
Web-scale, Schema-Agnostic,
End-to-End Entity Resolution

Papadakis & Palpanas, WWW 2018, April 2018

updated: 23 April 2018

1

Themis Palpanas

Paris Descartes University

French University Institute

themis@mi.parisdescartes.fr

George Papadakis
University of Athens

gpapadis@di.uoa.gr

mailto:themis@mi.parisdescartes.fr
mailto:gpapadis@di.uoa.gr

Entities: an invaluable asset
“Entities” is what a large part of our knowledge is about:

Persons

Organizations

Projects

Locations

Products
Events

Papadakis & Palpanas, WWW 2018, April 2018
2

However …

How many names, descriptions or IDs (URIs) are

used for the same real-world “entity”?

Papadakis & Palpanas, WWW 2018, April 2018
3

However …

How many names, descriptions or IDs (URIs) are

used for the same real-world “entity”?

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain

Londain Londe Londen Londen Londen Londinium
London Londona Londonas Londoni Londono Londra
Londres Londrez Londyn Lontoo Loundres Luân Đôn
Lunden Lundúnir Lunnainn Lunnon لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 …

Papadakis & Palpanas, WWW 2018, April 2018
4

However …

How many names, descriptions or IDs (URIs) are

used for the same real-world “entity”?

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain

Londain Londe Londen Londen Londen Londinium
London Londona Londonas Londoni Londono Londra
Londres Londrez Londyn Lontoo Loundres Luân Đôn
Lunden Lundúnir Lunnainn Lunnon لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 …

capital of UK, host city of the IV Olympic Games, host city
of the XIV Olympic Games, future host of the XXX
Olympic Games, city of the Westminster Abbey, city of
the London Eye, the city described by Charles Dickens in
his novels, …

Papadakis & Palpanas, WWW 2018, April 2018
5

However …

How many names, descriptions or IDs (URIs) are

used for the same real-world “entity”?

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain

Londain Londe Londen Londen Londen Londinium
London Londona Londonas Londoni Londono Londra
Londres Londrez Londyn Lontoo Loundres Luân Đôn
Lunden Lundúnir Lunnainn Lunnon لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 …

capital of UK, host city of the IV Olympic Games, host city
of the XIV Olympic Games, future host of the XXX
Olympic Games, city of the Westminster Abbey, city of
the London Eye, the city described by Charles Dickens in
his novels, …

http://sws.geonames.org/2643743/
http://en.wikipedia.org/wiki/London
http://dbpedia.org/resource/Category:London
…

Papadakis & Palpanas, WWW 2018, April 2018
6

◦ London, KY

◦ London, Laurel, KY

◦ London, OH

◦ London, Madison, OH

◦ London, AR

◦ London, Pope, AR

◦ London, TX

◦ London, Kimble, TX

◦ London, MO

◦ London, MO

◦ London, London, MI

◦ London, London, Monroe, MI

◦ London, Uninc Conecuh County, AL

◦ London, Uninc Conecuh County, Conecuh, AL

◦ London, Uninc Shelby County, IN

◦ London, Uninc Shelby County, Shelby, IN

◦ London, Deerfield, WI

◦ London, Deerfield, Dane, WI

◦ London, Uninc Freeborn County, MN

◦ ...

How many “entities” have the same name?

… or …

Papadakis & Palpanas, WWW 2018, April 2018
7

◦ London, KY

◦ London, Laurel, KY

◦ London, OH

◦ London, Madison, OH

◦ London, AR

◦ London, Pope, AR

◦ London, TX

◦ London, Kimble, TX

◦ London, MO

◦ London, MO

◦ London, London, MI

◦ London, London, Monroe, MI

◦ London, Uninc Conecuh County, AL

◦ London, Uninc Conecuh County, Conecuh, AL

◦ London, Uninc Shelby County, IN

◦ London, Uninc Shelby County, Shelby, IN

◦ London, Deerfield, WI

◦ London, Deerfield, Dane, WI

◦ London, Uninc Freeborn County, MN

◦ ...

◦ London, Jack
2612 Almes Dr
Montgomery, AL
(334) 272-7005

◦ London, Jack R
2511 Winchester Rd
Montgomery, AL 36106-3327
(334) 272-7005

◦ London, Jack
1222 Whitetail Trl
Van Buren, AR 72956-7368
(479) 474-4136

◦ London, Jack
7400 Vista Del Mar Ave
La Jolla, CA 92037-4954
(858) 456-1850

◦ ...

How many “entities” have the same name?

… or …

Papadakis & Palpanas, WWW 2018, April 2018
8

Content Providers

How many content types / applications provide

valuable information about each of these “entities”?

News about London
reviews on hotels in London

Pictures and tags about London

Videos and tags for London

Social networks in London

Wiki pages about the London

Papadakis & Palpanas, WWW 2018, April 2018
9

Preliminaries on Entity Resolution

Entity Resolution [Dong et al., Book 2015] [Elmagarmid et al., TKDE 2007] :

 identifies and aggregates the different entity profiles/records that
actually describe the same real-world object.

Useful because:

• improves data quality and integrity

• fosters re-use of existing data sources

Application areas:

 Linked Data, Social Networks, census data,

 price comparison portals

Papadakis & Palpanas, WWW 2018, April 2018
10

Types of Entity Resolution

The input of ER consists of entity collections that can be of two

types [Christen, TKDE 2011]:

• clean, which are duplicate-free

 e.g., DBLP, ACM Digital Library, Wikipedia, Freebase

• dirty, which contain duplicate entity profiles in themselves

 e.g., Google Scholar, CiteseerX

Papadakis & Palpanas, WWW 2018, April 2018
11

Types of Entity Resolution

The input of ER consists of entity collections that can be of two

types [Christen, TKDE 2011]:

• clean, which are duplicate-free

 e.g., DBLP, ACM Digital Library, Wikipedia, Freebase

• dirty, which contain duplicate entity profiles in themselves

 e.g., Google Scholar, CiteseerX

Based on the quality of input, we distinguish ER into 3 sub-tasks:

• Clean-Clean ER (a.k.a. Record Linkage in databases)

• Dirty-Clean ER

• Dirty-Dirty ER

Equivalent to Dirty ER
(a.k.a. Deduplication in databases)

Papadakis & Palpanas, WWW 2018, April 2018
12

Challenges for ER over Web Data

• Volume
– Millions of entities
– Billions of name-value pairs describing them
– LOD Cloud*: >5,5∙107 entities, ~1,5∙1011 triples

• Variety
– Semi-structured data → unprecedented levels of

heterogeneity
– Numerous entity types & vocabularies
– LOD Cloud*: ~50,000 predicates, ~12,000 vocabularies

• Velocity
– New DBPedia version every ~6 months
*http://stats.lod2.eu:

Papadakis & Palpanas, WWW 2018, April 2018

13

http://stats.lod2.eu/
http://stats.lod2.eu/
http://stats.lod2.eu/
http://stats.lod2.eu/

Computational cost

ER is an inherently quadratic problem (i.e., O(n2)):

every entity has to be compared with all others

ER does not scale well to large entity collections (e.g., Web Data).

Papadakis & Palpanas, WWW 2018, April 2018
14

Computational cost

ER is an inherently quadratic problem (i.e., O(n2)):

every entity has to be compared with all others

ER does not scale well to large entity collections (e.g., Web Data)

Solution: Blocking
• group similar entities into blocks

• execute comparisons only inside each block

• complexity is now quadratic to the size of the block (much smaller
than dataset size!)

Papadakis & Palpanas, WWW 2018, April 2018
15

Computational cost

|E| entities

|E| entities

Brute-force
approach

Duplicate
Pairs

Blocking
Input:
Entity Collection E

Papadakis & Palpanas, WWW 2018, April 2018
16

Example of Computational cost

DBPedia 3.0rc ↔ DBPedia 3.4
 1.2 million entities ↔ 2.2 million entities

Entity matching: Jaccard similarity of all tokens
Cost per comparison: 0.045 milliseconds (average of 0.1 billion comparisons)

Brute-force approach
Comparisons: 2.58 ∙ 1012

Recall: 100%
Running time: 1,344 days → 3.7 years

Optimized Token Blocking Workflow
Overhead time: 4 hours
Comparisons: 8.95 ∙ 106
Recall: 99%
Total Running time: 10 hours

Papadakis & Palpanas, WWW 2018, April 2018
17

Example of Computational cost

DBPedia 3.0rc ↔ DBPedia 3.4
 1.2 million entities ↔ 2.2 million entities

Entity matching: Jaccard similarity of all tokens
Cost per comparison: 0.045 milliseconds (average of 0.1 billion comparisons)

Brute-force approach
Comparisons: 2.58 ∙ 1012

Recall: 100%
Running time: 1,344 days → 3.7 years

Optimized Token Blocking Workflow
Overhead time: 4 hours
Comparisons: 8.95 ∙ 106
Recall: 99%
Total Running time: 10 hours

Papadakis & Palpanas, WWW 2018, April 2018
18

Scalable End-to-end ER workflow

Block
Building

Block
Processing

Entity
Matching

Entity
Clustering

Step 3 Step 1 Step 2 Step 4

Cluster
together
similar
entities

Refine blocks
to increase
precision at

no significant
cost in recall

Compare the
candidate
matches

Partition the
compared

profiles into
real-world

entities

Papadakis & Palpanas, WWW 2018, April 2018
19

Outline

1. Introduction to Blocking
2. Blocking Methods for Relational Data
3. Blocking Methods for Web Data
4. Block Processing Techniques
5. Meta-blocking
6. Entity Matching
7. Entity Clustering
8. Massive Parallelization Methods
9. Progressive Entity Resolution
10.Challenges
11.JedAI Toolkit
12.Conclusions

Papadakis & Palpanas, WWW 2018, April 2018
20

Papadakis & Palpanas, WWW 2018, April 2018

 Part 1:

 Introduction to Blocking

21

Fundamental Assumptions

1. Every entity profile consists of a uniquely identified set of
name-value pairs.

2. Every entity profile corresponds to a single real-world
object.

3. Two matching profiles are detected as long as they co-
occur in at least one block → entity matching is an
orthogonal problem.

4. Focus on string values.

Papadakis & Palpanas, WWW 2018, April 2018
22

General Principles

1. Represent each entity by one or more blocking keys.

2. Place into blocks all entities having the same or similar
blocking key.

Measures for assessing block quality [Christen, TKDE 2011]:

– Pairs Completeness: 𝑃𝐶 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
 (optimistic recall)

– Pairs Quality: 𝑃𝑄 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠
 (pessimistic precision)

Trade-off!

Papadakis & Palpanas, WWW 2018, April 2018

23

Problem Definition

Given one dirty (Dirty ER), or two clean (Clean-Clean ER)

entity collections, cluster their profiles into blocks

and process them so that both Pairs Completeness (PC) and
Pairs Quality (PQ) are maximized.

caution:

• Emphasis on Pairs Completeness (PC).
– if two entities are matching then they should coincide at some block

Papadakis & Palpanas, WWW 2018, April 2018
24

Blocking Techniques Taxonomy

1. Performance-wise
• Exact methods

• Approximate methods

2. Functionality-wise
• Supervised methods

• Unsupervised methods

3. Blocks-wise
• Disjoint blocks

• Overlapping blocks

– Redundancy-neutral

– Redundancy-positive

– Redundancy-negative

4. Signature-wise
• Schema-based

• Schema-agnostic

Papadakis & Palpanas, WWW 2018, April 2018
25

Papadakis & Palpanas, WWW 2018, April 2018

Performance-wise Categorization
1. Exact Blocking Methods

– Maximize PQ for PC = 100%

– Closed-world assumption

– E.g., for bibliographical records , s ≡ t if:

 JaccardSimilarity(s.title, t.title) > 0.80 AND

 EditDistance(s.venue, t.venue) < 3

– Existing methods:

• Silk → filtering technique for edit distance

• LIMES → triangle inequality for similarity metrics

2. Approximate Blocking Methods

– PC < 100% → high PQ

– Open-world assumption

26

Papadakis & Palpanas, WWW 2018, April 2018

Performance-wise Categorization
1. Exact Blocking Methods

– Maximize PQ for PC = 100%

– Closed-world assumption

– E.g., for bibliographical records , s ≡ t if:

 JaccardSimilarity(s.title, t.title) > 0.80 AND

 EditDistance(s.venue, t.venue) < 3

– Existing methods:

• Silk → filtering technique for edit distance

• LIMES → triangle inequality for similarity metrics

2. Approximate Blocking Methods

– PC < 100% → high PQ

– Open-world assumption our focus

27

Papadakis & Palpanas, WWW 2018, April 2018

Functionality-wise Categorization
1. Supervised Methods

• Goal: learn the best blocking keys from a training set

• Approach: identify best combination of attribute names
and transformations

• E.g., CBLOCK [Sarma et. al, CIKM 2012],

 [Bilenko et. al., ICDM 2006], [Michelson et. al., AAAI 2006]

• Drawbacks:
– labelled data

– domain-dependent

2. Unsupervised Methods

• Generic, popular methods

28

Papadakis & Palpanas, WWW 2018, April 2018

Functionality-wise Categorization
1. Supervised Methods

• Goal: learn the best blocking keys from a training set

• Approach: identify best combination of attribute names
and transformations

• E.g., CBLOCK [Sarma et. al, CIKM 2012],

 [Bilenko et. al., ICDM 2006], [Michelson et. al., AAAI 2006]

• Drawbacks:
– labelled data

– domain-dependent

2. Unsupervised Methods

• Generic, popular methods
our focus

29

Block
Building

Comparison
Cleaning

E B Block
Cleaning

Lazy

blocking

methods

Block-

refinement

methods

Comparison-

refinement

methods

Proactive blocking methods

Blocking Workflow [Papadakis et. al., VLDB 2016]

Papadakis & Palpanas, WWW 2018, April 2018
30

Blocks- and Signature-wise Categorization
of Block Building Methods

Papadakis & Palpanas, WWW 2018, April 2018

Disjoint
Blocks

Overlapping Blocks

Redundancy-
negative

Redundancy-
neutral

Redundancy-
positive

Schema-
based

Standard
Blocking

(Extended)
Canopy

Clustering

1. (Extended)
Sorted
Neighborhood

2. MFIBlocks

1. (Extended) Q-grams
Blocking
2. (Extended) Suffix Arrays

Schema-
agnostic

- - -

1. Token Blocking
2. Agnostic Clustering
3. TYPiMatch
4. URI Semantics Blocking

31

Papadakis & Palpanas, WWW 2018, April 2018

Block Processing Methods
[Papadakis et. al., VLDB 2016]

Mostly for redundancy-positive block building methods.

Block Cleaning

• Block-level
– constraints on block characteristics

• Entity-level
– constraints on entity characteristics

Comparison Cleaning

• Redundant comparisons
– repeated across different blocks

• Superfluous comparisons
– Involve non-matching entities

32

Papadakis & Palpanas, WWW 2018, April 2018

 Part 2:

 Block Building for Relational Data

33

General Principles

Mostly schema-based techniques.

Rely on two assumptions:

1. A-priori known schema → no noise in attribute names.

2. For each attribute name we know some metadata:

– level of noise (e.g., spelling mistakes, false or missing
values)

– distinctiveness of values

Papadakis & Palpanas, WWW 2018, April 2018
34

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, WWW 2018, April 2018

MFIBlocks

Extended Suffix
Arrays

35

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, WWW 2018, April 2018

MFIBlocks

Extended Suffix
Arrays

LAZY BLOCKING
METHODS

36

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, WWW 2018, April 2018

MFIBlocks

Extended Suffix
Arrays

LAZY BLOCKING
METHODS

PROACTIVE
BLOCKING
METHODS

37

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, WWW 2018, April 2018

MFIBlocks

Extended Suffix
Arrays

LAZY BLOCKING
METHODS

PROACTIVE
BLOCKING
METHODS

38

Standard Blocking [Fellegi et. al., JASS 1969]

Earliest, simplest form of blocking.

Algorithm:

1. Select the most appropriate attribute name(s) w.r.t. noise
and distinctiveness.

2. Transform the corresponding value(s) into a Blocking Key (BK)

3. For each BK, create one block that contains all entities having
this BK in their transformation.

Works as a hash function! → Blocks on the equality of BKs

Papadakis & Palpanas, WWW 2018, April 2018
39

Example of Standard Blocking

Papadakis & Palpanas, WWW 2018, April 2018

Blocks on zip_code:

40

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, WWW 2018, April 2018

MFIBlocks

Extended Suffix
Arrays

41

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods
blocks contain entities with similar blocking keys

Papadakis & Palpanas, WWW 2018, April 2018

MFIBlocks

Extended Suffix
Arrays

42

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

Blocks on the similarity of BKs.

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list of entities.

3. At each iteration, it compares
the entities that co-occur
within the window.

Papadakis & Palpanas, WWW 2018, April 2018
43

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

Blocks on the similarity of BKs.

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list of entities.

3. At each iteration, it compares
the entities that co-occur
within the window.

Papadakis & Palpanas, WWW 2018, April 2018
44

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

Blocks on the similarity of BKs.

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list of entities.

3. At each iteration, it compares
the entities that co-occur
within the window.

Papadakis & Palpanas, WWW 2018, April 2018
45

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

Blocks on the similarity of BKs.

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list of entities.

