y) ? 1 : 0 

• Equality of Entities 
– Based on the local inverse functionality of a relation r 

1/#the number of entities with a given argument for r 

– The probability of a relation being inverse functional is the harmonic mean of 
the local inverse functionalities 

– Two entities are matching if they share at least one argument for a highly 
inverse functional relation  

• Equality of Classes 
– Based on the subsumption probability: if all entities of one class are entities 

of the other, then the former subsumes the latter 

• Equality of Relations 
• Based on the probability that one relation is sub-property of the other 
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Synthesizing Entity Matching Rules 
 

Machine Learning 
System 

186 

Best F-measure 
Not interpretable 

Rule-Based 
Approach 

Lower F-measure 
Interpretable 
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Synthesizing Entity Matching Rules 
Using Examples [Singh et al., PVLDB 2017] 

187 

Program 
Synthesis 

Tuneable trade off 
between F1 and complexity 

Courtesy of Paolo Papotti Papadakis & Palpanas, WWW 2018, April 2018 

General Boolean Formula (GBF): can include  
arbitrary attribute matching predicates combined 
by conjunctions, disjunctions, and negations 



Synthesizing Entity Matching Rules 
Using Examples [Singh et al., PVLDB 2017] 

F-measure comparable to DTs depth 10 and SVM 

188 
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 Part 7: 

 Entity Clustering 
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Preliminaries 

• Partitions the matched pairs into equivalence clusters → 
groups of entity profiles describing the same real-world object 

 

• Input 
– Similarity Graph: 

• Nodes → entities 

• Edges → candidate matches 

• Edge weights → likelihood of matching entities 

 

• Output 
– Equivalence Clusters 
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Clustering Algorithms for Clean-Clean ER 

• Unique Mapping Clustering [Lacoste-Julien et al., KDD 2013] 

[Suchanek et al., PVLDB 2011] 

– Relies on 1-1 constraint  
• 1 entity from first dataset matches to 1 entity from second 

– Sorts all edges in decreasing weight 

– Starting from the top, each edge corresponds to a pair of 
duplicates if: 

• None of the adjacent entities has already been matched 

• predefined threshold < edge weight 
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Clustering Algorithms for Dirty ER 

• A wealth of literature on 
clustering algorithms 

• Requirements: 
– Partitional and disjoint Algorithms 

• Sometimes overlapping may be 
desirable 

– Goal: Sets of clusters that 

• maximize the intra-cluster 
weights 

• minimize the inter-cluster edge 
weights 

Classification of clustering algorithms  

[Jain&Dubes88] 
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Clustering Algorithms Characteristics 
[Hassanzadeh et al., VLDB 2009] 

• Most important feature 

“Unconstrained algorithms” 

 

• I.e. , algorithms that do not require as input: 
– The number of clusters 

– The diameter of the clusters 

– Any other domain specific parameters 

 

• Algorithms need to be able to predict the correct number of 
clusters 
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Clustering Algorithms Characteristics 
[Hassanzadeh et al., VLDB 2009] 

• Need to scale well  
– Time complexity < O(n2) 

 

• Need to be robust with respect to characteristics of the data 
– E.g., distribution of the duplicates 

 

• Need to be capable of finding ‘singleton’ clusters 
– Different from many clustering algorithms 

• E.g., algorithms proposed for image segmentation 
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Single-pass Algorithms [Hassanzadeh et al., VLDB 2009] 

• Perform clustering by a 
single scan of the output of 
the similarity join (the 
edges of the graph) 

– Partitioning 
• TRANSITIVE CLOSURE 

– CENTER [HGI-WebDB'00]  

– MERGE-CENTER [HM-VLDBJ09] 

195 Papadakis & Palpanas, WWW 2018, April 2018 
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Single-pass Algorithms [Hassanzadeh et al., VLDB 2009] 

• Perform clustering by a 
single scan of the output of 
the similarity join (the 
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Single-pass Algorithms [Hassanzadeh et al., VLDB 2009] 

• Perform clustering by a 
single scan of the output of 
the similarity join (the 
edges of the graph) 

– Partitioning 
• TRANSITIVE CLOSURE 

– CENTER [HGI-WebDB'00]  

– MERGE-CENTER [HM-

VLDBJ09] 
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Star Algorithm [APR-JGraph04]  

• Creates star-shaped clusters 

– heuristic to approximate 
problem of finding minimal 
clique cover of graph 

 

• Similar to CENTER but 

– Allows overlapping clusters 

– First sorts nodes in 
descending order of their 
degrees 
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Ricochet Algorithms [WB-DASFAA’09]  

• Ricochet family of algorithms  
– Based on a strategy that resembles the rippling of stones 

thrown in a pond 
– Combine ideas from the classic K-means algorithm and the 

Star algorithm 
• First selecting seeds (star centers) for the clusters and then 

refining the clusters iteratively 

– Four unconstrained clustering algorithms, originally 
proposed for document clustering 

• SR, BSR, CR and OCR 

– SR and BSR perform a sequential selection of the cluster 
seeds; CR and OCR perform a concurrent selection of the 
seeds 
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Min-Cut Clustering [Hassanzadeh et al., VLDB 2009] 

• Based on the Cut-Clustering Algorithm [FTT-IM04] 

