
Citation: EL Hmimdi, A.E.; Palpanas,

T.; Kapoula, Z. ORASIS-MAE

Harnesses the Potential of

Self-Learning from Partially

Annotated Clinical Eye Movement

Records. BioMedInformatics 2024, 4,

1902–1933. https://doi.org/10.3390/

biomedinformatics4030105

Academic Editor: Ognjen

Arandjelović

Received: 29 March 2024

Revised: 13 May 2024

Accepted: 7 August 2024

Published: 26 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

ORASIS-MAE Harnesses the Potential of Self-Learning from
Partially Annotated Clinical Eye Movement Records
Alae Eddine El Hmimdi 1,2,*, Themis Palpanas 2,* and Zoï Kapoula 1,2

1 Orasis-Eye Analytics & Rehabilitation Research Group, Spinoff CNRS, 12 Rue Lacretelle, 75015 Paris, France;
zoi.kapoula@gmail.com

2 LIPADE, French University Institute (IUF) Laboratoire d’Informatique Paris Descartes, Université Paris Cité,
45 Rue des Saints Pères, 75006 Paris, France

* Correspondence: alae-eddine.el-hmimdi@etu.u-paris.fr (A.E.E.H.); themis@mi.parisdescartes.fr (T.P.)

Abstract: Self-supervised learning (SSL) has gained significant attention in the past decade for its
capacity to utilize non-annotated datasets to learn meaningful data representations. In the medical
domain, the challenge of constructing large annotated datasets presents a significant limitation,
rendering SSL an ideal approach to address this constraint. In this study, we introduce a novel pretext
task tailored to stimulus-driven eye movement data, along with a denoising task to improve the
robustness against simulated eye tracking failures. Our proposed task aims to capture both the
characteristics of the pilot (brain) and the motor (eye) by learning to reconstruct the eye movement
position signal using up to 12.5% of the unmasked eye movement signal patches, along with the
entire REMOBI target signal. Thus, the encoder learns a high-dimensional representation using a
multivariate time series of length 8192 points, corresponding to approximately 40 s. We evaluate
the learned representation on screening eight distinct groups of pathologies, including dyslexia,
reading disorder, and attention deficit disorder, across four datasets of varying complexity and size.
Furthermore, we explore various head architecture designs along with different transfer learning
methods, demonstrating promising results with improvements of up to approximately 15%, leading
to an overall macro F1 score of 61% and 61.5% on the Saccade and the Vergence datasets, respectively.
Notably, our method achieves macro F1 scores of 64.7%, 66.1%, and 61.1% for screening dyslexia,
reading disorder, and attention deficit disorder, respectively, on clinical data. These findings un-
derscore the potential of self-learning algorithms in pathology screening, particularly in domains
involving complex data such as stimulus-driven eye movement analysis.

Keywords: time series; deep learning; masked modeling; self-supervised learning; classification; eye
movement; saccade; vergence

1. Introduction

Eye movement data analysis holds significant promise in uncovering insights into
brain disorders and pathologies. Abnormalities in eye movements often serve as valuable
markers for various neurological conditions, making the examination of eye movement
patterns crucial for early detection and intervention strategies. In our daily lives, we
make about 150,000 movements per day, corresponding to 3 movements per second. This
abundance of data underscores the potential for understanding underlying neurological
conditions through eye movement analysis.

While statistical frameworks [1–4] and machine learning algorithms [5–10] have been
employed for analyzing eye movement data, recent advancements in deep learning [11–18]
have shown great potential in automating the analysis process. These approaches not
only automate feature extraction but also enhance the resilience of learning algorithms to
noise, thereby maximizing the information encoded in the data. However, training such
algorithms requires annotated data, and imposing the annotation can drastically increase

BioMedInformatics 2024, 4, 1902–1933. https://doi.org/10.3390/biomedinformatics4030105 https://www.mdpi.com/journal/biomedinformatics

https://doi.org/10.3390/biomedinformatics4030105
https://doi.org/10.3390/biomedinformatics4030105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedinformatics
https://www.mdpi.com
https://doi.org/10.3390/biomedinformatics4030105
https://www.mdpi.com/journal/biomedinformatics
https://www.mdpi.com/article/10.3390/biomedinformatics4030105?type=check_update&version=1


BioMedInformatics 2024, 4 1903

the difficulty of dataset construction. In response to this challenge, alternative approaches
such as unsupervised learning [19] and self-supervised representation learning [20,21] are
being explored.

