ParlS: The Next Destination for
Fast Data Series Indexing and Query Answering

Botao Peng

Panagiota Fatourou

Themis Palpanas

LIPADE, Paris Descartes Univ. FORTH ICS & Dept. of Comp. Science, Univ. of Crete LIPADE, Paris Descartes Univ.

botao.peng @parisdescartes.fr

Abstract—We propose ParlS, the first disk-based data series
index that inherently takes advantage of modern hardware
parallelization, in order to accelerate processing times. Our
experimental results demonstrate that ParIS completely removes
the CPU latency during index construction for disk-resident
data. In terms of exact query answering, ParIS is more than
2 orders of magnitude faster than the current state of the
art index scan method, and more than 3 orders of magnitude
faster than the optimized serial scan method. ParIS owes its
efficiency not only to the effective use of multi-core and multi-
socket architectures, in order to distribute and execute in parallel
both index construction and query answering, but also to the
exploitation of the Single Instruction Multiple Data (SIMD)
capabilities of modern CPUs, in order to further parallelize the
execution of individual instructions inside each core.

I. INTRODUCTION

[Motivation] An increasing number of applications across
many diverse domains continuously produce very large
amounts of data series' (such as in finance, environmental
sciences, astrophysics, neuroscience, engineering, multimedia,
and others [1], [2], which makes them one of the most common
types of data. When these sequence collections are generated,
users need to query and analyze them as soon as they become
available, a process that is heavily dependent on data series
similarity search (which apart from being a useful query in
itself, also lies at the core of several machine learning methods,
such as, clustering, classification, motif and outlier detec-
tion, etc.). The brute-force approach for evaluating similarity
search queries is by performing a sequential pass over the
complete dataset. However, as data series collections grow
larger, scanning the complete dataset becomes a performance
bottleneck, taking hours or more to complete [3]. This is
especially problematic in exploratory search scenarios, where
every next query depends on the results of previous queries.
Consequently, we have witnessed an increased interest in
developing indexing techniques and algorithms for similarity
search [4], [5], [6], [7], [3], [8], [9], [10], [11], [12], [13].

[Scalability problem] Nevertheless, the continued increase in
the rate and volume of data series production with collections
that grow to several terabytes in size [1] renders existing
data series indexing technologies inadequate. For example, the

A data series, or data sequence, is an ordered sequence of data points. If
the ordering dimension is time then we talk about time series, though, series
can be ordered over other measures (e.g., angle in astronomical radial profiles,
mass in mass spectroscopy, position in genome sequences, etc.).

faturu@csd.uoc.gr

themis @mi.parisdescartes.fr

current state-of-the-art index, ADS+ [3], requires more than
4min to answer every single exact query on a moderately sized
250GB sequence collection. Therefore, traditional solutions
and systems are inefficient at, or incapable of managing and
processing the voluminous sequence collections that already
exist in several domains.

Moreover, we note that, given the evolution of CPU perfor-

mance, where the processor clock speed is not increasing due
to the power wall constraint, algorithmic speedups can now
only come by exploiting the parallelism opportunities offered
by modern hardware [14], [15], [16].
[Parallel Indexing] In this work, we propose the Parallel
Index for Sequences (ParlS), the first data series index that
inherently takes advantage of modern hardware parallelization,
and incorporates the state-of-the-art techniques in sequence
indexing, in order to accelerate processing times. ParlS, which
is a disk-based index, can effectively take advantage of multi-
core and multi-socket architectures, in order to distribute and
execute in parallel the computations needed for both index
construction and query answering. Moreover, ParlS exploits
the Single Instruction Multiple Data (SIMD) capabilities of
modern CPUs, in order to further parallelize the execution
of individual instructions inside each core. Overall, ParIS
manages to remove the CPU cost during index creation (which
is now purely I/O bounded) and make it 2.4x faster than the
current state-of-the-art approach [3]. Experiments show also
the effectiveness of ParIS in exact query answering: it is up
to 1 order of magnitude faster than the state-of-the-art index
scan method [3], and up to 3 orders of magnitude faster than
the state-of-the-art optimized serial scan [5]. We also note that
ParIS has the potential to deliver more benefit as we move to
faster storage mediums.

To achieve the ParIS goals, we made careful design choices
in the coordination of the compute and I/O tasks, and con-
sequently, developed new algorithms for the construction of
the index and for answering similarity search queries on this
index. For query answering in particular, we studied alternative
solutions, and evaluated the tradeoff between execution speed
and the amount of communication among the parallel worker
threads, which affects the effectiveness of each individual
worker. Our study shows that each one of the alternative
algorithms is suitable for different hardware platforms.

We note that even though scaling out to multiple machines
is also a valid research direction, in this work, we focus on

addressing the problem in the context of a single machine, so
as to maximize the benefit we can get out of the hardware. Our
results can easily be used as the basis for a scale-out solution.
[Contributions] The contributions we make in this paper, can
be summarized as follows.

1. We propose ParlS, the first data series index designed for
modern hardware. We describe parallel algorithms for index
creation and exact query answering, which employ parallelism
in reading the data from disk and processing them in the CPU.
At the same time, they achieve a balanced workload distribu-
tion among the worker threads, and enable these threads to
exchange information (while executing) in order to reduce the
amount of work to be done.

2. In order to further speedup query answering, we exploit
SIMD for complex vectorial computations: we develop a novel
vectorized implementation for computing the lower bounding
distance between the Piecewise Aggregate Approximation
(PAA) and indexable Symbolic Aggregate approXimation
(iSAX) representations.

3. Finally, we experimentally evaluate ParIS using a variety
of synthetic and real datasets. The results demonstrate the
efficiency of the proposed approach, which is orders of magni-
tude faster for exact query answering than the state-of-the-art
methods. Moroever, the results show that ParlS can create the
index much faster than the current state-of-the-art, completely
masking out the CPU latency, and that it has the potential to
deliver more benefit as we move to faster storage mediums.

II. PRELIMINARIES

We now provide some necessary definitions, and introduce
the related work on state-of-the-art data series indexing.