3. At each iteration, it compares
the entities that co-occur
within the window.

Papadakis & Palpanas, WWW 2018, April 2018
46

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

Blocks on the similarity of BKs.

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list of entities.

3. At each iteration, it compares
the entities that co-occur
within the window.

Extended Sorted Neighborhood [Christen, TKDE 2011]

2’. A window of fixed size slides over the sorted list of BKs.

Papadakis & Palpanas, WWW 2018, April 2018
47

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

Blocks on the similarity of BKs.

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list of entities.

3. At each iteration, it compares
the entities that co-occur
within the window.

Extended Sorted Neighborhood [Christen, TKDE 2011]

2’. A window of fixed size slides over the sorted list of BKs.

Papadakis & Palpanas, WWW 2018, April 2018
48

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

Blocks on the similarity of BKs.

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list of entities.

3. At each iteration, it compares
the entities that co-occur
within the window.

Extended Sorted Neighborhood [Christen, TKDE 2011]

2’. A window of fixed size slides over the sorted list of BKs.

Papadakis & Palpanas, WWW 2018, April 2018
49

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, WWW 2018, April 2018

MFIBlocks

Extended Suffix
Arrays

50

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods
blocks contain entities with same, or similar blocking keys

Papadakis & Palpanas, WWW 2018, April 2018

MFIBlocks

Extended Suffix
Arrays

51

Q-grams Blocking [Gravano et. al., VLDB 2001]

Blocks on equality of BKs.

Converts every BK into the list of its q-grams.

For q=2, the BKs 91456 and 94520 yield the following blocks:

• Advantage:

 robust to noisy BKVs

• Drawback:

 larger blocks → higher computational cost

Papadakis & Palpanas, WWW 2018, April 2018
52

Extended Q-grams Blocking [Baxter et. al., KDD 2003]

BKs of higher discriminativeness:
 instead of individual q-grams, BKs from combinations of q-grams.

Additional parameter:
 threshold t ∈ (0,1) specifies the minimum number of
 q-grams per BK as follows: 𝒍𝒎𝒊𝒏 = 𝒎𝒂𝒙(𝟏, 𝐤 ∙ 𝒕),
 where 𝑘 is the number of q-grams from the original BK

Example:
 for BK= 91456, q=2 and t=0.9,
 we have lmin=3 and the following valid BKs:
 91_14_45_56
 91_14_45
 91_14_56
 91_45_56
 14_45_56

Papadakis & Palpanas, WWW 2018, April 2018
53

MFIBlocks [Kenig et. al., IS 2013]

Papadakis & Palpanas, WWW 2018, April 2018

Based on mining Maximum Frequent Itemsets.

Algorithm:
• Place all entities in a pool
• while (minimum_support > 2)

– For each itemset that satisfies minimum_support
• Create a block b
• If b satisfies certain constraints (Block Cleaning)

– remove its entities from the pool
– retain the best comparisons (Comparison Cleaning)

– decrease minimum_support

Pros:
• Usually the most effective blocking method for relational data →

maximizes PQ (precision)

Cons:
• Difficult to configure
• Time consuming 54

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, WWW 2018, April 2018

MFIBlocks

Extended Suffix
Arrays

55

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering
Papadakis & Palpanas, WWW 2018, April 2018

MFIBlocks

Extended Suffix
Arrays

Overview of Schema-based Methods
blocks contain entities with similar blocking keys

56

Canopy Clustering [McCallum et. al., KDD 2000]

Papadakis & Palpanas, WWW 2018, April 2018

Blocks on similarity of BKs.

57

Extended Canopy Clustering [Christen, TKDE 2011]

Canopy Clustering is too sensitive w.r.t. its weight thresholds:

 - high values may leave many entities out of blocks.

Solution: Extended Canopy Clustering [Christen, TKDE 2011]

• cardinality thresholds instead of weight thresholds

• for each center of a canopy:

– the n1 nearest entities are placed in its block

– the n2 (≤ n1) nearest entities are removed from the pool

Papadakis & Palpanas, WWW 2018, April 2018
58

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering

Overview of Schema-based Methods

Papadakis & Palpanas, WWW 2018, April 2018

MFIBlocks

Extended Suffix
Arrays

59

Standard Blocking

Sorted
Neighborhood

Extended Sorted
Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Canopy
Clustering

Extended
Canopy

Clustering
Papadakis & Palpanas, WWW 2018, April 2018

MFIBlocks

Extended Suffix
Arrays

Overview of Schema-based Methods
blocks contain entities with same blocking keys

60

Suffix Arrays Blocking [Aizawa et. al., WIRI 2005]

Blocks on the equality of BKs.

Converts every BK to the list of its suffixes that are longer than a
predetermined minimum length lmin.

For lmin =3, the keys 91456 and 94520 yield the blocks:

Frequent suffixes are discarded with the help of the parameter bM:

 - specifies the maximum number of entities per block

Papadakis & Palpanas, WWW 2018, April 2018
62

Extended Suffix Arrays Blocking [Christen, TKDE 2011]

Goal:

 support errors at the end of BKs

Solution:

 consider all substrings (not only suffixes) with more than lmin

 characters.

For lmin=3, the keys 91456 and 94520 are converted to the BKs:

91456, 94520

9145, 9452

1456, 4520

914, 945

145, 452

456 520

Papadakis & Palpanas, WWW 2018, April 2018

63

Summary of Blocking for Databases [Christen, TKDE2011]

1. They typically employ redundancy to ensure higher recall
in the context of noise at the cost of lower precision (more
comparisons). Still, recall remains low for many datasets.

2. Several parameters to be configured

 E.g., Canopy Clustering has the following parameters:

I. String matching method

II. Threshold t1

III. Threshold t2

3. Schema-dependent → manual definition of BKs

Papadakis & Palpanas, WWW 2018, April 2018
64

Improving Blocking for Databases [Papadakis et. al., VLDB 2015]

Schema-agnostic blocking keys

• Use every token as a key

• Applies to all schema-based blocking methods

• Simplifies configuration, unsupervised approach

Performance evaluation

• For lazy blocking methods →
very high, robust recall at the cost of more comparisons

• For proactive blocking methods →
relative recall gets higher with more comparisons,
absolute recall depends on block constraints

Papadakis & Palpanas, WWW 2018, April 2018
65

Papadakis & Palpanas, WWW 2018, April 2018

 Part 3:

 Block Building for Web Data

66

 Characteristics of Web Data

Voluminous, (semi-)structured datasets.

• DBPedia 2014: 3 billion triples and 38 million entities

• BTC09: 1.15 billion triples, 182 million entities.

Users are free to add attribute values and/or attribute names

 unprecedented levels of schema heterogeneity.

• DBPedia 3.4: 50,000 attribute names

• Google Base: 100,000 schemata for 10,000 entity types

• BTC09: 136,000 attribute names

Several datasets produced by automatic information extraction
techniques

 noise, tag-style values.

Papadakis & Palpanas, WWW 2018, April 2018

67

Example of Web Data

Noise

Attribute
Heterogeneity

Loose Schema
Binding

Split
values

Papadakis & Palpanas, WWW 2018, April 2018
68

Token Blocking [Papadakis et al., WSDM2011]

Functionality:

1. given an entity profile, extract all tokens that are contained in
its attribute values.

2. create one block for every distinct token → each block
contains all entities with the corresponding token*.

Attribute-agnostic functionality:

• completely ignores all attribute names, but considers all
attribute values

• efficient implementation with the help of inverted indices

• parameter-free!

*Each block should contain at least two entities.

Papadakis & Palpanas, WWW 2018, April 2018
69

Token Blocking Example

Papadakis & Palpanas, WWW 2018, April 2018
70

Attribute-Clustering Blocking
[Papadakis et. al., TKDE 2013]

Goal:

group attribute names into clusters s.t. we can apply Token Blocking
independently inside each cluster, without affecting effectiveness
→ smaller blocks, higher efficiency.

Papadakis & Palpanas, WWW 2018, April 2018

Building address

headquarters
hdq

Person address

address
residence

71

Attribute-Clustering Blocking
Algorithm

• Create a graph, where every node represents an attribute name
and its attribute values

• For each attribute name/node ni

– Find the most similar node nj

– If sim(ni,nj) > 0, add an edge <ni,nj>
• Extract connected components
• Put all singleton nodes in a “glue” cluster

Parameters

1. Representation model

– Character n-grams, Character n-gram graphs, Tokens

2. Similarity Metric

– Jaccard, Graph Value Similarity, TF-IDF

Papadakis & Palpanas, WWW 2018, April 2018
72

Attribute-Clustering vs
Schema Matching

Similar to Schema Matching, …but fundamentally different:

1. Associated attribute names do not have to be semantically
equivalent. They only have to produce good blocks

2. All singleton attribute names are associated with each other

3. Unlike Schema Matching, it scales to the very high levels of
heterogeneity of Web Data
– because of the above simplifying assumptions

Papadakis & Palpanas, WWW 2018, April 2018
73

TYPiMatch [Ma et. al., WSDM 2013]

Goal:

 cluster entities into overlapping types and apply Token

 Blocking to the values of the best attribute for each type.

Papadakis & Palpanas, WWW 2018, April 2018

persons

organizations

74

TYPiMatch

Algorithm:

1. Create a directed graph G, where nodes correspond to
tokens, and edges connect those co-occurring in the same
entity profile, weighted according to conditional co-
occurrence probability.

2. Convert G to undirected graph G’ and get maximal cliques
(parameter θ).

3. Create an undirected graph G’’, where nodes correspond to
cliques and edges connect the frequently co-occurring
cliques (parameter ε).

4. Get connected components to form entity types.

5. Get best attribute name for each type using an entropy-
based criterion.

Papadakis & Palpanas, WWW 2018, April 2018
75

For Semantic Web data, three sources of evidence create blocks of
lower redundancy than Token Blocking:

1.Infix

2. Infix Profile

3.Literal Profile

Algorithm for URI decomposition in PI(S)-form in [Papadakis et al., iiWAS 2010].

Evidence for Semantic Web Blocking

Papadakis & Palpanas, WWW 2018, April 2018
76

The above sources of evidence lead to 3 parameter-free blocking
methods:

1. Infix Blocking
every block contains all entities whose URI has a specific Infix

2. Infix Profile Blocking
every block corresponds to a specific Infix (of an attribute value) and contains
all entities having it in their Infix Profile

3. Literal Profile Blocking
every block corresponds to a specific token and contains all entities having it
in their Literal Profile

Individually, these atomic methods have limited coverage and,

thus, low effectiveness (e.g., Infix Blocking does not cover blank

nodes).

However, they are complementary and can be combined

into composite blocking methods with high robustness and

effectiveness!

URI Semantics Blocking [Papadakis et al., WSDM2012]

Papadakis & Palpanas, WWW 2018, April 2018
77

Summary of Blocking for Web Data

High Recall in the context of noisy entity profiles and extreme
schema heterogeneity thanks to:

1. redundancy that reduces the likelihood of missed matches.

2. attribute-agnostic functionality that requires no schema
semantics.

Low Precision because:

• the blocks are overlapping → redundant comparisons

• high number of comparisons between irrelevant entities →
superfluous comparisons

Papadakis & Palpanas, WWW 2018, April 2018
78

Token Blocking Example

Papadakis & Palpanas, WWW 2018, April 2018

Superfluous
Comparison

Redundant
Comparison

79

Papadakis & Palpanas, WWW 2018, April 2018

 Part 4:

 Block Processing Techniques

80

Outline
1. Introduction to Blocking
2. Blocking Methods for Relational Data
3. Blocking Methods for Web Data

4. Block Processing Techniques
– Block Purging
– Block Filtering
– Block Clustering
– Comparison Propagation
– Iterative Blocking

5. Meta-blocking
6. Entity Matching
7. Entity Clustering
8. Massive Parallelization Methods
9. Progressive Entity Resolution
10. Challenges
11. JedAI Toolkit
12. Conclusions

Papadakis & Palpanas, WWW 2018, April 2018
81

General Principles

Goals:

1. eliminate all redundant comparisons

2. avoid most superfluous comparisons

without affecting matching comparisons (i.e., PC).

Depending on the granularity of their functionality, they are
distinguished into:

1. Block-refinement

2. Comparison-refinement

• Iterative Methods

Papadakis & Palpanas, WWW 2018, April 2018
82

Block Purging

Exploits power-law distribution of block sizes.

Targets oversized blocks (i.e., many comparisons, no duplicates)

Discards them by setting an upper limit on:

• the size of each block [Papadakis et al., WSDM 2011],

• the cardinality of each block [Papadakis et al., WSDM 2012]

Core method:

• Low computational cost.

• Low impact on effectiveness.

• Boosts efficiency to a large extent.
Papadakis & Palpanas, WWW 2018, April 2018

83

Distributions of Block Sizes and Duplicates

Papadakis & Palpanas, WWW 2018, April 2018

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+0 1E+4 1E+8 1E+12

N
u

m
b

er
 o

f
B

lo
ck

s

Block Cardinality

84

0

5

10

15

20

25

30

1.0E+00 1.0E+03 1.0E+06 1.0E+09 1.0E+12

% of
Duplicates

Block Cardinality

Distributions of Block Sizes and Duplicates

0

5

10

15

20

25

30

1.0E+00 1.0E+03 1.0E+06 1.0E+09 1.0E+12

% of
Duplicates

Block Cardinality Papadakis & Palpanas, WWW 2018, April 2018

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+0 1E+4 1E+8 1E+12

N
u

m
b

er
 o

f
B

lo
ck

s

Block Cardinality

85

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+0 1E+4 1E+8 1E+12

N
u

m
b

er
 o

f
B

lo
ck

s

Block Cardinality

Distributions of Block Sizes and Duplicates

0

5

10

15

20

25

30

1.0E+00 1.0E+03 1.0E+06 1.0E+09 1.0E+12

% of
Duplicates

Block Cardinality Papadakis & Palpanas, WWW 2018, April 2018 86

Block Filtering [Papadakis et. al, EDBT 2016]

Main ideas:

• each block has a different importance for every entity it
contains.

• Larger blocks are less likely to contain unique duplicates
and, thus, are less important.

Algorithm

• sort blocks in ascending cardinality

• build Entity Index

• retain every entity in r% of its smallest blocks

• reconstruct blocks

Papadakis & Palpanas, WWW 2018, April 2018
87

Block Filtering Example

Papadakis & Palpanas, WWW 2018, April 2018
88

Block Clustering [Fisher et. al., KDD 2015]

Main idea:

• restrict the size of every block into [bmin, bmax]

– necessary in applications like privacy-preserving ER

– operates so that ||B|| increases linearly with |E|

Algorithm

• recursive agglomerative clustering

– merge similar blocks with size lower than bmin

– split blocks with size larger than bmax

• until all blocks have the desired size

Papadakis & Palpanas, WWW 2018, April 2018
89

Comparison Propagation [Papadakis et al., JCDL 2011]

• Eliminate all redundant comparisons at no cost in recall.

• Naïve approach does not scale.

• Functionality:

1. Build Entity Index

2. Least Common Block Index condition.

Papadakis & Palpanas, WWW 2018, April
2018

90

Iterative Blocking [Whang et. Al, SIGMOD 2009]

Main idea:

integrate block processing with entity matching and reflect outcomes
to subsequently processed blocks, until no new matches are detected.

Algorithm

• Put all blocks in a queue Q

• While Q is not empty

– Get first block

– Get matches with an ER algorithm (e.g., R-Swoosh)

• For each new pair of duplicates pi≡pj

– Merge their profiles p’i = p’j =< pi, pj > and update them in
all associated blocks

– Place in Q all associated blocks that are not already in it

Papadakis & Palpanas, WWW 2018, April 2018
91

Papadakis & Palpanas, WWW 2018, April 2018

 Part 5:

 Meta-blocking

92

Motivation

DBPedia 3.0rc ↔ DBPedia 3.4

 1.2 million entities ↔ 2.2 million entities

Papadakis & Palpanas, WWW 2018, April 2018

Block
Building

Comparison
Cleaning

E B Block
Cleaning

93

Motivation

DBPedia 3.0rc ↔ DBPedia 3.4

 1.2 million entities ↔ 2.2 million entities

Brute-force approach

Comparisons: 2.58 ∙ 1012

Recall: 100%

Running time: 1,344 days → 3.7 years

Papadakis & Palpanas, WWW 2018, April 2018

Block
Building

Comparison
Cleaning

E B Block
Cleaning

94

Motivation

DBPedia 3.0rc ↔ DBPedia 3.4

 1.2 million entities ↔ 2.2 million entities

Brute-force approach

Comparisons: 2.58 ∙ 1012

Recall: 100%

Running time: 1,344 days → 3.7 years

Token Blocking + Block Filtering + Comparison Propagation

Overhead time: <30 mins

Comparisons: 3.5 ∙ 1010

Recall: 99%

Total Running time: 19 days

Papadakis & Palpanas, WWW 2018, April 2018

Block
Building

Comparison
Cleaning

E B Block
Cleaning

95

Motivation

DBPedia 3.0rc ↔ DBPedia 3.4

 1.2 million entities ↔ 2.2 million entities

Brute-force approach

Comparisons: 2.58 ∙ 1012

Recall: 100%

Running time: 1,344 days → 3.7 years

Token Blocking + Block Filtering + Comparison Propagation

Overhead time: <30 mins

Comparisons: 3.5 ∙ 1010

Recall: 99%

Total Running time: 19 days

Papadakis & Palpanas, WWW 2018, April 2018

Block
Building

Comparison
Cleaning

E B Block
Cleaning

96

Motivation

DBPedia 3.0rc ↔ DBPedia 3.4

 1.2 million entities ↔ 2.2 million entities

Brute-force approach

Comparisons: 2.58 ∙ 1012

Recall: 100%

Running time: 1,344 days → 3.7 years

Token Blocking + Block Filtering + Comparison Propagation

Overhead time: <30 mins

Comparisons: 3.5 ∙ 1010

Recall: 99%

Total Running time: 19 days

Token Blocking + Block Filtering + ??

