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Entity Resolution constitutes a quadratic task that typically scales to large entity collections through 
blocking. The resulting blocks can be restructured by Meta-blocking to raise precision at a limited cost 
in recall. At the core of this procedure lies the blocking graph, where the nodes correspond to entities 
and the edges connect the comparable pairs. There are several configurations for Meta-blocking, but no 
hints on best practices. In general, the node-centric approaches are more robust and suitable for a series 
of applications, but suffer from low precision, due to the large number of unnecessary comparisons they 
retain.
In this work, we present three novel methods for node-centric Meta-blocking that significantly improve 
precision. We also introduce a pre-processing method that restricts the size of the blocking graph by 
removing a large number of noisy edges. As a result, it reduces the overhead time of Meta-blocking by 
2 to 5 times, while increasing precision by up to an order of magnitude for a minor cost in recall. The 
same technique can be applied as graph-free Meta-blocking, enabling for the first time Entity Resolution 
over very large datasets even on commodity hardware. We evaluate our approaches through an extensive 
experimental study over 19 voluminous, established datasets. The outcomes indicate best practices for 
the configuration of Meta-blocking and verify that our techniques reduce the resolution time of state-of-
the-art methods by up to an order of magnitude.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

A common task in the context of Web Data is Entity Resolution
(ER), i.e., the identification of different entity profiles that per-
tain to the same real-world object. Exhaustive solutions to this 
task suffer from low efficiency, due to their inherently quadratic 
complexity: every entity profile has to be compared with all oth-
ers. This problem is accentuated by the continuously larger size of 
datasets that are now available on the Web. For example, the LOD-
Stats1 Web application recorded around a billion triples for Linked 
Open Data in December, 2011, which had grown to more than 100 
billion triples by March, 2016. As a result, ER typically scales to 
large data collections through approximate techniques, which sac-
rifice recall to a controllable extent in order to enhance precision 
and time efficiency.
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The most popular among these techniques is blocking [1–3]. It 
groups similar entities into clusters (called blocks) so that compar-
isons are executed only between the entities within each block [4,
5]. Typically, blocking methods for Big Data have to overcome high 
levels of noise not only in attribute values, but also in attribute 
names, due to the unprecedented schema heterogeneity. For in-
stance, Google Base2 alone encompasses 100,000 distinct schemata 
that correspond to 10,000 entity types [6]. Most blocking methods 
deal with these high levels of noise through redundancy [1,7]: they 
place every entity profile into multiple blocks so as to reduce the 
likelihood of missed matches.

The simplest method of this type is Token Blocking [9,2]. It 
disregards schema information and semantics, creating a separate 
block for every token that appears in the attribute values of at 
least two entities. To illustrate its functionality, consider the entity 
profiles in Fig. 1(a), where p1 and p2 match with p3 and p4, re-
spectively; Token Blocking clusters them in the blocks of Fig. 1(b), 
which place both pairs of duplicates in at least one common block 
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Fig. 1. (a) A set of entity profiles, and (b) the blocks of Token Blocking.

at the cost of 13 comparisons, in total. The resulting computational 
cost is high, given that the brute-force approach executes 15 com-
parisons.

This is a general trait of block collections that involve redun-
dancy: in their effort to achieve high recall, they produce a large 
number of unnecessary comparisons. These come in two forms: 
the redundant ones repeatedly compare the same entity profiles 
across different blocks, while the superfluous ones compare non-
matching entities. In our example, b2 and b4 contain one redun-
dant comparison each, which are repeated in b1 and b3, respec-
tively; all other blocks entail superfluous comparisons between 
non-matching entity profiles, except for the redundant comparison 
p3–p5 in b8 (it is repeated in b6). In total, the blocks of Fig. 1(b) 
involve 3 redundant and 8 superfluous out of the 13 comparisons.

Current state-of-the-art. To mitigate this phenomenon, meth-
ods such as Comparison Propagation [10] and Iterative Block-
ing [11] aim to process an existing block collection in the optimal 
way (see Section 2 for more details). Among these methods, Meta-
blocking achieves the best balance between precision and recall, 
being one of the few techniques to scale well to millions of en-
tities [7,8]. In essence, it restructures a block collection B into a 
new one B ′ that contains a significantly lower number of unnec-
essary comparisons, while detecting almost the same number of 
duplicates. This procedure operates in 2 steps.

First, it transforms B into the blocking graph G B , which con-
tains a node ni for every entity pi in B and an edge ei, j for every 
pair of co-occurring entities pi and p j (i.e., entities sharing at least 
one block). Fig. 2(a) depicts the graph for the blocks in Fig. 1(b). 
As no parallel edges are constructed, every pair of entities is com-
pared at most once, thus eliminating all redundant comparisons.

Second, it annotates every edge with a weight analogous to the 
likelihood that the adjacent entities are matching, based on the 
blocks they have in common. For instance, the edges in Fig. 2(a) 
are weighted with the Jaccard similarity of the lists of blocks con-
taining their adjacent entities. The edges with low weights corre-
spond to superfluous comparisons and are pruned. A possible ap-
proach is to discard all edges with a weight lower than the overall 
mean one (1/4). This yields the pruned graph in Fig. 2(b).

Pruning algorithms of this type are called edge-centric, because 
they iterate over the edges of the blocking graph and retain the 
globally best ones. Higher recall is achieved by the node-centric
pruning algorithms, which iterate over the nodes of the blocking 
graph and retain the locally best edges. These are the edges with 
the highest weights in each neighborhood and correspond to the 
most likely matches for each entity. In contrast, the edge-centric 
algorithms do not guarantee to include every entity in the restruc-
tured blocks. Their recall is lower than the node-centric algorithms 
by 20%, on average, when compared under the same settings [7].
Fig. 2. (a) A blocking graph extracted from the blocks in Fig. 1(b), (b) one of the pos-
sible edge-centric pruned blocking graphs, and (c) the new blocks derived from it.

Fig. 3. (a) One of the possible node-centric pruned blocking graphs for the graph in 
Fig. 2(a). For clarity, the retained edges are directed and outgoing, since they might 
be preserved in the neighborhoods of both adjacent entities. (b) The new blocks 
derived from the pruned graph.

To illustrate the functionality of node-centric approaches, con-
sider the pruned blocking graph in Fig. 3(a); for each node in 
Fig. 2(a), it has retained the adjacent edges that exceed the av-
erage weight of the neighborhood. Regardless of the type of the 
pruning algorithm, the restructured block collection B ′ is formed 
by creating a new block for every retained edge – as depicted in 
Figs. 2(c) and 3(b). In both cases, B ′ maintains the original recall, 
while reducing the number of executed comparisons to 5 and 9, 
respectively.

Open issues. Despite the significant enhancements in efficiency, 
Meta-blocking suffers from three drawbacks:

(i) Though more robust to recall, the node-centric pruning al-
gorithms exhibit low efficiency, because they retain a considerable 
portion of redundant and superfluous comparisons. In most cases, 
their precision is lower than the edge-centric ones by 50% [7]. This 
is also illustrated in our example, where the restructured blocks 
of Fig. 3(b) contain 4 redundant comparisons in b′

2, b′
4, b′

6 and b′
8

and 3 superfluous in b′
5, b′

7 and b′
9; the edge-centric counterpart 

in Fig. 2(c) retains just 3 superfluous comparisons.
(ii) The processing of voluminous datasets involves a significant 

overhead. The corresponding blocking graphs comprise millions 
nodes that are strongly connected with billions edges. Inevitably, 
the pruning of such graphs is very time-consuming, leaving plenty 
of room for improving its efficiency (see Section 5.6).

(iii) Meta-blocking is difficult to configure. There are five dif-
ferent weighting schemes that can be combined with four pruning 
algorithms, thus yielding 20 pruning schemes, in total (see Section 3
for more details). As yet, there are no guidelines on how to choose 
the best configuration for the application at hand and the available 
resources.

Proposed solution. In this paper, we describe novel techniques 
for overcoming the weaknesses of Meta-blocking.

First, we propose three new node-centric pruning algorithms 
that achieve significantly higher precision than the existing ones. 
The most conservative approach, Redundancy Pruning, produces re-
structured blocks with no redundant comparisons and prunes up 
to 50% more comparisons. It achieves the same recall as the ex-
isting techniques, but its precision is almost the double. The other 
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two methods exploit generic properties of the blocking graph to 
prune at least 50% more comparisons than the existing techniques. 
Graph Partitioning applies only to bipartite blocking graphs, con-
sidering exclusively one of the two partitions in its processing. 
Reciprocal Pruning applies to any blocking graph, retaining only the 
edges that are important for both adjacent entities. Their recall is 
slightly lower than the baselines, but their precision is higher by 
up to an order of magnitude.

Second, we introduce Block Filtering, which removes every entity 
from the blocks that are the least important for it. This approach 
can be used in two ways: (i) In conjunction with graph-based 
pruning schemes, it acts as a pre-processing technique that shrinks 
the blocking graph, by discarding more than 50% of its unnec-
essary edges. Thus, it enhances the scalability of all graph-based 
Meta-blocking techniques to a significant extent. (ii) As a stand-
alone, graph-free Meta-blocking method that involves significantly 
lower space and time complexities (i.e., overhead). Its configura-
tion is straightforward, it scales to voluminous datasets even with 
commodity hardware, and it requires up to 2 orders of magnitude 
less time than the state-of-the-art method.

Finally, we address the problem of a-priori selecting the best 
pruning scheme, depending on the application at hand and the 
available resources. We analytically compare the performance of 
all Meta-blocking methods over 12 real and 7 synthetic estab-
lished benchmarks, which range from few thousands to several 
million entities. Our experimental results provide insights into the 
effect of weighting schemes on each pruning algorithm and iden-
tify the pruning schemes that consistently exhibit the best balance 
between recall, precision and run-time for the main types of ER 
applications. Our thorough experiments also verify that our tech-
niques outperform the best relevant methods in the literature as 
well as the best Meta-blocking techniques to a significant extent.

Contributions & paper organization. In summary, we make the 
following contributions:

• We present three new node-centric pruning algorithms that 
significantly improve the precision of existing ones from 30% 
to 800% at a small cost in recall.

• We introduce a graph-free technique that minimizes the over-
head of Meta-blocking by cleaning the blocking graph from 
most of its noisy edges. With its help, ER scales to large 
datasets even with limited resources and the resolution time 
improves almost by an order of magnitude.

• We experimentally verify the superior performance of our 
new methods through an extensive study over 19 voluminous 
datasets with different characteristics. Its outcomes provide in-
sights into the best configuration for Meta-blocking, depending 
on the resources and the application at hand. The code and 
the data of our experiments are publicly available for any in-
terested researcher.3

The rest of the paper is structured as follows: in Section 2, we 
delve into the most relevant works in the literature, while in Sec-
tion 3, we formally define the task of Meta-blocking, elaborating 
on its main notions. Section 4 introduces our novel techniques, and 
Section 5 presents our thorough experimental evaluation. We con-
clude the paper in Section 6 along with directions for future work.

2. Related work

Entity Resolution has been the focus of numerous works that 
aim to tame its quadratic complexity and scale it to large volumes 
of data [4,5]. A large part of the proposed techniques are approxi-

3 See http://sourceforge.net/projects/erframework.
mate, with blocking being the most popular among them [1]. Some 
blocking methods produce disjoint blocks (e.g., Standard Block-
ing [12]), but most of them yield overlapping blocks with redun-
dant comparisons. In this way, they achieve high recall in the con-
text of noisy data. Depending on the interpretation of redundancy, 
blocking methods are distinguished into three categories [7]:

1. The redundancy-positive methods ensure that the more blocks 
two entities share, the more likely they are to be matching. In 
this category fall the Suffix Arrays [13], Q-grams Blocking [14], 
MFIBlocks [3], Attribute Clustering [2] and Token Blocking [9].

2. The redundancy-negative methods ensure that the most similar 
entities share just one block. In Canopy Clustering [15], for in-
stance, the entities that are highly similar to the current seed 
are removed from the pool of candidate matches and are ex-
clusively placed in its block.

3. The redundancy-neutral methods produce overlapping blocks, 
but the number of common blocks between two entities is ir-
relevant to their likelihood of matching. As such, consider the 
single-pass Sorted Neighborhood [16]: all pairs of entities co-
occur in the same number of blocks, which is equal to the size 
of the sliding window.

Meta-blocking operates exclusively on top of redundancy-
positive blocking methods, which are the most popular ones and 
have been proven to scale to large datasets [17,2,7].

Another line of research focuses on developing methods that 
optimize the processing of an existing block collection. In this cat-
egory falls Meta-blocking, whose pruning schemes can be either 
unsupervised [7] or supervised [18]. The latter achieve higher ac-
curacy than the former, due to the composite pruning rules that 
are learned by a classifier trained over a set of labeled edges. In 
practice, though, their utility is limited, because there is no effec-
tive and efficient way for extracting the required training set from 
the input blocks. For this reason, we exclusively consider unsuper-
vised Meta-blocking techniques in this work.

In the same category falls Block Purging [9,2], which aims for 
discarding oversized blocks that are dominated by redundant and 
superfluous comparisons. It sets an upper limit on the comparisons 
that can be contained in a valid block and purges those blocks 
that exceed it. Comparison Propagation [10] discards all redundant 
comparisons by enumerating the input blocks and building an in-
verted index that points from entity ids to block ids. Then, it marks 
a comparison ci, j as redundant if the id of the current block is 
larger than the least common block id of the entities pi and p j . 
Iterative Blocking [11] propagates all identified duplicates to the 
subsequently processed blocks so as to save repeated comparisons 
and to detect more duplicates. Hence, it improves both precision 
and recall.

Compared to Meta-blocking, the functionality of Block Purging 
is coarser and less accurate, because it targets entire blocks, in-
stead of individual comparisons. Yet, Block Purging is frequently 
used as a pre-processing step for Meta-blocking [7,18]. The other 
two methods are competitive to Meta-blocking, because they target 
individual redundant comparisons. However, Meta-blocking goes 
beyond them, because it targets superfluous comparisons, as well. 
Its superior performance has been experimentally verified in [7].

3. Preliminaries

In this section, we first elaborate on the main notions of Entity 
Resolution and its evaluation metrics. Then, we delve into the func-
tionality of Meta-blocking and introduce the weighting schemes 
and the pruning algorithms that have been proposed in the liter-
ature. Finally, we distinguish the applications of ER into two main 

http://sourceforge.net/projects/erframework
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categories and explain which pruning algorithms are suitable for 
each of them.