However, two limitations arise, namely the sample size and model size. While the
effect of these two limitations may not be significant when training using a research dataset,
in clinical datasets, which represent the real-model use case, the screening task complexity is
higher due to the increase in input and output (pathology class) variability, making training
small models prone to underfitting. For instance, clinical data exacerbate challenges such as
low signal-to-noise ratio and inherent variability stemming from population diversity and
data recording protocols. Additionally, the high variability of the target class distribution
poses a challenge. As a result, small-sized models, due to limited expressivity, tend to
underfit when confronted with these challenges. Notably, there is a gap in the literature
concerning the evaluation of large architectures’ performance on pathology screening
tasks of eye movement time series trained using deep learning algorithms, including
self-supervised learning methods. In scenarios lacking a big dataset, highly expressive
models are prone to learning the training set without necessarily generalizing. This issue is
particularly acute with Transformers, given their high expressivity and absence of weight
sharing inherent in Convolutional Neural Network (CNN) architectures.

On the other hand, constructing a large clinical annotated dataset can be challenging,
especially for rare illnesses. One approach is using self-supervised learning (SSL) algo-
rithms. SSL involves training the model on a non-annotated dataset to learn a pretext
task that compresses the input space into a low-dimensional representation. The model
weights are then fine-tuned on a smaller annotated dataset for the downstream task (the
main task). A possible option for the pretext task is masked modeling, which was intro-
duced on Bidirectional Encoder Representations from Transformers (BERTs) [22] and has
since been extensively explored in different fields, including natural language processing
(NLP) [23–25] and computer vision domains [26–29].

Our approach is inspired by the work of [29], although we employ a different pretext
task tailored specifically to stimulus-driven eye movement time series data. Furthermore,
we refine the masking heuristic to suit time series data and the characteristics of an eye
movement position signal. For instance, a fundamental distinction between image and
time series data structures lies in their information density [30]. In time series data, missing
masks can be readily addressed through interpolation. Additionally, temporal dependency,
inherent to time series data, implies a sequential ordering of data points, unlike the spatially
independent nature of images. Moreover, when dealing with eye movement time series
data, local failures in the eye tracking system result in sparse regions with reduced sampling
rates. Furthermore, errors in eye tracking predictions introduce noise into the input space,
leading to a low signal-to-noise ratio.

To address these challenges, we adapt the masking process to simulate eye tracking
failures and introduce noise signal corruption to emulate inaccuracies in eye tracking
predictions. Our proposed masking heuristic represents a generalization of patch-based
and random masking strategies, incorporating variable masking densities during training
to account for different scenarios.

Furthermore, we introduce a corruption heuristic tailored to our domain to enhance
the complexity of the pretext task. This encourages the capture of mutual information
between different time series and learned representations by maximizing their mutual
information lower bound [31,32]. Additionally, we refine our noise modeling to better
replicate the noise present in our data.

Finally, we integrate the target signal into the decoder to mitigate the effects of hard
masking and temporal dependencies in our data. This replacement of the patch filling task
aims to capture both the characteristics of the pilot (brain) and the motor (eye) by analyzing
present patches relative to their corresponding stimulus signals, thereby uncovering missing
zones given in the stimulus signal.



BioMedInformatics 2024, 4 1904

As a result of these adjustments, we demonstrated that it is possible to reconstruct
eye movement time series data using only up to 12.5% of initial eye movement signals
combined with REMOBI target signals. Our studies make the following main contributions:

• We propose an extension of the masked autoencoder (MAE) for modeling eye move-
ment time series, aiming to learn meaningful high-dimensional representations through
semi-supervised learning on eye movement data.

• We introduce a novel pretext task tailored to stimulus-driven eye movement analysis.
First, we introduce a masking heuristic. Furthermore, we condition the reconstruction
task with the stimulus signal, enabling the model to learn to capture eye movement
characteristics and use them to reconstruct the initial signal with masking of up to
87.5% of the initial eye movement signals. Finally, we incorporate a noise injection
heuristic to increase the robustness of the trained model by emulating intrinsic noise
in eye movement position signal.

• We compare our method with two different unsupervised learning methods, as well
as training using supervised learning.

• We explore using the high-dimensional learned representations to screen eight groups
of pathologies on four different characteristic datasets.

• Demonstrating the feasibility of reconstructing eye movement time series data using
only a small portion, up to 12.5%.