A. Data Series and Similarity Search

[Data Series] A data series, S = {p1, ..., pn}, is defined as a
sequence of points, where each point p; = (v;,t;), 1 <i <n,
is associated to a real value v; and a position ¢;. The position
corresponds to the order of this value in the sequence. We call
n the size, or length of the data series. We note that all the
discussions in this paper are applicable to high-dimensional
vectors, in general.
[Similarity Search] Analysts perform a wide range of data
mining tasks on data series including clustering [17], classifi-
cation and deviation detection [18], [19], and frequent pattern
mining [20]. Existing algorithms for executing these tasks rely
on performing fast similarity search across the different series.
Thus, efficiently processing nearest neighbor (NN) queries
is crucial for speeding up the above tasks. NN queries are
formally defined as follows: given a query series S, of length
n, and a data series collection S of sequences of the same
length, n, we want to identify the series S. € S that has the
smallest distance to S, among all the series in the collection S.
(In the case of streaming series, we first create subsequences
of length n using a sliding window, and then index those.)
Common distance measures for comparing data series are
Euclidean Distance (ED) [21] and dynamic time warping
(DTW) [5]. While DTW is better for most data mining tasks,

(a) raw data series (b) PAA representation

ROOT
I — N

11 ! 11 000 /@)K‘ 111
107101 | NT
o : 1 = 1001 1101

\,,. B ‘," PO T -
00 \/ [- N

00 i (10001 » 11011

(c) iSAX representation (d) ADS+ index

Fig. 1. The iSAX representation, and the ADS+ index structure

the error rate using ED converges to that of DTW as the dataset
size grows [4]. Therefore, data series indexes for massive
datasets use ED as a distance metric [4], [5], [6], [7], [3],
though simple modifications can be applied to make them
compatible with DTW [4]. Euclidean distance is computed
as the sum of distances between the pairs of corresponding
points in the two sequences. Note that minimizing ED on
z-normalized data (i.e., a series whose values have mean 0
and standard deviation 1) is equivalent to maximizing their
Pearson’s correlation coefficient [22].

[Distance calculation in SIMD] Single-Instruction-Multiple-
Data (SIMD) refers to a parallel architecture that allows the
execution of the same operation on multiple data simultane-
ously [23]. Using SIMD, we can reduce the latency of an
operation, because the corresponding instructions are fetched
once, and then applied in parallel to multiple data. All modern
CPUs support 256-bit wide SIMD vectors, which means that
certain floating point (or other 32-bit data) computations
can be up to 8 times faster when executed using SIMD.
Even though no SIMD solutions have been proposed so far
for data series indices, this idea has been exploited for the
computation of distance functions [24]. In our study, we take
an extra step, and we also use SIMD for operations related to
the proposed data series index structure (i.e., for conditional
branch calculations during the computation of the lower bound
distances; see Section III-B).

B. iSAX Representation and ADS+ Index

[ISAX Representation] The iSAX representation is based
on the Piecewise Aggregate Approximation (PAA) represen-
tation [25], which divides the data series in segments of equal
length, and uses the mean value of the points in each segment
in order to summarize a data series. Figure 1(b) depicts an
example of PAA representation with three segments (depicted
with the black horizontal lines), for the data series depicted in
Figure 1(a). Based on PAA, the indexable Symbolic Aggregate
approXimation (iSAX) representation was proposed [4]. This
method first divides the (y-axis) space in different regions,
and assigns a bit-wise symbol to each region. In practice,

the number of symbols is small: iISAX achieves very good
approximations with as few as 256 symbols, the maximum
alphabet cardinality, |alphabet|, which can be represented by
eight bits [7]. It then represents each segment w of the series
with the symbol of the region the PAA falls into, forming the
word 102005115 shown in Figure 1(c) (subscripts denote the
number of bits used to represent the symbol of each segment).
[ADS+ Index] Based on this representation, the state-of-the-
art ADS+ index was developed [3]. It makes use of variable
cardinalities (i.e., variable degrees of precision for the symbol
of each segment) in order to build a hierarchical tree index
(see Figure 1(d)), consisting of three types of nodes: (i) the
root node points to several children nodes, 2" in the worst
case (when the series in the collection cover all possible
iSAX representations); (ii) each inner node contains the iSAX
representation of all the series below it, and has two children;
and (iii) each leaf node contains both the iSAX representation
and the raw data of all the series inside it (in order to be able
to prune false positives and produce exact, correct answers).
When the number of series in a leaf node becomes greater than
the maximum leaf capacity, the leaf splits: it becomes an inner
node and creates two new leaves, by increasing the cardinality
of the iSAX representation of one of the segments (the one
that will result in the most balanced split of the contents of
the node to its two new children [7], [3]). The two refined
iSAX representations (new bit set to 0 and /) are assigned to
the two new leaves. In our example, the series of Figure 1(c)
will be placed in the outlined node of the index (Figure 1(d)).

The ParlS index uses the iSAX representation and basic
ADS+ index structure, and proposes techniques and algorithms
specifically designed for modern hardware.

III. PROPOSED SOLUTION: PARIS

In this section, we describe our approach, Parallel Indexing
of Sequences (ParlS) for parallel index construction.

Figure 2 provides a high level overview of the entire pipeline
of how the ParlS index is created and then used for query
answering. This pipeline comprises of four concrete stages.
In Stage 1, a thread, called the coordinator worker, reads
raw data series from the disk and transfers them into the
raw data buffer in main memory. In Stage 2, a number
of IndexBulkLoading workers, process the data series in the
raw data buffer to create their iISAX summarizations. These
summarizations determine the root subtree in which each
series belongs. The summarizations are then stored in one of
the index Receiving Buffers (RecBufs) in memory. There are
as many RecBufs as the root subtrees of the index tree, each
one storing the iSAX summarizations that belong to a single
subtree. This number is usually a few tens of thousands and
at most 2%, where w is the number of segments in the iSAX
representation of each time series (w is fixed to 16 in this
paper, as in previous studies [3]). The iSAX summarizations
are also stored in SAX, the iISAX summarizations array.

When all RecBufs are full, Stage 3 starts. In this stage,
a pool of IndexConstruction workers process the contents
of RecBufs; every such worker has been assigned a distinct

RecBuf at each time: it reads the data stored in it and builds
the corresponding index subtree. So, root subtrees are built in
parallel. The leaves of each subtree is flushed to the disk at
the end of the tree construction process. This results in free
space in main memory. These 3 stages are repeated until all
raw data series are read from the disk, the entire index tree is
constructed, and the SAX array is completed. The index tree
together with SAX form the ParlS index, which is then used
in Stage 4 for answering similarity search queries.

In the following, we elaborate on the stages of this pipeline.

A. ParlS Index Building

The main challenge in devising an algorithm for the creation
of our index in parallel is that a significant part of time is
required for disk I/O (both reading and writing). In order
to address this challenge, we concentrate our efforts in two
directions: execute the CPU computations so as to achieve
the largest possible overlap with the required disk I/O, and
reduce the number of random accesses to disk as much as
possible. We achieve these by maintaining the synchronization
cost among different threads as low as possible.