Entity Resolution At the core of ER lies the notion of entity profile, 
p. As such, we define a uniquely identified collection of name-
value pairs that describe a real-world object. A set of entity profiles 
is called entity collection (E). The goal of ER is to identify the dif-
ferent profiles that describe the same real-world object. Two such 
profiles, pi and p j , are called duplicates and are said to be match-
ing, a condition denoted by pi ≡ p j . A non-redundant comparison 
between two duplicate entities is called matching comparison.

Depending on the input entity collection(s), we identify two 
general ER tasks [1,2,7]: (i) Dirty ER takes as input a single entity 
collection that contains duplicates and produces as output a set 
of equivalence clusters. (ii) Clean–Clean ER receives two duplicate-
free, but overlapping entity collections, E1 and E2, and its goal is 
to identify the matching entities between them. In the context of 
Databases, the former task is called Deduplication and the latter 
Record Linkage [1]. Our methods apply uniformly to both Clean–
Clean and Dirty ER, except for Graph Partitioning, which is only 
compatible with Clean–Clean ER.

Blocking improves the run-time of both ER tasks by grouping 
similar entities into blocks so that comparisons are limited be-
tween co-occurring entities. Placing an entity into a block is called 
block assignment. An individual block is symbolized by b, with |b|
denoting its size (i.e., number of entities) and ||b|| denoting its car-
dinality (i.e., number of comparisons). In the case of Dirty ER, we 
have ||b|| = |b| × (|b| − 1)/2, while for Clean–Clean ER, we have 
||b|| = |b1| × |b2|, where b1 and b2 are the two inner blocks of 
b that exclusively comprise entities from E1 and E2, respectively. 
A set of blocks is called block collection (B), with |B| denoting its 
size (i.e., number of blocks) and ||B|| its cardinality (i.e., total num-
ber of comparisons): ||B|| = ∑

bi∈B ||bi ||.

Performance Evaluation Metrics To assess the performance of a 
blocking method, we follow the best practice in the literature, 
treating entity matching as an orthogonal task [1,3,2]. We assume 
that two duplicate entities can be detected using any of the avail-
able methods as long as they co-occur in at least one block. D(B)

represents the set of co-occurring duplicate entities, whereas D(E)

denotes the set of duplicates that are contained in the input en-
tity collection E . With their help, the following measures for block 
collections are defined [1,3,7]:

(i) Pairs Quality (PQ) assesses precision, expressing the portion 
of comparisons that correspond to a non-redundant pair of dupli-
cates. In other words, it considers as true positives the matching 
comparisons and as false positives the superfluous and the redun-
dant ones. Given that some of the redundant comparisons involve 
matching entities, PQ offers a pessimistic estimation of precision. 
More formally:

PQ = |D(B)|
||B|| ,

where |D(B)| stands for the size of D(B). PQ takes values in the 
interval [0, 1], with higher values indicating higher precision.

(ii) Pairs Completeness (PC) assesses recall, expressing the por-
tion of existing pairs of duplicates that can be detected in B . More 
formally:

PC = |D(B)|
|D(E)| ,

where |D(E)| stands for the size of D(E). PC is defined in the in-
terval [0, 1], with higher values indicating higher recall.

The goal of blocking is to maximize both PC and PQ so that 
the overall performance of ER exclusively depends on the accu-
racy of the selected entity matching method. This requires that 
Fig. 4. All configurations for the two main parameters of Meta-blocking: the weight-
ing scheme and the pruning algorithm. Every configuration of the one parameter is 
compatible with all configurations of the other.

|D(B)| is maximized, while ||B|| is minimized. However, there is 
a clear trade-off between PC and PQ: the more comparisons are 
executed (higher ||B||), the more duplicates are detected (higher 
|D(B)|), increasing PC, but reducing PQ . Hence, a blocking method 
is successful if it achieves a good balance between precision and 
recall.

Meta-blocking The redundancy-positive block collections place ev-
ery entity into multiple blocks, emphasizing recall at the cost of 
very low precision. Meta-blocking aims for improving this balance 
by restructuring a redundancy-positive block collection B into a 
new one B ′ that contains a small part of the original unnecessary 
comparisons, while retaining practically the same recall [7]. More 
formally, Meta-blocking aims to transform a block collection B into 
a new one B ′ such that PC(B ′) ≈ PC(B) and PQ(B ′) � PQ(B).

Central to this procedure is the blocking graph G B , which cap-
tures the co-occurrences of entities within the blocks of B . Its 
nodes correspond to entities in B , while its undirected edges con-
nect co-occurring entities. The number of edges in G B is called 
graph size (|E B |), while the number of nodes is termed graph order
(|V B |). More formally:

Definition 1. Given a block collection B , its blocking graph is an 
undirected graph G B = {V B , E B , W B}, where V B is the set of its 
nodes such that ∀pi ∈ B ∃vi ∈ V B , E B ⊆ V B × V B is the set of 
undirected edges between all pairs of co-occurring entities in B , 
and W B is the set of edge weights that take values in the interval 
[0, 1] such that ∀ei, j ∈ E B ∃wi, j ∈ W B .

The goal of Meta-blocking is to prune the edges of the blocking 
graph in a way that retains the matching entities. The functionality 
of this procedure is configured by two parameters: (i) the scheme 
that assigns weights to the edges, and (ii) the pruning algorithm 
that discards the edges that are unlikely to connect duplicate enti-
ties. The two parameters are independent in the sense that every 
configuration of the one can be combined with every configuration 
of the other. Fig. 4 lists their values, which yield 20 configurations, 
in total. We explain their functionality below.

Weighting schemes for Meta-blocking. Five schemes have been 
proposed for weighting the edges of the blocking graph. The higher 
the weight they assign to an edge, the more likely it is to con-
nect matching entities. For their formal definitions, we use the 
following notation: Bi ⊆ B denotes the set of blocks containing pi , 
Bi, j ⊆ B the set of blocks shared by pi and p j , and |vi | the degree 
of node vi . All weights are normalized to the interval [0, 1]. The 
weighting schemes are the following [7]:

(i) Aggregate Reciprocal Comparisons Scheme (ARCS) captures the 
intuition that the smaller the blocks two entities share, the more 
likely they are to be matching. Thus, its weights are derived from 
the following formula:

ARCS(ei, j) =
∑

b ∈B

1

||bk|| .

k i, j
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(ii) Common Blocks Scheme (CBS) expresses the fundamental 
property of redundancy-positive block collections that two entities 
are more likely to match, when they share many blocks. Thus, the 
weight of each edge is equal to the number of blocks the adjacent 
entities have in common:

CBS(ei, j) = |Bi, j|.
(iii) Enhanced Common Blocks Scheme (ECBS) improves CBS by 

discounting the effect of the entities that are placed in a large 
number of blocks:

ECBS(ei, j) = CBS(ei, j) · log
|B|
|Bi | · log

|B|
|B j| .

(iv) Jaccard Scheme (JS) estimates the portion of blocks shared 
by two entities:

JS(ei, j) = |Bi, j|
|Bi| + |B j| − |Bi, j| .

(v) Enhanced Jaccard Scheme (EJS) improves JS by discounting 
the effect of entities involved in too many non-redundant compar-
isons (i.e., high node degree):

EJS(ei, j) = JS(ei, j) · log
|E B |
|vi| · log

|E B |
|v j| .

Pruning schemes. Meta-blocking discards part of the edges of 
the blocking graph using an edge- or a node-centric pruning al-
gorithm in combination with a pruning criterion. Depending on its 
scope, this can be either a global criterion, which applies to the en-
tire blocking graph, or a local one, which applies to an individual 
node neighborhood. With respect to its functionality, we distin-
guish the pruning criteria into weight thresholds, which specify the 
minimum weight of the retained edges, and cardinality thresholds, 
which determine the maximum number of retained edges.

Every combination of a pruning algorithm and a pruning crite-
rion is called pruning scheme. The following four pruning schemes 
were proposed in [7] and were experimentally verified to achieve 
a good balance between PC and PQ :

(i) Weighted Edge Pruning (WEP) comprises an edge-centric 
pruning algorithm that uses a global weight threshold. In essence, 
it discards all edges that do not exceed the average edge weight of 
the entire blocking graph.

(ii) Cardinality Edge Pruning (CEP) consists of an edge-centric 
algorithm that is coupled with a global cardinality threshold. It re-
tains the top-K edges of the entire blocking graph, with K defined 
as:

K = �BC(B) × |E|
2

�,
where BC(B) stands for the Blocking Cardinality of B , i.e., the aver-
age number of blocks associated with every entity in B: BC(B) =∑

bi∈B |bi |/|E| [2].
(iii) Weighted Node Pruning (WNP) comprises a node-centric 

pruning algorithm that employs a local weight threshold. For each 
node, it retains those adjacent entities that exceed the average 
edge weight of its neighborhood.

(iv) Cardinality Node Pruning (CNP) consists of a node-centric 
pruning algorithm that uses a global cardinality threshold. For each 
node, it retains the top-k edges of its neighborhood, where k is 
defined as:

k = �BC(B) − 1�.
In short, WEP and WNP constitute weight-based pruning

schemes, discarding the edges that do not exceed their weight 
threshold. Their configuration typically yields conservative thresh-
olds, performing a shallow pruning that retains high recall [7]. On 
the other hand, CEP and CNP constitute cardinality-based pruning 
schemes; they rank the edges of the blocking graph in descend-
ing order of weight and retain the top-N weighted ones, where N
is their cardinality threshold. For example, CEP could retain the 
4 top-weighted edges of the graph in Fig. 2(a), resulting in the 
pruned graph of Fig. 2(b) and yielding the blocks of Fig. 2(c). Most 
commonly, though, CEP and CNP perform deep pruning, achieving 
higher precision than WEP and WNP at the cost of lower recall [7].

Applications of Entity Resolution Based on their requirements with 
respect to PC and PQ , the applications of ER can be distinguished 
into two categories:

(i) The efficiency-intensive applications aim to minimize the re-
sponse time of ER, while detecting the vast majority of the du-
plicates. In other words, their goal is to maximize precision for 
a recall that exceeds 0.80. To this category belong real-time ap-
plications or applications with limited temporal resources, such 
as Pay-as-you-go ER [19], entity-centric search [20] and crowd-
sourcing ER [21]. Ideally, their goal is to identify a new pair of 
duplicate entities with every executed comparison.

(ii) The effectiveness-intensive applications afford a higher re-
sponse time in order to maximize recall. At a minimum, PC should 
not fall below 0.95. Most such applications correspond to off-line 
batch processes like data cleaning in data warehouses, which prac-
tically call for almost perfect recall [22]. Yet, higher precision is 
pursued even in off-line applications in order to ensure that they 
scale well to voluminous datasets.

Meta-blocking facilitates both categories of ER applications 
through two types of pruning algorithms. The weight-based ones 
(WEP and WNP) accommodate the effectiveness-intensive appli-
cations and the cardinality-based algorithms (CEP and CNP) the 
efficiency-intensive applications.

4. Proposed approach

In this section, we present our four new methods that lead 
to scalable Meta-blocking. The first three constitute novel node-
centric pruning algorithms that achieve higher precision than the 
existing ones. Their operation relies on the structure of the di-
rected pruned blocking graph and aims to reduce the noisy, unnec-
essary edges that are retained for each node. They are competitive 
to each other and can only be used interchangeably.

Graph Partitioning exploits the bipartite blocking graphs that are 
formed in the case of Clean–Clean ER and the knowledge that ev-
ery pair of duplicate entities is split among the two partitions. 
Thus, it suffices to retain the best edges only for the nodes of the 
one partition.

Redundancy Pruning and Reciprocal Pruning apply to both Clean–
Clean and Dirty ER, as they merely consider the reciprocal links 
between two nodes. Both methods actually discard one of the re-
ciprocal links in each case. They only differ in their treatment of 
the remaining edges, which do not have a reciprocal link. The for-
mer method retains these edges, while the latter discards them.

The fourth method, Block Filtering, is compatible with all graph-
based Meta-blocking methods, operating as a pre-processing step 
that reduces the size of their blocking graph. This is accomplished 
by removing every entity from the least important of the associ-
ated blocks. Block Filtering can also be used independently, as a 
graph-free Meta-blocking technique.

We now elaborate on the functionality of each method, illus-
trating it through examples. We also analyze its scope, its configu-
ration and its complexity.

4.1. Graph Partitioning

In the case of Clean–Clean ER, Meta-blocking creates a bipar-
tite blocking graph, as the nodes of every entity collection are only 
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Fig. 5. (a) The blocks produced by Token Blocking for the entities of Fig. 1(a) in 
the case of Clean–Clean ER with E1 = {p1, p2} and E2 = {p3, p4, p5, p6}, (b) the 
corresponding bipartite blocking graph, (c) the pruned blocking graph produced by 
the original node-centric pruning, and (d) the pruned blocking graph produced by 
Graph Partitioning.

connected with nodes from the other collection [7]. Graph Parti-
tioning exploits this bipartite structure and produces restructured 
blocks with no redundant comparisons and a smaller portion of 
superfluous ones; it selects one of the node partitions, called seed 
partition, and creates new blocks only for its entities. In this way, 
the pruned blocking graph is undirected and contains no parallel 
edges (i.e., no redundant comparisons). Compared to the exist-
ing pruning algorithms, it is expected to contain approximately 
|V B |−|V x

B |
|V B | % less comparisons, where V x

B denotes the set of nodes of 
the seed partition.4 Yet, it should retain most of the co-occurring 
duplicates, since every pair of matching entities is represented in 
the seed partition.

To illustrate its functionality, assume that the entities in 
Fig. 1(a) are divided in two individually clean (i.e., duplicate-free) 
entity collections: E1 = {p1, p2} and E2 = {p3, p4, p5, p6}. In this 
case, Token Blocking yields the blocks in Fig. 5(a), which differ 
from those in Fig. 1(b) in that they contain entities from both E1
and E2. The corresponding bipartite blocking graph is depicted in 
Fig. 5(b). The upper partition comprises p1 and p2 and the lower 
one p3 and p4. Again, the edges are weighted with the Jaccard 
similarity of the block lists associated with the adjacent entities.