 Papadakis & Palpanas, WWW 2018, April 2018

Block
Building

Comparison
Cleaning

E B Block
Cleaning

97

Meta-blocking [Papadakis et. al., TKDE 2014]

Goal:

restructure a redundancy-positive block collection into a new
one that contains substantially lower number of redundant
and superfluous comparisons, while maintaining the original
number of matching ones (ΔPC ≈ 0, ΔPQ >> 1) →

Papadakis & Palpanas, WWW 2018, April 2018
98

Meta-blocking [Papadakis et. al., TKDE 2014]

Goal:

restructure a redundancy-positive block collection into a new
one that contains substantially lower number of redundant
and superfluous comparisons, while maintaining the original
number of matching ones (ΔPC ≈ 0, ΔPQ >> 1) →

Main idea:

common blocks provide valuable evidence for the similarity of
entities

→ the more blocks two entities share, the more similar and
the more likely they are to be matching

 Papadakis & Palpanas, WWW 2018, April 2018

99

Outline of Meta-blocking

n1 n3

n2 n4

n1 n3

n2 n4

n1 n3

n2 n4

3

3

2 2
2

1

Papadakis & Palpanas, WWW 2018, April 2018
100

Graph Building

For every block:

• for every entity → add a node

• for every pair of co-occurring entities → add an undirected
edge

Blocking graph:

• It eliminates all redundant comparisons →
no parallel edges.

• Low materialization cost →
implicit materialization through inverted indices

• Different from similarity graph!

Papadakis & Palpanas, WWW 2018, April 2018
101

Edge Weighting

Five generic, attribute-agnostic weighting schemes that rely on
the following evidence:

• the number of blocks shared by two entities

• the size of the common blocks

• the number of blocks or comparisons involving each entity.

Computational Cost:

• In theory, equal to executing all pair-wise comparisons in the
given block collection.

• In practice, significantly lower because it does not employ
string similarity metrics.

Papadakis & Palpanas, WWW 2018, April 2018
102

Weighting Schemes

1. Aggregate Reciprocal Comparisons Scheme (ARCS)

𝑤𝑖𝑗 =
1

||𝑏𝑘||
𝑏𝑘∈𝐵𝑖𝑗

2. Common Blocks Scheme (CBS)
𝑤𝑖𝑗 = |𝐵𝑖𝑗|

3. Enhanced Common Blocks Scheme (ECBS)

𝑤𝑖𝑗 = |𝐵𝑖𝑗| ∙ log
|𝐵|

|𝐵𝑖|
∙ log
|𝐵|

|𝐵𝑗|

4. Jaccard Scheme (JS)

𝑤𝑖𝑗 =
|𝐵𝑖𝑗|

𝐵𝑖 + 𝐵𝑗 − |𝐵𝑖𝑗|

5. Enhanced Jaccard Scheme (EJS)

𝑤𝑖𝑗 =
|𝐵𝑖𝑗|

𝐵𝑖 + 𝐵𝑗 −|𝐵𝑖𝑗|
∙ log

|𝑉𝐺|

|𝑣𝑖|
 ∙ log

|𝑉𝐺|

|𝑣𝑗|

Papadakis & Palpanas, WWW 2018, April 2018
103

Graph Pruning

Pruning algorithms

1. Edge-centric

2. Node-centric

 they produce directed blocking graphs

Pruning criteria

Scope:

1. Global

2. Local

Functionality:

1. Weight thresholds

2. Cardinality thresholds

Papadakis & Palpanas, WWW 2018, April 2018
104

Thresholds for Graph Pruning

Experiments show robust behavior of the following
configurations:

1. Weighted Edge Pruning (WEP)
 threshold: average weight across all edges

2. Cardinality Edge Pruning (CEP)
 threshold: K = BPE∙|E|/2

3. Weighted Node Pruning (WNP)
 threshold: for each node, the average weight of the
 adjacent edges

4. Cardinality Node Pruning (CNP)
 threshold: for each node, k=BPE-1

Papadakis & Palpanas, WWW 2018, April 2018
105

Back to Motivation

DBPedia 3.0rc ↔ DBPedia 3.4
Brute-force approach

Comparisons: 2.58 ∙ 1012

Recall: 100%
Running time: 1,344 days → 3.7 years

Token Blocking + Block Filtering + Comparison Propagation
Overhead time: <30 mins
Comparisons: 3.5 ∙ 1010
Recall: 99%
Total Running time: 19 days

Token Blocking + Block Filtering + Meta-blocking
Overhead time: 4 hours
Comparisons: 8.95 ∙ 106
Recall: 92%
Total Running time: 5 hours

Papadakis & Palpanas, WWW 2018, April 2018

Block
Building

Comparison
Cleaning

E B Block
Cleaning

106

Back to Motivation

DBPedia 3.0rc ↔ DBPedia 3.4
Brute-force approach

Comparisons: 2.58 ∙ 1012

Recall: 100%
Running time: 1,344 days → 3.7 years

Token Blocking + Block Filtering + Comparison Propagation
Overhead time: <30 mins
Comparisons: 3.5 ∙ 1010
Recall: 99%
Total Running time: 19 days

Token Blocking + Block Filtering + Meta-blocking
Overhead time: 4 hours
Comparisons: 8.95 ∙ 106
Recall: 99%
Total Running time: 10 hours

Papadakis & Palpanas, WWW 2018, April 2018

Block
Building

Comparison
Cleaning

E B Block
Cleaning

107

Back to Motivation

DBPedia 3.0rc ↔ DBPedia 3.4
Brute-force approach

Comparisons: 2.58 ∙ 1012

Recall: 100%
Running time: 1,344 days → 3.7 years

Token Blocking + Block Filtering + Comparison Propagation
Overhead time: <30 mins
Comparisons: 3.5 ∙ 1010
Recall: 99%
Total Running time: 19 days

Token Blocking + Block Filtering + Meta-blocking
Overhead time: 4 hours
Comparisons: 8.95 ∙ 106
Recall: 99%
Total Running time: 10 hours

Papadakis & Palpanas, WWW 2018, April 2018

Block
Building

Comparison
Cleaning

E B Block
Cleaning

108

Meta-blocking Challenges: Time Efficiency

Bottleneck: edge weighting

• Depends on 𝐵 & BPE

– 𝐸 = 3.4 × 106 , 𝐵 = 4 × 1010, BPE=15 → 3 hours

– 𝐸 = 7.4 × 106 , 𝐵 = 2 × 1011, BPE=40 → 186 hours

Papadakis & Palpanas, WWW 2018, April 2018
109

Enhancing Meta-blocking Time Efficiency

1. Block Filtering

 r = 0.8 → 4 times faster processing, on average

 reduces both ||B|| and BPE

2. Optimized Edge Weighting [Papadakis et. al., EDBT 2016]

 Entity-based instead of Block-based implementation

 An order of magnitude faster processing, in combination with
Block Filtering

3. Multi-core Meta-blocking

 Commodity hardware

4. Parallel Meta-blocking

 Hadoop Cluster

Papadakis & Palpanas, WWW 2018, April 2018
110

Multi-core Meta-blocking [Papadakis et. al, Semantics 2017]

Two types of methods:

• Block-based

• Entity-based

Fork-join approach:

• computational cost split into set of chunks* placed in an array, with
an index indicating next chunk to be processed

• Every thread retrieves current value of index and assigned to
process corresponding chunk

chunk = individual items or a non-overlapping set of items

*item = an individual block or an individual entity

Papadakis & Palpanas, WWW 2018, April 2018
111

Parallelization Strategies

Depending on the definition of chunks, we defined the following
parallelization strategies:

1. Random parallelization → individual items in arbitrary order

2. Naïve Parallelization → individual items sorted by cost
(#comparisons)

3. Partition Parallelization → an arbitrary number of non-overlapping
groups of items with the same computational cost

4. Segment Parallelization → #cores non-overlapping groups of items
with the same computational cost

Papadakis & Palpanas, WWW 2018, April 2018
112

Segment Parallelization

Papadakis & Palpanas, WWW 2018, April 2018

Input:
• I = { 3, 5, 10, 6, 1, 9, 2, 4, 7, 8 }
• number of segments (4)

113

Isorted = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }

Segment Parallelization

Papadakis & Palpanas, WWW 2018, April 2018

10 Segment1

It1 Iterations Total Cost

10

Input:
• I = { 3, 5, 10, 6, 1, 9, 2, 4, 7, 8 }
• number of segments (4)

114

Isorted = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }

Segment Parallelization

Papadakis & Palpanas, WWW 2018, April 2018

10

9

10 Segment1

Segment2

It1 It2 Iterations Total Cost

10

9

Input:
• I = { 3, 5, 10, 6, 1, 9, 2, 4, 7, 8 }
• number of segments (4)

115

Isorted = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }

Segment Parallelization

Papadakis & Palpanas, WWW 2018, April 2018

10

9

8

10

9

10 Segment1

Segment2

Segment3

It1 It2 It3 Iterations Total Cost

10

9

8

Input:
• I = { 3, 5, 10, 6, 1, 9, 2, 4, 7, 8 }
• number of segments (4)

116

Isorted = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }

Segment Parallelization

Papadakis & Palpanas, WWW 2018, April 2018

10

9

8

10

9

8

7

10

9

10 Segment1

Segment2

Segment3

Segment4

It1 It2 It3 It4 Iterations Total Cost

10

9

8

7

Input:
• I = { 3, 5, 10, 6, 1, 9, 2, 4, 7, 8 }
• number of segments (4)

117

Isorted = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }

Segment Parallelization

Papadakis & Palpanas, WWW 2018, April 2018

10

9

8

10

9

8

7

10

9

10 Segment1

Segment2

Segment3

Segment4

10

9

8

6 7

It1 It2 It3 It4 It5 Iterations Total Cost

10

9

8

13

Input:
• I = { 3, 5, 10, 6, 1, 9, 2, 4, 7, 8 }
• number of segments (4)

118

Isorted = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }

Segment Parallelization

Papadakis & Palpanas, WWW 2018, April 2018

10

9

8

10

9

8

7

10

9

10 Segment1

Segment2

Segment3

Segment4

10

9

5 8

6 7

10

9

8

6 7

It1 It2 It3 It4 It5 It6 Iterations Total Cost

10

9

13

13

Input:
• I = { 3, 5, 10, 6, 1, 9, 2, 4, 7, 8 }
• number of segments (4)

119

Isorted = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }

Segment Parallelization

Papadakis & Palpanas, WWW 2018, April 2018

10

9

8

10

9

8

7

10

9

10 Segment1

Segment2

Segment3

Segment4

10

9

5 8

6 7

10

4 9

5 8

6 7

10

9

8

6 7

It1 It2 It3 It4 It5 It6 It7 Iterations Total Cost

10

13

13

13

Input:
• I = { 3, 5, 10, 6, 1, 9, 2, 4, 7, 8 }
• number of segments (4)

120

Isorted = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }

Segment Parallelization

Papadakis & Palpanas, WWW 2018, April 2018

10

9

8

10

9

8

7

10

9

10 Segment1

Segment2

Segment3

Segment4

10

9

5 8

6 7

10

4 9

5 8

6 7

10

9

8

6 7

3 10

4 9

5 8

6 7

It1 It2 It3 It4 It5 It6 It7 It8 Iterations Total Cost

13

13

13

13

Input:
• I = { 3, 5, 10, 6, 1, 9, 2, 4, 7, 8 }
• number of segments (4)

121

Isorted = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }

Segment Parallelization

Papadakis & Palpanas, WWW 2018, April 2018

10

9

8

10

9

8

7

10

9

10 Segment1

Segment2

Segment3

Segment4

10

9

5 8

6 7

10

4 9

5 8

6 7

10

9

8

6 7

3 10

4 9

5 8

6 7

3 10

4 9

5 8

6 2 7

It1 It2 It3 It4 It5 It6 It7 It8 It9 Iterations Total Cost

13

13

13

15

Input:
• I = { 3, 5, 10, 6, 1, 9, 2, 4, 7, 8 }
• number of segments (4)

122

Isorted = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }

Segment Parallelization

Papadakis & Palpanas, WWW 2018, April 2018

10

9

8

10

9

8

7

10

9

10 Segment1

Segment2

Segment3

Segment4

10

9

5 8

6 7

10

4 9

5 8

6 7

10

9

8

6 7

3 10

4 9

5 8

6 7

3 10

4 9

5 8

6 2 7

3 10

4 9

5 1 8

6 2 7

It1 It2 It3 It4 It5 It6 It7 It8 It9 It10 Iterations Total Cost

13

13

14

13

Input:
• I = { 3, 5, 10, 6, 1, 9, 2, 4, 7, 8 }
• number of segments (4)

Time complexity: O(n log n)

123

Isorted = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }

Execution Plan

Papadakis & Palpanas, WWW 2018, April 2018

Total valid
comparisons

Merge

Initialization

MWEP MWNP MCEP MCNP
Initialize chunk
array and N
threads.

Initialize chunk
array and N
threads.

Initialize chunk
array and N threads.
Estimate K.

Each thread
computes local
aggregate edge
weight and
#comparisons

Estimate average
edge weight

Each thread
stores the total
weight and
#comparisons per
entity in two arrays

Check and keep
valid
comparisons
above the
weight threshold

Output total
valid
comparisons

Merge the 2
arrays to compute
the average edge
weight of each
node

Check and keep
valid comparisons
above the weight
threshold of any
adjacent node

Output total valid
comparisons

Every thread stores
the k top-weighted
edges for every
processed entity in
a priority queue

Output the comparisons
that are among the k
top-weighted ones for
any of the adjacent
entities

Stage 1

Stage 2

Each thread stores the
K top-weighted edges
in the processed
chunks in a priority
queue

Output the overall
K top-weighted
comparisons

Initialize chunk
array and N threads.
Estimate k.

th1 th2 th3 thN …

th1 th2 th3
thN …

124

Experimental Evaluation - Datasets

Original
Datasets

DBPedia
3.0rc

DBPedia
3.4

Entities 1,190,733 2,164,040

Duplicates 892,579

Triples 1.69∙107 3.50∙107

Predicates 30,757 52,554

Brute-force 2.58∙1012

Papadakis & Palpanas, WWW 2018, April 2018

Blocks Input
Output
(CNP)

Blocks 1,239,066 1,190,733

Comparisons 1.30∙1010 3.30∙107

Detected
Matches

890,817 859,554

Recall 0.998 0.963

Precision 6.86∙10−5 2.61∙10−2

System: Server running Ubuntu 12.04, 32GB RAM and 2 Intel Xeon E5620
processors, each having 4 physical cores and 8 logical cores at 2.40GHz.

125

token blocking +
block purging +
block filtering

token blocking +
block purging +
block filtering +

meta-blocking CNP

Experimental Evaluation – CNP Wall Clock Time

Papadakis & Palpanas, WWW 2018, April 2018

Single-threaded time = 3.5 hours RB=Random, block-based
parallelization
NB=Naïve, block-based
parallelization
PB=Partition, block-based
parallelization
SB=Segment, block-based
parallelization
RE=Random, entity-based
parallelization
NE=Naïve, entity-based
parallelization
PE=Partition, entity-based
parallelization
SE=Segment, entity-based
parallelization 15 min

126

Experimental Evaluation – CNP Speedup

Papadakis & Palpanas, WWW 2018, April 2018

RB=Random, block-based
parallelization
NB=Naïve, block-based
parallelization
PB=Partition, block-based
parallelization
SB=Segment, block-based
parallelization
RE=Random, entity-based
parallelization
NE=Naïve, entity-based
parallelization
PE=Partition, entity-based
parallelization
SE=Segment, entity-based
parallelization

127

Meta-blocking Challenges: Effectiveness

Problem:

• Simple pruning rules

Solutions:

• Unsupervised methods
– BLAST

• Integrates schema information

• Supervised methods
– Supervised Meta-blocking (SMB)

• utilizes feature-based classification of blocking-graph edges

– BLOSS

• minimizes the size of the required training set

Papadakis & Palpanas, WWW 2018, April 2018
128

BLAST [Simonini et. al., VLDB 2017]

• Goal:
improve the edge weighting and pruning in unsupervised WNP with loose
schema information

• Solution:

It works for Dirty ER, as well.

Papadakis & Palpanas, WWW 2018, April 2018
129

Courtesy of Giovanni Simonini

Similar to Attribute Clustering:

1. Each attribute is represented as the set of its possible values

2. Builds a (bipartite*) graph with one node for every attribute

3. There is an edge for every pair of attributes with similarity > 0

4. Each connected component is an attribute cluster

* In the case of Clean-Clean ER.