1) Index Initialization: 1In this section, we provide the
details of Stages 1 and 2. Figure 3(a) summarizes how the
coordinator and IndexBulkLoading workers work.

The raw data buffer is implemented using double buffering.
So, it is comprised of two parts, one on which the coordinator
works, and another on which the IndexBulkLoading workers
work. In this way, the data the coordinator is accessing and
the data the IndexBulkLoading workers are handling form
two independent sets. So, all these threads work in parallel
(as much as possible). Our tuning experiments (omitted for
brevity) showed that setting the size of the double buffer size
to 2MB results in the best performance (the time cost reduces
and then stabilizes once the buffer size gets larger than 2MB).

The pseudocode for the coordinator worker is shown in
Algorithm 1. We assume that variable index is a data structure
containing all buffers, a pointer to the root of the tree index,
some arrays of locks that are needed for synchronizing access
to RecBufs, and SAX. In this algorithm, B; and By are
pointers to the two parts of the raw data (double) buffer, i.e.,
TS[0] and T'S[1]. Moreover, we denote by n; the number of
IndexBulkLoading workers that are created by the coordinator
(see discussion below about the value of n;). The algorithm
works as follows. The coordinator worker first fills in the part
of the raw data buffer pointed to by B; (line 3). Then, the
coordinator worker creates the n;, IndexBulkLoading worker
threads (lines 6). These threads create the iSAX summariza-
tions of the data in the raw data buffer part pointed to by B;
and place them in the appropriate RecBuf and in SAX (see
Figure 3(a)); for each data series, we also store in RecBuf
its offset in the raw data file. While the IndexBulkLoading
workers are performing this task, the coordinator concurrently
fills in the other part of the raw data buffer (line 8). This
process is repeated until the main memory is exhausted.

The coordinator worker is aware of the current memory
usage by monitoring the number of data series that it has

1 iterate

index bulk loading

index construction

Main memory

: 17 MW query

Raw Data iSAX split based on iSAX process summarizations ParlS index H
Buffer summarizations summarization in each buffer Iw'—l
3 ¥ summarizations
[fill up index Receiving Buffers(RecBufs) [grow subtree]

- % answers

Disk flush subtree leaves to
Raw data disk
\L J
L L L L]
Stage 1 ! Stage 2 ! Stage 3 ! Stage 4 !
Preprocessing by the Load data to index by Grow index and persist index leaves to Similarity search query answering
_ coordinate thread IndexBulkLoading workers disk by IndexConstruction workers A_)
Index Construction Query Answering
Fig. 2. Overview of the pipeline for creating the ParIS index, and using the index for query answering.
/'create N ~ create thread
thread | > create thread Ny
ﬁaw Data Buffer \ I IdxBulkLoading worker e
5N\ > Coordinate IdxConstr worker 1 ﬁixConstr worker k \
1 > — T — - RecBuf RecBuf
Double ~No— | [~ —~ - == Worker p—
Buffer | N | | b [| — // |
| [~ |- —> ~ \/
IN— | | NV~ r -
A~ | [A~ — 0(00 1
AN || AN Array of iSAX
U B Summarizations
2 RecBuf ROOT RecBuf 0000 ooi0 1110 111
_ —_—
—_—— - —
SN S —\/ 1 \—_/ 11011 11111
Worker
o0 e o OutBuf OutBuf OuiBuf_ OuLBuf_’
Main memory Main memory == > == ==
r=——r=—==l====== iy H e T e e e === [PR i i il L e o= —
RAW Data Disk Disk RAW Data : :
A— o — v v v \
T s
S

(a) Create index coordinator & IndexBulkLoading workers

(b) IndexConstruction workers

Fig. 3. Workflow and algorithms relevant to index creation.

processed. When the available memory is (nearly) exhausted”
(line 10), then the coordinator creates the IndexConstruction
worker threads (lines 12), which build the part of the index
that corresponds to the iSAX summarizations stored in the
RecBuf, and flush the leaf nodes of the tree to disk.

The pool of IndexBulkLoading workers could be as big
as the number of cores in our machine (minus one which is
reserved for the coordinator). IndexBulkLoading workers are
assigned each RecBuf one-at-a-time in round-robin fashion,
either by using atomic fetch and increment, or a lock. As we
will discuss later (in Section IV), 5 IndexBulkLoading workers
and 6 IndexConstruction workers are enough to completely
mask out the CPU latency at this stage; note that these
numbers are orders of magnitude less than the number of
the index root subtrees (usually tens of thousands). This is
true even if the coordinator creates the IndexBulkLoading

2Note that we only need a small amount of additional memory for creating
new index nodes in the subtree of the root currently being processed, which
can have a maximum depth of w(alphabet — 1) [3]. Moving data inside the
index (e.g., from RecBuf to OutBuf, as we will discuss later) does not require
extra memory: we reallocate the same memory addresses between the buffers.

workers from scratch each time it fills up a part of the raw
data buffer (doing so avoids synchronization and simplifies
the implementation). The reason is that the computation is
heavily I/O bounded at this stage (and therefore the cost of
periodically creating/destroying threads is negligible). For the
same reason, techniques like thread pinning does not improve
the demonstrated performance. We also note that because of
the small number of BulkIndexLoading (and IndexConstruc-
tion workers), the use of locks for synchronizing access to
RecBufs (or the assignment of subtrees) does not result in
any synchronization bottlenecks.

The pseudocode that the IndexBulkLoading workers execute
is shown in Algorithm 2. Each such worker has been assigned
a chunk, of size chunksize, in each part of the raw data buffer
(therefore, the size of the raw data buffer is 2xchunksizexn;.
Each worker operates only on its chunk. In this way, no
synchronization is needed between the IndexBulkLoading
workers for accessing the raw data buffer. Each IndexBulk-
Loading worker reads the data series in its block one after
the other (line 2) and calculates the iISAX summarization for

Algorithm 1: Createlndex

Algorithm 3: IndexConstruction

Input: File* file, Index index, Integer n;

1 Pointer By < index.T'S[0], B2 < index.T'S[1];
2 Integer p = 0;

3 Bj + read data from file;

4 while not reached end of file do

5 for i < 1 to ns do

6 create a thread to execute an instance of

IndexBulk Loading(index,B1,p + i * chunksize);
7 BQ <> Bl;

8 Bj < read data from file ;
9 Wait for IndexBulkLoading workers to finish;
10 if main memory is full then
1 for i < 1 tons + 1 do

create a thread to execute an instance of
IndexConstruction(index);

13 Wait for IndexConstruction workers to finish;

14 p < p+ nt x chunksize;

Algorithm 2: IndexBulkLoading
Input: Index index, Raw data buffer 7'S[], Integer p

1 for ¢ < 0 to chunksize — 1 do

2 index.SAX[p + i] = ConvertToSAX (T'S[i]);

3 acquire appropriate lock from index.RecBuf Lock]|;
4 InsertIintoRecBuf ({(index.SAX[p + i],p + i));
5 release the acquired lock;

each of them by calling function ConvertToSAX(). Finally, it
stores this iISAX summarization in SAX (line 2) and in the
appropriate RecBuf (line 4). Recall that each RecBuf gathers
together all data that must be stored into the same root subtree.
These data may exist in blocks of the raw data buffer that are
associated to different IndexBulkLoading workers. So, more
than one such workers may require to concurrently access
the same RecBuf. Therefore, synchronization is needed. This
synchronization is achieved by using a lock for each such
buffer, stored in array RecBuf Lock|| of index.