The original approach to node-centric pruning retains for every 
node one of its two edges, which is denoted as an outgoing edge 
in Fig. 5(c). In total, 4 edges/comparisons are retained, of which 
2 are redundant. Graph Partitioning selects one of the node parti-
tions, the upper one for example, and retains the best edges only 
for its nodes. The resulting undirected pruned blocking graph is 
presented in Fig. 5(d). It contains just 2 edges, with no redundant 
or superfluous comparisons.

Scope & functionality. This method exclusively applies to 
Clean–Clean ER. Theoretically, it is applicable to Dirty ER, as well, 
through Graph Bipartization, i.e., the task of identifying a minimum 
set of vertices that when deleted from a graph, make it bipartite. 
In practice, though, this approach does not scale well to the large 
blocking graphs produced by Meta-blocking, as Graph Bipartiza-
tion belongs to the NP-complete complexity class [23]. Further, the 
relevant techniques cannot maintain the original levels of recall, 
as they cannot guarantee that most pairs of duplicate entities are 
split among the two partitions. This necessary condition holds by 
definition in the case of Clean–Clean ER.

Graph Partitioning leads to two new pruning algorithms: Parti-
tion Weighted Node Pruning (Partition WNP) and Partition Cardinality 
Node Pruning (Partition CNP). Their pseudocode is illustrated in Al-
gorithms 1 and 2, respectively.

In more detail, Partition WNP iterates over the nodes of the seed 
partition of the blocking graph (Line 2 in Algorithm 1). For each 

4 This means that in the worst case, where both partitions have the same order 
(i.e., number of nodes), Graph Partitioning prunes 50% more comparisons than the 
existing pruning algorithms. In all other cases, its pruning is even deeper.
Algorithm 1: Partition Weighted Node Pruning.

Input: (i) Gin
B the blocking graph,

(ii) x the seed partition of the bipartite graph, and
(iii) wt the function defining the local weight thresholds.

Output: Gout
B the pruned blocking graph

1 Eout
B ← {}; // the set of retained edges

2 foreach vi ∈ V x
B do // for each node in seed partit.

3 G vi ← getNeighborhood(vi , G B );
4 tvi ← wt(G vi ); // get local weight threshold
5 foreach ei, j ∈ E vi do // for every adjacent edge
6 if tvi ≤ ei, j .weight then // retain it, if its
7 Eout

B ← Eout
B ∪ { ei, j }; // weight exceeds tvi

8 return Gout
B = {V x

B , Eout
B , W S};

Algorithm 2: Partition Cardinality Node Pruning.

Input: (i) Gin
B the blocking graph,

(ii) x the seed partition of the bipartite graph, and
(iii) ct the function defining the local cardinality thresholds.

Output: Gout
B the pruned blocking graph

1 Eout
B ← {}; // the set of retained edges

2 foreach vi ∈ V x
B do // for every node in seed partit.

3 SortedStackvi ← {};
4 G vi ← getNeighborhood(vi , G B );
5 k ← ct(G vi ); // get local cardinality threshold
6 foreach ei, j ∈ E vi do // add every adjacent edge
7 SortedStackvi .push(ei, j ); // in sorted stack
8 if k < SortedStackvi .size() then
9 SortedStackvi .pop(); // remove last edge

10 Eout
B ← Eout

B ∪ SortedStackvi ; //retain top-k edges
11 return Gout

B = {V x
B , Eout

B , W S};

node, it extracts its neighborhood (Line 3) and estimates the cur-
rent weight threshold, tvi (Line 4). Then, it retains those edges of 
the neighborhood that have a weight higher than or equal to tvi

(Lines 5–7).
Partition CNP iterates over the nodes of the seed partition (Line 

2 in Algorithm 2), extracts the corresponding neighborhood (Line 
4) and computes its cardinality threshold, k (Line 5). Then, it adds 
all edges of the neighborhood in a sorted stack and selects the 
top k ones (Lines 6–9), which are retained in the pruned blocking 
graph (Line 10).

Configuration. For both pruning algorithms, we employ estab-
lished pruning criteria [7]: Partition WNP uses local weight thresh-
olds that are equal to the average weight of each node neighbor-
hood, while Partition CNP sets the global cardinality threshold k
equal to k = �BC(B) − 1�.

Hence, the only parameter that determines the performance of 
Graph Partitioning is the criterion that selects the seed partition of 
the blocking graph. We specify as seed the partition with the low-
est order (i.e., number of nodes) for both pruning algorithms; in 
case of a tie, one of the partitions is randomly selected. This cri-
terion ensures the maximum efficiency gains, while being generic 
enough to apply to any blocking graph. It is also efficient, requiring 
a single iteration over the nodes of the graph, i.e., O (|V B |).

Complexity. The worst-case performance of Graph Partitioning 
corresponds to a complete blocking graph, which yields a time 
complexity of O (|V x

B | · |E B |). In practice, though, the blocking graph 
is sparse, with Partition WNP iterating over its edges twice: once 
for specifying the local weight thresholds and once for pruning the 
edges. Partition CNP performs a single iteration over E B , due to the 
global threshold it employs. Hence, both algorithms account for a 
linear time complexity with respect to the graph size, i.e., O (|E B |).

Their space complexity is dominated by the storage require-
ments of the blocking graph, i.e., O (|V B | + |E B |).



JID:BDR AID:49 /FLA [m5G; v1.190; Prn:26/10/2016; 12:29] P.7 (1-21)

G. Papadakis et al. / Big Data Research ••• (••••) •••–••• 7
Fig. 6. (a) The undirected blocking graph produced by applying Redundancy Pruning 
to the graph in Fig. 3(a), and (b) the corresponding block collection.

4.2. Redundancy Pruning

This method focuses exclusively on removing all redundant 
comparisons from the restructured blocks produced by the existing 
node-centric pruning algorithms. This means that it does not target 
superfluous comparisons and, thus, it has no impact on the recall 
of WNP and CNP. In essence, it operates on top of the directed 
pruned blocking graph they produce, retaining an undirected edge 
for every pair of adjacent nodes – even if they are connected by 
two directed edges. In the extreme case where every retained edge 
has a reciprocal link, Redundancy Pruning saves 50% more compar-
isons, thus doubling precision.

As an example, Redundancy Pruning transforms the directed 
pruned graph in Fig. 3(a) into the undirected pruned graph in 
Fig. 6(a). The resulting block collection is depicted in Fig. 6(b); it 
maintains the same recall as the blocks in Fig. 3(b), but contains 4 
less comparisons.

Scope & functionality. Redundancy Pruning is compatible 
with both Dirty and Clean–Clean ER and yields two new node-
centric pruning algorithms: Redundancy Weighted Node Pruning
(Redundancy WNP) and Redundancy Cardinality Node Pruning
(Redundancy CNP).

A naive implementation for these methods is to apply Com-
parison Propagation to the output of WNP and CNP, respectively. 
However, this approach entails a significant overhead, especially in 
the case of large restructured block collections. For better perfor-
mance, we integrate Comparison Propagation into the functionality 
of WNP and CNP. The corresponding approaches are presented in 
Algorithms 3 and 4, respectively.

In both cases, the processing consists of two phases. The first 
one involves a node-centric functionality, which iterates over the 
nodes of the blocking graph and calculates the pruning criterion 
from their neighborhood. Unlike the original pruning algorithms, 
there is a central data structure that stores the weight threshold of 
each neighborhood or the top-k nearest neighbors per node. The 
second phase operates in an edge-centric fashion: it iterates over 
the edges of the blocking graph and retains those that satisfy the 
pruning criterion for at least one of the adjacent nodes. In this 
way, every edge is retained at most once, even if it is important 
for both adjacent entities.

More specifically, Redundancy WNP first iterates over all nodes 
of the blocking graph to extract their neighborhood and estimate 
the corresponding weight threshold (Lines 2–4 in Algorithm 3). 
Then, it iterates over all edges and retains those exceeding the 
weight thresholds of either of the adjacent nodes (Lines 6–9).

Similarly, Redundancy CNP iterates over all nodes of the block-
ing graph in order to extract their neighborhood and calculate the 
corresponding cardinality threshold k (Lines 2–4 in Algorithm 4). 
Then, it iterates over the edges of the current neighborhood and 
places the top-k weighted ones in a sorted stack (Lines 5–8). In the 
second phase, it iterates over all edges and retains those contained 
in the sorted stack of either of the adjacent entities (Lines 10–13).

Configuration. Both Redundancy WNP and Redundancy CNP
use the established pruning criteria [7]. The former uses lo-
Algorithm 3: Redundancy Weighted Node Pruning.

Input: (i) Gin
B the blocking graph, and

(ii) wt the function defining the local weight thresholds.
Output: Gout

B the pruned blocking graph
1 weights[] ← {}; // thresholds per node
2 foreach vi ∈ V B do // for every node
3 G vi ← getNeighborhood(vi , G B );
4 weights[i] ← wt(G vi ); // get local threshold
5 Eout

B ← {}; // the set of retained edges
6 foreach ei, j ∈ E B do // for every edge
7 if weights[i] ≤ ei, j .weight
8 OR weights[ j] ≤ ei, j .weight then // retain if
9 Eout

B ← Eout
B ∪ { ei, j }; // exceeds either threshold

10 return Gout
B = {V B , Eout

B , W S};

Algorithm 4: Redundancy Cardinality Node Pruning.

Input: (i) Gin
B the blocking graph, and

(ii) ct the function defining the local cardinality thresholds.
Output: Gout

B the pruned blocking graph
1 SortedStacks[] ← {}; // sorted stack per node
2 foreach vi ∈ V B do // for every node
3 G vi ← getNeighborhood(vi , G B );
4 k ← ct(G vi ); // get local cardinality threshold
5 foreach ei, j ∈ E vi do // add every adjacent edge
6 SortedStacks[i].push(ei, j ); // in sorted stack
7 if k < SortedStacks[i].size() then
8 SortedStacks[i].pop(); // remove last edge

9 Eout
B ← {}; // the set of retained edges

10 foreach ei, j ∈ E B do // for every edge
11 if ei, j ∈ SortedStacks[i]
12 OR ei, j ∈ SortedStacks[ j] then // retain if among
13 Eout

B ← Eout
B ∪ { ei, j }; // the top-k ones for either 

node

14 return Gout
B = {V B , Eout

B , W S};

cal weight thresholds that are equal to the average weight of 
each node neighborhood, while the latter sets k equal to k =
�BC(B) − 1�.

Complexity. The time complexity of Redundancy Pruning is 
O (|V B | · |E B |) in the worst-case of a complete blocking graph, 
and O (|E B |) in the case of a sparse graph. Its space complexity 
is O (|V B | + |E B |).

4.3. Reciprocal Pruning

This approach enhances the efficiency of the existing node-
centric pruning algorithms by exploiting one of their disadvan-
tages, namely the redundant comparisons that are contained in 
their restructured block collections. It actually turns it into their 
advantage, based on the idea that the retained redundant compar-
isons indicate pairs of entities that have high chances of matching. 
For example, the comparisons corresponding to the edges �e1,3 and 
�e3,1 in Fig. 3(a) indicate that p1 is highly likely to match with p3

and vice versa, thus reinforcing the likelihood that the two entities 
are duplicates.

Reciprocal Pruning builds on this pattern in order to improve 
the performance of both WNP or CNP. In essence, it applies them 
to the input block collection and retains only their redundant com-
parisons. That is, it retains one comparison for every pair of enti-
ties that are reciprocally connected in the directed pruned block-
ing graph; entities that are connected with a single edge, are not 
compared in the restructured block collection. In this way, the re-
structured block collection retains fewer superfluous comparisons, 
while producing no redundant ones. In the extreme case where all 



JID:BDR AID:49 /FLA [m5G; v1.190; Prn:26/10/2016; 12:29] P.8 (1-21)

8 G. Papadakis et al. / Big Data Research ••• (••••) •••–•••
Fig. 7. (a) The pruned blocking graph produced by applying Reciprocal Pruning to 
the graph in Fig. 3(a), and (b) the restructured blocks.

retained edges have a reciprocal link, it prunes 50% more compar-
isons than the existing methods. In all other cases, the efficiency 
gains are even greater. Provided that the blocking graph captures 
strong patterns of co-occurrence, Reciprocal Pruning is also ex-
pected to maintain a large portion of the detected duplicates.

Continuing our example, Reciprocal Pruning operates on top of 
the directed pruned blocking graph in Fig. 3(a) to create the new, 
undirected pruned blocking graph in Fig. 7(a). Apparently, the lat-
ter graph contains an undirected edge for every pair of reciprocal 
directed edges in the former graph. Fig. 7(b) presents the restruc-
tured blocks that are produced by Reciprocal Pruning. They contain 
just 4 comparisons, of which 2 are matching and 2 superfluous (in 
b′

2 and b′
3). Compared to the blocks in Fig. 3(b), the overall effi-

ciency is significantly enhanced at no cost in recall. Compared to 
Redundancy Pruning in Fig. 6(b), this approach prunes one more 
comparison.

Scope & functionality. Reciprocal Pruning is compatible with 
both Dirty and Clean–Clean ER. It yields two new node-centric 
pruning algorithms: Reciprocal Weight Node Pruning (Reciprocal 
WNP) and Reciprocal Cardinality Node Pruning (Reciprocal CNP). 
We do not present an outline of their functionality, as it is al-
most identical to Redundancy Pruning. The only difference is that 
they identify the retained edges using conjunctive instead of dis-
junctive conditions: the operator OR in Lines 7–8 and 11–12 of 
Algorithms 3 and 4, respectively, is replaced by the operator AND.

Configuration. Reciprocal WNP and CNP use the same estab-
lished pruning criteria as the above techniques.

Complexity. The time complexity of Reciprocal Pruning is 
O (|E B |) in the case of a sparse graph, while its space complex-
ity is O (|V B | + |E B |).

4.4. Block Filtering

This approach is based on the idea that each block has a dif-
ferent importance for every entity it contains. For example, an 
oversized block is usually superfluous for most of its entities, but 
it may contain a couple of matching entities that do not appear in 
another block; for these entities, this particular block is indispens-
able, as they do not co-occur elsewhere.

Building upon this principle, Block Filtering restructures a block 
collection by removing entities from blocks, in which their pres-
ence is not necessary. The importance of a block for a given entity 
is implicitly determined by the maximum number of blocks that 
this entity should participate in.