The original Attribute Clustering does

not scale to thousands of attributes

→ very inefficient

BLAST employs LSH to reduce the

time complexity (for JaccardSim)

• Scales well to hundred of

thousands attributes

• Simultaneously estimates

aggregate entropy per cluster

Loose Schema Information Extraction

Papadakis & Palpanas, WWW 2018, April 2018
130

Courtesy of Giovanni Simonini

Loosely Schema-aware Meta-blocking

1. BLAST improves edge weighting as follows:
every edge → several blocking keys (tokens) → multiple attribute
names → w(eij)=aggregate entropy∙Pearson’s χ2

2. BLAST improves edge pruning in two ways:
– Local weight threshold independent of the size of each node neighborhood

(i.e., number of edges):

𝜃𝑖 =
𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑤(𝑒𝑖𝑗)

2

– An edge 𝑒𝑖𝑗 is retained if 𝑤(𝑒𝑖𝑗) ≥
𝜃𝑖+𝜃𝑗

2
 .

Papadakis & Palpanas, WWW 2018, April 2018
131

Courtesy of Giovanni Simonini

Example – Original Meta-blocking

Papadakis & Palpanas, WWW 2018, April 2018

Entity Collection Token Blocking

Blocking Graph New Collection Pruned Graph

132
Courtesy of Giovanni Simonini

Example – Meta-blocking over Attribute Clustering

Papadakis & Palpanas, WWW 2018, April 2018

Entity Collection Attribute Clustering

Blocking Graph

name,f.name,

 s.name

Other

Attributes

C1 C2
New Collection Pruned Graph

Attribute Clusters

133
Courtesy of Giovanni Simonini

Example - BLAST

Papadakis & Palpanas, WWW 2018, April 2018

Entity Collection Attribute Clustering

Blocking Graph

name,f.name,

 s.name

Other

Attributes

C1 C2
New Collection Pruned Graph

Attribute Clusters

134
Courtesy of Giovanni Simonini

Supervised Meta-blocking [Papadakis et. al., VLDB 2014]

Goal:

 more accurate and comprehensive methodology for

 pruning the edges of the blocking graph

Solution:

 - model edge pruning as a classification task per edge

 - two classes: “likely match”, “unlikely match”

Open issues:

• Classification Features

• Training Set

• Classification Algorithms & Configuration

Papadakis & Palpanas, WWW 2018, April 2018
135

Requirements:

1. Generic 2. Effective

3. Efficient 4. Minimal

Classification Features

Papadakis & Palpanas, WWW 2018, April 2018
136

Feature Engineering

CF-IBF = # of Common Blocks × Inverse Block Frequency per entity
RACCB = Sum of Inverse Block Sizes

We examined all 63 possible combinations to find the minimal set of
features, which comprises the first four features.

Papadakis & Palpanas, WWW 2018, April 2018
137

Training Set

Challenge:

 binary classification with heavily imbalanced classes

Solutions:

1. Oversampling

2. Cost-sensitive learning

3. Ensemble learning

4. Undersampling

– Sample size equal to 5% of the minority class.

Papadakis & Palpanas, WWW 2018, April 2018
138

Classification Algorithms

Weighted Edge Pruning (WEP)
• compatible with any classifier

• we selected 4 state-of-the-art:

1. Naïve Bayes

2. Bayesian Networks

3. C4.5 Decision Trees

4. Support Vector Machines

Cardinality Edge Pruning (CEP) &

Cardinality Node Pruning (CNP)
• compatible with probabilistic classifiers

• we selected Naïve Bayes, Bayesian Networks

Configuration
For selected features and
sample size, classifiers are
robust with respect to their
internal parameters

Papadakis & Palpanas, WWW 2018, April 2018
139

Experiments

Papadakis & Palpanas, WWW 2018, April 2018
140

recall

Experiments

recall almost unaffected

Papadakis & Palpanas, WWW 2018, April 2018
141

Experiments

recall almost unaffected

running time

Papadakis & Palpanas, WWW 2018, April 2018
142

Experiments

recall almost unaffected

running time up to 6x faster
(than original meta-blocking)

Papadakis & Palpanas, WWW 2018, April 2018
143

BLOSS [Dal Bianco et al., Information Systems, 2018]

Goal:

 minimize the labelling effort
 for training Supervised Meta-blocking

Solution:

 meta-BLOcking Sampling Selection

 - involves a novel sampling methodology

 - combines it with active learning

Key feature:

• removes outliers to improve recall

Papadakis & Palpanas, WWW 2018, April 2018
144

Courtesy of Guilherme Dal Bianco

BLOSS Outline

It comprises three steps:

1. Definition of Similarity Levels and Random Sampling
– pre-selects candidate pairs using a metric that assesses the potential

of a pair being a match

– level-based sampling ensures diversity

2. Selection of Pairs for Labeling
– applies active learning applied to the pre-selected pairs

3. Pruning Non-Matching Outliers
– filters out noisy non-matching pairs that have been labeled

Papadakis & Palpanas, WWW 2018, April 2018 145 Courtesy of Guilherme Dal Bianco

Group candidate pairs
into L layers

Random selection N pairs
inside each level

CF_IBF Entity 1 Entity 2

30 A B C D A E F G

30 C T U Z E W U V

80 A I V X A E P X

80 L M Q X S M P X

160 D E F G D E F G

160 A L W X A L W X

CF_IBF Entity 1 Entity 2

30 C T U Z E W U V

80 A I V X A E P X

160 A L W X A L W X

Level L

Level 1

Level 0

BLOSS First Stage

Relies on CF_IBF, which is proportional to matching likelihood.

Courtesy of Guilherme Dal Bianco Papadakis & Palpanas, WWW 2018, April 2018 146

BLOSS First Stage – Layers distribution

• first levels probably include more non-matching pairs
• last levels group more matching pairs

Courtesy of Guilherme Dal Bianco

increasing CF_IBF

Papadakis & Palpanas, WWW 2018, April 2018 147

Random selection
of unlabeled pairs

u1 A C V

u2 A C U

u3 T C R

l1 T B R

l2 L K N

l3 O C M

l4 P R V

lu3 C

lu4 V

lu3 C

lu1 T R

lu3 C

Unlabeled Dataset
Already Labeled Dataset

Projected Set

2 Rules

1 Rules

5 Rules

Pair u2 is the most dissimilar instance compared to the actual training set.

Rule-based active
learning

Reduced sample
of labeled pairs

BLOSS Second Stage: Pairs Selection

Courtesy of Guilherme Dal Bianco Papadakis & Palpanas, WWW 2018, April 2018 148

BLOSS Third Stage: Outliers Pruning

Goal: remove noise, while maximizing recall.

Courtesy of Guilherme Dal Bianco Papadakis & Palpanas, WWW 2018, April 2018 149

Pruning Threshold:
average Jaccard similarity of non-matching labelled instances.

BLOSS Third Stage – Part B

DBLP-Scholar DBLP-ACM Synthetic Dataset

Courtesy of Guilherme Dal Bianco Papadakis & Palpanas, WWW 2018, April 2018 150

Measures:
RRT = Relative running time wrt to original blocking (without Meta-blocking)
ΔPC = Reduction in recall wrt to original blocking
ΔPQ = Increase in precision wrt to original blocking

BLOSS achieves a reduction in the training set size of
around 40 times.

BLOSS Effectiveness & Time Efficiency

Courtesy of Guilherme Dal Bianco
Papadakis & Palpanas, WWW 2018, April 2018 151

Comparative Analysis of Approximate
Blocking Techniques [Papadakis et. al., VLDB 2016]

• employed 3 sub-tasks of blocking

Papadakis & Palpanas, WWW 2018, April 2018

Block
Building

Comparison
Cleaning

E B Block
Cleaning

Lazy

blocking

methods

Block-refinement

methods

Comparison-

refinement

methods

Proactive blocking methods

152

• considered 5 lazy and 7 proactive blocking methods

Papadakis & Palpanas, WWW 2018, April 2018

Comparative Analysis of Approximate
Blocking Techniques [Papadakis et. al., VLDB 2016]

153

Experimental Analysis Setup

• Block Cleaning methods:
1. Block Purging

2. Block Filtering

• Comparison Cleaning methods:
1. Comparison Propagation

2. Iterative Blocking

3. Meta-blocking

Papadakis & Palpanas, WWW 2018, April 2018
154

Experimental Analysis Setup

• Exhaustive parameter tuning to identify two configurations for
each method:

1. Best configuration per dataset → maximizes
𝒂 𝑩, 𝑬 = 𝑹𝑹 𝑩, 𝑬 ∙ 𝑷𝑪(𝑩, 𝑬)

2. Default configuration → highest average 𝒂 across all datasets

• Extensive experiments measuring effectiveness and time
efficiency over 5 real datasets (up to 3.3M entities).

• Scalability analysis over 7 synthetic datasets (up to 2M entities).

Papadakis & Palpanas, WWW 2018, April 2018
155

Effectiveness of Lazy Methods on DBPedia

Papadakis & Palpanas, WWW 2018, April 2018
156

Effectiveness of Lazy Methods on DBPedia

Papadakis & Palpanas, WWW 2018, April 2018

Token-blocking and
Meta-blocking

157

Time Efficiency of Lazy Methods on DBPedia

Papadakis & Palpanas, WWW 2018, April 2018
158

Time Efficiency of Lazy Methods on DBPedia

Papadakis & Palpanas, WWW 2018, April 2018

Token-blocking and
Meta-blocking

159

Effectiveness of Proactive methods on DBPedia

Papadakis & Palpanas, WWW 2018, April 2018
160

Effectiveness of Proactive methods on DBPedia

Papadakis & Palpanas, WWW 2018, April 2018

Suffix-arrays and
Meta-blocking

161

Time Efficiency of Proactive Methods on DBPedia

Papadakis & Palpanas, WWW 2018, April 2018
162

Time Efficiency of Proactive Methods on DBPedia

Papadakis & Palpanas, WWW 2018, April 2018

Suffix-arrays and
Meta-blocking

163

Papadakis & Palpanas, WWW 2018, April 2018

 Part 6:

 Entity Matching

164

165

Preliminaries

• Estimates the similarity of candidate matches.

• Input
– Pruned Blocking Graph

• Nodes → entities

• Edges → candidate matches

– Or, a set of blocks

• Every comparison in any block is a candidate match

• Output
– Similarity Graph

• Nodes → entities

• Edges → candidate matches

• Edge weights → similarity of entity profiles (+neighbors)

Papadakis & Palpanas, WWW 2018, April 2018

Naïve Approach

• For each pair of entities, e1-e2

– Estimate aggregate similarity based on:
• attribute values

• neighbors

• external knowledge

• combination of above

– If similarity > threshold → match! (unsupervised)

– If classifierDecision(e1,e2) = true → match! (supervised)

Papadakis & Palpanas, WWW 2018, April 2018
166

167

Group Linkage [On et al., ICDE 2007]

• Often, “entity” is represented as a uniquely identified
group of information

• In structured data:

– An author with a group of publication records

– A household in a census survey with a group of family
members

• In semi-structured data:

– Every entity is a group of name-value pairs.

Group Linkage Problem: to determine if two entities
represented as groups are approximately the same or not

Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Dongwon Lee

168

Group Linkage:
Popular Group Similarity

Jaccard

• Intuitive, cheap to run

• Error-prone

 21

21
21),(

gg

gg
ggsim






Bipartite Matching

 Cardinality

 Weighted

 Rich

 Expensive to run

Q: Can we combine
Jaccard and Bipartite
Matching for Group
Linkage?

Papadakis & Palpanas, WWW 2018, April 2018
Courtesy of Dongwon Lee

169

Group Linkage:
Intuition for Better Similarity

• Two groups are similar if:

– A large fraction of elements in
the two groups form matching
element pairs

– There is high enough similarity
between matching pairs of
individual elements that
constitute the two groups

Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Dongwon Lee

170

Group Linkage: Group Similarity

• Two groups of elements:

– g1 = {r11, r12, …, r1m1}, g2 = {r21, r22, …, r2m2}

– The group measure BM is the normalized weight of
the maximum bipartite matching M in the bipartite
graph (N = g1 U g2, E=g1 X g2)

 such that

– BM(g1, g2) ≥ θ

Mmm

rrsim
ggBM

Mrr ji

sim

ji



 

21

),(21

2,1,

21

)),((
)(

)(2,1 ji rrsim

21

21
21),(

gg

gg
ggsim






Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Dongwon Lee

user-defined parameters

171

Group Linkage:
Example ()

3.0

9.0,3.0 

0.7
0.4
0.5
0.9
0.2
0.3
 g1 g2

0.7

0.4

0.5

0.9

M: max-weight
bipartite matching

0.7

0.4

0.5

0.9

sparse bipartite graph









 

53.0
3

6.1

223

7.09.0

)),((
)(

21

),(21

2,1,

21

Mmm

rrsim
ggBM

Mrr ji

sim

ji



Therefore, g1 <> g2 !

Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Dongwon Lee

172

Group Linkage: Challenge

• Each BM group measure uses the
maximum weight bipartite
matching
– Bellman-Ford: O(V2E)

– Hungarian: O(V3)

• Large number of groups to match
– O(NM)

 …

…

N M
Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Dongwon Lee

173

Group Linkage:
Solution: Greedy matching

• Bipartite matching computation is expensive because
of the requirement

– No node in the bipartite graph can have more than one
edge incident on it

• Let’s relax this constraint:

– For each element ei in g1, find an element ej in g2 with the
highest element-level similarity  S1

– For each element ej in g2, find an element ei in g1 with the
highest element-level similarity  S2

Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Dongwon Lee

Papadakis & Palpanas, WWW 2018, April 2018

174

Upper/Lower Bounds

2121

21),(21

2,1,

21

)),((
)(

SSmm

rrsim
ggUB

SSrr ji

sim

ji



 



2121

21),(21

2,1,

21

)),((
)(

SSmm

rrsim
ggLB

SSrr ji

sim

ji



 



Mmm

rrsim
ggBM

Mrr ji

sim

ji



 

21

),(21

2,1,

21

)),((
)(

Courtesy of Dongwon Lee

Papadakis & Palpanas, WWW 2018, April 2018

175

Theorem & Algorithm

• ELSE IF LB(g1,g2) ≥ θ → BM(g1,g2) ≥ θ → g1≈ g2

• ELSE, compute BM(g1,g2)

 IF UB(g1,g2) < θ → BM(g1,g2) < θ → g1 ≠ g2

)()(2,1,2,1, ggBMggLB simsim  

)()(2,1,2,1, ggUBggBM simsim  

Goal: BM(g1,g2) ≥ θ

Theorem 1

Theorem 2

Courtesy of Dongwon Lee

Iterative Approaches [Stefanidis et al., WWW 2014]

• Increase recall by updating related entities upon
detection of a new match

• Core principles:

– Transitivity: if match(e1,e2)=true & match(e2,e3)=true →
match(e1,e3)=true

– Duplicate dependency: if entities of one type (e.g., authors)
are matches, related entities of another type (e.g.,
publications) are more likely to be matches, too.

– Merge dependency: if match(e1,e2)=true, replace e1 & e2

with e12 and compare again with all other similar entities.