Figure 1 offers a visual summary of the exploration presented in this study.

Figure 1. A visual abstract of the exploration detailed in our preliminary study.

2. Related Work

Autoencoder: This is an unsupervised method for learning a low-dimensional rep-
resentation [33–35] comprising two models (an encoder and a decoder). The encoder
performs feature selection by compressing the input into a low-dimensional representation.
Subsequently, the decoder learns to reconstruct the original input features from the output
of the encoder. This algorithm is trained by minimizing mean-squared error during recon-
struction. Another variant of this algorithm is a variational autoencoder [36,37], which
introduces a probabilistic perspective by regularizing the latent space through an assump-
tion of conditional multi-Gaussian distribution in that space. As a result, the encoder



BioMedInformatics 2024, 4 1905

predicts both mean and standard deviation for each Gaussian component conditioned
by input; meanwhile, the decoder samples from this learned distribution to construct the
initial input.

Denoising autoencoder: This is a special form of autoencoder, which aims to increase
the robustness of the learned representation by training the model to remove noise from the
input [38,39]. Each input datum is corrupted before being passed to the encoder, and then
the autoencoder minimizes the reconstruction error between the uncorrupted input and
the reconstructed input. In our approach, we follow the same method, aiming to mimic the
inherent noise produced by an eye-tracking system error by generating additional noise
that is proportional to the signal amplitude, to encourage the model to learn to exploit
the correlation of the different multivariate components, as well as the overall response
represented by the eye signal relative to the target signal to filter the noise.

Masked data modeling: This involves removing patches in each sample during
training. The model then needs to use the learned representation for the unmasked region
to retrieve information from the masked region. Initially used in NLP [22], this technique
showed promising results when evaluated on downstream tasks. Kaming He et al. [29]
explored its application on ImageNet as a pretext task and reported an accuracy of 87.8
on ImageNet-1k without relying on data augmentation techniques, using only cropping
instead of contrastive learning.

Additionally, alongside our study, two other studies [30,40] have pursued similar
objectives: Ti-MAE [40], which focuses on training MAE with time series data by replacing
a continuous masking strategy with a random time masking strategy introduced in MAE
and evaluating it on classification tasks where it achieves consistent improvement across all
evaluated forecasting datasets; and MTSMAE [30], which introduces a patch embedding
method more suited for MAE application to time series characteristics.

In our approach, we investigate different directions by designing a novel masking
heuristic that can be seen as a generalization of patch-based and random masked model-
ing. The proposed masked modeling method is inspired by the problem of eye tracking
system failure.

Self-supervised learning: This involves two stages of training. In the first stage,
the model is trained using annotated data to learn a low-dimensional and meaningful
representation. The second stage fine-tunes the model for a specific downstream task
using an additional annotated dataset. The first stage can incorporate a pretext task such
as regression with pseudo-labels [41–43], a contrastive method [44–47], or an adversar-
ial method [48–50]. Finally, a more complete taxonomy of unsupervised representation
learning is presented in [51].

Our study considers the mask filling task as a pretext task while viewing the denoising
task with dual purposes; it serves as a pretext task in the first stage and subsequently acts
as a preliminary step for the downstream tasks in the second stage.

Application to eye movement: To address the challenge of analyzing eye movements
through eye movement data [19–21,52–55], one can first learn to estimate eye movement
position coordinates. Subsequently, these estimated eye movements can be utilized to
learn to identify corresponding pathologies within the eye movement data. Self-supervised
learning techniques have been employed in different studies to address these phases,
demonstrating promising outcomes. Bautista et al. [19] utilized a temporal convolutional
network autoencoder to derive meaningful representations from eye movement position
and velocity segments separately using unsupervised algorithms. They assessed the
efficacy of this embedding by training a linear Support Vector Machine (SVM) for patient
identification tasks, achieving accuracies of up to 93.9% for stimulus tasks and up to 87.8%
for biometric tasks. In a second approach [21], they applied the same encoder architecture
for self-supervised contrastive learning, achieving an accuracy of up to 94.5% for biometric
tasks. However, there was a noticeable decrease in generalization performance when
assessing datasets not included in the training/testing split algorithm. In another study,
Lee et al. investigated the detection of abnormal behavior during screen observation using



BioMedInformatics 2024, 4 1906

self-supervised contrastive learning, achieving an accuracy of 91% in identifying abnormal
eye movements associated with attention lapses.