– Finding minimum cuts of edges in the similarity graph after 
inserting an artificial sink into similarity graph G 

t1

t2

0.71

t3

t5

t6

t4

t7

t8

0.48

0.22

0.32

0.23
0.27

0.57

0.24

0.480.68

s
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Articulation Point Clustering  
[Hassanzadeh et al., VLDB 2009] 

• A scalable graph partitioning 
algorithm 

• Based on finding articulation 
points 

– Articulation point: a vertex 
whose removal makes the 
graph disconnected 

 

• Efficient implementations 
proposed for identifying 
chatter in the blogosphere 
[BCKT-VLDB07] 
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Markov Clustering (MCL) [Dongen-Thesis00] 

• Based on simulation of stochastic flow 
in graphs 
– Graph is mapped to Markov matrix 

– Transition probabilities recomputed 
through alternate application of two 
algebraic operations on matrices 

• Expansion and Inflation 

 

• Clusterings with different scales of 
granularity by varying the inflation 
parameter of the algorithm 

 

• Optimized implementation that makes 
the algorithm scalable 
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Correlation Clustering [BBC-ML04] 

• Original problem: a graph clustering given edges labelled 
with ‘+’ or ‘−’ 
– ‘+’ indicates correlation between the nodes 

– ‘−’ indicates uncorrelated nodes  

• The goal is to find a clustering that agrees as much as 
possible with the edge labels 
– NP-Hard: approximations needed 

• The labels can be assigned to edges based on the similarity 
scores of the records (edge weights) and a threshold value 

• Several approximations exist 
– We use algorithm Cautious from [BBC-ML04] in our paper 
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Summary of Experimental Results 
[Hassanzadeh et al., VLDB 2009] 
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Main Conclusions [Hassanzadeh et al., VLDB 2009] 

• None of the clustering algorithms produces perfect clustering 
• Transitive closure:  

– highly scalable, but results in poor quality of duplicate groups 
– Poor quality even wrt other single-pass algorithms 

 

• Most algorithms are robust to distribution of duplicates, except 
Ricochet algorithms: 
– high performance over uniformly distributed duplicates 
– poor performance otherwise 

 

• Cut clustering and Correlation clustering: 
– sophisticated & popular algorithms 
– achieve lower accuracy than some single-pass algorithms 

 

• Markov clustering: 
– very efficient 
– one the most accurate algorithms 
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Massive Parallelization Outline 

• Based on the Map-Reduce paradigm 
– Data partitioned across the nodes of a cluster 

– Map Phase: transforms a data partition into (key, value) pairs  

– Reduce Phase: processes pairs with the same key 

• Parallelization of Blocking 
– Standard Blocking (Dedoop) 

• Parallelization of Block Processing 
– Block Filtering 

– Meta-blocking 

• Parallelization of Entity Matching 
– LINDA 
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1: Input  
Key: id of entity ei, 𝑖 
Value: entity profile of ei 

2: Output 
Key: blocking key value, 𝑏𝑘𝑣 
Value: entity profile of ei 

3: 𝑏𝑘𝑣 = extractBlockingKey(ei) 
4: emit( 𝑏𝑘𝑣 , 𝑘. ||𝑏𝑘|| ); 

 

1: Input  
Key: blocking key value, 𝑏𝑘𝑣 
Value: list of entity profiles 𝑉 = {𝑒𝑖 , 𝑒𝑗 , … , } 

2: Output 
Key: pair of concatenated entity ids, 𝑖. 𝑗 
Value: true (match) or false (non-match) 

3: for each pair of entities ei-ej in 𝑉 
4:    decision = compareProfiles( ei 

, ej
 ) 

 
5:    emit( 𝑖. 𝑗 , decision ); 
6: end loop 

MAP function pseudo-code REDUCE function pseudo-code 

 Parallel Standard Blocking [Kolb et al., PVLDB 2012] 



Parallel Block Filtering [Efthymiou et. al., BigData 2015]  
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1: Input  
Key: id of block bk, 𝑘 
Value: list of entity ids, 𝑏𝑘 = {𝑖, 𝑗, … ,𝑚} 

2: Output 
Key: id of entity ei, 𝑖 
Value: block id and cardinality, 𝑘. ||𝑏𝑘|| 

3: compute comparisons in block, ||𝑏𝑘|| 
4: for each 𝑖 ∈ 𝑏𝑘  loop 
5: emit( 𝑖 , 𝑘. ||𝑏𝑘|| ); 
6: end loop 

 

1: Input  
Key: id of entity ei, 𝑖 
Value: list of pairs < 𝑘. ||𝑏𝑘|| >, 𝑉 

2: Output 
Key: id of entity ei, 𝑖 
Value: list of top-N blocks in 𝐵𝑖, 𝐵′𝑖  

3: order 𝑉 in ascending block cardinality 
4: 𝐵′𝑖 = 𝑔𝑒𝑡𝑇𝑜𝑝𝑁𝐵𝑙𝑜𝑐𝑘𝐼𝑑𝑠(𝑉) 
5: emit( 𝑖 , 𝐵′𝑖  ); 

MAP function pseudo-code REDUCE function pseudo-code 



Example Parallel Block Filtering 
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b1 e1,e2,e3 
… … 

b4 e1,e3,e4 

... ... 

b6 e1,e6,e7,e9 

b7 e1,e5,e6,e8,e9 

... ... 