To eliminate the need for synchronization between the
IndexBulkLoading workers in accessing SAX, the iISAX sum-
marization of the data series stored in the p-th position of the
raw data file, is stored in the p position of SAX.

2) Subtree Construction and Leaf Materialization: We now
describe Stage 3, in which the index is gradually constructed
and its leaves are materialized. In addition to the raw data
buffer and the RecBufs, ParIS makes use of an additional layer
of main memory buffers, called the Output Buffers (OutBufs).
Each OutBuf is associated to a distinct leaf of the index tree.

When the coordinator worker discovers that the main mem-
ory is exhausted, it creates a number of IndexConstruction
workers (recall that based on our experiments, this number is
6). These workers process the data in the RecBufs in order to
grow the corresponding subtree, until the data end up in the
OutBufs of that subtree. Finally, the OutBufs are flushed to
disk. This process is illustrated in Figure 3(b).

All IndexConstruction workers process different root sub-
trees, so they work independently and no synchronization is
needed. A worker that finishes its work on one subtree gets
assigned to a new RecBuf, until all RecBufs are processed.

Input: Index index
1 Shared integer n; = 0;

while (TRUE) do
i <—Atomically fetch and increment ny ;
if (¢ > 2") then break ;
for every (isax,pos) pair € index.RecBuf[i] do
targetLeaf < Leaf of index tree to insert (isax, pos);
while targetLeaf is full do
SplitNode(target Leaf);
targetLeaf < New leaf to insert (isaz, pos);
10 Insert (isax, pos) in targetLeaf’s OutBuf buffer;
11 Flush targetLeaf’s OutBuf buffer to disk;
12 Clear this node OutBuf;

In order to maintain the scheme simple and efficient, we
have chosen not to parallelize processing inside each one
of the index root subtrees since that would require a lot
of synchronization (due to node splitting). Experiments have
shown that this decision does not have any negative impact in
the performance of our scheme.

The pseudocode that the IndexConstruction workers execute
is shown in Algorithm 3. An IndexConstruction worker first
selects one of the RecBufs to process in an atomic way (line 3).
This can be done by using either an atomic fetch_and_add
primitive, or a lock. Then, it moves the data to the appropriate
OutBuf in the index (line 10), and if necessary (i.e., if the leaf
node is full), it (repeatedly) performs node splitting (line 8).
When node splitting is performed, the iISAX summarizations
(i.e., the contents of the leaf node to be split) are read from
disk and they are placed in the appropriate OutBuf. Then, the
leaf node is split by creating two new leaf nodes and the data
of the original leaf are moved to the new leaves. After that the
OutBufs corresponding to the leaves of the subtree currently
processed are flushed to disk (line 11).

B. ParlS Query-Answering

We now describe our method for parallel query-answering.
The algorithm first performs an approximate search to obtain
the first Best-So-Far (BSF) answer, and then proceeds with a
sequential scan of the raw data that could not be pruned using
the BSF, in order to produce the exact, final answer to the
query. The approximate search is really fast, requiring only
a negligible percentage (a few msec) of the (mostly) on-disk
sequential scan cost. It is a simple, in-memory path traversal
from the index root to the leaf with the iSAX representation
that is the most similar to that of the query. Once a leaf
is reached, the distance between the query and each of the
leaf’s data series is calculated. The minimum distance found
is used as the first BSF answer (see left part of Figure 5). This
BSF is used to prune the candidate series by computing lower
bound distances to their summarizations. The series that are
not pruned will be visited in the raw file, and the true distance
will be computed (the BSF may be updated during this phase).

In the following, we concentrate on our algorithm for
parallelizing the scan phase. We first describe how we exploit
SIMD p the lower bound distance calculations.

1) Lower-Bound Distance Calculation: The algorithm
starts by calculating the lower bound distance between the
query series and the iISAX summarizations of all series in the
index. This operation takes place entirely in main memory,
since the iISAX summarizations are small enough to fit in the
memory of modern servers®. This is a procedure that we can
execute using SIMD, since both the queries and the index
series are vectors, on which we need to perform the same
operation (i.e., a distance calculation).

Using SIMD, we can perform eight calculations in parallel,
using a single instruction (we assume a 256-bit SIMD vector
which contains eight 32-bit float elements). We need to imple-
ment a conditional branch in SIMD, but contrary to previous
solutions [24], this is a complex branch: not only do we have to
use different conditional branches for different positions in the
SIMD vector, but we also need to make different assignments
for different branches. In our case, the calculation of the
lower bound distance between the PAA of the query series
and an iSAX summarization has three conditions, checking
whether the PAA lies (i) above, (ii) below, or (iii) within the
iISAX interval. Therefore, we need to choose different values
from different dictionaries in order to perform the distance
computation in SIMD.

To resolve this problem, we calculate the result of all
branches, and use a conditional mask to extract the results in
the correct branch (see Figure 4). We generate 3 branch masks
and calculate the distance in those 3 conditions for every point
in the vector. Using the appropriate SIMD instruction [26], we
can calculate the value of 3 branch masks as the result of a
condition judgment. Next we apply a logical "AND” between
the 3 branch results and their masks. After that, all bits of the
branch result in the wrong branch will be zero. Now there is
only one value at the same position in those 3 branch results.
Finally, we merge all possible branches in one vector, which
is the correct final result.

In this way, we have a SIMD version of the distance
computation function, which is a frequent and (CPU) time-
consuming operation. Our solution renders all computations
vectorial, which can not only accelerate the calculations, but
also reduce the time spent for changing register types (the
registers used for vector and normal values are different).