On the other hand, the papers [20,53–55] explore the application of SSL for eye move-
ment coordinate estimation. In our study, we prefer using the Pupil solution for the
estimation due to its physiological criteria and high accuracy. This solution has been
extensively used in studies. Therefore, in this study, we explored learning the screening
task from eye movement position signals.

3. Materials and Methodology
3.1. Saccade and Vergence Eye Movement

Saccades and vergence eye movements are the most common eye movements we
make in everyday life, enabling us to explore our 3D environment, read, and react to targets.
Saccades are rapid and abrupt movements that center the target on the retina by changing
the direction of our gaze. During saccades, both eyes coordinate to generate movements in
the same direction and by the same amount. In contrast, vergence movements are more
complex, involving the eyes moving in opposite directions. They allow the fixation point
to either move away (diverge) by decreasing the angle of vergence or to be brought closer
(converge) by increasing the angle of vergence.

Moreover, each movement can be decomposed into a conjugate saccade component
and a disconjugate component. The conjugate component, representing the mean values
of the position signal of both eyes, analyzes movements that change the direction of gaze
to place the fixation point in space without altering the depth of the fixated points, thus
aiding in the analysis of the saccade movement. Conversely, the disconjugate component,
corresponding to the difference in the position signal of both eyes, analyzes movements that
alter the depth of gaze by shifting the fixation point on the optical axis, thereby facilitating
the analysis of the vergence movement. Finally, in Appendix A, Figure A1, we provide
an overview of the four signals, presenting the left and right position signals along with
the conjugate and disconjugate components for both saccade and vergence recordings. It
is important to note that this figure provides an illustration using a high signal-to-noise
recording to emphasize the differences between these two movements, thereby enhancing
clarity in comparison.

3.2. Eye Movement Recording

Our data are recorded from various clinical centers across Europe. These centers utilize
the REMOBI technology (patent WO2011073288) for conducting tests that stimulate various
eye movements, such as saccades and vergence, alongside the AIDEAL technology (patent
PCT/EP2021/062224) to analyze the resulting recording. Additionally, eye movements are
recorded using a Pupil Core head-mounted video-oculography device [56] to record eye
movements at a frequency of 200 Hz per eye, providing real-time gaze position estimation
for both the left and right eyes along the vertical (y) and horizontal (x) axes. All data records
undergo anonymization in compliance with European regulations on personal data before
being stored in our database. The same experimental setting has been employed across
multiple studies for analyzing eye movements, utilizing statistical methods [1–4] as well as
machine learning algorithms [5,6].

3.3. REMOBI Saccade and Vergence Tests

Our database encompasses a diverse range of eye movement recordings captured
through different modes using REMOBI, including saccade, vergence, combined move-
ments, vestibular tracking, and fixation, as well as recordings from non-stimulus-driven
tasks like reading and viewing images.

For this study, we exclusively utilize the saccade and vergence recordings to construct
each of the four classification datasets. The remaining groups are solely employed in
the initial learning stage to train the encoder. Consequently, we provide a more detailed
examination of the REMOBI saccade and vergence tests in our study.



BioMedInformatics 2024, 4 1907

During the saccade test, patients were instructed to fix an illuminated LED stimulus
along a horizontal axis to elicit right and left saccadic movements. Similarly, during the
vergence test, stimuli were presented over the optical axis to stimulate both conjugate
and disconjugate vergence movements. Each test comprised 40 movements (20 leftward
and 20 rightward) during the saccade test (20 convergence and 20 divergence) and during
the vergence test. The duration and position of the LEDs were randomized to prevent
anticipation of movement in both tests. The purpose of conducting these tests is to further
analyze specific eye movements related to each task, using the software AIDEAL.

3.4. Dataset Overview

Using our intern database, we synthesized two datasets. The first dataset (Ora-M)
encompasses all the data collected before 2022, including the non-annotated data, and is
used for the pre-training task, while the second one (Ora23) contains all the annotated
data gathered before 2023. To construct the segmented Ora23 dataset, We follow the same
approaches outlined in [12], which were also employed in the creation of Ora22, as utilized
in our prior study.