Key Value 

e1 b1.3 

e2 b1.3 

e3 b1.3 
... … 

Value 

e1 b4.3 

e3 b4.3 

e4 b4.3 
... … 

Key 

e1 b6.6 

e6 b6.6 

e7 b6.6 

e9 b6.6 

e1 b7.10 
... … 

M
ap

 
M

ap
 

G
ro

u
p

 b
y key 

e1 b1.3 

e1 b4.3 

e1 b6.6 

e1 b7.10 
... … 

Value 

e2 b1.3 
... … 

Key 

e3 b1.3 

e3 b4.3 
... … 

e1 b1,b4,b6 

... … 

R
e

d
u

ce
 

e2 b1 

... … 

e3 b1,b4 

... … 

R
e

d
u

ce
 

R
e

d
u

ce
 M

ap
 



Parallel Meta-blocking [Efthymiou et al., IS 2017] 

• Three strategies: 

1. Edge-based: explicitly creates the blocking graph 

• needs pre-processing to perform all weight computations  

• stores all edges of the blocking graph on disk 

• at least 2 MapReduce jobs per pruning algorithm with high I/O 

2. Comparison-based: implicitly creates the blocking graph 

• defers weight computations to avoid creating any edges 

• pre-processing enriches the input blocks with the block list of every 
entity, which is necessary for weight estimation → ideal for CEP/WEP 

3. Entity-based: uses the blocking graph only as a conceptual model 

• no pre-processing, all computations in the reducer 

• gathers entire blocks for each entity → ideal for CNP/WNP 
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1: Input  
Key: id of entity ei, 𝑖 
Value: list of associated block ids, 𝐵𝑖  

2: Output 
Key: id of block bk, 𝑘 
Value: id of entity ei and associated  
block ids, 𝑖. 𝐵𝑖  

3: sort 𝐵𝑖  in ascending order of block ids 
4: for each 𝑘 ∈ 𝐵𝑖  loop 
5: emit( 𝑘 , 𝑖. 𝐵𝑖  ); 
6: end loop 

1: Input  
Key: id of block bk, 𝑘 
Value: list of pairs < 𝑖. 𝐵𝑖  >, 𝑉 

2: Output 
Key: input key 
Value: input value 

3: if ( 2 ≤ |𝑉| ) 
4: emit( 𝑘 , V ); 

MAP function pseudo-code REDUCE function pseudo-code 

Comparison-based Parallel Meta-blocking 
Pre-processing 



Comparison-based Parallel Meta-blocking 
Pre-processing Example 

b1 

[e1,b1,b4,b6], 
[e2,b1], 
[e3,b1,b4],... 

… … 

Key Value 

b4 

[e1,b1,b4,b6], 
[e3,b1,b4], 
[e4,b4,b5],... 

... ... 
G

ro
u

p
 b

y ke
y 

M
ap

 
M

ap
 

e1 b1,b4,b6 

e2 b1 

e3 b1,b4 

e4 b4,b5 

... ... 

Key Value 

b1 [e1,b1,b4,b6] 

b4 [e1,b1,b4,b6] 

b6 [e1,b1,b4,b6] 

b1 [e2,b1] 
... … 

Value 

b1 [e3,b1,b4] 

b4 [e3,b1,b4] 

b4 [e4,b4,b5] 

b5 [e4,b4,b5] 
... … 

Key Key Value 

b1 [e1,b1,b4,b6] 

b1 [e2,b1] 

b1 [e3,b1,b4] 
... … 

b4 [e1,b1,b4,b6] 

b4 [e3,b1,b4] 

b4 [e4,b4,b5] 
... … 

b5 
[e4,b4,b5],... 

... ... 

R
e

d
u

ce
 

b5 [e4,b4,b5] 
... … 

R
e

d
u

ce
 

R
e

d
u

ce
 

b6 [e1,b1,b4,b6],
... 

... ... 

R
e

d
u

ce
 

b6 [e1,b1,b4,b6] 
... … 
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Comparison-based Parallel Meta-blocking 
Weighted Edge Pruning (WEP) & Jaccard Scheme (JS) 
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MAP function pseudo-code 

1: Input  
Key: id of block bk, 𝑘 
Value: list of entity ids, associated blocks and  
local information, 𝑉 = {𝑖. 𝐵𝑖 . 𝑋𝑖 , 𝑗. 𝐵𝑗 . 𝑋𝑗 , … } 

2: Output 
Key: entity ids defining edge <ni,nj>, 𝑖. 𝑗  
Value: total weight of <ni,nj>, 𝑤𝑖𝑗 

3: for each 𝑐𝑖𝑗 ∈ 𝑏𝑘 . 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠() loop 

4: if ( 𝑖𝑠𝑁𝑜𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑐𝑖𝑗  =  true ) 

5:       compute 𝑤𝑖𝑗 from 𝐵𝑖 . 𝑋𝑖, 𝐵𝑗 . 𝑋𝑗 ; 

6:        emit( 𝑖 . 𝑗, 𝑤𝑖𝑗 ); 
7:       |𝐸𝐺|++;  
8:        𝑡𝑤 += 𝑤𝑖𝑗 ; 
9: end loop 

 

1: Input  
Key: entity ids defining edge  
 <ni,nj>, 𝑖. 𝑗 
Value: total weight of <ni,nj>, 𝑤𝑖𝑗 

2: Output 
Key: entity ids of retained edge 

 <ni,nj>, 𝑖. 𝑗 
Value: total weight of <ni,nj>, 𝑤𝑖𝑗 

3: if ( 𝑤𝑖𝑗 > tw/ 𝐸𝐺 ) 
4:  emit( 𝑖. 𝑗, 𝑤𝑖𝑗 ); 