In order to evaluate the effect on performance of our SIMD
lower bound distance calculation function, we measured the
execution time of exact similarity search when all data are
loaded in main memory (thus, factoring out the disk I/O cost).
We compared our solution to the case where all computations
are performed using Single Instruction Single Data (SISD).
The results showed that the average time cost per lower-
bounding calculation when using SIMD is 2.6x faster than
the SISD solution. This is a non-negligible speedup, which is
attributed to the large number of vectorial computations that
need to be executed in the context of data series similarity
search. (We omit the results due to lack of space.)

3This is true even for very large datasets: e.g., the highest granularity iSAX
summarizations for 1 billion data series (occupying 1TB on disk) only need
about 10GB of space in main memory.

2) Exact Search: The exact search algorithm employs ap-
proximate search as a first step and uses the approximate an-
swer as the initial value of the BSF variable (see Algorithm 4).
If BSF is not 0, exact search accesses in a sequential manner
(on disk), all the raw data that could not be pruned. This is
the step that we described how to implement in SIMD in the
previous section. BSF is used for pruning and it is always
updated to store the minimum distance calculated so far.

In order to benefit by parallel I/O and skip sequential
reading, the ExactSearch separates the phase of the lower
bound calculation from that of the real distance calculation
and has different types of worker threads, namely the Lower
Bound Computation (LBC) and the Real Distance Compu-
tation (RDC) workers, respectively, executing each type of
calculation (see right part of Figure 5).

When a thread ¢ executes an ExactSearch (Algorithm 4),
it first performs an approximate search to get the initial BSF
answer (line 3), and then it initiates a number of LBC workers
(line 5). Different LBC workers work on different parts of
SAX. Each such worker computes the lower bound distance
between the query PAA and each iSAX summarization in its
SAX part and records the data series for which this distance
is less than the current BSF in a local candidate list, which
it eventually returns to ¢ (see Algorithm 5). This list contains
the position and the lower-bound distance, needed to read the
raw data and to calculate the real distance for the data series.

Once, all LBC workers have finished, ¢ merges the candidate
lists they have created (Algorithm 4, line 6) and initiates the
RDC Worker (line 7).

Each RDC Worker (Algorithm 6) repeatedly retrieves a
(minDistance, position) pair from the merged candidate list
(C}) in an atomic way (line 2). Atomicity is achieved with the
use of a lock which all RDC workers share. The worker then
reads the required data from disk, calculates the real distance
(line 6), and if necessary, updates the shared BSF variable
(line 8). A thread lock ensures that the BSF modification is
done atomically. Storing BSF in shared memory and updating
it during the course of the execution contributes towards re-
ducing the number of calculations that RDC workers perform.

In this study, we use 1 LBC Worker thread per core,
and 5 RDC Worker threads per core. Oversubscribing the
RDC Workers (that are involved in expensive I/O operations)
makes sure that we saturate the disk I/O bandwidth and
the CPU remains busy. Our experiments showed that time
performance remains relatively stable as we vary the number
of RDC Worker threads per core (especially between 3-5
threads for the HDD server, and 4-10 threads for the SSD
server), while 1 LBC Worker thread was enough to achieve
the best performance. (For brevity, we omit these experiments.)

IV. EXPERIMENTAL EVALUATION
[Setup] We ran the experiments on two servers, whose phys-

ical memory was limited to 75GB*. The first server (default)

4We used GRUB to limit the amount of RAM, so that all methods are
forced to use the disk. Note that GRUB prevents the operating system from
using the rest of the RAM as a file cache.

?uervABOVE candidate query BELOW candidate
/ |

/ Nee
| queryIN candidate _"'T""" |
PAA representation \
L e e
—

candidate series:
iSAX representation

0000

Result above branch | Dist_above[1] | Dist_above[2] [pist_above[3] | Dist_aboveld] | -

Mask above branch [true | [tue] | -

Main memory
Result below branch ‘ Dist_below[1] ‘ Dist_below[2] ‘ Dist_below[3] ‘ Dist_below[4] ‘
‘ Disk

Mask below branch | | | [true

Resultin branch | Distinl1] | Distinl2] | Distin(3] | Dist_inid] | -
Mask in branch ‘

[we | \ | .

Final Result [Dist_above[1] | Dist_in[2] | Dist_above[3] | Dist_below(] | --

\ J
T

SIMD register (8 points)

1. Query garrives ~NMW__

00100

reate thy

5. Calculate LB distance
Caq/

& generate candidate list 6. Read raw data
C, . using candidate

LB_dist > ‘\list order

h 8 LB_dist >
—|_ q I LB dist>
rr| LBC Worker RDC Worker
| — LB_dist> [
LB_dist >
Array of

Candidate List

roag

2.Run
approximate
search

AR AR AR AR RN

001

Array of iSAX
Summarizations

3. Read raw data
for series in leaf

4.Get BSF

Fig. 4. SIMD conditional branch calculation.

Algorithm 4: ExactSearch

Input: querySeries QT'S, query iSAX isaz, Index index, File* file
candidate list C;, subC)[|;
float BSF,
BSF = approxSearch(QT'S, isax, index);
create a number of threads, each executing
subCy <— LBCWorker(QT'S, proper part of index.SAX, BSF);
5 Wait for all threads to finish;
6 C; < merge all sublists (subC}) returned by the LBCWorker threads;
7 create a number of threads, each executing an instance of
RDCWorker (QTS, C;, BSFE, file);
8 Wait for all threads to finish;
9 return (BSF);

S

Algorithm 5: LBCWorker

Input: querySeries QT'S, iSAX summarizations SAX_part|], float
BSF
1 local candidate list subCy;
2 for i < 1 to size of SAX _part do
3 minDist < LowerBound_SIMD (QTS, SAX _partl[i]);
if minDist < BSF then
add (minDist, Raw Data file position of SAX _part[i]) pair
in subCy;

6 return (subCh)

4
5

with two Intel Xeon E5-2650 v4 2.2Ghz processors with 12
cores each, 10.8TB (6 x 1.8TB) 10K RPM SAS HDD drives
in RAIDO, with measured throughput of the RAIDO array
1200MB/sec. The second server, with the same setup for CPUs
and memory, had 3.2TB (2 x 1.6TB) SATA SSD drives in

Algorithm 6: RDCWorker

Input: querySeries Q7'S, candidate list C;, float BSF, File* file
1 while not reached end of C; do
2 Atomically read the next (minDist,position) pair from Cj;
3 if minDist <BSF then
4 Move file pointer to the proper position in file;
5 rawData < read raw data series from file;
6
7
8

realDist < Dist (rawData, QTS);
if realDist < BSF then
‘ Atomically update BSF to the value of realDist;

Fig. 5. Workflow and algorithms relevant to query answering (balanced: ParIS)

RAIDO, measured throughput of the RAIDO array 500MB/sec.
All algorithms were implemented in C, and compiled using the
GCC6.2.0 on Ubuntu Linux 16.04.