As an example, consider the blocks in Fig. 1(b), assuming that 
their importance for their entities decreases with the increase of 
their index (i.e., b1 and b8 are the most and the least impor-
tant blocks, respectively). A possible approach to Block Filtering 
would be to remove every entity from the least important of its 
blocks, i.e., the one with the largest block index. The resulting 
block collection is presented in Fig. 8(a). We can see that Block 
Filtering reduces the 15 original comparisons to just 5. Yet, there 
is room for further improvements, due to the presence of 2 re-
dundant comparisons in blocks b′ and b′ and 1 superfluous in 
2 4
Fig. 8. (a) The restructured block collection that is produced by applying Block Filter-
ing to the blocks in Fig. 1(b), (b) the corresponding blocking graph, (c) the pruned 
blocking graph that is produced by dropping the edges with a weight lower than 
the average, and (d) the corresponding restructured block collection.

Fig. 9. (a) Using Block Filtering for pre-processing the blocking graph of graph-based 
Meta-blocking methods, and (b) using Block Filtering for graph-free Meta-blocking.

block b′
5. Applying Meta-blocking to these blocks yields the block-

ing graph of Fig. 8(b), which could be transformed into the graph 
of Fig. 8(c) with edge-centric pruning (i.e., by discarding the edges 
with a weight lower than the average). In this way, we get the two 
matching comparisons in Fig. 8(d). This is a significant improve-
ment over the 4 comparisons in Fig. 2(c), which were produced by 
applying the same pruning scheme to the original block collection.

Scope & functionality. This is a generic method that applies to 
any block collection, covering both Clean–Clean or Dirty ER. It can 
be used in two fundamentally different ways, merely by adjusting 
its threshold to the desired level of pruning (see Section 5.4): (i) As 
a pre-processing method that performs shallow pruning to the 
edges of the blocking graph before applying a graph-based Meta-
blocking technique. The corresponding workflow is depicted in 
Fig. 9(a). (ii) As an independent, graph-free Meta-blocking method 
that performs deep pruning. In this case, the restructured blocks 
contain redundant comparisons, which are removed by Compari-
son Propagation, increasing precision at no cost in recall. Fig. 9(b) 
shows the corresponding workflow.

The functionality of Block Filtering is outlined in Algorithm 5. 
First, it orders the blocks of the input collection B in descending 
order of importance (Line 3). Then, it determines the maximum 
number of blocks per entity (Line 4). This requires an iteration 
over all blocks in order to count the block assignments of each 
entity. Subsequently, it iterates over all blocks in the specified or-
der (Line 5) and over all entities in each block (Line 6). The entities 
that have less block assignments than their threshold are retained, 
while the rest are discarded from the current block (Lines 7–10). 
Finally, the block is retained only if it contains at least two entities 
(Lines 11–12).

Configuration. The functionality of Block Filtering is deter-
mined by two parameters:

(i) The criterion that specifies the importance of each block. As 
such, we employ the cardinality of blocks (||b||), assuming that the 
smaller a block is, the more important it is for its entities. Thus, 
Block Filtering sorts a block collection in ascending order of its 
cardinality, i.e., from the smallest block to the largest one in terms 
of comparisons.

(ii) The ratio (r) that determines the maximum number of block 
assignments per entity. It is defined in the interval [0, 1] and ex-
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Algorithm 5: Block Filtering.
Input: B the input block collection
Output: B ′ the restructured block collection

1 B ′ ← {};
2 counter[] ← {};
3 orderBlocks(B); // sort in descending importance
4 maxBlocks[] ← getThresholds(B); // limit per entity
5 foreach bi ∈ B do // check all blocks
6 foreach pi ∈ bi do // check all entities
7 if counter[i] < maxBlocks[i] then
8 bi ← bi \ pi ; // remove entity
9 else

10 counter[i]++; // increment counter

11 if |bi | > 1 then // retain blocks with
12 B ′ ← B ′ ∪ bi ; // at least 2 entities

13 return B ′;

presses the portion of blocks that are retained for each entity. For 
example, r = 0.5 means that each entity remains in the first half 
of its associated blocks, after sorting them in ascending cardinality. 
We experimentally fine-tune this parameter in Section 5.4.

Instead of a local threshold per entity, we could apply the same 
global threshold to all entities. Preliminary experiments, though, 
demonstrated that this approach is impractical in many cases. The 
reason is that the number of blocks associated with every entity 
varies significantly, depending on the quantity and the quality of 
information in the corresponding entity profiles. The smaller the 
global threshold is, the higher the efficiency gains are, but more 
information is then removed from entities with large profiles (i.e., 
many block assignments), potentially reducing recall. The opposite 
is true for large global thresholds. Hence, it is difficult to iden-
tify the break-even point for a global threshold that achieves a 
good balance between recall and precision for all entities. This 
phenomenon is particularly intense for Clean–Clean ER, where it 
is common for the input entity collections to differ largely in their 
characteristics.

Complexity. Block Filtering iterates twice over all entities in the 
blocks of the input collection B . Thus, its time complexity is equal 
to O (

∑
bi∈B |bi |). Given, though, that every block contains a fixed 

number of entities that is independent of the size of the input 
entity collection, its time complexity is equal to O (|B|). Appar-
ently, this linear complexity scales very well to voluminous sets 
of blocks.

The space complexity of Block Filtering is dominated by the 
threshold and the counter it maintains for every entity (Line 2). 
Thus, it is linear to the size of the input entity collection, O (|E|).

5. Evaluation

In this section, we delve into the performance characteristics 
of our methods through a thorough experimental study. We be-
gin with a presentation of the datasets and the relevant metrics in 
Section 5.1. We then discuss the performance of the existing Meta-
blocking techniques in Section 5.2. We examine the three new 
methods for node-centric pruning in Section 5.3. In Section 5.4, 
we fine-tune Block Filtering and demonstrate its beneficial effect 
on the input blocks, their blocking graph and the main pruning 
algorithms. We discuss the relative performance of the main prun-
ing schemes in Section 5.5, selecting the best one for each ER 
sub-task and for each type of ER applications. We analytically com-
pare the selected graph-based techniques with graph-free Meta-
blocking and Iterative Blocking in Section 5.6.
5.1. Experimental set-up

We implemented our approaches in Java 1.7 and tested them on 
a server with Intel i7-4930K (3.40 GHz) and 32 GB RAM, running 
Debian 7.

Datasets. We examine the performance of our methods over 6 
real and 7 synthetic datasets. They constitute established bench-
marks [24,9,10,2,7,25] with significant variations in their size and 
characteristics. The real datasets pertain to Clean–Clean ER, but 
are used for Dirty ER, as well; we simply merge their clean en-
tity collections into a single one that contains duplicates in itself. 
The synthetic datasets pertain to Dirty ER and are mainly used 
for scalability analysis [1,3]. In total, we have 19 block collections 
that lay the ground for a thorough experimental evaluation of our 
Meta-blocking techniques. All datasets are publicly available.5

To present the technical characteristics of the original datasets 
and the resulting block collections, we use the following notation: 
|E| stands for the number of entities they contain, NVP for the 
total number of name-value pairs in their entity profiles, |D(E)|
for the number of existing duplicates, BFC for the comparisons 
executed by the brute-force approach, |B| for the number of blocks 
in B , ||B|| for the total cardinality of B , PC(B) for the original recall 
of B (before Meta-blocking), PQ(B) for the original precision, |V B |
for the order of the blocking graph and |E B | for its size. Finally, 
RT(B) denotes the resolution time of B , i.e., the time required for 
applying an entity matching method to all pairs of entities in B . 
As such, we use the Jaccard similarity of all tokens in the values of 
two entity profiles – regardless of the associated attribute names.

Tables 1(a) and (b) present the technical characteristics of 
the real datasets for Clean–Clean and Dirty ER, respectively. R1C

contains product entities from the on-line retailers Abt.com and 
Buy.com; they have been matched based on their Universal Prod-
uct Code (UPC). R2C contains bibliographic data stemming from 
the DBLP6 and the ACM digital library,7 while R3C matches DBLP 
publications with query results from Google Scholar8; in both 
cases, the ground-truth was determined manually. R4C contains 
product entities from Amazon.com that have been matched with 
query results from Google Base through their UPC. R5C matches 
movies from IMDB9 and DBPedia10 based on their ImdbId. Fi-
nally, R6C involves entities from two snapshots of the English 
Wikipedia11 Infoboxes, which have been automatically matched 
through their URL. For Dirty ER, the datasets RxD with x ∈ [1, 6]
were derived by merging the entity profiles of the individually 
clean collections forming RxC .

Table 1(c) presents the technical characteristics of the synthetic 
datasets. They have been generated by FEBRL [26] in two stages: 
first, a series of original (i.e., duplicate-free) entities were produced 
based on frequency tables of person names and address values. 
Then, duplicate entities were generated by applying random mod-
ifications, such as character or word insertions and deletions. The 
resulting datasets contain 60% original entities and 40% duplicate 
ones, with up to nine matches per original entity.

From all datasets, we extracted a redundancy-positive block col-
lection by applying Token Blocking [9] in conjunction with Block 
Purging [2]. The resulting blocks exhibit nearly perfect recall in all 
cases, as their PC consistently exceeds 0.98. Most of them involve 
at least 75% less comparisons than the brute-force approach, which 

5 See http://sourceforge.net/projects/erframework.
6 http://www.dblp.org.
7 http://dl.acm.org.
8 http://scholar.google.gr.
9 http://www.imdb.com.

10 http://dbpedia.org.
11 http://en.wikipedia.org.

http://sourceforge.net/projects/erframework
http://www.dblp.org
http://dl.acm.org
http://scholar.google.gr
http://www.imdb.com
http://dbpedia.org
http://en.wikipedia.org
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Table 1
Technical characteristics of the datasets used in our experimental study.

Entity characteristics Block characteristics Blocking graph

|E| NVP |D(E)| BFC |B| ||B|| PC(B) PQ(B) RT(B) |V B | |E B |
R1C 1,076–1,076 2,568–2,308 1,076 1.16 · 106 2,020 1.61 · 105 0.983 0.007 4 s 2,152 1.17 · 105

R2C 2,616–2,294 10,464–9,162 2,224 6.00 · 106 6,819 3.75 · 105 0.999 0.006 6 s 4,910 2.87 · 105

R3C 2,516–61,353 10,064–198,001 2,308 1.54 · 108 6,877 1.92 · 106 0.994 0.001 22 s 63,869 1.83 · 106

R4C 1,354–3,039 5,302–9,110 1,104 4.11 · 106 6,676 2.74 · 106 0.999 4.03 · 10−4 8 min 4,393 1.37 · 106

R5C 27,615–23,182 155,436–816,009 22,863 6.40 · 108 40,732 8.11 · 107 0.980 2.76 · 10−4 1.6 hrs 50,797 6.75 · 107

R6C 1.19 · 106–2.16 · 106 1.69 · 107–3.50 · 107 892,586 2.58 · 1012 1.24 · 106 4.23 · 1010 0.999 2.11 · 10−5 342 hrs 3.33 · 106 3.58 · 1010

(a) Real, Clean–Clean ER datasets

R1D 2,152 4,876 1,076 2.31 · 106 3,752 2.08 · 106 0.991 0.001 6 s 2,151 9.71 · 105

R2D 4,910 19,626 2,224 1.21 · 107 7,571 3.34 · 106 1.000 0.001 7 s 4,910 2.72 · 106

R3D 63,869 208,065 2,308 2.04 · 109 44,138 3.13 · 108 0.999 7.37 · 10−6 8 min 63,864 2.62 · 108

R4D 4,393 14,412 1,104 9.65 · 106 10,067 2.79 · 107 1.000 3.96 · 10−5 32 min 4,393 7.21 · 106

R5D 50,797 971,445 22,863 1.29 · 109 76,344 8.38 · 108 0.982 2.68 · 10−5 8 hrs 50,769 3.80 · 108

R6D 3.35 · 106 5.19 · 107 892,586 5.63 · 1012 1.50 · 106 8.00 · 1010 0.999 1.12 · 10−5 646 hrs 3.33 · 106 6.65 · 1010

(b) Real, Dirty ER datasets

S1 10,000 106,108 8,705 5.00 · 107 11,076 4.06 · 106 0.997 0.002 1 min 10,000 3.90 · 106

S2 50,000 530,854 43,071 1.25 · 109 40,683 9.58 · 107 0.998 4.49 · 10−4 21 min 50,000 9.28 · 107

S3 100,000 1.06 · 106 85,497 5.00 · 109 72,720 3.79 · 108 0.997 2.25 · 10−4 76 min 100,000 3.68 · 108

S4 200,000 2.12 · 106 172,403 2.00 · 1010 123,759 1.52 · 109 0.997 1.13 · 10−4 4.5 hrs 200,000 1.48 · 109

S5 300,000 3.18 · 106 257,034 4.50 · 1010 166,208 3.42 · 109 0.997 7.50 · 10−5 10 hrs 300,000 3.32 · 109

S6 1.00 · 106 1.06 · 107 857,538 5.00 · 1011 442,101 2.21 · 1010 0.996 3.87 · 10−5 55 hrs 1.00 · 106 2.12 · 1010

S7 2.00 · 106 2.12 · 107 1.72 · 106 2.00 · 1012 863,631 8.84 · 1010 0.996 1.93 · 10−5 221 hrs 2.00 · 106 8.67 · 1010

(c) Synthetic, Dirty ER datasets
compares all possible pairs of entities. Still, their precision is sig-
nificantly lower than 0.01 across all datasets. This means that on 
average, more than 100 comparisons have to be executed in order 
to identify a new pair of duplicates. The corresponding blocking 
graphs vary significantly in size, ranging from tens of thousands 
edges to tens of billions, whereas their order ranges from few 
thousands nodes to few millions.

Measures. To assess the impact of Meta-blocking on blocking 
effectiveness, we use two measures: (i) the absolute recall of the 
block collections, as expressed through Pairs Completeness (PC), 
and (ii) their relative recall, as expressed through Relative Pairs 
Completeness (RPC). The latter measure captures the ratio between 
the recall of the restructured block collection B ′ and the original 
one, B:

RPC(B, B ′) = PC(B ′)/PC(B).

RPC takes positive values, with higher ones indicating better re-
call for B ′ . Those exceeding 1 indicate that the restructured block 
collection B ′ has a higher recall than B .