• ORA-M: This includes a variety of eye movement visual tasks, namely vestibular,
fixation, combined, image, reading, saccade, vergence, and random tracking. The
distribution of visual tasks in the ORA-M dataset is illustrated in Figure A2, which
contains a total of 15673 recordings. Each recording corresponds to a multivariate eye
movement position time series, encompassing the angular coordinates of the left and
right eyes along both horizontal and vertical axes. These recordings typically span a
duration ranging from 1 to 5 min, yielding approximately 9000 and 45,000 coordinate
points, respectively. The three dominant visual tasks are reading, followed by vergence
and saccade with a percentage of 35.63 %, 24.87%, and 21.72%, respectively. All the
eye movement recording data are merged into one comprehensive database, including
both annotated and non-annotated data.

• ORA23: This contains only annotated data of the saccade and vergence tests. These
data are used separately to construct two sub-datasets, namely the saccade visual
task dataset, and similarly, the vergence visual task dataset. The saccade dataset
consists of 92,207 time series of a duration of 5 s, corresponding to approximately 750
points, recorded from 3081 patients. Similarly, the vergence dataset consists of 95,630
segments of a duration of 5 s, recorded from 3228 patients. These sub-datasets are
utilized for the downstream task in our study.

3.5. Train/Test Split

Training using the SSL paradigm involves two stages of learning. In our setting, the
first stage (pretext task) corresponds to masked data modeling, while the second stage
(downstream task) corresponds to screening diseases. Below, we present the train/test split
for each of the pretext and the downstream tasks. Note that all the heuristics discussed
below are performed at the subject identifier level. Then, the corresponding data of each
identifier is gathered to form the corresponding set. This approach guarantees the absence
of data from the same subject in both the train and the test sets.

For the pretext task, we use the ORA-M dataset. Sixty percent of the data are used for
model training, while the remaining data are used for the evaluation of the reconstruction
error and assessing overfitting. On the other hand, for the downstream task, two distinct
train/test splits are explored to train and evaluate our methods. We present the two heuris-
tics with a specific emphasis on mitigating their potential limitations, namely, information
leakage and distribution shift.

• Random Split Strategy: All Ora23 data are utilized for constructing both the training
and test sets in this scenario. The data are randomly partitioned, allocating 30% for
training and reserving 70% for testing. The training set is crucial for fine-tuning the
model. However, this approach introduces a potential risk of information leakage
due to the overlap between the data used for the pretext task and the downstream



BioMedInformatics 2024, 4 1908

task, as the model—despite lacking access to labels during the pretext task—retains
knowledge of the underlying data structure.

• Temporal Split Strategy: In response to the identified information leakage risk, a tem-
poral split strategy is proposed. Data collected between 2022 and 2023 are exclusively
used for testing, ensuring no overlap between patient data in the training and test
sets. However, this strategy sacrifices the guarantee of similar distributions between
the training and test datasets. Moreover, the SSL algorithm is intended to be used
in a scenario where we have few annotated data, and one large non-annotated set;
thus, in order to align with the principles of self-supervised learning (SSL), only 20%
of subjects from the data collected before 2022 are utilized for training, resulting in a
reduced training set size compared to the pretext task.

Finally, in Appendix A, Table A1, we display the counts of the train and test sets for
each of the two approaches applied to the saccade and vergence datasets, yielding four
distinct datasets. These datasets exhibit distinct characteristics in terms of sample size
and task complexity. Additionally, owing to variations in the sizes of the training sets,
we denote the datasets produced using the first method (Random Split Strategy) as the
non-reduced datasets, while the reduced dataset denotes the dataset generated using the
second heuristic (Temporal Split Strategy).

3.6. Problem Statement

Our dataset, labeled as D = (Xi, yi), : i ∈ [[1, N]], comprises N instances. Each pair
(Xi, yi) represents a multivariate time series of length T: Xi ∈ R5×T , corresponding to
the horizontal and vertical angular positions of both eyes for each point within the T-
length interval, along with the latency target signal encoding stimulus information such as
different LED states and the type of eye movement test, and the target class yi ∈ {0, 1}8,
corresponding to eight annotations. Our objective is to predict class yi given the input
Xi. Our recordings of eye movements consist of approximately 30,000 time points, which
are typically too long for one-shot processing; therefore, we suggest a segment-based
approach by working on segments of size 8096, representing a 40-second recording split
into 16 segments of size 512. As a result, each sample has 16 multivariate time series
(segments) of length 512 and 5 channels.

Our objective is first to train a Vision Transformer (ViT) autoencoder on the non-
annotated ORA-M dataset to learn high-dimensional representations for each sample
through our proposed pretext task. Subsequently, we aim to use the learned representation
to tackle the downstream task of disease classification.