REDUCE function pseudo-code 



Comparison-based Parallel Meta-blocking 
Weighted Edge Pruning (WEP) & Jaccard Scheme (JS) 

e1.e2 1/3 

e1.e3 2/3 

e2.e3 1/2 

... … 

Key Value 

G
ro

u
p

 b
y ke

y 

R
e

d
u

ce
 

e1.e4 1/4 

e3.e4 1/3 

... … 

Count #keys 

Sum up values 

e1.e2 1/3 

... ... 

e1.e3 2/3 

... … 

Key Value 

e1.e4 1/4 

... ... 

e3.e4 1/3 

... … 

e2.e3 1/2 

... ... 

e1.e3 2/3 

... … 

e2.e3 1/2 

... … 

... … 

R
e

d
u

ce
 

R
e

d
u

ce
 

b1 

[e1,b1,b4,b6], 
[e2,b1], 
[e3,b1,b4] 

… … 

b4 

[e1,b1,b4,b6], 
[e3,b1,b4], 
[e4,b4,b5] 

... ... 

Key Value 

M
ap

 
M

ap
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Entity-based Parallel Meta-blocking 
Cardinality Node Pruning (CNP) 
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1: Input  
Key: id of block bk, 𝑘 
Value: list of entity ids, 𝑏𝑘 = {𝑖, 𝑗, … ,𝑚} 

2: Output 
Key: id of entity ei, 𝑖 
Value: input value 

3: for each 𝑗 ∈ 𝑏𝑘 loop  
4: emit ( 𝑗 ,  𝑏𝑘 ); 
5: end loop 

MAP function pseudo-code REDUCE function pseudo-code 

 1: Input  
Key: id of entity ei, 𝑖 
Value: co-occurrence bag, 𝛽𝑖 

 2: Output 
Key: entity ids of retained edge <ni,nj>, 𝑖. 𝑗 
Value: total weight of <ni,nj>, 𝑤𝑖𝑗  

 3: frequencies[] ← {}; setOfNeighbors ← {};  
 4: for each 𝑗 ∈ 𝑉 loop 
 5: frequencies[ 𝑗 ]++; 
 6: setOfNeighbors .add( 𝑗 ); 
 7: end loop 
 8: topEdges ← {};  
 9: for each 𝑗 ∈ setOfNeighbors  loop 
10:  𝑤𝑖𝑗 = getWeight ( 𝑖 , 𝑗 , frequencies[ 𝑗 ] ); 
11:  topEdges.add( 𝑗 , 𝑤𝑖𝑗 ); 
12:  if ( topEdges.size() < k ) 
13:  topEdges.pop(); 
14: end loop 
15: for each  𝑗 , 𝑤𝑖𝑗 ∈ topEdges loop 
16:  emit ( 𝑖. 𝑗 , 𝑤𝑖𝑗 ); 
17: end loop 
 



Load Balancing: MaxBlock Algorithm 
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Parallel Meta-blocking Performance 

Papadakis & Palpanas, WWW 2018, April 2018 
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Comparison-based Parallel Meta-blocking 
Weighted Edge Pruning (WEP) & Jaccard Scheme (JS) 

Papadakis & Palpanas, WWW 2018, April 2018 

Parallel Meta-blocking achieves (almost) linear scale-up 

220 

linear 

parallel  
meta-blocking 



LINDA: Parallel Entity Matching as an 
Optimization Problem [Böhm et al., CIKM 2012] 

 

• Input: 
– Entity Graph G=(V,E) where vertices represent distinct URIs 

• Output: 
– Assignment Matrix X where xa,b=1 if a and b refer to same entity 

• Constraints: 
– reflexivity, symmetry, transitivity, and unique mapping per source 

(entity from source 1 matches with at most one entity from source 2) 

• Objective: 
– Given sim(a, b, G, X), find X that maximizes  
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Multi-Core Assignment Algorithm  

• Initialize matrix X as identity matrix 

• Initialize priority queue Q with initial similarities 

• While Q not empty 
• Retrieve pair (a,b) of entities with highest similarity value 

• Accept pairs (a’,b’) with a’ and b’ in equivalence class of a and b 
(uses current X to determine equivalents, updates X) 

• For all pairs (c,d) of entities where similarity could have changed 

• Compute new similarities in parallel 

• If similarity has changed for (c,d) 

• Update queue with new similarity for (c,d) 

• Return X 

Papadakis & Palpanas, WWW 2018, April 2018 222 Courtesy of Gerhard Weikum 



Map/Reduce Assignment Algorithm  

Papadakis & Palpanas, WWW 2018, April 2018 
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Map/Reduce Assignment Algorithm  
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 Part 9: 

 Progressive Entity Resolution 
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Papadakis & Palpanas, WWW 2018, April 2018 

Preliminaries 

Facts: 

• Progressive, or Pay-as-you-go ER comes is useful 
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Preliminaries 

Facts: 

• Progressive, or Pay-as-you-go ER comes is useful 

 get most of the benefit  
much earlier 
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Preliminaries 

Facts: 

• Progressive, or Pay-as-you-go ER comes is useful 

 get most of the benefit  
much earlier 

may require some 
pre-processing 
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Progressive Entity Resolution 

• requires: 
– Improved Early Quality 

– Same Eventual Quality 

 

• defines optimal processing order for a set of entities 

 