To assess the impact of Meta-blocking on blocking efficiency, we 
use the total cardinality of the block collections (||B||) and their 
precision, i.e., Pairs Quality (PQ). We also employ the following es-
tablished measures [26,7]:

• The Reduction Ratio (RR) captures the relative decrease in the 
cardinality of the restructured block collection B ′ in comparison 
with the original one B:

RR(B, B ′) = 1 − ||B ′||/||B||.
Provided that ||B ′|| < ||B||, RR takes values in the interval [0, 1], 
with higher ones indicating better efficiency.

• The Overhead Time (OTime) measures the time taken by a 
Meta-blocking method to restructure the input block collection. 
The lower its value is, the more efficient is the corresponding 
method.

• The Resolution Time (RTime) is equal to OTime plus the time 
required to apply an entity matching method to all comparisons in 
the restructured block collection. As the entity matching method, 
we use the Jaccard similarity of all tokens in the values of two 
entity profiles. Note that this similarity metric is merely used for 
demonstration purposes, as it does not affect the detection of real 
matches. The lower RTime(B) is, the more efficient is the block 
collection B .

5.2. Existing Meta-blocking techniques

Table 2 presents the performance of the existing pruning algo-
rithms, averaged across all weighting schemes.

Starting with the cardinality-based algorithms, we observe that
CEP reduces the executed comparisons from a whole order of 
magnitude, for the smallest datasets, up to 3 orders for the largest 
ones. It increases precision (PQ) to a similar extent at the cost of 
much lower recall in most of the cases. This applies particularly 
to Dirty ER, where PC drops below 0.80 for four out of the six 
datasets. The reason is that Dirty ER is more difficult than Clean–
Clean ER, involving much larger blocking graphs with more noisy 
edges between non-matching entities.

Compared to CEP, CNP is more robust to recall. For Clean–
Clean ER, its PC consistently exceeds 0.90, whereas for Dirty ER, 
its PC drops below 0.80 only for a single dataset. This robustness 
stems from its node-centric functionality, which retains the best 
edges per node, instead of the globally best ones. It results, how-
ever, in lower efficiency than CEP, as CNP retains twice as many 
comparisons, on average. This leads to a lower precision than CEP, 
as well.

For the weight-based algorithms, we observe that WEP consis-
tently maintains a recall high enough to satisfy the requirements 
of effectiveness-intensive ER applications (PC > 0.95). The only ex-
ception is the smallest dataset for Clean–Clean ER, namely R1C . At 
the same time, WEP reduces the executed comparisons by a whole 
order of magnitude for most datasets and enhances precision to a 
similar extent.

As expected, its node-centric counterpart, WNP, is more ro-
bust to recall. Its PC consistently exceeds 0.96 and outperforms
WEP across all datasets. On average, though, it executes twice 
as many comparisons, thus exhibiting significantly lower precision 
than WEP.

In summary, our experiments verify that the cardinality-based 
algorithms are more suitable for efficiency-intensive ER applica-
tions, as they excel in precision. In contrast, the weight-based 
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Table 2
Average performance of the existing pruning algorithms across all weighting schemes over the real datasets.

Clean–Clean ER Dirty ER

R1C R2C R3C R4C R5C R6C R1D R2D R3D R4D R5D R6D

||B ′|| 1.38 · 104 2.73 · 104 1.43 · 105 7.54 · 104 7.14 · 105 2.63 · 107 2.37 · 104 3.45 · 104 4.04 · 105 1.08 · 105 8.86 · 105 2.47 · 107

PC(B ′) 0.901 0.987 0.967 0.799 0.865 0.724 0.614 0.985 0.814 0.493 0.471 0.535
PQ(B ′) 0.070 0.081 0.016 0.012 0.028 0.025 0.028 0.063 0.005 0.005 0.012 0.019

(a) Cardinality Edge Pruning (CEP)

||B ′|| 2.56 · 104 5.36 · 104 2.34 · 105 1.48 · 105 1.41 · 106 4.95 · 107 4.72 · 104 6.87 · 104 7.66 · 105 2.15 · 105 1.72 · 106 4.63 · 107

PC(B ′) 0.944 0.997 0.974 0.919 0.947 0.974 0.867 0.995 0.956 0.772 0.870 0.954
PQ(B ′) 0.040 0.041 0.010 0.007 0.015 0.018 0.020 0.032 0.003 0.004 0.012 0.018

(b) Cardinality Node Pruning (CNP)

||B ′|| 2.62 · 104 5.26 · 104 4.32 · 105 4.39 · 105 1.48 · 107 6.64 · 109 2.40 · 105 5.37 · 105 4.78 · 107 2.17 · 106 1.03 · 108 1.19 · 1010

PC(B ′) 0.933 0.990 0.977 0.964 0.963 0.977 0.952 0.998 0.994 0.952 0.955 0.973
PQ(B ′) 0.043 0.049 0.011 0.003 2.62 · 10−3 6.66 · 10−4 0.006 0.007 1.16 · 10−4 8.56 · 10−4 5.94 · 10−4 3.54 · 10−4

(c) Weighted Edge Pruning (WEP)

||B ′|| 5.50 · 104 1.11 · 105 1.11 · 106 8.32 · 105 2.81 · 107 1.60 · 1010 5.39 · 105 1.04 · 106 9.95 · 107 4.50 · 106 2.26 · 108 3.00 · 1010

PC(B ′) 0.961 0.997 0.988 0.988 0.972 0.997 0.976 0.999 0.996 0.982 0.973 0.995
PQ(B ′) 0.020 0.022 0.002 0.002 1.14 · 10−3 1.44 · 10−4 0.003 0.003 4.79 · 10−5 3.91 · 10−4 2.42 · 10−4 7.63 · 10−5

(d) Weighted Node Pruning (WNP)

Fig. 10. (a) RR and (b) RPC, averaged across all weighting schemes, for the new methods for WNP over the real datasets for Clean–Clean ER.

Fig. 11. (a) RR and (b) RPC, averaged across all weighting schemes, for the new methods for WNP over the real datasets for Dirty ER.
algorithms excel in recall and are more suitable for effectiveness-
intensive applications. In both cases, the node-centric algorithms 
trade higher recall for lower precision. These patterns verify pre-
vious findings about the relative performance of pruning algo-
rithms [7].

5.3. New node-centric pruning algorithms

We now examine our novel methods for node-centric pruning: 
Graph Partitioning, Redundancy Pruning and Reciprocal Pruning. 
We combined them with the five weighting schemes and applied 
the resulting pruning schemes to all real datasets. In each case, 
we consider RR and RPC with respect to the original node-centric 
pruning algorithm, averaged across all weighting schemes. From 
these two metrics, we can infer the effect on precision, as well: for 
an RPC close to 1, precision increases by 1.5 times for RR = 0.33, by 
2 times for RR = 0.50, by 3 times for RR = 0.67 and by 4 times for 
RR = 0.75. We first examine the weight-based pruning algorithms 
and then the cardinality-based ones.

New methods for Weighted Node Pruning (WNP) The outcomes of 
our experimental analysis over the Clean–Clean and the Dirty ER 
datasets are presented in Figs. 10 and 11, respectively. Starting 
with Clean–Clean ER, we observe that the new methods can be 
distinguished in two categories: the first one entails Redundancy 
WNP, which maintains the original recall (RPC = 1), while convey-
ing significant enhancements in efficiency. On average, across all 
weighting schemes and datasets, this method reduces total cardi-
nality by 33% and increases precision by 1.5 times.

The second category entails the two other methods, which sac-
rifice recall in order to enhance efficiency to a larger extent. Parti-
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Table 3
Performance of the best weight-based, node-centric pruning algorithms over the real datasets, averaged across all weighting schemes.

Clean–Clean ER Dirty ER

R1C R2C R3C R4C R5C R6C R1D R2D R3D R4D R5D R6D

||B ′|| 2.82 · 104 5.52 · 104 4.48 · 105 4.09 · 105 1.17 · 107 8.16 · 109 2.16 · 105 4.13 · 105 3.73 · 107 1.66 · 106 8.81 · 107 8.96 · 109

PC(B ′) 0.953 0.996 0.981 0.976 0.964 0.991 0.953 0.999 0.994 0.930 0.956 0.980
PQ(B ′) 0.040 0.045 0.010 0.003 2.54 · 10−3 2.99 · 10−4 0.007 0.007 1.33 · 10−4 1.17 · 10−3 6.75 · 10−4 3.15 · 10−4

(a) Partition WNP (b) Reciprocal WNP

Fig. 12. (a) RR and (b) RPC, averaged across all weighting schemes, for the new methods for CNP over the real datasets for Clean–Clean ER.
tion WNP performs a conservative pruning that is robust to recall, 
decreasing PC by less than 1% (RPC = 0.993, on average). Yet, its 
pruning is so accurate that it manages to reduce total cardinality 
by 53% and to increase the original precision by 2.4 times. Recipro-
cal WNP performs a deeper pruning that consistently achieves the 
highest RR at the cost of the lowest RPC. On average, it reduces to-
tal cardinality by 67% for RPC = 0.985, while enhancing precision 
by 3.3 times.

In the case of Dirty ER, we observe similar patterns for the two 
methods that are applicable. Redundancy WNP maintains the orig-
inal recall and increases efficiency to a significant extent. On aver-
age, its RR amounts to 0.373, rising precision by 1.6 times. Recipro-
cal WNP performs a drastic pruning that retains 63% less compar-
isons at the cost of slightly lower recall. On average, RPC = 0.981, 
while precision rises by 2.7 times.

Best approach. Ideally, the best method for WNP yields the 
highest increase in precision, while inducing the lowest reduction 
in recall. Our experimental outcomes indicate that there is no such 
clear winner among the three new pruning algorithms. Instead, 
there is a clear trade-off between recall and precision, with small 
reductions in RPC yielding large increases in RR and, thus, preci-
sion. This applies to both Clean–Clean and Dirty ER. Therefore, for 
each ER task, we seek the pruning algorithm that consistently ex-
hibits the best balance between precision and recall in the sense 
that it maximizes RR for a PC that consistently exceeds 0.95 – the 
recall threshold of effectiveness-intensive applications.

In the case of Clean–Clean ER, this condition is satisfied by
Partition WNP. Redundancy WNP achieves much lower RR and pre-
cision, while Reciprocal WNP is less robust to recall, reducing it 
below 0.95 for several weighting schemes.

In the case of Dirty ER, Redundancy WNP yields much lower RR
and precision than Reciprocal WNP. The latter violates the recall 
constraint only over R4D , where RPC drops to 0.947 and its recall 
is 0.93, on average. However, this dataset contains the highest lev-
els of noise: it is the only dataset, where the blocks contain more 
comparisons than the brute-force approach, while the edges of the 
blocking graph connect 75% of all pairs of nodes (this can be de-
rived by dividing |E B | with BFC from Table 1). Even in this context, 
the combination of Reciprocal WNP with ECBS achieves a recall 
equal to 0.957, whereas the PC of the other weighting schemes ex-
ceeds 0.92 in all cases. Thus, we can deduce that Reciprocal WNP
offers the best balance between recall and precision for Dirty ER.
The average performance of Partition and Reciprocal WNP over 
the real datasets for Clean–Clean and Dirty ER, respectively, is 
presented in Table 3. Comparing it with Table 2(d), we observe 
that Partition WNP increases the precision of WNP by at least two 
times across all datasets, while maintaining PC above the recall 
threshold. Compared to the performance of WEP in Table 2(c), it 
consistently exhibits higher recall, which is combined with higher 
precision over R4C and R5C , as well.

In the case of Dirty ER, Reciprocal WNP satisfies the recall con-
straint across all datasets, except for R4D , while increasing preci-
sion by 2 to 3 times. Its precision is consistently higher even in 
comparison with WEP. Given that its recall is also higher across 
all datasets (except for R4D ), it outperforms WEP in all aspects.

New methods for Cardinality Node Pruning (CNP) The performance of 
the new methods for CNP, averaged across all weighting schemes, 
is presented in Figs. 12 and 13 for the Clean–Clean and the Dirty 
ER datasets, respectively.

Starting with Clean–Clean ER, we observe that there are two 
extremes in the performance of the new pruning algorithms. On 
the one hand, Redundancy CNP maintains the original recall, while 
conveying a moderate increase in efficiency. On average, across all 
weighting schemes and datasets, it retains 19% less comparisons, 
which increases PQ by 1.2 times. On the other hand, Reciprocal 
CNP exhibits the highest precision across all datasets at the cost 
of the largest reductions in recall. On average, it retains 81% less 
comparisons for RPC = 0.934 and increases precision by 8.1 times.
Partition CNP lies in the middle of these two extremes; on aver-
age, RR = 0.645 and RPC = 0.961, while precision increases by 5.6 
times.

In the case of Dirty ER, Figs. 13(a) and (b) depict a similar 
performance for Redundancy CNP. Its RR amounts to 0.235, rising 
precision by 1.3 times, on average, across all datasets and weight-
ing schemes. Reciprocal CNP exhibits similar levels of RR as before, 
reducing the total cardinality by 77%. Yet, its impact on recall is 
much larger and its RPC drops to 0.805, on average. This means 
that the absolute PC falls below 0.8 for the datasets where CNP al-
ready had a low recall, namely R1D , R4D and R5D . Apparently, this 
should be attributed to the more challenging conditions of Dirty 
ER.

Best approach. Similar to WNP, none of the new methods for
CNP outperforms all others with respect to both recall and preci-
sion. Instead, the trade-off between RR and RPC is prevalent: the 
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Fig. 13. (a) RR and (b) RPC, averaged across all weighting schemes, for the new methods for CNP over the real datasets for Dirty ER.

Table 4
Performance of the best cardinality-based, node-centric pruning algorithms over the real datasets, averaged across all weighting schemes.

Clean–Clean ER Dirty ER

R1C R2C R3C R4C R5C R6C R1D R2D R3D R4D R5D R6D

||B ′|| 7.82 · 103 1.63 · 104 8.87 · 103 2.93 · 104 2.62 · 105 7.10 · 106 3.34 · 104 4.77 · 104 5.87 · 105 1.73 · 105 1.40 · 106 3.72 · 107

PC(B ′) 0.876 0.993 0.910 0.791 0.891 0.921 0.867 0.995 0.956 0.772 0.870 0.954
PQ(B ′) 0.121 0.135 0.237 0.032 0.079 0.119 0.028 0.046 0.004 0.005 0.014 0.023

(a) Reciprocal CNP (b) Redundancy CNP
higher the former gets for one method, the lower is its RPC and 
vice versa. In this context, the best approach is the one that maxi-
mizes RR for a recall that consistently satisfies the requirements of 
efficiency-intensive applications (PC ≥ 0.80).