3.7. Preprocessing

We follow the same procedure as outlined in our previous studies. We conduct two
levels of data cleaning: a low-pass filtering step with a cutoff frequency of 33 Hz, and a
z-score filtering step, where we eliminate data points with z-scores exceeding 2.5. Instead
of implementing the standardization technique suggested in prior research, we normalize
each eye movement sample channel separately using statistics per channel and sample
individually. This is equivalent to applying the instance normalization technique with no
momentum. Each latency signal is shifted with a different constant to encode the test type
within range, then scaled using a min–max scaler.

4. Method

To train our architecture, we use the self-supervised learning algorithm proposed
in [29]. This approach addresses the challenge of a small annotated sample size by em-
ploying a two-stage learning algorithm. In the initial stage, the model is trained on a large
non-annotated dataset to learn a pretext task and create low-dimensional meaningful repre-
sentations for each sample. Subsequently, the model is fine-tuned on a smaller annotated
dataset for the downstream task. All the proposed methods are implemented, trained and
evaluated using the PyTorch Framework



BioMedInformatics 2024, 4 1909

4.1. Architecture

Our architecture uses a Transformer-based design, which has been shown to address
the information bottleneck in long-term time series data when using recurrent neural
networks (RNNs) in sequence to sequence (seq2seq). Figure A3 in Appendix A presents an
overview of the proposed architecture. It consists of an embedding module for processing
each sample, masking up to 87.5% of the patch and applying corruption to the remaining
patches, an encoder for constructing high-dimensional embeddings for each remaining
patch, a decoder for reconstructing the latent representations of patches and restoring
masked patch embeddings, and finally, a reconstruction module that linearly projects
different patches and flattens the output to form the initial sample. This architecture is
similar to the VIT autoencoder used in [29], but with some minor modifications in feature
space as well as incorporated masking and corruption modules. The different modules are
detailed below:

• Embedding: This takes a tensor of shape (Batch, 8192, 5) and converts it to a set of
k stems within the second axis, with k as the number of unmasked stem. First, each
batch tensor is processed with a 2D convolutional layer with strides equal to 16 and
192 filters, outputting a 512 patch with a representation dimension of 192. Then, k
patches are filtered using our patch masking heuristic and processed with the patch
corruption module. Finally, a learned position embedding weight vector is added to
enable the encoder to capture the temporal-order structure.

• Encoder: The encoder is designed to learn a low-dimensional representation for each
unmasked patch. It consists of 16 attention blocks stacked vertically, utilizing the
attention block module from the timm library [57]. Similar to MAE, we process only
the unmasked patches and replace masked representations with a learnable vector.

• Decoder: The decoder reconstructs the masked patch using information from the
retained patches. A smaller decoder is used to enhance the relevance of learned
representation by the encoder. Each missing mask is replaced with a learned vector,
aiming to retrieve the initial sample space cardinality of shape (Batch, 512, 192). The
latency layer is then combined with each learned embedding and passed to the decoder
in order to recover missing information using the encoded representation.

• Reconstruction head: The module aims to reconstruct the original time series from the
reconstructed patches. This is achieved by linearly projecting different representations
to recover the original patch dimensions. At this stage, the output has a shape of
(Batch, n_patches, dim). Finally, the last two dimensions are flattened to retrieve the
initial input space dimension.

4.2. Pretext Task

Pretext task selection is crucial for SSL. The connection between the pretext task and
downstream task affects the efficacy of learned representation on the main task. We in-
troduce a novel pretext task which learns to capture the characteristics of eye and brain
responses relative to the stimulus signal in order to fill the masked region. Furthermore,
our pretext task is inspired by the masked autoencoder (MAE) and, more generally, by the
masked modeling method, but tailored to our problem to accommodate the characteristics of
eye movement multivariate position time series, including a low signal-to-noise ratio stem-
ming from errors in eye tracking prediction and sparse regions due to eye tracking failure.
To address these issues, we propose a masking heuristic that simulates eye tracking failure
and introduces signal corruption noise to replicate inaccurate eye tracking predictions.