• Use cases: 
– Limited, unknown time for ER (online ER) 

– Exploratory ER 

 

• Empirical by nature, based on heuristics 

 

Papadakis & Palpanas, WWW 2018, April 2018 
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Static Progressive Methods 

• Guide which records to compare first, independently of Entity 
Matching results 

 

• Three flavors 
– Sorted list of pairs: a list of record pairs, ranked by the likelihood that the 

pairs match 

– Hierarchy of partitions: likely matching records in the form of partitions with 
different levels of granularity 

– Sorted list of records: maximize the number of matching records identified 
when the list is resolved sequentially 

 

Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Steven Euijong Whang 
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Comparison-based Block-based Profile-based Hybrid 

Taxonomy of Progressive Methods 
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Progressive Sorted Neighborhood (PSN)  
[Whang et al, IEEE TKDE, 2013] 
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Comparison-based Block-based Profile-based Hybrid 

Taxonomy of Progressive Methods 
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Hierarchy of Partitions 
[Whang et al, IEEE TKDE, 2013] 

1. Compare {r1, r2} and {r4, r5}. 

2. If there is more budget, 
compare {r1, r2, r3}. 

3. If there is still more budget, 
compare {r1, r2, r3, r4, r5}. 

235 
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Taxonomy of Progressive Methods 
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Ordered List of Records 
[Whang et al, IEEE TKDE, 2013] 

 

Goal: 
 maximize the number of matching records identified while resolving the 

list sequentially 

 

Advantages: 
• zero space requirements 

• no change in resolution algorithm 

 

Generation: 
Sort all entities according to a weight derived from the partitions that 
involve them, under the assumption that each partition is equally likely to 
be the correct ER outcome. 

 

Papadakis & Palpanas, WWW 2018, April 2018 
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Schema-agnostic Progressive ER  
[Simonini et. al., ICDE 2018] 

 

• Previous works assume structured data. 
– (Multiple) Schema-based blocking methods. 

 

• Problems: 
– Inapplicable to Big Data, due to Volume and Variety. 

– Plenty of room for improvement 

• even for schema-based methods! 

 

 

 

 

 

Papadakis & Palpanas, WWW 2018, April 2018 
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Schema-agnostic Progressive ER  
[Simonini et. al., ICDE 2018] 

 

 

 

 

 

 

 

 

 

 

• state of the art schema-based solution: PSN 

Papadakis & Palpanas, WWW 2018, April 2018 
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Schema-agnostic Progressive ER  
[Simonini et. al., ICDE 2018] 

 

 

 

 

 

 

 

 

 

 

• state of the art schema-based solution: PSN 

• when optimal finds 100% of matches, PSN finds 2-35% of matches 

Papadakis & Palpanas, WWW 2018, April 2018 
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Schema-agnostic Progressive ER  
[Simonini et. al., ICDE 2018] 

 

 

 

 

 

 

 

 

 

 

• state of the art schema-based solution: PSN 

• when optimal finds 100% of matches, PSN finds 2-35% of matches 

• after 10x the comparisons optimal needs, PSN finds 15-85% of matches 

Papadakis & Palpanas, WWW 2018, April 2018 
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Schema-agnostic Progressive ER  
[Simonini et. al., ICDE 2018] 

 

 

 

 

 

 

 

 

 

 

• state of the art schema-based solution: PSN 

• when optimal finds 100% of matches, PSN finds 2-35% of matches 

• after 10x the comparisons optimal needs, PSN finds 15-85% of matches 

• after 100x the comparisons optimal needs, PSN finds 80-99% of matches 

Papadakis & Palpanas, WWW 2018, April 2018 
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Schema-agnostic Progressive ER  
[Simonini et. al., ICDE 2018] 

 

• Solution: 
– schema-agnostic methods that are able to handle large, semi-structured, 

heterogeneous data  

– proposed solutions also applicable to structured data 

Papadakis & Palpanas, WWW 2018, April 2018 
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Schema-agnostic PSN [Simonini et. al., ICDE 2018] 

• Use all attribute values as blocking keys – regardless of attribute 
values 

 

• Sort them alphabetically 

 

• Sort the entities accordingly → Neighbor List 
– The same entity might be placed in consecutive places 

 

• Slide the incremental window over the Neighbor List 

 

• Execute the valid comparisons 

Papadakis & Palpanas, WWW 2018, April 2018 
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Example of Schema-agnostic PSN 

Papadakis & Palpanas, WWW 2018, April 2018 

Data Lake 

Blocking Keys 

Neighbor List 

Sliding Window 

246 



Sorted  
Neighborhood 

(SN) 

Standard Blocking 

Suffix Arrays 
Blocking  

(SAB) 

Progressive SN  
(PSN) 

Schema-Agnostic 
PSN (SA-PSN) 

Meta-blocking 
(Blocking Graph) 

Ordered  
List of  
Records 
(OLR) 

Hierarchy  
of Record  
Partitions 
(HRP) 

Local SA-PSN  
(LS-PSN) 

Global SA-PSN  
(GS-PSN) 

Progressive  
Block  
Scheduling  
(PBS) 

Progressive Suffix  
Arrays Blocking 

(SA-PSAB) 

Token Blocking 

Progressive 
Profile 
Scheduling 
(PPS) 

B
atch

 
P

ro
gressive 

Sc
h

em
a-

b
as

e
d

 

N
aï

ve
 

A
d

va
n

ce
d

 