Papadakis & Palpanas, WWW 2018, April 2018
176

Swoosh [Benjelloun et al., VLDBJ 2009]

• Iterative approach crafted for relational data.
• Relies on two functions: match (m) and merge (μ)
• Algorithm outline:
 while the input list I is not empty

– e1 ← I.removeFirstRecord()
– matchFound = false
– for each record in the output list , e2 ∈ 𝑶

• if m (e1, e2) == true then
– O.remove (e2)
– I .add(μ (e1 , e2))
– matchFound = true
– break

– if matchFound == false
– O.add(e1)

Papadakis & Palpanas, WWW 2018, April 2018
177

Swoosh Efficiency [Benjelloun et al., VLDBJ 2009]

• Higher efficiency (fewer calls to match & merge)
when specific properties hold:
– Idempotence:

m(ei, ei) = true, μ(ei, ei) = ei

– Commutativity:

 m(ei, ej) = M(ej, ei), μ(ei, ej) = μ(ej, ei)

– Associativity:

 μ(ei, μ(ej, ek)) = μ(μ(ei,ej), ek)

– Representativity:

 if μ(ei, ei) = ek & m(ei, el) = true → m(ek, el) = true

Papadakis & Palpanas, WWW 2018, April 2018

178

Simple Greedy Matching (SiGMa)
[Lacoste-Julien et al., KDD 2013]

• relies on the 1-1 assumption of Clean-Clean ER
– once a match is identified, it never needs to be compared to other entities

• exploits relationship graph to score decisions and to propose
candidates

• can easily use tailored similarity measures

• iterative algorithm
– provides natural tradeoff between precision & recall as well as between

computation and recall

• simplicity & greediness → high time efficiency

• exhibits high effectiveness, as well

Papadakis & Palpanas, WWW 2018, April 2018
179

Courtesy of Simon Lacoste-Julien

SiGMa intuition

SiGMa uses neighbors for: 1) scoring candidates

2) suggest candidates (iterative blocking)

Papadakis & Palpanas, WWW 2018, April 2018
180

Courtesy of Simon Lacoste-Julien

Quadratic Assignment objective

pairwise similarity score graph compatibility score:

counts the number of valid
neighbors which are currently
matched (context)

normalizing weight

Papadakis & Palpanas, WWW 2018, April 2018
181

Courtesy of Simon Lacoste-Julien

SiGMa similarity scores
• Increase in objective when matching pair (i,j):

• Pairwise similarity score (could use others):

• Similarity on string representation of entities:
– Jaccard measure on words in common + smoothing + weights (TF-IDF

weights)

– Property similarity measure: also smoothed weighted Jaccard
similarity measure between sets of properties, with additional
similarity on literals:

Papadakis & Palpanas, WWW 2018, April 2018
182

Courtesy of Simon Lacoste-Julien

SiGMa Algorithm

1. Start with seed match
2. Put neighbors in S
3. At each iteration:

a) pick new pair in S which
max. increase
b) add new neighbors in S

4. Stop when variation below
threshold

Papadakis & Palpanas, WWW 2018, April 2018
183

Courtesy of Simon Lacoste-Julien

PARIS [Suchanek et al., PVLDB 2011]

• Probabilistic, iterative, parameter-free method

• Collective approach for holistically aligning entities, relations
and classes
– applicable to Clean-Clean ER (for knowledge graphs)

• Algorithm outline:
1. Fix equalities for literals (numbers, or strings)

2. Set equalities for relations to a small initial value

3. Iterate the estimations for relations and entities until convergence (*)

4. Compute the estimations for classes

(*) There is no proof for convergence, but it seems to happen

Papadakis & Palpanas, WWW 2018, April 2018
184

Courtesy of Fabian Suchanek

PARIS – Part B
• Equality of Literals

– Pr(x ≡ y) := (x = y) ? 1 : 0

• Equality of Entities
– Based on the local inverse functionality of a relation r

1/#the number of entities with a given argument for r

– The probability of a relation being inverse functional is the harmonic mean of
the local inverse functionalities

– Two entities are matching if they share at least one argument for a highly
inverse functional relation

• Equality of Classes
– Based on the subsumption probability: if all entities of one class are entities

of the other, then the former subsumes the latter

• Equality of Relations
• Based on the probability that one relation is sub-property of the other

Papadakis & Palpanas, WWW 2018, April 2018
185

Synthesizing Entity Matching Rules

Machine Learning
System

186

Best F-measure
Not interpretable

Rule-Based
Approach

Lower F-measure
Interpretable

Courtesy of Paolo Papotti Papadakis & Palpanas, WWW 2018, April 2018

Synthesizing Entity Matching Rules
Using Examples [Singh et al., PVLDB 2017]

187

Program
Synthesis

Tuneable trade off
between F1 and complexity

Courtesy of Paolo Papotti Papadakis & Palpanas, WWW 2018, April 2018

General Boolean Formula (GBF): can include
arbitrary attribute matching predicates combined
by conjunctions, disjunctions, and negations

Synthesizing Entity Matching Rules
Using Examples [Singh et al., PVLDB 2017]

F-measure comparable to DTs depth 10 and SVM

188
Courtesy of Paolo Papotti Papadakis & Palpanas, WWW 2018, April 2018

Papadakis & Palpanas, WWW 2018, April 2018

 Part 7:

 Entity Clustering

189

190

Preliminaries

• Partitions the matched pairs into equivalence clusters →
groups of entity profiles describing the same real-world object

• Input
– Similarity Graph:

• Nodes → entities

• Edges → candidate matches

• Edge weights → likelihood of matching entities

• Output
– Equivalence Clusters

Papadakis & Palpanas, WWW 2018, April 2018 190

191

Clustering Algorithms for Clean-Clean ER

• Unique Mapping Clustering [Lacoste-Julien et al., KDD 2013]

[Suchanek et al., PVLDB 2011]

– Relies on 1-1 constraint
• 1 entity from first dataset matches to 1 entity from second

– Sorts all edges in decreasing weight

– Starting from the top, each edge corresponds to a pair of
duplicates if:

• None of the adjacent entities has already been matched

• predefined threshold < edge weight

Papadakis & Palpanas, WWW 2018, April 2018 191

192

Clustering Algorithms for Dirty ER

• A wealth of literature on
clustering algorithms

• Requirements:
– Partitional and disjoint Algorithms

• Sometimes overlapping may be
desirable

– Goal: Sets of clusters that

• maximize the intra-cluster
weights

• minimize the inter-cluster edge
weights

Classification of clustering algorithms

[Jain&Dubes88]

Papadakis & Palpanas, WWW 2018, April 2018
Courtesy of Oktie Hassanzadeh 192

193

Clustering Algorithms Characteristics
[Hassanzadeh et al., VLDB 2009]

• Most important feature

“Unconstrained algorithms”

• I.e. , algorithms that do not require as input:
– The number of clusters

– The diameter of the clusters

– Any other domain specific parameters

• Algorithms need to be able to predict the correct number of
clusters

Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Oktie Hassanzadeh 193

194

Clustering Algorithms Characteristics
[Hassanzadeh et al., VLDB 2009]

• Need to scale well
– Time complexity < O(n2)

• Need to be robust with respect to characteristics of the data
– E.g., distribution of the duplicates

• Need to be capable of finding ‘singleton’ clusters
– Different from many clustering algorithms

• E.g., algorithms proposed for image segmentation

Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Oktie Hassanzadeh 194

Single-pass Algorithms [Hassanzadeh et al., VLDB 2009]

• Perform clustering by a
single scan of the output of
the similarity join (the
edges of the graph)

– Partitioning
• TRANSITIVE CLOSURE

– CENTER [HGI-WebDB'00]

– MERGE-CENTER [HM-VLDBJ09]

195 Papadakis & Palpanas, WWW 2018, April 2018
Courtesy of Oktie Hassanzadeh 195

Single-pass Algorithms [Hassanzadeh et al., VLDB 2009]

• Perform clustering by a
single scan of the output of
the similarity join (the
edges of the graph)

– Partitioning
• TRANSITIVE CLOSURE

– CENTER [HGI-WebDB'00]

– MERGE-CENTER [HM-VLDBJ09]

196

t1

t2

0.71

t3

t5

t8

t4 t7

t6

0.48

0.23

0.26

0.65

0.77

0.30

0.68

Papadakis & Palpanas, WWW 2018, April 2018
Courtesy of Oktie Hassanzadeh 196

Single-pass Algorithms [Hassanzadeh et al., VLDB 2009]

• Perform clustering by a
single scan of the output of
the similarity join (the
edges of the graph)

– Partitioning
• TRANSITIVE CLOSURE

– CENTER [HGI-WebDB'00]

– MERGE-CENTER [HM-VLDBJ09]

197

t1

t2

0.71

t3

t5

t8

t4 t7

t6

0.65

0.77

0.68

Papadakis & Palpanas, WWW 2018, April 2018
Courtesy of Oktie Hassanzadeh 197

Single-pass Algorithms [Hassanzadeh et al., VLDB 2009]

• Perform clustering by a
single scan of the output of
the similarity join (the
edges of the graph)

– Partitioning
• TRANSITIVE CLOSURE

– CENTER [HGI-WebDB'00]

– MERGE-CENTER [HM-

VLDBJ09]

198

t1

t2

0.71

t3

t5

t8

t4 t7

t6

0.48

0.26

0.65

0.77

0.30

0.68

Papadakis & Palpanas, WWW 2018, April 2018
Courtesy of Oktie Hassanzadeh 198

199

t1

t2

0.71

t3

t5

t8

t7

t6

0.48

0.23

0.26

0.30

t5 t60.65

Star Algorithm [APR-JGraph04]

• Creates star-shaped clusters

– heuristic to approximate
problem of finding minimal
clique cover of graph

• Similar to CENTER but

– Allows overlapping clusters

– First sorts nodes in
descending order of their
degrees

Papadakis & Palpanas, WWW 2018, April 2018
Courtesy of Oktie Hassanzadeh 199

200

Ricochet Algorithms [WB-DASFAA’09]

• Ricochet family of algorithms
– Based on a strategy that resembles the rippling of stones

thrown in a pond
– Combine ideas from the classic K-means algorithm and the

Star algorithm
• First selecting seeds (star centers) for the clusters and then

refining the clusters iteratively

– Four unconstrained clustering algorithms, originally
proposed for document clustering

• SR, BSR, CR and OCR

– SR and BSR perform a sequential selection of the cluster
seeds; CR and OCR perform a concurrent selection of the
seeds

Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Oktie Hassanzadeh 200

201

Min-Cut Clustering [Hassanzadeh et al., VLDB 2009]

• Based on the Cut-Clustering Algorithm [FTT-IM04]

– Finding minimum cuts of edges in the similarity graph after
inserting an artificial sink into similarity graph G

t1

t2

0.71

t3

t5

t6

t4

t7

t8

0.48

0.22

0.32

0.23
0.27

0.57

0.24

0.480.68

s

Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Oktie Hassanzadeh 201

202

Articulation Point Clustering
[Hassanzadeh et al., VLDB 2009]

• A scalable graph partitioning
algorithm

• Based on finding articulation
points

– Articulation point: a vertex
whose removal makes the
graph disconnected

• Efficient implementations
proposed for identifying
chatter in the blogosphere
[BCKT-VLDB07]

Papadakis & Palpanas, WWW 2018, April 2018
Courtesy of Oktie Hassanzadeh 202

203

Markov Clustering (MCL) [Dongen-Thesis00]

• Based on simulation of stochastic flow
in graphs
– Graph is mapped to Markov matrix

– Transition probabilities recomputed
through alternate application of two
algebraic operations on matrices

• Expansion and Inflation

• Clusterings with different scales of
granularity by varying the inflation
parameter of the algorithm

• Optimized implementation that makes
the algorithm scalable

Papadakis & Palpanas, WWW 2018, April 2018
Courtesy of Oktie Hassanzadeh 203

204

Correlation Clustering [BBC-ML04]

• Original problem: a graph clustering given edges labelled
with ‘+’ or ‘−’
– ‘+’ indicates correlation between the nodes

– ‘−’ indicates uncorrelated nodes

• The goal is to find a clustering that agrees as much as
possible with the edge labels
– NP-Hard: approximations needed

• The labels can be assigned to edges based on the similarity
scores of the records (edge weights) and a threshold value

• Several approximations exist
– We use algorithm Cautious from [BBC-ML04] in our paper

Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Oktie Hassanzadeh 204

Summary of Experimental Results
[Hassanzadeh et al., VLDB 2009]

Papadakis & Palpanas, WWW 2018, April 2018
205

Courtesy of Oktie Hassanzadeh

Main Conclusions [Hassanzadeh et al., VLDB 2009]

• None of the clustering algorithms produces perfect clustering
• Transitive closure:

– highly scalable, but results in poor quality of duplicate groups
– Poor quality even wrt other single-pass algorithms

• Most algorithms are robust to distribution of duplicates, except
Ricochet algorithms:
– high performance over uniformly distributed duplicates
– poor performance otherwise

• Cut clustering and Correlation clustering:
– sophisticated & popular algorithms
– achieve lower accuracy than some single-pass algorithms

• Markov clustering:
– very efficient
– one the most accurate algorithms

Papadakis & Palpanas, WWW 2018, April 2018
206

Courtesy of Oktie Hassanzadeh

Papadakis & Palpanas, WWW 2018, April 2018

 Part 8:

 Massive Parallelization Methods

207

Massive Parallelization Outline

• Based on the Map-Reduce paradigm
– Data partitioned across the nodes of a cluster

– Map Phase: transforms a data partition into (key, value) pairs

– Reduce Phase: processes pairs with the same key

• Parallelization of Blocking
– Standard Blocking (Dedoop)

• Parallelization of Block Processing
– Block Filtering

– Meta-blocking

• Parallelization of Entity Matching
– LINDA

Papadakis & Palpanas, WWW 2018, April 2018
208

Papadakis & Palpanas, WWW 2018, April 2018
209

1: Input
Key: id of entity ei, 𝑖
Value: entity profile of ei

2: Output
Key: blocking key value, 𝑏𝑘𝑣
Value: entity profile of ei

3: 𝑏𝑘𝑣 = extractBlockingKey(ei)
4: emit(𝑏𝑘𝑣 , 𝑘. ||𝑏𝑘||);

1: Input
Key: blocking key value, 𝑏𝑘𝑣
Value: list of entity profiles 𝑉 = {𝑒𝑖 , 𝑒𝑗 , … , }

2: Output
Key: pair of concatenated entity ids, 𝑖. 𝑗
Value: true (match) or false (non-match)

3: for each pair of entities ei-ej in 𝑉
4: decision = compareProfiles(ei

, ej
)

5: emit(𝑖. 𝑗 , decision);
6: end loop

MAP function pseudo-code REDUCE function pseudo-code

 Parallel Standard Blocking [Kolb et al., PVLDB 2012]

Parallel Block Filtering [Efthymiou et. al., BigData 2015]

Papadakis & Palpanas, WWW 2018, April 2018
210

1: Input
Key: id of block bk, 𝑘
Value: list of entity ids, 𝑏𝑘 = {𝑖, 𝑗, … ,𝑚}

2: Output
Key: id of entity ei, 𝑖
Value: block id and cardinality, 𝑘. ||𝑏𝑘||

3: compute comparisons in block, ||𝑏𝑘||
4: for each 𝑖 ∈ 𝑏𝑘 loop
5: emit(𝑖 , 𝑘. ||𝑏𝑘||);
6: end loop

1: Input
Key: id of entity ei, 𝑖
Value: list of pairs < 𝑘. ||𝑏𝑘|| >, 𝑉

2: Output
Key: id of entity ei, 𝑖
Value: list of top-N blocks in 𝐵𝑖, 𝐵′𝑖

3: order 𝑉 in ascending block cardinality
4: 𝐵′𝑖 = 𝑔𝑒𝑡𝑇𝑜𝑝𝑁𝐵𝑙𝑜𝑐𝑘𝐼𝑑𝑠(𝑉)
5: emit(𝑖 , 𝐵′𝑖);

MAP function pseudo-code REDUCE function pseudo-code

Example Parallel Block Filtering

Papadakis & Palpanas, WWW 2018, April 2018
211

b1 e1,e2,e3
… …

b4 e1,e3,e4

... ...

b6 e1,e6,e7,e9

b7 e1,e5,e6,e8,e9

... ...

Key Value

e1 b1.3

e2 b1.3

e3 b1.3
... …

Value

e1 b4.3

e3 b4.3

e4 b4.3
... …

Key

e1 b6.6

e6 b6.6

e7 b6.6

e9 b6.6

e1 b7.10
... …

M
ap

M

ap

G
ro

u
p

 b
y key

e1 b1.3

e1 b4.3

e1 b6.6

e1 b7.10
... …

Value

e2 b1.3
... …

Key

e3 b1.3

e3 b4.3
... …

e1 b1,b4,b6

... …

R
e

d
u

ce

e2 b1

... …

e3 b1,b4

... …

R
e

d
u

ce

R
e

d
u

ce
 M

ap

Parallel Meta-blocking [Efthymiou et al., IS 2017]

• Three strategies:

1. Edge-based: explicitly creates the blocking graph

• needs pre-processing to perform all weight computations

• stores all edges of the blocking graph on disk

• at least 2 MapReduce jobs per pruning algorithm with high I/O

2. Comparison-based: implicitly creates the blocking graph

• defers weight computations to avoid creating any edges

• pre-processing enriches the input blocks with the block list of every
entity, which is necessary for weight estimation → ideal for CEP/WEP

3. Entity-based: uses the blocking graph only as a conceptual model

• no pre-processing, all computations in the reducer

• gathers entire blocks for each entity → ideal for CNP/WNP

Papadakis & Palpanas, WWW 2018, April 2018
212

Papadakis & Palpanas, WWW 2018, April 2018
213

1: Input
Key: id of entity ei, 𝑖
Value: list of associated block ids, 𝐵𝑖

2: Output
Key: id of block bk, 𝑘
Value: id of entity ei and associated
block ids, 𝑖. 𝐵𝑖

3: sort 𝐵𝑖 in ascending order of block ids
4: for each 𝑘 ∈ 𝐵𝑖 loop
5: emit(𝑘 , 𝑖. 𝐵𝑖);
6: end loop

1: Input
Key: id of block bk, 𝑘
Value: list of pairs < 𝑖. 𝐵𝑖 >, 𝑉

2: Output
Key: input key
Value: input value

3: if (2 ≤ |𝑉|)
4: emit(𝑘 , V);

MAP function pseudo-code REDUCE function pseudo-code

Comparison-based Parallel Meta-blocking
Pre-processing

Comparison-based Parallel Meta-blocking
Pre-processing Example

b1

[e1,b1,b4,b6],
[e2,b1],
[e3,b1,b4],...

… …

Key Value

b4

[e1,b1,b4,b6],
[e3,b1,b4],
[e4,b4,b5],...

... ...
G

ro
u

p
 b

y ke
y

M
ap

M

ap

e1 b1,b4,b6

e2 b1

e3 b1,b4

e4 b4,b5

... ...

Key Value

b1 [e1,b1,b4,b6]

b4 [e1,b1,b4,b6]

b6 [e1,b1,b4,b6]

b1 [e2,b1]
... …

Value

b1 [e3,b1,b4]

b4 [e3,b1,b4]

b4 [e4,b4,b5]

b5 [e4,b4,b5]
... …

Key Key Value

b1 [e1,b1,b4,b6]

b1 [e2,b1]

b1 [e3,b1,b4]
... …

b4 [e1,b1,b4,b6]

b4 [e3,b1,b4]

b4 [e4,b4,b5]
... …

b5
[e4,b4,b5],...