4.2.1. Masking Strategy
Our Proposed Algorithm

Our algorithm is parameterized by a number of splits N and a maximum masking
ratio rmax. To control the patching density of our data, we first construct a list of sorted
indexes of the different patches. Then, we split the list into N sublists. For each sublist, we



BioMedInformatics 2024, 4 1910

sample a masking ratio (ri) from the interval [0, rmax], and then mask the corresponding
consecutive indexes. The different operations are presented in detail below:

1. Construct a list (P) of the sorted indexes of each patch.
2. Split the list into N sublists Pi defined by

Pi = {P[n] | n ∈ [i · int(512/N), (i + 1) · int(512/N)]}

3. For each sublist Pi, randomly sample a mask ratio ri from the interval [0, 0.25], as well
as a starting offset oi from the interval [1, m], with m defined by

m = max(0, int(512 · (1 − r)/N))− 1

4. Contiguously select li indexes starting from the offset oi in each sublist Pi, and discard
the remaining indexes. The set of retained indexes for each sublist Pi, given the
sampled random mask ratio ri as well as the offset oi, is defined by

M(i, ri, oi) = {Pi[oi + r] | ri ∈ [min(1, r · 512/N)]}

Our proposed masking model has 2N + 1 parameters:

• Granularity N: These parameters control the granularity of the segmentation. It is
initialized to 1 and incremented after each batch in the cyclic interval [1, 64].

• Length li: This parameter accounts for the number of consecutive retained indexes
in each sublist Pi ∈ P, and defined by (1), with the ri masked ratio sampled for the
sublist Pi.

li = min(1,
ri × 512

N
) (1)

• Offset oi: This parameter represents the position of the first retained index in each
sublist Pi.

These parameters, chained together, allow for controlling the masking density. For
instance, li controls the length of the different patches, while N controls how finely each
list index is divided. Note that the length li varies for each sublist i.

Analyzing Algorithmic Extremes

We notice two extreme cases for this algorithm. The first case is when N is minimal
(N = 1), and ri is maximal, thus sampled to rmax. And the second case is when N is
maximal and ri is minimal for each sublist, thus equal to 1.

When N is minimal, the algorithm will select one contiguous segment of length
ranging from 12.5% to 25% of the initial length, depending on P, which is hard for the
model because the learning task becomes similar to the forecasting task. On the other hand,
the second extreme is when N is maximal, hence equal to 64. Then, the algorithm will
approximate the uniform sampling of the unmasked region by splitting the time series into
64 lists of 8 consecutive indexes, and then randomly retain 1 index per sublist.

Our strategy is motivated by the fact that for time series signals, if the density of the
masked points is placed randomly on the time series, the task becomes very easy to infer
the correct unmasked value, up to a certain precision, by just connecting the dots. As a
result, we would sample some segments where we have a relatively large zone of masked
area to encourage the model to learn to predict the time series eye movement signal by
sampling using the previous trials and the target signal.

Moreover, to mitigate the hard sampling effect, we considered passing to the decoder
the target signal, which encodes the position of the stimuli during each time step. As
a result, the decoder output is conditioned with the target signal as well as the learned
representation of the unmasked patch.



BioMedInformatics 2024, 4 1911

4.2.2. Learning to Capture Eye and Brain Response Characteristics Relative to the Target

We introduce a sophisticated self-learning method for analyzing eye movement time
series data. Traditional approaches typically focus solely on response data, by masking
several patches in the time series, and asking the model to fill the missing information.
However, our method breaks from convention by incorporating both the target signal
and the eye movement response signal. This holistic approach mirrors the physiological
integration observed in the brain, where stimulus and response preparation are intertwined.
By conditioning the algorithm with both stimulus and response signals, we aim to stimulate
a more realistic and physiologically relevant learning process. This method acknowledges
the dynamic properties of stimuli over time and the need for movement responses to adapt
accordingly. By integrating both stimulus and response in the learning process, our ap-
proach seeks to achieve a more intelligent and realistic model. This innovative methodology
holds promise for developing physiologically accurate self-learning algorithms applicable
to various contexts, including complex scenarios.

4.2.3. Corruption Strategy
Sampling the Corruption Noise

To create the corruption process, our goal is to produce a vector noise similar to the
observed data noise but significantly higher in order to challenge the reconstruction process
and encourage the model to utilize other segments with target signals for denoising. The
implementation involves generating random noise from a normal distribution with stan-
dard deviation 0.5, upsampling the noise using bilinear interpolation to mimic correlated
noise over time for added realism, and then multiplying each noise point by the local signal
amplitude to control the signal-to-noise ratio.