For Clean–Clean ER, the best method in these terms is Recip-
rocal CNP. Its absolute performance is presented in Table 4(a). 
Despite the huge increase in precision, its recall remains above 0.8 
across all datasets, except for R4C , where it amounts to 0.791. This 
exception is caused by the poor performance of a single weighting 
scheme, namely CBS, for which PC = 0.687. For the other weight-
ing schemes, PC remains well over the recall threshold. Compared 
to CEP in Table 2(a), Reciprocal CNP consistently achieves higher 
precision. For half the datasets, it outperforms CEP with respect to 
recall, as well.

In the case of Dirty ER, only Redundancy CNP satisfies the recall 
constraint of efficiency-intensive applications on a consistent ba-
sis. Its absolute performance is presented in Table 4(b). Similar to 
original CNP, its recall violates the relevant threshold only for the 
noisiest dataset, namely R4D . Even in this case, it maintains a re-
call well over 0.8 for two of the weighting schemes, namely ARCS
and ECBS. Compared to CEP, it consistently achieves a higher re-
call, while its precision is higher for four out of the six datasets.

Discussion Our experimental analysis indicates that the best 
methods for cardinality- and weight-based node-centric pruning 
are Reciprocal CNP and Partition WNP, respectively, in the case of 
Clean–Clean ER. For Dirty ER, Redundancy CNP and Reciprocal WNP
should be preferred, respectively. These four methods yield signif-
icantly higher precision than the original pruning algorithms for
CNP and WNP, while achieving similar recall on a consistent basis. 
In many cases, their performance is superior to their edge-centric 
counterparts, as well.

5.4. Block Filtering

To evaluate the performance of Block Filtering, we first fine-
tune its parameter and examine the quality of the resulting re-
structured blocks. Then, we investigate its impact on the major 
pruning algorithms.

Fine-tuning the ratio As explained above, the ratio (r) of Block 
Filtering takes a value in the interval [0, 1] that determines the 
Fig. 14. The effect of parameter ratio on the performance of the blocks derived by 
Block Filtering from R5C and R5D in terms of RR and RPC.

portion of the most important blocks that are retained for each 
entity. To examine its effect on the functionality of Block Filtering, 
we measured the performance of the restructured block collections 
using all values of r in the interval [0.05, 1] with a step of 0.05. 
Fig. 14 presents the resulting performance in terms of RR and RPC
in comparison with the original blocks of R5C and R5D . The other 
datasets exhibit similar patterns and are omitted for brevity.

We observe that there is a clear trade-off between RR and RPC: 
the smaller the value of r, the less blocks are retained for each en-
tity and the lower is the total cardinality of the restructured blocks 
||B ′||, thus increasing RR. Inevitably, this reduces the number of 
detected duplicates and decreases PC. The opposite is true for large 
values of r. Further, Block Filtering exhibits a robust performance 
with respect to r, with small variations in its value leading to small 
differences in RR and RPC.

To use Block Filtering as a pre-processing method, its ratio 
should be set to a value that increases precision at a low cost in re-
call. We quantify this constraint by requiring that r maintains RPC
above 0.99, while maximizing RR and, thus, PQ ; r = 0.80 satisfies 
this constraint across all real datasets.

Using this configuration, we estimated the performance of 
the restructured block collections and the corresponding blocking 
graphs over all real datasets. Table 5(a) presents it in absolute 
terms and Table 5(b) in relation to the original block collections. 
The latter employs two new metrics in order to measure the im-
pact of Block Filtering on the blocking graph structure:

(i) Reduction in Nodes (RN) denotes the relative reduction in the 
order of the blocking graph and is formally defined as:
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Table 5
(a) Technical characteristics of the restructured block collections of the real datasets after applying Block Filtering with r = 0.80, and (b) their relative performance with 
respect to the original block collections in Tables 1(a) and (b).

Clean–Clean ER Dirty ER

R1C R2C R3C R4C R5C R6C R1D R2D R3D R4D R5D R6D

|B ′| 2,007 6,817 6,863 6,649 40,724 1,239,356 3,750 7,570 44,138 10,063 76,343 1,499,462
||B ′|| 8.52 · 104 1.63 · 105 8.84 · 105 1.16 · 106 3.12 · 107 1.49 · 1010 6.08 · 105 6.68 · 105 5.91 · 107 6.00 · 106 1.49 · 108 2.68 · 1010

PC(B ′) 0.975 0.998 0.992 0.996 0.978 0.999 0.982 0.999 0.997 0.999 0.977 0.998
PQ(B ′) 0.012 0.014 0.003 0.001 0.001 5.99 · 10−5 0.002 0.003 3.90 · 10−5 1.84 · 10−4 1.50 · 10−4 3.32 · 10−5

|V B ′ | 2,149 4,907 60,935 4,391 50,720 3,331,647 2,151 4,910 63,864 4,393 50,769 3,333,356
|E B ′ | 6.53 · 104 1.17 · 105 8.48 · 105 7.67 · 105 2.84 · 107 1.31 · 1010 3.44 · 105 5.14 · 105 5.06 · 107 2.96 · 106 1.07 · 108 2.33 · 1010

(a)

RR(B, B ′) 0.472 0.565 0.540 0.575 0.615 0.648 0.708 0.800 0.811 0.785 0.822 0.664
RPC(B, B ′) 0.991 0.999 0.998 0.997 0.997 1.000 0.992 0.999 0.998 0.999 0.995 0.999
RN(B, B ′) 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RE(B, B ′) 0.440 0.593 0.537 0.440 0.579 0.633 0.645 0.811 0.806 0.590 0.719 0.649

(b)
RN(B, B ′) = 1 − |V B ′ |/|V B |,
where |V B | and |V B ′ | denote the order of the blocking graphs de-
rived from the original and the restructured block collections (after 
applying Block Filtering), respectively.

(ii) Reduction in Edges (RE) stands for the relative reduction in 
the size of the blocking graph and is estimated as:

RE(B, B ′) = 1 − |E B ′ |/|E B |.
Both measures are defined in the interval [0, 1], with higher values 
corresponding to deeper pruning.

We observe that the number of blocks is almost the same as 
in Table 1. Yet, their total cardinality is reduced to such an extent 
that RR exceeds 0.50 for most Clean–Clean ER datasets. In the case 
of Dirty ER, RR takes even higher values, exceeding 0.70 across 
all datasets.12 Given that Block Filtering reduces recall to a negli-
gible extent (RPC > 0.99), precision rises between 2 and 3 times 
for Clean–Clean ER and between 3 and 6 times for Dirty ER. Re-
garding the blocking graph, there is no significant reduction on its 
nodes, since RN(B, B ′) is practically 0 across all datasets. In con-
trast, its edges are reduced to a considerable extent, with RE(B, B ′)
approaching RR in most cases.

Effect on the main pruning algorithms We now examine the per-
formance of the main pruning algorithms on top of Block Filter-
ing using the usual measures, RR and RPC. This time they are 
defined as: RR(Bor, Bbf ) = 1 − ||Bbf ||/||Bor ||, and RPC(Bor, Bbf ) =
PC(Bbf )/PC(Bor), where Bor stands for the blocks produced by ap-
plying the pruning algorithm to the original block collection that 
is described in Tables 1(a) or (b), and Bbf denotes the blocks pro-
duced by applying the same pruning algorithm to the restructured 
blocks of Block Filtering (Table 5(a)). Fig. 15 presents the outcomes 
over the Clean–Clean and the Dirty ER datasets. The left diagrams 
pertains to RR and the right ones to RPC, with the two measures 
averaged across all weighting schemes.

These diagrams demonstrate that the effect of Block Filtering is 
determined by the type of the pruning threshold. For cardinality-
based thresholds, it conveys a moderate decrease in total cardinal-
ity, with RR fluctuating between 0.15 and 0.25 across all datasets 
for CEP and CNP variants. The reason is that these thresholds do 
not depend on the structure of the blocking graph, but are propor-
tional to the average blocks per entity in B . Given that the ratio of 

12 To understand this discrepancy, consider a block that contains 5 entities from 
E1 and 5 from E2; it involves (5 · 5 =)25 comparisons in the case of Clean–Clean 
ER and (10 · 9/2 =)45 in the case of Dirty ER. If Block Filtering removes one of the 
entities, we have 20 (RR = 0.25) and 27 (RR = 0.40) comparisons for Clean–Clean 
and Dirty ER, respectively.
Block Filtering determines the number of retained blocks per en-
tity, these thresholds are reduced by at most 20% for r = 0.8. The 
impact of Block Filtering on the recall of these thresholds is either 
minor, with RPC � 0.95, or beneficial, with RPC > 1. The latter case 
appears in half the datasets and indicates that more duplicates are 
identified by the same pruning scheme when applied to the re-
structured blocks, because Block Filtering cleans them from noisy 
edges.

Quite different is the impact on the weight-based pruning 
thresholds. In this case, Block Filtering reduces the number of re-
tained comparisons to a large extent; RR is analogous to RE(B, B ′)
in Table 5(b) and consistently exceeds 0.45 and 0.59 for the Clean–
Clean and the Dirty ER datasets, respectively. This applies equally 
to WEP and WNP variants, because they all use the average edge 
weight as pruning threshold and, thus, they depend directly on 
the size of the blocking graph. With respect to recall, RPC never 
exceeds 1, but fluctuates between 0.95 and 0.99. This indicates an 
affordable reduction in recall, which is caused by two factors: first, 
Block Filtering discards some matching edges itself, and second, it 
reduces the extend of co-occurrence for a small part of the match-
ing entities, thus lowering the weight of their edges.

The absolute performance of the main pruning algorithms is 
presented in Table 6. We observe that CEP consistently achieves 
higher precision and retains a lower number of comparisons than 
its original performance in Table 2. On average, across all datasets 
and weighting schemes, its RR is 0.178 for both Clean–Clean and 
Dirty ER, whereas its precision rises by 1.2 and 1.4 times, respec-
tively. Most notably, its recall increases for the 3 largest datasets of 
Clean–Clean ER and for four datasets of Dirty ER. In these 7 cases, 
the restructured blocks of Block Filtering outperform the original 
ones with respect to precision and recall, due to the lower portion 
of noisy edges.

Similar patterns are exhibited by the methods for CNP, when 
comparing their new performance in Table 6(b) with the original 
one in Table 4. The total cardinality of the restructured blocks is 
reduced by 16% and 20%, on average, for Clean–Clean and Dirty ER 
datasets, respectively. At the same time, their precision increases 
by 1.2 and 1.3 times, respectively. Most importantly, their PC over 
R4C and R4D now exceeds 0.8 and, thus, both algorithms satisfy 
the recall requirements of efficiency-intensive applications across 
all datasets.

A different behavior is exhibited by the weight-based pruning 
algorithms. For WEP, the lower the original PC in Table 2(c) is, the 
lower is RPC in Figs. 15(b) and (d). As a result, WEP now violates 
the recall threshold of effectiveness-intensive applications for two 
Clean–Clean and two Dirty ER datasets – originally, this applied to 
just one dataset for each task. This is accompanied by significant 
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Fig. 15. The effect of Block Filtering on the performance of the main pruning algorithms over the real datasets for Clean–Clean ER (a–b) and Dirty ER (c–d) with respect to 
RR and RPC, averaged across all weighting schemes.

Table 6
Performance of the main pruning algorithms, averaged across all weighting schemes, on top of Block Filtering over the real datasets.

Clean–Clean ER Dirty ER

R1C R2C R3C R4C R5C R6C R1D R2D R3D R4D R5D R6D

||B ′′|| 1.09 · 104 2.28 · 104 1.22 · 105 6.11 · 104 5.82 · 105 2.18 · 107 1.94 · 104 2.86 · 104 3.36 · 105 8.73 · 104 7.19 · 105 2.04 · 107

PC(B ′′) 0.878 0.987 0.959 0.838 0.882 0.760 0.644 0.979 0.782 0.599 0.628 0.581
PQ(B ′′) 0.087 0.096 0.018 0.015 0.035 0.031 0.036 0.076 0.005 0.008 0.020 0.025

(a) Cardinality Edge Pruning

||B ′′|| 6.67 · 103 1.38 · 104 6.59 · 103 2.58 · 104 2.31 · 105 6.02 · 106 2.66 · 104 3.75 · 104 4.86 · 105 1.31 · 105 1.11 · 106 3.16 · 107

PC(B ′′) 0.867 0.989 0.889 0.810 0.890 0.922 0.828 0.988 0.945 0.833 0.892 0.952
PQ(B ′′) 0.140 0.159 0.312 0.036 0.096 0.138 0.033 0.059 0.005 0.007 0.019 0.027

(b-i) Reciprocal CNP (b-ii) Redundancy CNP

||B ′′|| 1.43 · 104 2.24 · 104 2.13 · 105 2.16 · 105 6.17 · 106 2.40 · 109 9.81 · 104 1.27 · 105 1.10 · 107 8.33 · 105 3.27 · 107 4.06 · 109

PC(B ′′) 0.891 0.980 0.960 0.938 0.951 0.969 0.928 0.991 0.985 0.935 0.947 0.965
PQ(B ′′) 0.075 0.106 0.026 0.006 0.006 0.001 0.013 0.021 3.61 · 10−4 1.70 · 10−3 1.27 · 10−3 7.04 · 10−4

(c) Weighted Edge Pruning

||B ′′|| 1.54 · 104 2.35 · 104 2.19 · 105 1.94 · 105 4.95 · 106 3.13 · 109 7.82 · 104 1.06 · 105 8.42 · 106 7.13 · 105 2.90 · 107 2.95 · 109

PC(B ′′) 0.916 0.994 0.967 0.958 0.956 0.986 0.907 0.994 0.987 0.912 0.935 0.973
PQ(B ′′) 0.069 0.098 0.022 0.006 0.006 0.001 0.015 0.025 4.25 · 10−4 2.08 · 10−3 1.40 · 10−3 7.27 · 10−4

(d-i) Partition WNP (d-ii) Reciprocal WNP
increase in efficiency: PQ rises by 2.1 and 2.5 times, respectively, 
while RR = 0.612, on average.