... ...

R
e

d
u

ce

b5 [e4,b4,b5]
... …

R
e

d
u

ce

R
e

d
u

ce

b6 [e1,b1,b4,b6],
...

... ...

R
e

d
u

ce

b6 [e1,b1,b4,b6]
... …

Papadakis & Palpanas, WWW 2018, April 2018
214

Comparison-based Parallel Meta-blocking
Weighted Edge Pruning (WEP) & Jaccard Scheme (JS)

Papadakis & Palpanas, WWW 2018, April 2018
215

MAP function pseudo-code

1: Input
Key: id of block bk, 𝑘
Value: list of entity ids, associated blocks and
local information, 𝑉 = {𝑖. 𝐵𝑖 . 𝑋𝑖 , 𝑗. 𝐵𝑗 . 𝑋𝑗 , … }

2: Output
Key: entity ids defining edge <ni,nj>, 𝑖. 𝑗
Value: total weight of <ni,nj>, 𝑤𝑖𝑗

3: for each 𝑐𝑖𝑗 ∈ 𝑏𝑘 . 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠() loop

4: if (𝑖𝑠𝑁𝑜𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑐𝑖𝑗 = true)

5: compute 𝑤𝑖𝑗 from 𝐵𝑖 . 𝑋𝑖, 𝐵𝑗 . 𝑋𝑗 ;

6: emit(𝑖 . 𝑗, 𝑤𝑖𝑗);
7: |𝐸𝐺|++;
8: 𝑡𝑤 += 𝑤𝑖𝑗 ;
9: end loop

1: Input
Key: entity ids defining edge
 <ni,nj>, 𝑖. 𝑗
Value: total weight of <ni,nj>, 𝑤𝑖𝑗

2: Output
Key: entity ids of retained edge

 <ni,nj>, 𝑖. 𝑗
Value: total weight of <ni,nj>, 𝑤𝑖𝑗

3: if (𝑤𝑖𝑗 > tw/ 𝐸𝐺)
4: emit(𝑖. 𝑗, 𝑤𝑖𝑗);

REDUCE function pseudo-code

Comparison-based Parallel Meta-blocking
Weighted Edge Pruning (WEP) & Jaccard Scheme (JS)

e1.e2 1/3

e1.e3 2/3

e2.e3 1/2

... …

Key Value

G
ro

u
p

 b
y ke

y

R
e

d
u

ce

e1.e4 1/4

e3.e4 1/3

... …

Count #keys

Sum up values

e1.e2 1/3

... ...

e1.e3 2/3

... …

Key Value

e1.e4 1/4

... ...

e3.e4 1/3

... …

e2.e3 1/2

... ...

e1.e3 2/3

... …

e2.e3 1/2

... …

... …

R
e

d
u

ce

R
e

d
u

ce

b1

[e1,b1,b4,b6],
[e2,b1],
[e3,b1,b4]

… …

b4

[e1,b1,b4,b6],
[e3,b1,b4],
[e4,b4,b5]

... ...

Key Value

M
ap

M

ap

Papadakis & Palpanas, WWW 2018, April 2018
216

Entity-based Parallel Meta-blocking
Cardinality Node Pruning (CNP)

Papadakis & Palpanas, WWW 2018, April 2018
217

1: Input
Key: id of block bk, 𝑘
Value: list of entity ids, 𝑏𝑘 = {𝑖, 𝑗, … ,𝑚}

2: Output
Key: id of entity ei, 𝑖
Value: input value

3: for each 𝑗 ∈ 𝑏𝑘 loop
4: emit (𝑗 , 𝑏𝑘);
5: end loop

MAP function pseudo-code REDUCE function pseudo-code

 1: Input
Key: id of entity ei, 𝑖
Value: co-occurrence bag, 𝛽𝑖

 2: Output
Key: entity ids of retained edge <ni,nj>, 𝑖. 𝑗
Value: total weight of <ni,nj>, 𝑤𝑖𝑗

 3: frequencies[] ← {}; setOfNeighbors ← {};
 4: for each 𝑗 ∈ 𝑉 loop
 5: frequencies[𝑗]++;
 6: setOfNeighbors .add(𝑗);
 7: end loop
 8: topEdges ← {};
 9: for each 𝑗 ∈ setOfNeighbors loop
10: 𝑤𝑖𝑗 = getWeight (𝑖 , 𝑗 , frequencies[𝑗]);
11: topEdges.add(𝑗 , 𝑤𝑖𝑗);
12: if (topEdges.size() < k)
13: topEdges.pop();
14: end loop
15: for each 𝑗 , 𝑤𝑖𝑗 ∈ topEdges loop
16: emit (𝑖. 𝑗 , 𝑤𝑖𝑗);
17: end loop

Load Balancing: MaxBlock Algorithm

1 2
3 4 5 6

1

max
comparisons

2
3 4 5 6

max
comparisons

3 4 5 6

max
comparisons

3 4 5 6

1

max
comparisons

3

4 5 6

1

max
comparisons

3 4 5 6

1

max
comparisons

3

4

5 6

1

max
comparisons

3

4
5

6

1

max
comparisons

3

4
5 6

2

2 2 2

2 2 2

1

1

: unassigned block
: block accepted in partition
: block rejected from partition : new partition 218

Papadakis & Palpanas, WWW 2018, April 2018

Parallel Meta-blocking Performance

Papadakis & Palpanas, WWW 2018, April 2018
219

Comparison-based Parallel Meta-blocking
Weighted Edge Pruning (WEP) & Jaccard Scheme (JS)

Papadakis & Palpanas, WWW 2018, April 2018

Parallel Meta-blocking achieves (almost) linear scale-up

220

linear

parallel
meta-blocking

LINDA: Parallel Entity Matching as an
Optimization Problem [Böhm et al., CIKM 2012]

• Input:
– Entity Graph G=(V,E) where vertices represent distinct URIs

• Output:
– Assignment Matrix X where xa,b=1 if a and b refer to same entity

• Constraints:
– reflexivity, symmetry, transitivity, and unique mapping per source

(entity from source 1 matches with at most one entity from source 2)

• Objective:
– Given sim(a, b, G, X), find X that maximizes

Papadakis & Palpanas, WWW 2018, April 2018 221 Courtesy of Gerhard Weikum

Multi-Core Assignment Algorithm

• Initialize matrix X as identity matrix

• Initialize priority queue Q with initial similarities

• While Q not empty
• Retrieve pair (a,b) of entities with highest similarity value

• Accept pairs (a’,b’) with a’ and b’ in equivalence class of a and b
(uses current X to determine equivalents, updates X)

• For all pairs (c,d) of entities where similarity could have changed

• Compute new similarities in parallel

• If similarity has changed for (c,d)

• Update queue with new similarity for (c,d)

• Return X

Papadakis & Palpanas, WWW 2018, April 2018 222 Courtesy of Gerhard Weikum

Map/Reduce Assignment Algorithm

Papadakis & Palpanas, WWW 2018, April 2018

…
…
…
…
…

Queue

ei

ej

ek

el

Entity Graph

d
is

tr
ib

u
te

d
is

tr
ib

u
te

223

ei ej y

ei ek y

ek el y

Courtesy of Gerhard Weikum

Map/Reduce Assignment Algorithm

…
…
…
…
…

…

…

…

ei ej

…

ek el

Queue

ei

ej

ek

el

Entity Graph Q-part 1

…

…

Q-part n

d
is

tr
ib

u
te

d
is

tr
ib

u
te

G-part 1 G-part n

ei ej y

ei ek y

ek el y

ek el y ei ej y

Papadakis & Palpanas, WWW 2018, April 2018 224 Courtesy of Gerhard Weikum

e1 … em

e m
…

 e
1

ei ej y

ei ek y

ek el y

…
…
…
…
…

…

ei ej y
…

…

ei ej

…

ek el

Queue

Result
Matrix

ei

ej

ek

el

(3) update

Entity Graph

re
ad

re
ad

Q-part 1

ek el y
…

…

Q-part n (2) notify*

ei ej y‘

ei ek y‘
…

Queue
Updates

d
is

tr
ib

u
te

d
is

tr
ib

u
te

d
is

tr
ib

u
te

G-part 1 G-part n

Map/Reduce Assignment Algorithm

Papadakis & Palpanas, WWW 2018, April 2018 225 Courtesy of Gerhard Weikum

Papadakis & Palpanas, WWW 2018, April 2018

 Part 9:

 Progressive Entity Resolution

226

Papadakis & Palpanas, WWW 2018, April 2018

Preliminaries

Facts:

• Progressive, or Pay-as-you-go ER comes is useful

227

Papadakis & Palpanas, WWW 2018, April 2018

Preliminaries

Facts:

• Progressive, or Pay-as-you-go ER comes is useful

 get most of the benefit
much earlier

228

Papadakis & Palpanas, WWW 2018, April 2018

Preliminaries

Facts:

• Progressive, or Pay-as-you-go ER comes is useful

 get most of the benefit
much earlier

may require some
pre-processing

229

Progressive Entity Resolution

• requires:
– Improved Early Quality

– Same Eventual Quality

• defines optimal processing order for a set of entities

• Use cases:
– Limited, unknown time for ER (online ER)

– Exploratory ER

• Empirical by nature, based on heuristics

Papadakis & Palpanas, WWW 2018, April 2018
230

Static Progressive Methods

• Guide which records to compare first, independently of Entity
Matching results

• Three flavors
– Sorted list of pairs: a list of record pairs, ranked by the likelihood that the

pairs match

– Hierarchy of partitions: likely matching records in the form of partitions with
different levels of granularity

– Sorted list of records: maximize the number of matching records identified
when the list is resolved sequentially

Papadakis & Palpanas, WWW 2018, April 2018 Courtesy of Steven Euijong Whang
231

Sorted
Neighborhood

(SN)

Standard Blocking

Suffix Arrays
Blocking

(SAB)

Progressive SN
(PSN)

Schema-Agnostic
PSN (SA-PSN)

Meta-blocking
(Blocking Graph)

Ordered
List of
Records
(OLR)

Hierarchy
of Record
Partitions
(HRP)

Local SA-PSN
(LS-PSN)

Global SA-PSN
(GS-PSN)

Progressive
Block
Scheduling
(PBS)

Progressive Suffix
Arrays Blocking

(SA-PSAB)

Token Blocking

Progressive
Profile
Scheduling
(PPS)

B
atch

P

ro
gressive

Sc
h

em
a-

b
as

e
d

N
aï

ve

A
d

va
n

ce
d

Sc
h

em
a-

ag
n

o
st

ic

Comparison-based Block-based Profile-based Hybrid

Taxonomy of Progressive Methods

Papadakis & Palpanas, WWW 2018, April 2018
232

Progressive Sorted Neighborhood (PSN)
[Whang et al, IEEE TKDE, 2013]

233

A B C D E F G H I J K L M N O P

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

The Comparison Matrix

Record

Comparison

Duplicate

10

6
3
1
0

Courtesy of Thorsten Papenbrock Papadakis & Palpanas, WWW 2018, April 2018

Sorted
Neighborhood

(SN)

Standard Blocking

Suffix Arrays
Blocking

(SAB)

Progressive SN
(PSN)

Schema-Agnostic
PSN (SA-PSN)

Meta-blocking
(Blocking Graph)

Ordered
List of
Records
(OLR)

Hierarchy
of Record
Partitions
(HRP)

Local SA-PSN
(LS-PSN)

Global SA-PSN
(GS-PSN)

Progressive
Block
Scheduling
(PBS)

Progressive Suffix
Arrays Blocking

(SA-PSAB)

Token Blocking

Progressive
Profile
Scheduling
(PPS)

B
atch

P

ro
gressive

Sc
h

em
a-

b
as

e
d

N
aï

ve

A
d

va
n

ce
d

Sc
h

em
a-

ag
n

o
st

ic

Comparison-based Block-based Profile-based Hybrid

Taxonomy of Progressive Methods

Papadakis & Palpanas, WWW 2018, April 2018
234

Hierarchy of Partitions
[Whang et al, IEEE TKDE, 2013]

1. Compare {r1, r2} and {r4, r5}.

2. If there is more budget,
compare {r1, r2, r3}.

3. If there is still more budget,
compare {r1, r2, r3, r4, r5}.

235
Courtesy of Steven Euijong Whang Papadakis & Palpanas, WWW 2018, April 2018

Sorted
Neighborhood

(SN)

Standard Blocking

Suffix Arrays
Blocking

(SAB)

Progressive SN
(PSN)

Schema-Agnostic
PSN (SA-PSN)

Meta-blocking
(Blocking Graph)

Ordered
List of
Records
(OLR)

Hierarchy
of Record
Partitions
(HRP)

Local SA-PSN
(LS-PSN)

Global SA-PSN
(GS-PSN)

Progressive
Block
Scheduling
(PBS)

Progressive Suffix
Arrays Blocking

(SA-PSAB)

Token Blocking

Progressive
Profile
Scheduling
(PPS)

B
atch

P

ro
gressive

Sc
h

em
a-

b
as

e
d

N
aï

ve

A
d

va
n

ce
d

Sc
h

em
a-

ag
n

o
st

ic

Comparison-based Block-based Profile-based Hybrid

Taxonomy of Progressive Methods

Papadakis & Palpanas, WWW 2018, April 2018
236

Ordered List of Records
[Whang et al, IEEE TKDE, 2013]

Goal:
 maximize the number of matching records identified while resolving the

list sequentially

Advantages:
• zero space requirements

• no change in resolution algorithm

Generation:
Sort all entities according to a weight derived from the partitions that
involve them, under the assumption that each partition is equally likely to
be the correct ER outcome.

Papadakis & Palpanas, WWW 2018, April 2018
237

Schema-agnostic Progressive ER
[Simonini et. al., ICDE 2018]

• Previous works assume structured data.
– (Multiple) Schema-based blocking methods.

• Problems:
– Inapplicable to Big Data, due to Volume and Variety.

– Plenty of room for improvement

• even for schema-based methods!

Papadakis & Palpanas, WWW 2018, April 2018
238

Schema-agnostic Progressive ER
[Simonini et. al., ICDE 2018]

• state of the art schema-based solution: PSN

Papadakis & Palpanas, WWW 2018, April 2018
239

Schema-agnostic Progressive ER
[Simonini et. al., ICDE 2018]

• state of the art schema-based solution: PSN

• when optimal finds 100% of matches, PSN finds 2-35% of matches

Papadakis & Palpanas, WWW 2018, April 2018
240

Schema-agnostic Progressive ER
[Simonini et. al., ICDE 2018]

• state of the art schema-based solution: PSN

• when optimal finds 100% of matches, PSN finds 2-35% of matches

• after 10x the comparisons optimal needs, PSN finds 15-85% of matches

Papadakis & Palpanas, WWW 2018, April 2018
241

Schema-agnostic Progressive ER
[Simonini et. al., ICDE 2018]

• state of the art schema-based solution: PSN

• when optimal finds 100% of matches, PSN finds 2-35% of matches

• after 10x the comparisons optimal needs, PSN finds 15-85% of matches

• after 100x the comparisons optimal needs, PSN finds 80-99% of matches

Papadakis & Palpanas, WWW 2018, April 2018
242

Schema-agnostic Progressive ER
[Simonini et. al., ICDE 2018]

• Solution:
– schema-agnostic methods that are able to handle large, semi-structured,

heterogeneous data

– proposed solutions also applicable to structured data

Papadakis & Palpanas, WWW 2018, April 2018
243

Sorted
Neighborhood

(SN)

Standard Blocking

Suffix Arrays
Blocking

(SAB)

Progressive SN
(PSN)

Schema-Agnostic
PSN (SA-PSN)

Meta-blocking
(Blocking Graph)

Ordered
List of
Records
(OLR)

Hierarchy
of Record
Partitions
(HRP)

Local SA-PSN
(LS-PSN)

Global SA-PSN
(GS-PSN)

Progressive
Block
Scheduling
(PBS)

Progressive Suffix
Arrays Blocking

(SA-PSAB)

Token Blocking

Progressive
Profile
Scheduling
(PPS)

B
atch

P

ro
gressive

Sc
h

em
a-

b
as

e
d

N
aï

ve

A
d

va
n

ce
d

Sc
h

em
a-

ag
n

o
st

ic

Comparison-based Block-based Profile-based Hybrid

Taxonomy of Progressive Methods

Papadakis & Palpanas, WWW 2018, April 2018
244

Schema-agnostic PSN [Simonini et. al., ICDE 2018]

• Use all attribute values as blocking keys – regardless of attribute
values

• Sort them alphabetically

• Sort the entities accordingly → Neighbor List
– The same entity might be placed in consecutive places

• Slide the incremental window over the Neighbor List

• Execute the valid comparisons

Papadakis & Palpanas, WWW 2018, April 2018
245

Example of Schema-agnostic PSN

Papadakis & Palpanas, WWW 2018, April 2018

Data Lake

Blocking Keys

Neighbor List

Sliding Window

246

Sorted
Neighborhood

(SN)

Standard Blocking

Suffix Arrays
Blocking

(SAB)

Progressive SN
(PSN)

Schema-Agnostic
PSN (SA-PSN)

Meta-blocking
(Blocking Graph)

Ordered
List of
Records
(OLR)

Hierarchy
of Record
Partitions
(HRP)

Local SA-PSN
(LS-PSN)

Global SA-PSN
(GS-PSN)