[Datasets] In order to evaluate the performance of the pro-
posed approach, we use several synthetic datasets for a fine
grained analysis, and two real datasets from diverse domains.
Unless otherwise noted, the series have a size of 256 points,
which is a standard length used in the literature, and allows
us to compare our results to previous work. We used synthetic
datasets of sizes SOGB-250GB (with a default size of 100GB),
and a random walk data series generator that works as follows:
a random number is first drawn from a Gaussian distribution
N(0,1), and then at each time point a new number is drawn
from this distribution and added to the value of the last number.
This kind of data generation has been extensively used in
the past (and has been shown to model real-world financial
data) [27], [4], [6], [7], [3]. We used the same process to
generate 100 query series.

For our first real dataset, Seismic, we used the IRIS Seismic
Data Access repository [28] to gather 100M series representing
seismic waves from various locations, for a total size of
110GB. The second real dataset, SALD, includes neuroscience
MRI data series [29], for a total of 200M series of size 128, of
size 100 GB. In both cases, we used as queries 100 series out
of the datasets (produced using our synthetic series generator).

In all cases, we repeated the experiments 5 times and we
report the average values. We omit reporting the error bars,
since all runs gave results that were very similar (less than 3%
difference). Queries were always run in a sequential fashion,
one after the other, in order to simulate an exploratory analysis
scenario, where users formulate new queries after having seen
the results of the previous one.

[Algorithms] We experiment with our ParlS algorithms, and
compare those to the state of the art data series index,
ADS+ [3]. We also compare to (i) the UCR Suite [5], the state
of the art, optimized serial scan technique for exact similarity
search, and (ii) the DS-Tree index [6] that stores the data in the
leaves. All algorithms are available online [30]. We note that

for the disk-resident experiments, we never loaded the datasets
in main memory. In order to mitigate the effects of caching, we
cleared the caches before each experiment (i.e., before running
index creation and before executing each query).

A. Results

We present the performance results for the index creation
and query answering in ParlS, and compare them to the results
of the current state-of-the-art algorithm, ADS+, as well as the
DS-Tree data series index.

1) Index Creation Performance Evaluation: In our first
experiment, we evaluate the time it takes to create the data
series for a synthetic dataset of 100M series (Figure 7). The
results show that the proposed solution completely masks out
the CPU latency and results in performance which is up to
2.4x faster than ADS+.

We observe that the performance of ParlS improves as
the number of cores grows from 2 to 6 (note that a single
thread runs on each core); after 6 cores the improvement is
rather small. The reason for this behavior is illustrated in
Figure 6. Note that there are 5 types of time cost: (i) read
raw data from disk; (ii) write raw data on disk; (iii) write
iSAX representations on disk (for exact search); (iv) manage
data, which involves processing the raw data and inserting
the iSAX representation in the correct RecBuf; and (v) create
node, which takes place when we grow a subtree during the
flushing of a RecBuf into the OutBufs. When we use 2 cores,
the computation of read data from disk and the management
of data series are divided between the 2 cores, and the index
creation proceeds in parallel. Similarly, the time cost for the
management of data series decreases with the number of cores,
since the data that each core needs to process gets reduced.
However, the time cost to read data is always the same, given
that we have to access the same disk. Our I/O experiments
showed that the total CPU cost becomes less than the I/O cost
when we use more than 6 cores. Then, the management time
cost becomes less than the time cost of reading.

Overall, these results demonstrate that not only does the
proposed solution completely masks out the CPU latency
(using only 6 threads), but it will continue to do the same
when the storage medium of the dataset becomes much faster,
e.g., with the use of NVRAMs. In the rest of this study, we
use 6 cores as the default value.

We now turn our attention to datasets of increasing size, and
additionally compare ParlIS to another competitive data series
index, DS-Tree. Figures 9 and 10 depict the results for both
HDD and SSD. The results show that the ParIS algorithm is
up to 2.4x faster than ADS+. Note that the DS-Tree is always
one order of magnitude slower than the other approaches, so
we do not consider the DS-Tree in the rest of our experiments.

2) Query Answering Performance Evaluation: We present
results that demonstrate ParlS’s efficiency in query answering:
ParIS is more than 1 order of magnitude faster than ADS+,
and up to 3 orders of magnitude faster than UCR Suite.

Figure 8 shows the exact query answering time for ParIS and
ADS+ as we vary the number of cores. We observe that time

performance improves as we increase the number of cores,
though, the returns are negligible when we go beyond 6 cores.

We present in Figure 11 (log-scale y-axis) the results of
the similarity search evaluation as the dataset size increases,
for UCR Suite, ADS+ and ParIS. We observe that ParIS is
one order of magnitude faster than ADS+, and more than
two orders of magnitude faster than UCR Suite. We also note
that the performance improvement of ParlS gets larger with
increasing dataset sizes, as ParlS is able to scale better than
UCR Suite. This is because ParIS can effectively prune the
search space, while UCR Suite always has to read all the data
from disk. Figure 12 (log-scale y-axis) shows the performance
of exact query answering for the SSD server. Both ADS+
and ParIS benefit from the SSD low random access latency.
The performance improvement of ParIS is increasing with the
size of the dataset (since the number of random disk accesses
increases, too), achieving in our experiments performance up
to 15x faster than ADS+, and 2000x faster than UCR Suite.

3) Real Datasets: In this set of experiments, we test the
different algorithms using real datasets. Figure 13(a) shows
the result of index creation time cost on the SALD and
Seismic real datasets, while Figure 13(b) (log scale y-axis)
reports the exact similarity search time cost for UCR Suite,
ADS+, and ParIS. Similar to our previous results, ParlS is
faster than ADS+ during index creation: ParlS is up to 2x
faster for SALD, and 1.7x faster for Seismic. In terms of
query answering, the performance results differ for the two
real datasets. For SALD, ParlS is 140x faster than UCR Suite
and 4x faster than ADS+, while for Seismic, ParlS is 130x
faster than UCR Suite and 5x faster than ADS+.

The SSD experiments show similar, yet more pronounced
trends (Figure 13(c), log scale y-axis): ParIS is almost 1 order
of magnitude faster than ADS+, and 3 orders of magnitude
faster than UCR Suite.