Sc
h

em
a-

ag
n

o
st

ic
 

Comparison-based Block-based Profile-based Hybrid 

Taxonomy of Progressive Methods 

Papadakis & Palpanas, WWW 2018, April 2018 
247 



Local/Global Schema-agnostic PSN  
[Simonini et. al., ICDE 2018] 

• Drawbacks of SA-PSN 
– coincidental proximity → random ordering 

– redundant comparisons 

 

• LS-PSN: 
– discards redundant comparisons within the current window 

– local execution order through comparison weighting with Position Index 

– weighting scheme: Relative Co-occurrence Frequency (RCF) 

 

• GS-PSN: 
– similar to LS-PSN, but defines a global execution order for all comparisons 

in a range of window sizes up to wmax 

Papadakis & Palpanas, WWW 2018, April 2018 
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Example of LS-PSN 

Papadakis & Palpanas, WWW 2018, April 2018 
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Progressive Suffix Arrays Blocking 
[Simonini et. al., ICDE 2018] 

• Every token in any attribute value is a blocking key  

 

• Every key is converted to all suffixes with at least lmin characters 

 

• Every suffix of minimum length creates a tree with that suffix at its 
root → Hierarchy of Partitions 

Papadakis & Palpanas, WWW 2018, April 2018 
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Progressive Block Scheduling (PBS) 
[Simonini et. al., ICDE 2018] 

• Based on redundancy-positive blocking methods 

 

• Orders blocks in increasing comparisons 

 

• For each block: 
– Estimate the weight of all comparisons 

– Sort and process the non-redundant comparisons in decreasing weight  

– Relies on Entity (Profile) Index 

Papadakis & Palpanas, WWW 2018, April 2018 
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Example of PBS 

Papadakis & Palpanas, WWW 2018, April 2018 

Data Lake 

Block Collection 

Block Processing 
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Progressive Profile Scheduling (PPS) 
[Simonini et. al., ICDE 2018] 

• Based on redundancy-positive blocking methods 

 

• Orders entities in decreasing duplication likelihood 

 

• Simultaneously, it aggregates the top-weighted comparison per 
entity → these are the first comparisons to be processed 

 

• Processes one entity at a time 
– For each entity, it considers the k top-weighted co-occurring ones in 

decreasing edge weight 

Papadakis & Palpanas, WWW 2018, April 2018 
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Example of PPS 

Papadakis & Palpanas, WWW 2018, April 2018 

Data Lake 

Block Collection 

Blocking Graph 

Sorted Profile List 

Local Comparison List for p2 
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Experimental Results [Simonini et. al., ICDE 2018] 

• datasets used: 
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Experimental Results [Simonini et. al., ICDE 2018] 

• datasets used: 

• measures used: 𝑹𝒆𝒄𝒂𝒍𝒍 =
# 𝒆𝒎𝒊𝒕𝒕𝒆𝒅 𝒎𝒂𝒕𝒄𝒉𝒆𝒔

# 𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒎𝒂𝒕𝒄𝒉𝒆𝒔
 𝒆𝒄∗ =

# 𝒆𝒎𝒊𝒕𝒕𝒆𝒅 𝒄𝒐𝒎𝒑𝒂𝒓𝒊𝒔𝒐𝒏𝒔

# 𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒎𝒂𝒕𝒄𝒉𝒆𝒔
 

• 𝒆𝒄∗ measures # of comparisons as multiples of all comparisons of optimal 
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Experimental Results [Simonini et. al., ICDE 2018] 

• datasets used: 

• measures used: 𝑹𝒆𝒄𝒂𝒍𝒍 =
# 𝒆𝒎𝒊𝒕𝒕𝒆𝒅 𝒎𝒂𝒕𝒄𝒉𝒆𝒔

# 𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒎𝒂𝒕𝒄𝒉𝒆𝒔
 

𝒂𝒓𝒆𝒂 𝒖𝒏𝒅𝒆𝒓 𝒄𝒖𝒓𝒗𝒆:     𝑨𝑼𝑪𝒎
∗ @𝒆𝒄∗ =  

𝑹𝒆𝒄𝒂𝒍𝒍 𝑪𝒖𝒓𝒗𝒆 𝒐𝒇 𝒎

𝒊𝒅𝒆𝒂𝒍 𝑹𝒆𝒄𝒂𝒍𝒍 𝑪𝒖𝒓𝒗𝒆

𝒆𝒄∗

𝟎

 

𝒆𝒄∗ =
# 𝒆𝒎𝒊𝒕𝒕𝒆𝒅 𝒄𝒐𝒎𝒑𝒂𝒓𝒊𝒔𝒐𝒏𝒔

# 𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒎𝒂𝒕𝒄𝒉𝒆𝒔
 

• 𝒆𝒄∗ measures # of comparisons as multiples of all comparisons of optimal 
• 𝑨𝑼𝑪𝒎

∗ @𝒆𝒄∗ measures performance of method m for effort 𝒆𝒄∗ 
• the higher the 𝑨𝑼𝑪𝒎

∗ @𝒆𝒄∗, the better (optimal has 𝑨𝑼𝑪𝒎
∗ @𝒆𝒄∗=1) 

Papadakis & Palpanas, WWW 2018, April 2018 261 



Experimental Results [Simonini et. al., ICDE 2018] 

Papadakis & Palpanas, WWW 2018, April 2018 

• performance over heterogeneous datasets 
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• performance over heterogeneous datasets 
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• methods based on redundancy-positive blocking perform 
significantly better 

• PPS is the winner 
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• performance over structured datasets 

• the LS/GS-PSN methods perform significantly better 
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• performance over structured datasets 

• the LS/GS-PSN methods perform significantly better 
• PPS achieves almost the same performance 

• overall, PPS is method of choice for progressive ER on both 
structured/ heterogeneous data 



Dynamic Progressive Methods 

• Problem of Static Methods: 
– The order of comparisons is immutable. 