Progressive
Block
Scheduling
(PBS)

Progressive Suffix
Arrays Blocking

(SA-PSAB)

Token Blocking

Progressive
Profile
Scheduling
(PPS)

B
atch

P

ro
gressive

Sc
h

em
a-

b
as

e
d

N
aï

ve

A
d

va
n

ce
d

Sc
h

em
a-

ag
n

o
st

ic

Comparison-based Block-based Profile-based Hybrid

Taxonomy of Progressive Methods

Papadakis & Palpanas, WWW 2018, April 2018
247

Local/Global Schema-agnostic PSN
[Simonini et. al., ICDE 2018]

• Drawbacks of SA-PSN
– coincidental proximity → random ordering

– redundant comparisons

• LS-PSN:
– discards redundant comparisons within the current window

– local execution order through comparison weighting with Position Index

– weighting scheme: Relative Co-occurrence Frequency (RCF)

• GS-PSN:
– similar to LS-PSN, but defines a global execution order for all comparisons

in a range of window sizes up to wmax

Papadakis & Palpanas, WWW 2018, April 2018
248

Example of LS-PSN

Papadakis & Palpanas, WWW 2018, April 2018

Data Lake

Blocking Keys

Neighbor List

Sliding Window

Comparison Sorting

Comparison Weighting

249

Sorted
Neighborhood

(SN)

Standard Blocking

Suffix Arrays
Blocking

(SAB)

Progressive SN
(PSN)

Schema-Agnostic
PSN (SA-PSN)

Meta-blocking
(Blocking Graph)

Ordered
List of
Records
(OLR)

Hierarchy
of Record
Partitions
(HRP)

Local SA-PSN
(LS-PSN)

Global SA-PSN
(GS-PSN)

Progressive
Block
Scheduling
(PBS)

Progressive Suffix
Arrays Blocking

(SA-PSAB)

Token Blocking

Progressive
Profile
Scheduling
(PPS)

B
atch

P

ro
gressive

Sc
h

em
a-

b
as

e
d

N
aï

ve

A
d

va
n

ce
d

Sc
h

em
a-

ag
n

o
st

ic

Comparison-based Block-based Profile-based Hybrid

Taxonomy of Progressive Methods

Papadakis & Palpanas, WWW 2018, April 2018
250

Progressive Suffix Arrays Blocking
[Simonini et. al., ICDE 2018]

• Every token in any attribute value is a blocking key

• Every key is converted to all suffixes with at least lmin characters

• Every suffix of minimum length creates a tree with that suffix at its
root → Hierarchy of Partitions

Papadakis & Palpanas, WWW 2018, April 2018
251

Sorted
Neighborhood

(SN)

Standard Blocking

Suffix Arrays
Blocking

(SAB)

Progressive SN
(PSN)

Schema-Agnostic
PSN (SA-PSN)

Meta-blocking
(Blocking Graph)

Ordered
List of
Records
(OLR)

Hierarchy
of Record
Partitions
(HRP)

Local SA-PSN
(LS-PSN)

Global SA-PSN
(GS-PSN)

Progressive
Block
Scheduling
(PBS)

Progressive Suffix
Arrays Blocking

(SA-PSAB)

Token Blocking

Progressive
Profile
Scheduling
(PPS)

B
atch

P

ro
gressive

Sc
h

em
a-

b
as

e
d

N
aï

ve

A
d

va
n

ce
d

Sc
h

em
a-

ag
n

o
st

ic

Comparison-based Block-based Profile-based Hybrid

Taxonomy of Progressive Methods

Papadakis & Palpanas, WWW 2018, April 2018
252

Progressive Block Scheduling (PBS)
[Simonini et. al., ICDE 2018]

• Based on redundancy-positive blocking methods

• Orders blocks in increasing comparisons

• For each block:
– Estimate the weight of all comparisons

– Sort and process the non-redundant comparisons in decreasing weight

– Relies on Entity (Profile) Index

Papadakis & Palpanas, WWW 2018, April 2018
253

Example of PBS

Papadakis & Palpanas, WWW 2018, April 2018

Data Lake

Block Collection

Block Processing

254

Sorted
Neighborhood

(SN)

Standard Blocking

Suffix Arrays
Blocking

(SAB)

Progressive SN
(PSN)

Schema-Agnostic
PSN (SA-PSN)

Meta-blocking
(Blocking Graph)

Ordered
List of
Records
(OLR)

Hierarchy
of Record
Partitions
(HRP)

Local SA-PSN
(LS-PSN)

Global SA-PSN
(GS-PSN)

Progressive
Block
Scheduling
(PBS)

Progressive Suffix
Arrays Blocking

(SA-PSAB)

Token Blocking

Progressive
Profile
Scheduling
(PPS)

B
atch

P

ro
gressive

Sc
h

em
a-

b
as

e
d

N
aï

ve

A
d

va
n

ce
d

Sc
h

em
a-

ag
n

o
st

ic

Comparison-based Block-based Profile-based Hybrid

Taxonomy of Progressive Methods

Papadakis & Palpanas, WWW 2018, April 2018
255

Progressive Profile Scheduling (PPS)
[Simonini et. al., ICDE 2018]

• Based on redundancy-positive blocking methods

• Orders entities in decreasing duplication likelihood

• Simultaneously, it aggregates the top-weighted comparison per
entity → these are the first comparisons to be processed

• Processes one entity at a time
– For each entity, it considers the k top-weighted co-occurring ones in

decreasing edge weight

Papadakis & Palpanas, WWW 2018, April 2018
256

Example of PPS

Papadakis & Palpanas, WWW 2018, April 2018

Data Lake

Block Collection

Blocking Graph

Sorted Profile List

Local Comparison List for p2

257

Experimental Results [Simonini et. al., ICDE 2018]

• datasets used:

Papadakis & Palpanas, WWW 2018, April 2018 258

Experimental Results [Simonini et. al., ICDE 2018]

• datasets used:

Papadakis & Palpanas, WWW 2018, April 2018 259

Experimental Results [Simonini et. al., ICDE 2018]

• datasets used:

• measures used: 𝑹𝒆𝒄𝒂𝒍𝒍 =
𝒆𝒎𝒊𝒕𝒕𝒆𝒅 𝒎𝒂𝒕𝒄𝒉𝒆𝒔

𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒎𝒂𝒕𝒄𝒉𝒆𝒔
 𝒆𝒄∗ =

𝒆𝒎𝒊𝒕𝒕𝒆𝒅 𝒄𝒐𝒎𝒑𝒂𝒓𝒊𝒔𝒐𝒏𝒔

𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒎𝒂𝒕𝒄𝒉𝒆𝒔

• 𝒆𝒄∗ measures # of comparisons as multiples of all comparisons of optimal

Papadakis & Palpanas, WWW 2018, April 2018 260

Experimental Results [Simonini et. al., ICDE 2018]

• datasets used:

• measures used: 𝑹𝒆𝒄𝒂𝒍𝒍 =
𝒆𝒎𝒊𝒕𝒕𝒆𝒅 𝒎𝒂𝒕𝒄𝒉𝒆𝒔

𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒎𝒂𝒕𝒄𝒉𝒆𝒔

𝒂𝒓𝒆𝒂 𝒖𝒏𝒅𝒆𝒓 𝒄𝒖𝒓𝒗𝒆: 𝑨𝑼𝑪𝒎
∗ @𝒆𝒄∗ =

𝑹𝒆𝒄𝒂𝒍𝒍 𝑪𝒖𝒓𝒗𝒆 𝒐𝒇 𝒎

𝒊𝒅𝒆𝒂𝒍 𝑹𝒆𝒄𝒂𝒍𝒍 𝑪𝒖𝒓𝒗𝒆

𝒆𝒄∗

𝟎

𝒆𝒄∗ =
𝒆𝒎𝒊𝒕𝒕𝒆𝒅 𝒄𝒐𝒎𝒑𝒂𝒓𝒊𝒔𝒐𝒏𝒔

𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 𝒎𝒂𝒕𝒄𝒉𝒆𝒔

• 𝒆𝒄∗ measures # of comparisons as multiples of all comparisons of optimal
• 𝑨𝑼𝑪𝒎

∗ @𝒆𝒄∗ measures performance of method m for effort 𝒆𝒄∗
• the higher the 𝑨𝑼𝑪𝒎

∗ @𝒆𝒄∗, the better (optimal has 𝑨𝑼𝑪𝒎
∗ @𝒆𝒄∗=1)

Papadakis & Palpanas, WWW 2018, April 2018 261

Experimental Results [Simonini et. al., ICDE 2018]

Papadakis & Palpanas, WWW 2018, April 2018

• performance over heterogeneous datasets

262

Experimental Results [Simonini et. al., ICDE 2018]

Papadakis & Palpanas, WWW 2018, April 2018

• performance over heterogeneous datasets

263

• methods based on redundancy-positive blocking perform
significantly better

• PPS is the winner

Experimental Results [Simonini et. al., ICDE 2018]

Papadakis & Palpanas, WWW 2018, April 2018

264

• performance over structured datasets

Experimental Results [Simonini et. al., ICDE 2018]

Papadakis & Palpanas, WWW 2018, April 2018

265

• performance over structured datasets

• the LS/GS-PSN methods perform significantly better

Experimental Results [Simonini et. al., ICDE 2018]

Papadakis & Palpanas, WWW 2018, April 2018

266

• performance over structured datasets

• the LS/GS-PSN methods perform significantly better
• PPS achieves almost the same performance

Experimental Results [Simonini et. al., ICDE 2018]

Papadakis & Palpanas, WWW 2018, April 2018

267

• performance over structured datasets

• the LS/GS-PSN methods perform significantly better
• PPS achieves almost the same performance

• overall, PPS is method of choice for progressive ER on both
structured/ heterogeneous data

Dynamic Progressive Methods

• Problem of Static Methods:
– The order of comparisons is immutable.

• Impact:
– The algorithm cannot react to a skewed distribution of duplicates.

• Solution:
– If (i,j) is a duplicate, then check (i+1,j) and (i,j+1) as well.

– Assumption:

• Oracle for Entity Matching

Papadakis & Palpanas, WWW 2018, April 2018
268

Dynamic Progressive SN
[Papenbrock et a., IEEE TKDE, 2015]

269

Courtesy of Thorsten Papenbrock Papadakis & Palpanas, WWW 2018, April 2018

Papadakis & Palpanas, WWW 2018, April 2018

 Part 10:

 JedAI Toolkit

270

What is the JedAI Toolkit?

JedAI can be used in three ways:

1. As an open source library that implements numerous state-
of-the-art methods for all steps of an established end-to-end
ER workflow.

2. As a desktop application for ER with an intuitive Graphical
User Interface that is suitable for both expert and lay users.

3. As a workbench for comparing all performance aspects of
various (configurations of) end-to-end ER workflows.

Papadakis & Palpanas, WWW 2018, April 2018
271

JedAI vs other tools

Magellan

× limited variety of (blocking)
methods

 rich variety available methods for
every step in the end-to-end
workflow

Papadakis & Palpanas, WWW 2018, April 2018 272

JedAI

JedAI vs other tools

Magellan

× limited variety of (blocking)
methods

× restricted to relational data only

 rich variety available methods for
every step in the end-to-end
workflow

 applies to both structured and non-
structured data

Papadakis & Palpanas, WWW 2018, April 2018 273

JedAI

JedAI vs other tools

Magellan

× limited variety of (blocking)
methods

× restricted to relational data only

× targeted to expert users,
focusing on development of
tailor-made methods

 rich variety available methods for
every step in the end-to-end
workflow

 applies to both structured and non-
structured data

 hands-off functionality through
default configuration of every
method, but also extensible

Papadakis & Palpanas, WWW 2018, April 2018 274

JedAI

JedAI vs other tools

Magellan

× limited variety of (blocking)
methods

× restricted to relational data only

× targeted to expert users,
focusing on development of
tailor-made methods

× offers command-line interface,
no GUI

 rich variety available methods for
every step in the end-to-end
workflow

 applies to both structured and non-
structured data

 hands-off functionality through
default configuration of every
method, but also extensible

 intuitive GUI with guidelines even
for novice users

Papadakis & Palpanas, WWW 2018, April 2018 275

JedAI

JedAI vs other tools

Magellan

× limited variety of (blocking)
methods

× restricted to relational data only

× targeted to expert users,
focusing on development of
tailor-made methods

× offers command-line interface,
no GUI

JedAI

 rich variety available methods for
every step in the end-to-end
workflow

 applies to both structured and non-
structured data

 hands-off functionality through
default configuration of every
method, but also extensible

 intuitive GUI with guidelines even
for novice users

 multi-core execution (coming soon)

Papadakis & Palpanas, WWW 2018, April 2018 276

How does the JedAI Toolkit work?

JedAI implements the following schema-agnostic, end-to-end
workflow for both Clean-Clean and Dirty ER:

Data
Reading

Block
Building

Block
Cleaning

Comparison
Cleaning

Entity
Matching

Entity
Clustering

Evaluation
& Storing

Step 5 Step 2 Step 3 Step 4 Step 6 Step 1 Step 7

Reads files
containing
the entity

profiles and
the golden
standard.

Creates
overlapping

blocks.

Optional step
that cleans
blocks from

useless
comparisons

(repeated,
superfluous).

Optional step
that operates on

the level of
individual

comparisons to
remove the

useless ones.

Executes all
retained

comparisons.

Partitions the
similarity graph
into equivalence

clusters.

Stores and
presents

performance
results
w.r.t.

numerous
measures.

Papadakis & Palpanas, WWW 2018, April 2018
277

How is the JedAI Toolkit structured?

???

Papadakis & Palpanas, WWW 2018, April 2018

• Modular architecture
– one module per workflow step

• Extensible architecture
– e.g., ontology matching module

278

How can I build an ER workflow?

JedAI supports several established methods for each workflow step:

Data
Reading

Block
Building

Block
Cleaning

Comparison
Cleaning

Entity
Matching

Entity
Clustering

Evaluation
& Storing

Step 5 Step 2 Step 3 Step 4 Step 6 Step 1 Step 7

Possible to
read CSV,
RDF/XML

files, SPARQL
endpoints &

relational DBs
in any

combination

Choose
1 out of 7
methods.

Specify any
combination of

3
complementary

methods

Choose
1 out of 7
methods
(including

Meta-blocking)

Combine
1 out of 2

methods with
12 textual

representation
models and 10

similarity
measures

Choose
1 out of 6

methods for
Dirty ER. For

Clean-Clean ER,
1 method is

available

Store results
as a CSV file

Papadakis & Palpanas, WWW 2018, April 2018
279

Which Data Formats are supported?

Papadakis & Palpanas, WWW 2018, April 2018
280

Data Formats

CSV files

Relational databases

XML/RDF/OWL files

SPARQL endpoints

Java Serialized Objects
(using JedAI data model)

Which Blocking Methods are supported?

Block Building Block Cleaning Comparison Cleaning

Token Blocking Block Filtering Comparison Propagation

Sorted Neighborhood Size-based Block Purging Cardinality Edge Pruning (CEP)

Extended Sorted
Neighborhood

Cardinality-based Block
Purging

Cardinality Node Pruning (CNP)

Q-Grams Blocking Block Scheduling Weighted Edge Pruning (WEP)

Extended Q-Grams Blocking Weighted Node Pruning (WNP)

Suffix Arrays Reciprocal CNP

Extended Suffix Arrays Reciprocal WNP

Papadakis & Palpanas, WWW 2018, April 2018
281

Which Entity Matching/Clustering
Methods are supported?

Papadakis & Palpanas, WWW 2018, April 2018
282

Entity Matching Entity Clustering

Group Linkage* Center Clustering

Profile Matcher* Connected Components

Cut Clustering

* In combination with bag and
graph textual models based
on token and character n-
grams and various established
string similarity measures

Markov Clustering

Merge-Center Clustering

Ricochet SR Clustering

Unique Mapping Clustering

Which Datasets are included?

Clean-Clean ER
(real)

D1
Entities

D2
Entities

Abt-Buy 1,076 1,076

DBLP-ACM 2,616 2,294

DBLP-Scholar 2,516 61,353

Amazon-GP 1,354 3,039

Movies 27,615 23,182

DBPedia 1,190,733 2,164,040

Papadakis & Palpanas, WWW 2018, April 2018

Dirty ER
(synthetic)

Entities

10K 10,000

50K 50,000

100K 100,000

200K 200,00

300K 300,00

1M 1,000,000

2M 2,000,000

can be used for Dirty ER, too

Several datasets are available for testing

283

What are the next steps?
• Version 2.0:

– Includes support for schema clustering, multicore functionality, GNU
Trove for higher time efficiency.

– Available at the end of August, 2018.

• Version 3.0:
– Includes support for data fusion, progressive ER as well as a workflow

builder.

– Available at the end of December, 2018.

• Version 4.0:
– All functionality is implemented in Apache Spark.

– Available at the end of December, 2019.

Papadakis & Palpanas, WWW 2018, April 2018
284

Where can I find JedAI Toolkit?
• Project website: http://jedai.scify.org

• Documentation (slides, videos, etc) available at github

• Github repositories:
– JedAI Library: https://github.com/scify/JedAIToolkit

– JedAI Desktop Application and Workbench:
https://github.com/scify/jedai-ui .

– All code is implemented using Java 8.

– All code is publicly available under Apache License V2.0.