Similar patterns are observed when comparing the new perfor-
mance of WNP variants with their original one in Table 3. Again, 
the reduction in recall is higher for the datasets with lower origi-
nal PC. Yet, Partition WNP violates the recall threshold only for the 
smallest dataset of Clean–Clean ER. Its robustness to recall allows 
it to reduce the total cardinality by 54% and to increase precision 
by 2.1 times, on average. For Dirty ER, the precision of Reciprocal 
WNP increases to a larger extent than all other pruning algorithms: 
on average, RR = 0.678 and PQ rises by 2.5 times. On the flip side, 
its average recall falls below 0.95 for three datasets. In every case, 
though, at least one of the pruning schemes maintains the recall 
higher than this threshold.

Discussion Our experiments demonstrate that Block Filtering 
trades significantly higher precision for slightly lower recall. In 
this way, it enhances the performance not only of the block col-
lections, but of the main pruning algorithms, as well. Therefore, it 
constitutes an indispensable pre-processing step for graph-based 
Meta-blocking, as depicted in Fig. 9(a).

5.5. Best configurations for Meta-blocking

In this section, we identify the best configurations of Meta-
blocking on top of Block Filtering for Clean–Clean and Dirty ER 
over the effectiveness- and the efficiency-intensive applications. 
We begin with selecting the best pruning algorithms and continue 
with choosing the best weighting schemes.

Best Pruning Algorithms Looking at the numbers of Table 6, we ob-
serve that there is a straightforward choice for efficiency-intensive 
applications over Dirty ER datasets. Redundancy CNP consistently 
satisfies their requirements on recall (PC > 0.80), whereas CEP
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falls short of recall across all datasets – except for R2D . Therefore, 
the former algorithm poses the best option in this case.

In the case of Clean–Clean ER, Reciprocal CNP consistently 
exceeds the recall threshold of efficiency-intensive applications, 
while CEP violates it for the largest dataset, R6C . The former al-
gorithm also achieves the highest recall for half of the datasets. 
It also retains 61% less comparisons, on average, and outperforms
CEP with respect to precision across all datasets. Thus, we can 
safely conclude that Reciprocal CNP offers the best choice for 
efficiency-intensive Clean–Clean ER applications.

For the effectiveness-intensive applications over Clean–Clean 
ER, Partition WNP consistently achieves higher recall than WEP. 
It violates the recall constraint (PC > 0.95) only for the smallest 
dataset, while WEP does so for R1C and R4C . The reason is that the 
node-centric functionality of Partition WNP is more robust to re-
call and retains more comparisons than WEP across most datasets. 
There are two exceptions, R4C and R5C , where it outperforms WEP
with respect to total cardinality ||B ′|| and precision, as well. On the 
whole, Partition WNP exhibits the best performance when requiring 
high effectiveness over Clean–Clean ER.

In the case of Dirty ER, there is no clear winner. WEP and
Reciprocal WNP satisfy the recall requirements of the effectiveness-
intensive applications for the same datasets: R2D , R3D and R6D . 
For these datasets, the latter retains 22% less comparisons and 
achieves higher PC, thus outperforming WEP with respect to both 
recall and precision. For the other three datasets, Reciprocal WNP
achieves higher precision, but lower recall than WEP. Both algo-
rithms satisfy the recall constraint in combination with few of the 
weighting schemes. Based on this observation, we select between 
them by comparing the relative performance of their most robust 
weighting schemes. For both algorithms, only ECBS maintains a 
PC higher than 0.95 across the five largest datasets. In combina-
tion with Reciprocal WNP, it exhibits higher precision in four out 
of the five datasets. Thus, we opt for Reciprocal WNP as the best 
algorithm in this case.

In summary, our experiments advocate that two node-centric, 
cardinality-based pruning algorithms are the most appropriate for 
efficiency-intensive applications: Reciprocal CNP for Clean–Clean 
ER and Redundancy CNP for Dirty ER. In the case of effectiveness-
intensive applications, two weight-based, node-centric algorithms 
perform the best pruning: Partition WNP for Clean–Clean ER and
Reciprocal WNP for Dirty ER.

Best weighting schemes We now identify the best weighting scheme 
for the selected pruning algorithms. For each of them, we consider 
the performance of its combination with every weighting scheme 
in terms of PC and PQ . The outcomes of our experiments over the 
relevant real datasets are presented in Figs. 16(a) to (d).

Starting with Reciprocal CNP, we observe in Fig. 16 (a-ii) that
CBS consistently achieves the highest precision across all datasets. 
However, its recall falls to 0.756 over R4C , because of its unsta-
ble functionality; given that most pairs of entities share one or 
two blocks, CBS produces many ties and the corresponding edges 
are randomly ordered in the sorted stack of each node. When the 
cardinality threshold does not cover all ties, the impact on recall 
may be significant. Therefore, this scheme should not be applied 
to cardinality-based pruning algorithms. Among the other weight-
ing schemes, ARCS consistently achieves the lowest recall, which 
falls below 0.8 over R4C . Thus, it should be avoided, as well. The 
remaining three weighting schemes exhibit similar performance, 
with a recall well over 0.8 across all datasets. In the absence of a 
clear winner, we select JS as the best scheme, because it achieves 
the highest precision for half the datasets.

In the case of Redundancy CNP, we observe a totally different 
behavior, due to the different functionality of the algorithm. JS
achieves the lowest recall in most cases, violating the recall con-
straint over R1D and R4D . EJS follows it in close distance and, 
thus, both schemes are rejected. The rest of the weighting schemes 
exceed the recall threshold across all datasets. Among them, ARCS
exhibits the highest precision in four cases and lies close to the 
maximum PQ in the other two. Thus, we mark it as the best choice 
for Redundancy CNP over Dirty ER.

For Partition WNP, there is a clear trade-off between recall and 
precision among the weighting schemes: for each dataset, the 
scheme with the lowest recall achieves the highest precision, and 
vice versa. For R1C , all weighting schemes violate the recall con-
straint. CBS and ARCS violate it one and two more times, respec-
tively, and are rejected. Among the remaining weighting schemes, 
there is a clear alignment: we have ECBS < JS < EJS in terms 
of recall and vice versa for precision. Given that they all overcome 
the recall threshold across the five largest datasets, ECBS offers 
the best balance between PC and PQ .

For Reciprocal WNP, we have explained that ECBS is the only 
weighting scheme satisfying the recall requirements of effective-
ness-intensive applications for the 5 largest datasets.

In summary, our experimental analysis indicates that for effi-
ciency-intensive applications over Clean–Clean ER, we should ap-
ply Reciprocal CNP in conjunction with JS. For Dirty ER, the 
combination of Redundancy CNP with ARCS yields the best bal-
ance between recall and precision. The best configurations for the 
effectiveness-intensive applications is the combination of ECBS
with Partition and Reciprocal WNP for Clean–Clean and Dirty ER, 
respectively. Collectively, these schemes are called Enhanced Meta-
blocking in the following.

5.6. Graph-free Meta-blocking and baseline methods

We now compare Enhanced Meta-blocking with the current 
state-of-the-art. We also consider the performance of Graph-free 
Meta-blocking, which combines Block Filtering with Comparison 
Propagation, as in Fig. 9(b). We first examine the efficiency-
intensive methods and then the effectiveness-intensive ones. We 
use the real datasets for examining the analytical performance 
of each method and the synthetic ones for performing a scala-
bility analysis. We repeated the time measurements 10 times and 
considered the average values of OTime and RTime in order to min-
imize the effect of external parameters. For block collections with 
more than 109 comparisons, RTime was approximated using the 
average time required for comparing two entity profiles – 0.029 
milliseconds for R1C /R1D and 0.009 milliseconds for S6/S7.

Efficiency-intensive methods We adapted Graph-free Meta-blocking 
to efficiency-intensive applications by identifying the ratio of Block 
Filtering that maximizes precision for a recall higher than 0.80 
across all real datasets. This ratio is r = 0.28. As a baseline 
method, we employ the original CNP in combination with the 
same weighting schemes as Enhanced Meta-blocking, i.e., JS for 
Clean–Clean ER and ARCS for Dirty ER (these particular pruning 
schemes exhibit high performance in the experiments of [7], as 
well). The performance of these methods over the real datasets is 
presented in Table 7.

Starting with Graph-free Meta-blocking, we observe that it ex-
hibits lower recall than CNP over Clean–Clean ER, but retains less 
comparisons and achieves higher precision. On average, it reduces 
PC by 6.9% and ||B ′|| by 64%, thus increasing PQ by 3.4 times. 
However, it executes an order of magnitude more comparisons for 
the largest dataset (R6C ), rising PC by 0.7% and decreasing PQ by 
5.8 times. Similarly, it retains 47% more comparisons, on average, 
across the four largest datasets of Dirty ER. This brings about no 
significant change in recall, while precision decreases by 4.3 times. 
Yet, it consistently exhibits a far better time efficiency: on aver-
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Fig. 16. Performance of all weighting schemes with respect to recall (PC) and precision (PQ) in combination with the best pruning algorithms across the relevant real datasets. 
The sub-figures in (b-ii) and (d-ii) zoom into smaller scales to highlight precision over the largest datasets.
age, it is faster than CNP by 3 orders of magnitude with respect to 
OTime and by 7 times with respect to RTime.

Comparing Enhanced Meta-blocking to CNP, we observe that 
it consistently trades lower recall for higher precision. For Clean–
Clean ER, Reciprocal CNP sacrifices recall by 5.3% in order to prune 
83% more comparisons and increase precision by 9.6 times, on av-
erage. For Dirty ER, Redundancy CNP sacrifices recall by 1.4% in 
order to prune 40% more comparisons and increase precision by 
1.6 times. Nevertheless, Enhanced Meta-blocking satisfies the recall 
constraint in all cases. In terms of time efficiency, its average OTime
is lower than CNP by 4 times, mainly due to the pre-processing of 
Block Filtering; its average RTime is lower by 5 times, due to the 
deeper pruning it performs.

Comparing Graph-free with Enhanced Meta-blocking, we ob-
serve negligible differences in recall. The latter, though, achieves 
significantly higher precision in most of the cases. On average, the 
PQ of Reciprocal CNP is higher by 12.3 times (Clean–Clean ER) and 
that of Redundancy CNP by 5.4 times (Dirty ER); there is a single 
exception in each case, where the graph-free approach achieves the 
highest PQ: R2C and R2D , respectively. Enhanced Meta-blocking 
also scales much better to the 4 largest datasets of each ER task, 
executing 80% and 68% less comparisons for Clean–Clean and Dirty 
ER, respectively.

The superiority of Enhanced Meta-blocking should be attributed 
to the finer granularity of its functionality: it operates on the 
level of comparisons (i.e., pairs of entities), whereas Block Filter-
ing operates on the level of blocks and of individual entities. As 
a result, the pruning of the graph-based approach is more ac-
curate at the cost of lower efficiency: on average, its OTime is 
higher by 2 orders of magnitude than Graph-free Meta-blocking. 
Its RTime is higher by 2.7 times over the Dirty ER datasets, de-
spite the fewer comparisons it executes. This difference is caused 
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Table 7
Technical characteristics of the restructured block collections of the real datasets for the best efficiency-intensive methods: (a) stand-alone Block Filtering with r = 0.28, 
(b) Block Filtering with r = 0.80 in conjunction with Reciprocal CNP (JS) for Clean–Clean ER and Redundancy CNP (ARCS) for Dirty ER, and (c) CNP in combination with JS
and ARCS for Clean–Clean and Dirty ER, respectively.

Clean–Clean ER Dirty ER

R1C R2C R3C R4C R5C R6C R1D R2D R3D R4D R5D R6D

||B ′|| 6.55 · 103 8.32 · 103 5.85 · 104 6.28 · 104 1.00 · 106 2.92 · 108 2.61 · 104 2.40 · 104 1.33 · 106 2.17 · 105 3.79 · 106 5.68 · 108

PC(B ′) 0.806 0.962 0.912 0.866 0.884 0.977 0.818 0.968 0.948 0.901 0.865 0.970
PQ(B ′) 0.132 0.257 0.036 0.015 0.020 0.003 0.034 0.090 0.002 0.005 0.005 0.002
OTime 1 ms 3 ms 13 ms 16 ms 178 ms 43 s 5 ms 5 ms 169 ms 111 ms 1 s 62 s
RTime 102 ms 92 ms 593 ms 8 s 50 s 2.4 hrs 462 ms 262 ms 13 s 21 s 4 min 4.6 hrs

(a) Graph-free Meta-blocking

||B ′|| 6.86 · 103 1.37 · 104 6.73 · 103 2.88 · 104 2.33 · 105 6.23 · 106 2.59 · 104 3.61 · 104 4.56 · 105 1.28 · 105 1.08 · 106 3.17 · 107

PC(B ′) 0.873 0.992 0.908 0.831 0.898 0.927 0.871 0.977 0.935 0.910 0.883 0.951
PQ(B ′) 0.137 0.161 0.312 0.032 0.088 0.133 0.036 0.060 0.005 0.008 0.019 0.027
OTime 23 ms 29 ms 158 ms 1 s 11 s 1.9 hrs 515 ms 477 ms 55 s 12 s 8 min 11.9 hrs
RTime 112 ms 169 ms 223 ms 2 s 18 s 2.0 hrs 1 s 1 s 60 s 24 s 9 min 12.1 hrs

(b) Enhanced Meta-blocking

||B ′|| 2.56 · 104 5.36 · 104 2.34 · 105 1.48 · 105 1.41 · 106 4.95 · 107 4.72 · 104 6.87 · 104 7.66 · 105 2.15 · 105 1.72 · 106 4.63 · 107

PC(B ′) 0.952 0.998 0.976 0.890 0.944 0.970 0.894 0.987 0.940 0.929 0.899 0.955
PQ(B ′) 0.040 0.041 0.010 0.007 0.015 0.017 0.020 0.032 0.003 0.005 0.012 0.018
OTime 64 ms 142 ms 764 ms 3 s 74 s 15.9 hrs 1 s 2 s 4 min 27 s 22 min 35.8 hrs
RTime 405 ms 664 ms 3 s 9 s 2 min 16.3 hrs 2 s 3 s 4 min 45 s 24 min 36.2 hrs

(c) Original Meta-blocking

Fig. 17. Scalability analysis of Graph-free and Enhanced Meta-blocking for efficiency-intensive applications in comparison with the baseline method (CNP) over the synthetic 
datasets with respect to (a) total cardinality ||B ′||, (b) recall PC, (c) overhead time OTime, and (d) resolution time RTime. With the exception of the vertical axis in figure (b), 
all other axes are of logarithmic scale.
by the minimal overhead of the graph-free approach and would 
be reversed if we employed a more elaborate, time-consuming 
method for entity matching. For Clean–Clean ER, the results are 
mixed, as both methods achieve the best RTime for half the 
datasets.