 

• Impact: 
– The algorithm cannot react to a skewed distribution of duplicates. 

 

• Solution: 
– If (i,j) is a duplicate, then check (i+1,j) and (i,j+1) as well. 

– Assumption: 

• Oracle for Entity Matching 
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Dynamic Progressive SN  
[Papenbrock et a., IEEE TKDE, 2015] 
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Courtesy of Thorsten Papenbrock Papadakis & Palpanas, WWW 2018, April 2018 
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What is the JedAI Toolkit? 

JedAI can be used in three ways: 

 

1. As an open source library that implements numerous state-
of-the-art methods for all steps of an established end-to-end 
ER workflow. 

 

2. As a desktop application for ER with an intuitive Graphical 
User Interface that is suitable for both expert and lay users. 

 

3. As a workbench for comparing all performance aspects of 
various (configurations of) end-to-end ER workflows. 
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JedAI vs other tools 

Magellan 

× limited variety of (blocking) 
methods 

 rich variety available methods for 
every step in the end-to-end 
workflow  
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Magellan 

× limited variety of (blocking) 
methods 

× restricted to relational data only 

× targeted to expert users, 
focusing on development of 
tailor-made methods 

× offers command-line interface, 
no GUI 

JedAI 

 rich variety available methods for 
every step in the end-to-end 
workflow  

 applies to both structured and non-
structured data 

 hands-off functionality through 
default configuration of every 
method, but also extensible 

 intuitive GUI with guidelines even 
for novice users 

 multi-core execution (coming soon) 
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How does the JedAI Toolkit work? 

JedAI implements the following schema-agnostic, end-to-end 
workflow for both Clean-Clean and Dirty ER: 

Data 
Reading 

Block 
Building 

Block 
Cleaning 

Comparison 
Cleaning 

Entity 
Matching 

Entity 
Clustering 

Evaluation 
& Storing 

Step 5 Step 2 Step 3 Step 4 Step 6 Step 1 Step 7 

Reads files 
containing 
the entity 

profiles and 
the golden 
standard. 

Creates  
overlapping 

blocks. 

Optional step 
that cleans 
blocks from 

useless 
comparisons 

(repeated, 
superfluous). 

Optional step 
that operates on 

the level of 
individual 

comparisons to 
remove the 

useless ones. 

Executes all 
retained 

comparisons. 

Partitions the 
similarity graph 
into equivalence 

clusters. 

Stores and 
presents 

performance 
results 
w.r.t. 

numerous 
measures. 
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How is the JedAI Toolkit structured? 

??? 
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• Modular architecture 
– one module per workflow step 

 

• Extensible architecture  
– e.g., ontology matching module 
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How can I build an ER workflow? 

JedAI supports several established methods for each workflow step: 

Data 
Reading 

Block 
Building 

Block 
Cleaning 

Comparison 
Cleaning 

Entity 
Matching 

Entity 
Clustering 

Evaluation 
& Storing 

Step 5 Step 2 Step 3 Step 4 Step 6 Step 1 Step 7 

Possible to 
read CSV, 
RDF/XML 

files, SPARQL 
endpoints & 

relational DBs 
in any 

combination 

Choose  
1 out of 7 
methods. 

Specify any 
combination of 

3 
complementary

methods 

Choose  
1 out of 7 
methods 
(including  

Meta-blocking) 

Combine  
1 out of 2 

methods with 
12 textual 

representation 
models and 10 

similarity 
measures 

Choose  
1 out of 6 

methods for 
Dirty ER. For 

Clean-Clean ER, 
1 method is 

available 

Store results 
as a CSV file 
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Which Data Formats are supported? 
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Data Formats 

CSV files 

Relational databases 

XML/RDF/OWL files 

SPARQL endpoints 

Java Serialized Objects  
(using JedAI data model) 



Which Blocking Methods are supported? 

Block Building Block Cleaning Comparison Cleaning 

Token Blocking Block Filtering Comparison Propagation 

Sorted Neighborhood Size-based Block Purging Cardinality Edge Pruning (CEP) 

Extended Sorted 
Neighborhood 

Cardinality-based Block 
Purging 

Cardinality Node Pruning (CNP) 

Q-Grams Blocking Block Scheduling Weighted Edge Pruning (WEP) 

Extended Q-Grams Blocking Weighted Node Pruning (WNP) 

Suffix Arrays Reciprocal CNP 

Extended Suffix Arrays Reciprocal WNP 
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Which Entity Matching/Clustering 
Methods are supported? 
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Entity Matching Entity Clustering 

Group Linkage* Center Clustering 

Profile Matcher* Connected Components 

Cut Clustering 

* In combination with bag and 
graph textual models based 
on token and character n-
grams and various established 
string similarity measures 

Markov Clustering 

Merge-Center Clustering 

Ricochet SR Clustering 

Unique Mapping Clustering 



Which Datasets are included? 