Papadakis & Palpanas, WWW 2018, April 2018 285

http://jedai.scify.org/
https://github.com/scify/JedAIToolkit
https://github.com/scify/jedai-ui
https://github.com/scify/jedai-ui
https://github.com/scify/jedai-ui
https://github.com/scify/jedai-ui

Where can I find JedAI Toolkit?
• Project website: http://jedai.scify.org

• Documentation (slides, videos, etc) available at github

• Github repositories:
– JedAI Library: https://github.com/scify/JedAIToolkit

– JedAI Desktop Application and Workbench:
https://github.com/scify/jedai-ui .

– All code is implemented using Java 8.

– All code is publicly available under Apache License V2.0.

• JedAI already used in the industry, and in university courses

• When using JedAI, please cite:
George Papadakis, Leonidas Tsekouras, Emmanouil Thanos, George
Giannakopoulos, Themis Palpanas and Manolis Koubarakis: "JedAI: The Force
behind Entity Resolution", in ESWC 2017

Papadakis & Palpanas, WWW 2018, April 2018 286

http://jedai.scify.org/
https://github.com/scify/JedAIToolkit
https://github.com/scify/jedai-ui
https://github.com/scify/jedai-ui
https://github.com/scify/jedai-ui
https://github.com/scify/jedai-ui

Papadakis & Palpanas, WWW 2018, April 2018

 Part 11:

 Challenges

287

Papadakis & Palpanas, WWW 2018, April 2018

Automatic Configuration

Facts:

• Several parameters in every blocking workflow
– Both for lazy and proactive methods

• Blocking performance sensitive to internal configuration
– Experimentally verified in [Papadakis et. al., VLDB 2016]

• Manual fine-tuning required

Open Research Directions:

• Plug-and-play blocking

• Data-driven configuration

288

Papadakis & Palpanas, WWW 2018, April 2018

Privacy Preserving Blocking

Facts:

• several applications ask for privacy-preserving ER

• lots of interest in this area

 [Christen, PADM 2006][Karakasidis et al., 2012][Ziad et al, BTW 2015]

Open Research Directions:

• What is the role of blocking workflow techniques?
– block building, block filtering, comparison cleaning

• How can existing blocking techniques be adjusted?

• Novel blocking methods for this context

289

Papadakis & Palpanas, WWW 2018, April 2018

Incremental Blocking

Facts:

• Velocity in Web Data

• Dynamic ER

• Incremental ER [Gruenheid et. al., VLDB 2014]
– Blocking → black box

Open Research Directions:

• Incremental (Meta-)Blocking

290

Papadakis & Palpanas, WWW 2018, April 2018

Distributed Blocking

Facts:
• Velocity in Big Data

• Need for even faster/more scalable ER solutions

Open Research Directions:
• What is the best way to use the modern distributed platforms/paradigms?

– Flink/Spark

• How can we further improve performance of Parallel Meta-blocking?

– Gelly/Gradoop/GraphX

• Minimize both time performance and total CPU cycles

291

Papadakis & Palpanas, WWW 2018, April 2018

 Part 12:

 Conclusions

292

Conclusions – Block Building

• Traditional proactive blocking methods only suitable for
relational data
– background schema knowledge should be available for their

configuration

• Recent lazy blocking methods scale well to heterogeneous,
semi-structured Big Data
– Variety is addressed with schema-agnostic keys

– Volume is addressed with Block and Comparison Cleaning methods →
they trade slightly lower recall, for much higher precision

– Token Blocking → the only parameter-free blocking method

Papadakis & Palpanas, WWW 2018, April 2018
293

Conclusions – Block Cleaning

• Coarse-grained functionality:
• operation at the level of entire blocks

• low cost (fast) methods

• Only applicable to lazy blocking methods

• They boost the overall performance to a large extent:
– comparisons drop by orders of magnitude

– recall drops to a controllable extent (~1-2%)

• Mostly complementary methods
– multiple Block Cleaning methods can be combined in a single workflow

Papadakis & Palpanas, WWW 2018, April 2018
294

Conclusions – Comparison Cleaning

• Fine-grained functionality:
– operate at the level of individual comparisons → computationally intensive

process

• Apply to both lazy and proactive methods

• Meta-blocking is the current state-of-the-art
– Discards both superfluous and redundant comparisons

– Necessary for reducing comparisons to manageable levels

• reduces comparisons by orders of magnitude, with recall > 98%

– Naturally parallelizable

Papadakis & Palpanas, WWW 2018, April 2018
295

Big Data Research (BDR) Journal
http://www.journals.elsevier.com/big-data-research/

• New Elsevier journal on topics related to big data
– advances in big data management/processing

– interdisciplinary applications

• Editor in Chief for BDR
– submit your work

– propose special issues

• google: bdr journal

Papadakis & Palpanas, WWW 2018, April 2018 296

http://www.journals.elsevier.com/big-data-research/
http://www.journals.elsevier.com/big-data-research/
http://www.journals.elsevier.com/big-data-research/
http://www.journals.elsevier.com/big-data-research/
http://www.journals.elsevier.com/big-data-research/
http://www.journals.elsevier.com/big-data-research/

thank you!

questions?

http://sourceforge.net/projects/erframework

google: themis palpanas

-> publications -> tutorials

Papadakis & Palpanas, WWW 2018, April 2018 297

http://sourceforge.net/projects/erframework

References – Part A
[Aizawa et. al., WIRI 2005] Akiko N. Aizawa, Keizo Oyama, "A Fast Linkage Detection Scheme for Multi-
Source Information Integration" in WIRI, 2005.

[Baxter et. al., KDD 2003] R. Baxter, P. Christen, T. Churches, “A comparison of fast blocking methods for
record linkage”, in Workshop on Data Cleaning, Record Linkage and Object Consolidation at KDD, 2003.

[Bilenko et. al., ICDM 2006] Mikhail Bilenko, Beena Kamath, Raymond J. Mooney, "Adaptive Blocking:
Learning to Scale Up Record Linkage", in ICDM 2006.

[Christen, PADM 2006] Christen P: Privacy-preserving data linkage and geocoding: Current approaches and
research directions. PADM held at IEEE ICDM, Hong Kong, 2006.

[Christen, TKDE 2011] P. Christen, "A survey of indexing techniques for scalable record linkage and
deduplication.” in IEEE TKDE 2011.

[Efthymiou et. al., BigData 2015] Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas
Stefanidis, Themis Palpanas, "Parallel meta-blocking: Realizing scalable entity resolution over large,
heterogeneous data", in IEEE Big Data 2015.

[Fellegi et. al., JASS 1969] P. Fellegi, A. Sunter, “A theory for record linkage,” in Journal of the American
Statistical Society, vol. 64, no. 328, 1969.

[Fisher et. al., KDD 2015] Jeffrey Fisher, Peter Christen, Qing Wang, Erhard Rahm, "A Clustering-Based
Framework to Control Block Sizes for Entity Resolution" in KDD 2015.

[Gravano et. al., VLDB 2001] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan, D. Srivastava,
“Approximate string joins in a database (almost) for free’, in VLDB, 2001.

[Gruenheid et. al., VLDB 2014] Anja Gruenheid, Xin Luna Dong, Divesh Srivastava, "Incremental Record
Linkage", in PVLDB 2014.

[Hernandez et. al., SIGMOD 1995] M. Hernandez, S. Stolfo, “The merge/purge problem for large databases”,
in SIGMOD, 1995.

Papadakis & Palpanas, WWW 2018, April 2018
298

References – Part B
[Karakasidis et al., SAC 2012] Karakasidis A and Verykios VS: Reference table based k-anonymous private
blocking. Symposium on Applied Computing, 2012.

[Kenig et. al., IS 2013] Batya Kenig, Avigdor Gal, "MFIBlocks: An effective blocking algorithm for entity
resolution", in Inf. Syst. 2013.

[Ma et. Al., WSDM 2013] Y. Ma, T. Tran, "TYPiMatch: type-specific unsupervised learning of keys and key
values for heterogeneous web data integration", in WSDM 2013.

[McCallum et. al., KDD 2000] A. McCallum, K. Nigam, L. Ungar, “Efficient clustering of high-dimensional data
sets with application to reference matching”, in KDD, 2000.

[Michelson et. al., AAAI 2006] Matthew Michelson, Craig A. Knoblock, "Learning Blocking Schemes for
Record Linkage", in AAAI 2006.

[Papadakis et. al., EDBT 2016] George Papadakis, George Papastefanatos, Themis Palpanas, Manolis
Koubarakis, "Scaling Entity Resolution to Large, Heterogeneous Data with Enhanced Meta-blocking", in EDBT
2016.

[Papadakis et al., iiWAS 2010] G. Papadakis, G. Demartini, P. Fankhauser, P. Karger, "The missing links:
discovering hidden same-as links among a billion of triples”, in iiWAS 2010.

[Papadakis et al., JCDL 2011] G. Papadakis, E. Ioannou, C. Niederee, T. Palpanas, W. Nejdl, “Eliminating the
redundancy in blocking-based entity resolution methods”, in JCDL 2011.

[Papadakis et al., SWIM 2011] G. Papadakis, E. Ioannou, C. Niederee, T. Palpanas, W. Nejdl, “To Compare or
Not to Compare: making Entity Resolution more Efficient”, in SWIM workshop (collocated with SIGMOD),
2011.

[Papadakis et. al., TKDE 2013] George Papadakis, Ekaterini Ioannou, Themis Palpanas, Claudia Niederee,
Wolfgang Nejdl, "A Blocking Framework for Entity Resolution in Highly Heterogeneous Information Spaces",
in IEEE TKDE 2013.

Papadakis & Palpanas, WWW 2018, April 2018

299

References – Part C
[Papadakis et. al., TKDE 2014] George Papadakis, Georgia Koutrika, Themis Palpanas, Wolfgang Nejdl, "Meta-
Blocking: Taking Entity Resolution to the Next Level", in IEEE TKDE 2014.

[Papadakis et. al., VLDB 2014] G. Papadakis, G. Papastefanatos, G. Koutrika, "Supervised Meta-blocking", in PVLDB
2014.

[Papadakis et. al., VLDB 2015] George Papadakis, George Alexiou, George Papastefanatos, Georgia Koutrika,
“Schema-agnostic vs Schema-based Configurations for Blocking Methods on Homogeneous Data”, in PVLDB 2015.

[Papadakis et. al., VLDB 2016] George Papadakis, Jonathan Svirsky, Avigdor Gal, Themis Palpanas, “Comparative
Analysis of Approximate Blocking Techniques for Entity Resolution”, in PVLDB 2016.

[Papadakis et al., WSDM 2011] G. Papadakis, E. Ioannou, C. Niederee, P. Fankhauser, “Efficient entity resolution for
large heterogeneous information spaces”, in WSDM 2011.

[Papadakis et al., WSDM 2012] G. Papadakis, E. Ioannou, C. Niederee, T. Palpanas, W. Nejdl, “Beyond 100 million
entities: large-scale blocking-based resolution for heterogeneous data”, in WSDM 2012.

[Papenbrock et. al., TKDE 2015] Thorsten Papenbrock, Arvid Heise, Felix Naumann, "Progressive Duplicate
Detection", in IEEE TKDE 2015.

[Sarma et. al, CIKM 2012] Anish Das Sarma, Ankur Jain, Ashwin Machanavajjhala, Philip Bohannon, "An automatic
blocking mechanism for large-scale de-duplication tasks" in CIKM 2012.

[Simonini et. al, VLDB 2017] Giovanni Simonini, Sonia Bergamaschi and H.V. Jagadish, "Blast: a Loosely schema-
aware Meta-blocking Approach for Entity Resolution" in VLDB 2017.

[Whang et. Al, SIGMOD 2009] Whang, D. Menestrina, G. Koutrika, M. Theobald, H. Garcia-Molina, "Entity
resolution with iterative blocking", in SIGMOD 2009.

[Whang et. al., TKDE 2013] Steven Euijong Whang, David Marmaros, Hector Garcia-Molina, "Pay-As-You-Go Entity
Resolution", in IEEE TKDE 2013.

[Ziad et al, BTW 2015] Ziad Sehili, Lars Kolb, Christian Borgs, Rainer Schnell, Erhard Rahm, “Privacy Preserving
Record Linkage with PPJoin”, in BTW 2015.

Papadakis & Palpanas, WWW 2018, April 2018
300

301

References – Part D
[APR-JGraph04] J. A. Aslam, E. Pelekhov, D. Rus, “The star clustering algorithm for static and dynamic
information organization”, in Journal of Graph Algorithms and Appl 2004.
[BBC-ML04] N. Bansal, A. Blum, S. Chawla, “Correlation clustering”, in Machine Learning” 2004.
[BCKT-VLDB07] N. Bansal, F. Chiang, N. Koudas, F. W. Tompa, “Seeking stable clusters in the blogosphere”, in
VLDB 2007.
[Dongen-Thesis00] S. van Dongen, “Graph clustering by flow simulation”, PhD thesis, University of Utrecht,
2000.
[Jain&Dubes88] A. Jain, R. Dubes, “Algorithms for Clustering Data”, Prentice Hall, 1988.
[FTT-IM04] G. W. Flake, R. E. Tarjan, K. Tsioutsiouliklis, “Graph clustering and minimum cut trees”, in Internet
Mathematics 2004.
[HGI-WebDB'00] T. H. Haveliwala, A. Gionis, P. Indyk, “Scalable Techniques for Clustering the Web”, in
WebDB 2000.
[HM-VLDBJ09] O. Hassanzadeh, R. J. Miller, “Creating Probabilistic Databases from Duplicated Data”, VLDB J.
2009.
[WB-TR07] D. T. Wijaya, S. Bressan, “Ricochet: A family of unconstrained algorithms for graph clustering”,
Technical report, National University of Singapore, 2007.
[WB-DASFAA'09] D. T. Wijaya, S. Bressan. Ricochet: A Family of Unconstrained Algorithms for Graph
Clustering. In Proc. of the Int’l Conf. on Database Systems for Advanced Applications (DASFAA), pages 153–
167, Brisbane, Australia, 2009.
[On et al., ICDE 2007] Byung-Won On, Nick Koudas, Dongwon Lee, Divesh Srivastava, “Group Linkage”, in
ICDE 2007.
[Lacoste-Julien et al., KDD 2013] Simon Lacoste-Julien, Konstantina Palla, Alex Davies, Gjergji Kasneci, Thore
Graepel, Zoubin Ghahramani, “SIGMa: simple greedy matching for aligning large knowledge bases”, in KDD
2013.
[Suchanek et al., PVLDB 2011] Fabian M. Suchanek, Serge Abiteboul, Pierre Senellart, “PARIS: Probabilistic
Alignment of Relations, Instances, and Schema”, in PVLDB 2011.
[Simonini et. al., ICDE 2018] Giovanni Simonini, George Papadakis, Themis Palpanas, Sonia Bergamaschi,
“Schema-agnostic Progressive Entity Resolution”, in ICDE 2018.

Papadakis & Palpanas, WWW 2018, April 2018

References – Part E
[Dong et al., Book 2015] Xin Luna Dong, Divesh Srivastava, “Big Data Integration”, in Synthesis Lectures on
Data Management, Morgan & Claypool Publishers, 2015.

[Elmagarmid et al., TKDE 2007] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, Vassilios S. Verykios,
“Duplicate Record Detection: A Survey”, in IEEE TKDE 2007.

[Papadakis et al., Semantics 2017] George Papadakis, Konstantina Bereta, Themis Palpanas, Manolis
Koubarakis, “Multi-core Meta-blocking for Big Linked Data”, in SEMANTICS 2017.

[Böhm et al., CIKM 2012] Christoph Böhm, Gerard de Melo, Felix Naumann, Gerhard Weikum, “LINDA:
distributed web-of-data-scale entity matching”, in CIKM 2012.

[Efthymiou et al., IS 2017] Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Stefanidis,
Themis Palpanas, “Parallel meta-blocking for scaling entity resolution over big heterogeneous data” in
Information Systems 2017.

[Hassanzadeh et al., VLDB 2009] Oktie Hassanzadeh, Fei Chiang, Renée J. Miller, Hyun Chul Lee, “Framework
for Evaluating Clustering Algorithms in Duplicate Detection”, in PVLDB 2009.

[Stefanidis et al, WWW 2014] Kostas Stefanidis, Vasilis Efthymiou, Melanie Herschel, Vassilis Christophides,
“Entity resolution in the web of data”, in WWW (Companion Volume) 2014.

[Benjelloun et al., VLDBJ 2009] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su, Steven
Euijong Whang, Jennifer Widom, “Swoosh: a generic approach to entity resolution”, in VLDB Journal 2009.

[Kolb et al., PVLDB 2012] Lars Kolb, Andreas Thor, Erhard Rahm, “Dedoop: Efficient Deduplication with
Hadoop”, in PVLDB, 2012.

[Singh et al., PVLDB 2017] Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel
Madden, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, Nan Tang, “Synthesizing Entity
Matching Rules by Examples”, in PVLDB 2017.

 Papadakis & Palpanas, WWW 2018, April 2018 302

References – Part F

[Dal Bianco et al., Information Systems, 2018] Guilherme Dal Bianco, Marcos André Gonçalves, Denio
Duarte, “BLOSS: Effective meta-blocking with almost no effort”, in Information Systems 2018.

Papadakis & Palpanas, WWW 2018, April 2018
303