4) Classification Task: In the final set of experiments,
we tested ParIS on a complex analytics task. In particular,
we evaluated its performance in a classification task, and
measured the benefit it would bring to a k-NN Classifier, which
is a classifier that assigns to a new object the majority class
of the k nearest neighbors of that object (a data series, in
our case). Figures 14 and 15 show the performance of ParIS
and ADS+ for different values of k£ on a 100GB dataset. The
results show that a k-NN Classifier using ParIS can finish a
classification task up to 8x and 18x faster than when using
ADS+ on HDD and SSD, respectively, which can reduce the
total processing time for classifying 100K objects from several
days down to a few hours.

Overall, ParlS exhibits a robust performance across different
datasets and settings, and enables for the first time fast analysis
of very large data series collections.

V. RELATED WORK

[Data series summarization and indexing] Various dimen-
sionality reduction techniques exist for data series, which
can then be scanned and filtered [31], [32] or indexed and
pruned [33], [34], [6], [4], [18], [3] during query answering.

300

1 core|2 cores| 4 cores 6 cores : f ;
G e kese 6686480 250 M Disk Read m Disk Write © CPU
m‘) n\) 0‘_) o‘) s‘_) m\ﬁ @7 m\) @v’ Qy sy > ac‘ iy
2 200 2
[] | \ NN 2
9 g
S bvrversisiiirininnse B 190 3
[z zzza ;’ %)
g £ 100 2
£ , = &
= ez Bl Read data 50
Write index 0
. 1 2 4 6 12 2 4 6 12 24
Y Write iSAX
2 Manage data ADS+ ParlSin 1 socket ParlS in 2 sockets
| %/ Create node Number of cores
Fig. 6. Time cost illustration of index Fig. 7. Index creation time (HDD), varying the Fig. 8.

creation process number of cores

B DS-Tree B ADS+

50 100 150 200 250

Data Size/GB

B DS-Tree M ADS+ i ParlS

50 100 150 200 250

Data Size/GB

= ParlS

10000 100000

1000 10000 100000

Time (Seconds)
Time (Seconds)
1000

100

100

10

Fig. 9. Index creation time (HDD),
varying the dataset size

Fig. 10. Index creation time (SSD),
varying the dataset size

B UCR Suite B ADS+

: I II |I |I |I
50 100 150 200 250

Data Size/GB

I ParlS M UCR Suite ™ ADS+

50 100 150 200 250

Data Size/GB

= Parl$

100 1000 1000
1000.0

Time (Seconds)
10.0

Time (Seconds)

10

0.1

Fig. 11. Exact query answering time Fig. 12. Exact query answering time
(HDD), varying the dataset size (SSD), varying the dataset size

o 8
7 8 W UCR Suite ™ Parl$
= ADS+ = | WUCR Suite ™ Parl$ S mADSt
g ™ ParlS) = ADS+ =4
P S S
z 3 S
= =3
s R -
2 o = °
g & <
e I] I
-]l | [l
SALD Seismic SALD Seismic SALD Seismic

Data Size/GB Dataset Dataset

(a) Index creation
time

(b) Exact query answer-
ing time (HDD)

(c) Exact query answering
time (SSD)

Fig. 13. Time cost for index creation and similarity search for real data

We follow the same approach of indexing the series based on
their summaries, though our work is the first to exploit the
parallelization opportunities offered by modern hardware, in
order to accelerate index construction and similarity search.
FastQuery is an approach used to accelerate search operations
in scientific data [35], based on the construction of bitmap
indices. In essence, the iISAX summarization used in our ap-
proach is an equivalent solution, though, specifically designed

B ADS+
M ParlS in 1 socket
M ParlS in 2 sockets

20
L

10
L

1 2 4 6 8

o

10 12 18 24

Number of cores

Exact query answering time (HDD),

varying the number of cores
I— -

I- II
10nn

10nn

200

B ADS+ M ParlS

I_ I—
Inn Snn

Number of nearest neighbors

B ADS+ = ParlS

- I- I-
Inn Snn

Number of nearest neighbors

150
10 15 20 25 30

Time (Seconds)
100
Time (Seconds)

50
5

0

50nn 50nn

Fig. 14. Time for a k-NN Classifier Fig. 15. Time for a k-NN Classifier
that uses ADS+/ParIS to classify one that uses ADS+/ParlS to classify one
object (100GB dataset, HDD) object (100GB dataset, SSD)

for sequences (which have high dimensionalities).

[Data structures for SIMD] While the interest in using SIMD
for improving the performance of data management solutions
is not new [36], there are still many algorithms that do not
take advantage of this hardware characteristic. The problem
of developing a SIMD-friendly B+-Tree index was recently
studied [37], with a focus on a basic B+-Tree method, the k-ary
search algorithm. For data series in particular, previous work
has used SIMD for Euclidean distance computations [24]. In
our work, we go beyond this straightforward use of SIMD, and
we propose an algorithm that uses SIMD for the computation
of lower bounds, which involve branching operations.
[Modern Hardware] Multi-core CPUs offer thread par-
allelism through multiple cores and simultaneous multi-
threading (SMT). Thread-Level Parallelism (TLP) methods,
like multiple independent cores and hyper-threads are com-
monly used to increase algorithm efficiency [38]. A recent
study proposed a high performance temporal index similar to
time-split B-tree (TSB-tree), called TSBw-tree, which focuses
on transaction time databases [39]. However, this is designed
for temporal data, which are 2-dimensional, while in our
case, data series can have thousands of dimensions (i.e., the
length of the sequence). Graphics Processing Units (GPUs) are
another modern hardware option, which allows for massively
parallel computations. A recent study described the use of a
GPU in order to accelerate similarity search in a Trajectory
Indexing system [40]. In our work, we do not use GPUs;
though, it is a very interesting research direction, and deserves
to be studied in its own right.

[Scans vs indexing] Even though recent works have shown

that sequential scans can be performed efficiently [5], [41],
such techniques are applicable when the dataset consists of
a single, very long data series, and queries are looking for
potential matches in small subsequences of this long series.
Such approaches, in general, do not provide any benefit when
the dataset is composed of a large number of small data series,
like in our case. Therefore, indexing is required in order to
efficiently support data exploration tasks, where the query
workload is not known in advance.

VI. CONCLUSIONS

We presented ParlS, the first data series index that exploits
the parallelism opportunities of modern hardware. The ex-
perimental evaluation with several synthetic and real datasets
demonstrates the efficiency of ParlS, which is 2-3 orders of
magnitude faster than previous approaches. Part of our future
work is to study in more depth parallel I/O techniques [42], to
combine our approach with solutions developed for distributed
systems [12], and extend it to support other distance measures,
such as DTW.