Clean-Clean ER 
(real) 

D1  
Entities 

D2  
Entities 

Abt-Buy 1,076 1,076 

DBLP-ACM 2,616 2,294 

DBLP-Scholar 2,516 61,353 

Amazon-GP 1,354 3,039 

Movies 27,615 23,182 

DBPedia 1,190,733 2,164,040 
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Dirty ER  
(synthetic) 

Entities 

10K 10,000 

50K 50,000 

100K 100,000 

200K 200,00 

300K 300,00 

1M 1,000,000 

2M 2,000,000 

can be used for Dirty ER, too 

Several datasets are available for testing 
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What are the next steps? 
• Version 2.0: 

– Includes support for schema clustering, multicore functionality, GNU 
Trove for higher time efficiency. 

– Available at the end of August, 2018. 

 

• Version 3.0: 
– Includes support for data fusion, progressive ER as well as a workflow 

builder. 

– Available at the end of December, 2018. 

 

• Version 4.0: 
– All functionality is implemented in Apache Spark. 

– Available at the end of December, 2019. 
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Where can I find JedAI Toolkit? 
• Project website: http://jedai.scify.org  

• Documentation (slides, videos, etc) available at github  
 

• Github repositories: 
– JedAI Library: https://github.com/scify/JedAIToolkit  

– JedAI Desktop Application and Workbench: 
https://github.com/scify/jedai-ui . 

– All code is implemented using Java 8. 

– All code is publicly available under Apache License V2.0. 
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Where can I find JedAI Toolkit? 
• Project website: http://jedai.scify.org  

• Documentation (slides, videos, etc) available at github  
 

• Github repositories: 
– JedAI Library: https://github.com/scify/JedAIToolkit  

– JedAI Desktop Application and Workbench: 
https://github.com/scify/jedai-ui . 

– All code is implemented using Java 8. 

– All code is publicly available under Apache License V2.0. 
 

• JedAI already used in the industry, and in university courses 
 

• When using JedAI, please cite: 
George Papadakis, Leonidas Tsekouras, Emmanouil Thanos, George 
Giannakopoulos, Themis Palpanas and Manolis Koubarakis: "JedAI: The Force 
behind Entity Resolution", in ESWC 2017 
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Automatic Configuration 

 

Facts: 

• Several parameters in every blocking workflow  
– Both for lazy and proactive methods 

• Blocking performance sensitive to internal configuration 
– Experimentally verified in [Papadakis et. al., VLDB 2016] 

• Manual fine-tuning required 
 

Open Research Directions: 

• Plug-and-play blocking 

• Data-driven configuration 
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Privacy Preserving Blocking 

 

Facts: 

• several applications ask for privacy-preserving ER 

• lots of interest in this area  

     [Christen, PADM 2006][Karakasidis et al., 2012][Ziad et al, BTW 2015] 

  

Open Research Directions: 

• What is the role of blocking workflow techniques? 
– block building, block filtering, comparison cleaning 

• How can existing blocking techniques be adjusted? 

• Novel blocking methods for this context 
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Incremental Blocking 

 

Facts: 

• Velocity in Web Data 

• Dynamic ER 

• Incremental ER [Gruenheid et. al., VLDB 2014] 
– Blocking → black box 

  

Open Research Directions: 

• Incremental (Meta-)Blocking  
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Distributed Blocking 

Facts: 
• Velocity in Big Data 

• Need for even faster/more scalable ER solutions 

  

Open Research Directions: 
• What is the best way to use the modern distributed platforms/paradigms? 

– Flink/Spark 

• How can we further improve performance of Parallel Meta-blocking? 

– Gelly/Gradoop/GraphX 

• Minimize both time performance and total CPU cycles 
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Conclusions – Block Building 

• Traditional proactive blocking methods only suitable for 
relational data 
– background schema knowledge should be available for their 

configuration 
 

• Recent lazy blocking methods scale well to heterogeneous, 
semi-structured Big Data 
– Variety is addressed with schema-agnostic keys 

– Volume is addressed with Block and Comparison Cleaning methods → 
they trade slightly lower recall, for much higher precision 

– Token Blocking → the only parameter-free blocking method 
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Conclusions – Block Cleaning 

• Coarse-grained functionality:  
• operation at the level of entire blocks 

• low cost (fast) methods 

 

• Only applicable to lazy blocking methods 

 

• They boost the overall performance to a large extent:  
– comparisons drop by orders of magnitude 

– recall drops to a controllable extent (~1-2%) 

 

• Mostly complementary methods 
– multiple Block Cleaning methods can be combined in a single workflow 
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Conclusions – Comparison Cleaning 

• Fine-grained functionality: 
– operate at the level of individual comparisons → computationally intensive 

process 

• Apply to both lazy and proactive methods 
 

• Meta-blocking is the current state-of-the-art 
– Discards both superfluous and redundant comparisons 

– Necessary for reducing comparisons to manageable levels 

• reduces comparisons by orders of magnitude, with recall > 98% 

– Naturally parallelizable  
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Big Data Research (BDR) Journal 
http://www.journals.elsevier.com/big-data-research/ 

 

• New Elsevier journal on topics related to big data 
– advances in big data management/processing 

– interdisciplinary applications 

 

• Editor in Chief for BDR 
– submit your work 

– propose special issues 

 

• google: bdr journal 
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thank you! 

questions? 

 

 

http://sourceforge.net/projects/erframework  

 

google: themis palpanas 

-> publications -> tutorials 
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