These patterns are verified by the scalability analysis, which is 
presented in Fig. 17. Fig. 17(b) demonstrates that the recall of all 
methods consistently exceeds 0.80 – except for Graph-free Meta-
blocking over the smallest dataset, S1. In fact, the recall of this 
approach rises with the larger datasets from 0.79 to 0.82, while 
the recall of the graph-based methods drops steadily from 0.96 to 
0.88. This is because the latter techniques scale much better to the 
largest datasets with respect to ||B ′||: the comparisons they re-
tain rise by 2 orders of magnitude when moving from S1 to S7, 
while rising by 4 orders for Graph-free Meta-blocking. Note that 
all methods scale sublinearly, as the cardinality of the input block 
collections increases by 5 orders of magnitude from S1 to S7 (see 
Table 1(c)).

On the whole, Graph-free Meta-blocking retains more compar-
isons for lower recall, thus yielding the lowest precision across the 
five largest datasets. This should be attributed to its coarse-grained 
functionality. In contrast, Redundancy CNP consistently achieves 
the best precision: on average, its PQ is higher than CNP and the 
graph-free approach by 1.7 and 5.1 times, respectively. This is be-
cause it retains at least 40% less comparisons, while maintaining 
the second best recall across all datasets.

In terms of time efficiency, Figs. 17(c) and (d) show that Redun-
dancy CNP is faster than CNP by 5 times, on average, with respect 
to both OTime and RTime. Yet, the most efficient method by far 
is Graph-free Meta-blocking; its OTime is lower than Redundancy 
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Table 8
Technical characteristics of the restructured block collections of the real datasets for the best effectiveness-intensive methods: (a) stand-alone Block Filtering with r = 0.64, 
(b) Block Filtering with r = 0.80 in conjunction with Partition WNP (ECBS) for Clean–Clean ER and Reciprocal WNP (ECBS) for Dirty ER, (c) WNP in combination with ECBS
and (d) Iterative Blocking.

Clean–Clean ER Dirty ER

R1C R2C R3C R4C R5C R6C R1D R2D R3D R4D R5D R6D

||B ′|| 3.98 · 104 5.68 · 104 4.24 · 105 4.34 · 105 1.22 · 107 5.33 · 109 2.07 · 105 2.42 · 105 2.21 · 107 1.85 · 106 5.68 · 107 9.34 · 109

PC(B ′) 0.951 0.997 0.984 0.977 0.970 0.997 0.971 0.998 0.996 0.991 0.971 0.996
PQ(B ′) 0.026 0.039 0.005 0.002 0.002 1.67 · 10−4 0.005 0.009 1.04 · 10−4 5.91 · 10−4 3.90 · 10−4 9.52 · 10−5

OTime 10 ms 10 ms 50 ms 262 ms 3 s 25 min 70 ms 38 ms 3 s 2 s 55 s 43 min
RTime 593 ms 600 ms 4 s 50 s 11 min 43 hrs 4 s 3 s 4 min 2 min 61 min 76 hrs

(a) Graph-free Meta-blocking

||B ′|| 1.47 · 104 2.43 · 104 2.38 · 105 2.11 · 105 4.93 · 106 3.30 · 109 9.62 · 104 1.23 · 105 8.99 · 106 9.14 · 105 3.70 · 107 3.54 · 109

PC(B ′) 0.921 0.997 0.970 0.966 0.967 0.990 0.943 0.998 0.990 0.957 0.958 0.981
PQ(B ′) 0.067 0.091 0.009 0.005 0.004 2.68 · 10−4 0.011 0.018 2.54 · 10−4 1.16 · 10−3 5.93 · 10−4 2.44 · 10−4

OTime 23 ms 31 ms 219 ms 768 ms 13 s 3 hrs 577 ms 502 ms 63 s 14 s 8 min 12 hrs
RTime 240 ms 284 ms 2 s 29 s 4 min 29 hrs 2 s 2 s 3 min 62 s 49 min 41 hrs

(b) Enhanced Meta-blocking

||B ′|| 5.65 · 104 1.11 · 105 1.15 · 106 9.63 · 105 2.76 · 107 1.55 · 1010 6.46 · 105 9.77 · 105 9.41 · 107 5.54 · 106 2.62 · 108 2.93 · 1010

PC(B ′) 0.964 0.998 0.987 0.990 0.976 0.998 0.977 1.000 0.996 0.995 0.976 0.995
PQ(B ′) 0.018 0.020 0.002 0.001 0.001 5.73 · 10−5 0.002 0.002 2.44 · 10−5 1.98 · 10−4 8.53 · 10−5 3.03 · 10−5

OTime 66 ms 149 ms 866 s 3 s 74 s 17 hrs 1 s 2 s 3 min 16 s 14 min 31 hrs
RTime 1 s 1 s 11 s 2 min 25 min ∼140 hrs 13 s 13 s 19 min 5 min 5 hrs ∼265 hrs

(c) Original Meta-blocking

||B ′|| 1.61 · 104 5.33 · 104 1.76 · 106 1.87 · 106 1.32 · 107 2.34 · 1010 1.45 · 106 1.37 · 106 2.95 · 108 2.31 · 107 6.53 · 108 4.81 · 1010

PC(B ′) 0.983 0.999 0.994 0.999 0.980 0.999 0.991 1.000 0.999 1.000 0.982 0.999
PQ(B ′) 0.066 0.042 0.001 0.001 0.002 3.81 · 10−5 0.001 0.002 7.82 · 10−6 4.78 · 10−5 3.44 · 10−5 1.85 · 10−5

OTime 9 ms 11 ms 74 ms 101 ms 4 s 1.7 hrs 467 ms 454 ms 60 s 5 s 6 min 10 hrs
RTime 246 ms 579 ms 17 s 4 min 12 min ∼190 hrs 15 s 10 s 22 min 11 min 4 hrs ∼400 hrs

(d) Iterative Blocking
CNP by 2 to 3 orders of magnitude, while its RTime is lower by 8 
times, as it executes more comparisons.

In summary, we conclude that Enhanced Meta-blocking offers 
the best choice for efficiency-intensive applications, as it consis-
tently achieves the highest precision among the three alternatives. 
It scales sublinearly to large datasets, but involves significant time 
and space requirements (still, they are much lower than the orig-
inal CNP). For applications that cannot afford them, Graph-free 
Meta-blocking poses a very efficient alternative that requires min-
imum resources. For example, it was able to process the blocks of 
S7 on a laptop with Intel Core i5 (1.9 GHz) and 8 GB RAM, running 
Windows 8.1 (64 bit) within 62 seconds (OTime).

Effectiveness-intensive methods We configured Graph-free Meta-
blocking by setting the ratio of Block Filtering to the smallest value 
that ensures a recall higher than 0.95 across all real datasets: r =
0.64. As baseline methods, we consider Iterative Blocking and the 
original WNP in combination with the same weighting scheme as 
Enhanced Meta-blocking (ECBS). The functionality of the former 
was optimized by ordering the blocks in ascending order of cardi-
nality (i.e., from the smallest to the largest block). Its functionality 
was further optimized for Clean–Clean ER by assuming that two 
matching entities are not compared to other co-occurring entities 
after their detection (apparently, this assumption corresponds to 
an ideal performance). The detailed performance of these methods 
is presented in Table 8.

Starting with Graph-free Meta-blocking, we observe that its PC
is consistently lower than the baseline methods to a minor ex-
tent – less than 1%, on average. This small loss in recall suffices 
for significant gains in precision in comparison with both baseline 
methods: for Clean–Clean ER, it executes half as much compar-
isons, rising precision by 2.5 times; for Dirty ER, it retains at least 
75% less comparisons, rising precision by more than 3.7 times. 
With respect to OTime, it is consistently faster than WNP by a 
whole order of magnitude. Compared to Iterative Blocking, it is 
faster by 9 times over Dirty ER, but the results are mixed over 
Clean–Clean ER, due to the optimized performance of the baseline. 
Finally, the resolution time of Graph-free Meta-blocking is lower 
than both baseline methods by 50% and 75% over Clean–Clean and 
Dirty ER, respectively.

Regarding Enhanced Meta-blocking, we observe that its prun-
ing is deeper than both baseline methods, but violates the recall 
constraint only for the smallest dataset of each ER task (R1C ,R1D ). 
On average, its PC is lower by 2%, allowing for massive gains in 
efficiency: ||B ′|| is reduced by 71% and 90%, while precision rises 
by 4.7 and 13.2 times for Clean–Clean and Dirty ER, respectively. 
In terms of time efficiency, Enhanced Meta-blocking outperforms
WNP with respect to both OTime and RTime; the former is reduced 
by 63% and the latter by 81%, on average. Compared to Iterative 
Blocking, it involves a higher overhead, but reduces RTime by 63% 
and 86% for Clean–Clean and Dirty ER, respectively.

Juxtaposing Enhanced with Graph-free Meta-blocking, we no-
tice a clear trade-off between precision and recall. The former 
approach emphasizes precision, based on its fine-grained function-
ality that operates on the level of pairwise comparisons, instead 
of individual entities. It retains 50% less comparisons at the cost 
of a 2% decrease in recall, on average. As a result, its precision is 
consistently higher by 2 times and its RTime lower by 49% and 
36% for Clean–Clean and Dirty ER, respectively. The only advantage 
of Graph-free Meta-blocking is its minimal overhead; its OTime is 
lower than Enhanced Meta-blocking by 72% and 83% over Clean–
Clean and Dirty ER, respectively.

These patterns are verified by our scalability analysis, which is 
presented in Fig. 18. Fig. 18(b) demonstrates that all methods con-
sistently satisfy the recall constraint. The baseline methods achieve 
the highest PC(> 0.99) across all datasets, followed by Graph-free 
Meta-blocking and then by Reciprocal WNP. The same ordering ap-
pears in Fig. 18(a), which shows a linear increase in the retained 
comparisons for all methods when moving from S1 and S7. In 
combination, these two figures show that Enhanced Meta-blocking 
consistently retains an order of magnitude less comparisons than 
the baseline methods for a 3.7% decrease in recall, on average. As 
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Fig. 18. Scalability analysis of Graph-free and Enhanced Meta-blocking for effectiveness-intensive applications in comparison with the baseline methods over the synthetic 
datasets with respect to (a) total cardinality ||B ′||, (b) recall PC, (c) overhead time OTime, and (d) resolution time RTime. With the exception of the vertical axis in figure (a), 
all other axes are of logarithmic scale.
a result, its precision is consistently higher than WNP and Iterative 
Blocking by 16.4 and 33.5 times, respectively. Graph-free Meta-
blocking retains 88% less comparisons for a 1.4% decrease in recall, 
on average, and its precision surpasses that of WNP and Iterative 
Blocking by 6.1 and 12.6 times, respectively.

Regarding time efficiency, Fig. 18(c) demonstrates that Graph-
free Meta-blocking is again the fastest technique by far. Its OTime
is lower than all other methods by 2 orders of magnitude. The 
second fastest method is Enhanced Meta-blocking, whose OTime
is lower than WNP and Iterative Blocking by 4.3 and 2.4 times, 
respectively. Due to its high precision, this distance increases to 
a whole order of magnitude in the case of RTime. The resolution 
time of Enhanced Meta-blocking is lower than Graph-free Meta-
blocking, as well. However, their difference amounts to just 29%, on 
average, and decreases with larger datasets. This difference would 
be much larger in case we employed a more elaborate and time-
consuming method for entity matching.

In short, the comparative analysis of effectiveness-intensive 
methods leads to similar conclusions as the efficiency-intensive 
ones. Enhanced Meta-blocking consistently exhibits the highest 
precision across all methods, while satisfying the recall constraint 
across most datasets. It scales linearly to large datasets, but in-
volves significant space and time complexity. Graph-free Meta-
blocking offers a reliable alternative that retains more comparisons, 
but achieves higher recall and requires minimum resources; it pro-
cessed the blocks of S7 on a laptop with Intel Core i5 (1.9 GHz) 
and 8 GB RAM, running Windows 8.1 (64 bit) within 26 minutes 
(OTime).

6. Conclusions

In this paper, we introduced three new node-centric pruning 
algorithms and compared them with the existing ones through an 
extensive experimental study. Redundancy Pruning does not affect 
recall, yet it saves around 30% more comparisons. Reciprocal Prun-
ing decreases recall to a limited extend, but discards more than 
66% additional comparisons. Graph Partitioning prunes 50% more 
comparisons for practically no impact on recall. The last method 
applies only to Clean–Clean ER, whereas the other two cover Dirty 
Fig. 19. The best configurations of Enhanced Meta-blocking, as derived from the 
experimental evaluation, covering both Clean–Clean and Dirty ER, for efficiency- or 
effectiveness-intensive applications.

ER, as well. All of them increase the precision of existing tech-
niques by 30% to 800%.

Combined with the pre-processing technique of Block Filter-
ing, they raise precision by more than an order of magnitude. We 
experimentally derived the best configurations that maximize pre-
cision for the main types of ER applications and tasks. They are 
called Enhanced Meta-blocking and are summarized in Fig. 19. 
Our scalability analysis verified that they minimize the time and 
the space requirements of Meta-blocking even for entity collec-
tions with millions of entities and billions of comparisons. As a 
result, the overall resolution time improves almost by an order of 
magnitude.

An alternative approach for applications with limited resources 
is Graph-free Meta-blocking, which combines Block Filtering with 
Comparison Propagation. Its precision is lower than Enhanced 
Meta-blocking, but its lightweight functionality is able to process 
datasets with millions of entities within few minutes even on com-
modity hardware.

In the future, our goal is to adapt our approach to a paralleliza-
tion framework, such as MapReduce, in order to minimize both the 
overhead of Meta-blocking and the cost of executing the retained 
comparisons. We also plan to adapt Enhanced Meta-blocking to In-
cremental Entity Resolution.
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