Acknowledgments This work was partially supported by the
Chinese Scholarship Council, FMJH Program PGMO, EDF,
Thales and HIPEAC 4. Part of the work was performed while
P. Fatourou was visiting LIPADE, Paris Descartes University,
and while B. Peng was visiting CARV, FORTH ICS.

REFERENCES
T. Palpanas, “Data series management: The road to big sequence
analytics,” SIGMOD Record, 2015.
K. Zoumpatianos and T. Palpanas, “Data series management:
Fulfilling the need for big sequence analytics,” in ICDE, 2018.
K. Zoumpatianos, S. Idreos, and T. Palpanas, “Ads: the adaptive
data series index,” VLDB J., vol. 25, no. 6, 2016.
J. Shieh and E. Keogh, “i sax: indexing and mining terabyte
sized time series,” in SIGKDD, 2008.
T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A.
Batista, M. B. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh,
“Searching and mining trillions of time series subsequences
under dynamic time warping,” in SIGKDD, 2012.
Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang, “A data-
adaptive and dynamic segmentation index for whole matching
on time series,” VLDB, vol. 6, no. 10, pp. 793-804, 2013.
A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and
E. Keogh, “Beyond One Billion Time Series: Indexing and
Mining Very Large Time Series Collections with iSAX2+,”
KAIS, vol. 39, no. 1, pp. 123-151, 2014.
D. E. Yagoubi, R. Akbarinia, F. Masseglia, and T. Palpanas,
“Dpisax: Massively distributed partitioned isax,” in ICDM,
2017.
H. Kondylakis, N. Dayan, K. Zoumpatianos, and T. Palpanas,
“Coconut: A scalable bottom-up approach for building data
series indexes,” PVLDB, vol. 11, no. 6, pp. 677-690, 2018.
M. Linardi and T. Palpanas, “Ulisse: Ultra compact index for
variable-length similarity search in data series,” in ICDE, 2018.
——, “Scalable, variable-length similarity search in data series:
The ulisse approach,” PVLDB, 2019.
D.-E. Yagoubi, R. Akbarinia, F. Masseglia, and T. Palpanas,
“Massively distributed time series indexing and querying,”
TKDE (to appear), 2018.
K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim,
“The lernaean hydra of data series similarity search: An exper-
imental evaluation of the state of the art,” PVLDB, 2019.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]
(1]

[12]

(13]

(14]

(15]
(16]

(17]

(18]
[19]

[20]

(21]
(22]
(23]

(24]

[25]

(26]
(27]
(28]
(29]
(30]
(31]

(32]

(33]
(34]
(35]
(36]
(37]

(38]

(39]

[40]

(41]

(42]

L. Xiao, Y. Zheng, W. Tang, G. Yao, and L. Ruan, “Parallelizing
dynamic time warping algorithm using prefix computations on
gpu,” in (HPCC_EUC). IEEE, 2013, pp. 294-299.

A. Ailamaki, “Databases and hardware: The beginning and
sequel of a beautiful friendship,” VLDB, 2015.

T. Palpanas, “The parallel and distributed future of data series
mining,” in HPCS, 2017.

T. Rakthanmanon, E. J. Keogh, S. Lonardi, and S. Evans,
“Time series epenthesis: Clustering time series streams requires
ignoring some data,” in /ICDM, 2011, pp. 547-556.

J. Shieh and E. Keogh, “iSAX: disk-aware mining and indexing
of massive time series datasets,” DMKD, no. 1, 2009.

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey,” CSUR, 20009.

A. Mueen, E. J. Keogh, Q. Zhu, S. Cash, M. B. Westover, and
N. B. Shamlo, “A disk-aware algorithm for time series motif
discovery,” DAMI, vol. 22, no. 1-2, pp. 73-105, 2011.

R. Agrawal, C. Faloutsos, and A. N. Swami, “Efficient similarity
search in sequence databases,” in FODO, 1993.

A. Mueen, S. Nath, and J. Liu, “Fast approximate correlation
for massive time-series data,” in SIGMOD, 2010.

C. Lomont, “Introduction to intel advanced vector extensions,”
Intel White Paper, 2011.

B. Tang, M. L. Yiu, Y. Li ef al., “Exploit every cycle: Vectorized
time series algorithms on modern commodity cpus,” in IMDM,
2016.

E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Di-
mensionality reduction for fast similarity search in large time
series databases,” KIS, 2001.

I. Coorporation, “Intel 64 and ia-32 architectures optimization
reference manual,” 2016.

B.-K. Yi and C. Faloutsos, “Fast time sequence indexing for
arbitrary lp norms.” VLDB, 2000.

“Incorporated Research Institutions for Seismology — Seismic
Data Access,” http://ds.iris.edu/data/access/, 2016.

“Southwest university adult lifespan dataset (sald),” http://fcon_
1000.projects.nitrc.org/indi/retro/sald.html, 2018.
“Source code and datasets used in this
http://www.mi.parisdescartes.fr/"themisp/paris/, 2018.
S. Kashyap and P. Karras, “Scalable knn search on vertically
stored time series,” in SIGKDD, 2011, pp. 1334-1342.

C. Li, P. S. Yu, and V. Castelli, “Hierarchyscan: A hierarchical
similarity search algorithm for databases of long sequences,” in
ICDE, 1996, pp. 546-553.

A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” in SIGMOD, 1984, pp. 47-57.

I. Assent, R. Krieger, F. Afschari, and T. Seidl, “The ts-tree:
efficient time series search and retrieval,” in EDBT, 2008.

J. Chou, K. Wu et al., “Fastquery: A parallel indexing system
for scientific data,” in CLUSTER. 1EEE, 2011, pp. 455-464.
J. Zhou and K. A. Ross, “Implementing database operations
using simd instructions,” in SIGMOD. ACM, 2002.

S. Zeuch, J. Freytag, and F. Huber, “Adapting tree structures
for processing with SIMD instructions,” in EDBT, 2014.

P. Gepner and M. F. Kowalik, “Multi-core processors: New way
to achieve high system performance,” in PAR ELEC. IEEE,
2006, pp. 9-13.

D. B. Lomet and F. Nawab, “High performance temporal
indexing on modern hardware,” in /ICDE, 2015.

M. G. Gowanlock and H. Casanova, “Distance threshold simi-
larity searches: Efficient trajectory indexing on the GPU,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 9, 2016.

A. Mueen, H. Hamooni, and T. Estrada, “Time series join on
subsequence correlation,” in ICDM, 2014, pp. 450—459.

P. Ghodsnia, I. T. Bowman, and A. Nica, “Parallel i/o aware
query optimization,” in SIGMOD. ACM, 2014, pp. 349-360.

paper,”