Varying the Corruption Policy within Each Group

The motivation for processing each group differently is to enhance the homogeneity
of denoising difficulty within each batch. We investigate eight corruption modes for every
batch, which is evenly divided into eight subgroups. For each subgroup, we apply the
following processing steps:

• Group 1: Right eye signal corruption.
• Group 2: Left eye signal corruption.
• Group 3: Left and right eye signal corruption.
• Group 4: Right eye signal corruption with a probability of 0.5 for each point.
• Group 5: Left eye signal corruption with a probability of 0.5 for each point.
• Group 6: Left and right eye signal corruption with a probability of 0.5 for each point.
• Groups 7 and 8: No corruption is applied.

The motivation behind processing each group differently is to increase the homogene-
ity of the denoising difficulty within each batch.

4.3. Downstream Task
Head Classifier Design

We evaluate the pertinence of the learned representation on the annotated Ora dataset.
To learn the multi-annotation classification task, we stacked on top of the learned embed-
dings a head classifier. However, screening each group of the eight different pathologies
may require more than one linear layer. As a result, we explored other classifiers to improve
the model performance on the downstream task.

In Figure A4 of Appendix A, we present an overview of the different explored module
designs. H0, H1, H2, H3, H4, H5, H6, and H7 are depicted in subfigures (a), (b), (c), (d), (e),
(f), (g) and (h), respectively. The main idea explored in our experimentation is increasing the
input space by incorporating segment normalization statistics within the encoder output,
increasing the expressivity of the head classifier by using a new Transformer block on top
of the 16 pre-trained Transformer blocks, and finally exploiting, in addition to the CLS slice,



BioMedInformatics 2024, 4 1912

the remaining encoder output tensor by processing each temporal slice separately, then
aggregating the different classification slices by means to increase model resilience.

• Linear probing: Traditionally, linear probing is used to evaluate the pertinence of
the learned representation, using a linear classifier, trained on the CLS slice or using
the mean aggregation of the encoder output within the temporal dimension. The
head classifier (H0) is a layer perceptron with sigmoid activation. We follow the same
approach outlined in [29] by adding between the head classifier and the encoder a
batch normalization layer without affine transformation.

• Incorporating the normalization statistics: For instance, while applying a per sam-
ple normalization within the temporal dimension, the input variability is reduced,
thus making the pretext task easier. We hypothesize that two encoder embeddings
become incomparable by altering information such as the amplitudes, thus affect-
ing the classification performance on the second learning stage. Thus, in H1, we
incorporate the normalization statistics within the encoder CLS slice. Additionally,
batch-normalization is applied, followed by a two-layer perceptron, as presented in
subfigure (b).

• Adding additional attention blocks: In H2, H3, and H4, we added an additional
Transformer block-LN on top of the encoder output. In H2, the normalization statistics
are concatenated with the block output; meanwhile, in H3 and H4, they are concate-
nated with the block input. This allows the added attention module to take advantage
of information statistics. Furthermore, the CLS is processed using a perceptron head in
H2 and H3, while in H4, it is processed with a two-layer perceptron with an additional
dropout of 0.5 before reaching the last linear layers. An overview of the three head
classifiers is presented in Appendix A, Figure A4, in subfigures (c), (d) and (e).

• Exploiting the entire encoder output: In H5, H6, and H7, rather than collecting the
CLS slice, we leverage the entire tensor. Similarly, we present in subfigures (f), (g)
and (h) the corresponding three architectures, respectively. In H5, the initial step
involves processing each encoder output with the block module. Subsequently, the
resulting tensor is averaged along the temporal dimension, concatenated with the
normalization statistics, processed through batch normalization, and finally fed into a
two-layer perceptron. Conversely, in H6 and H7, the normalization statistics are first
stacked with the encoder output and then passed through an additional block-LN,
enabling the block-LN to capitalize on these features. The processing of the block-
LN output differs between H6 and H7. In H6, the block-LN output is flattened and
directed to the perceptron classifier. In contrast, in H7, a two-layer perceptron is
employed as a head with a dropout of 0.2 before the last layer. Moreover, instead of
collecting the CLS slice or averaging by mean, all slices are concurrently processed
with a two-layer perceptron, and the resulting output is averaged along the temporal
dimension. Finally, a dropout of 0.2 is applied before the last layer.

4.4. Model Training

The training loop and evaluation presented above are implemented using custom
code with PyTorch. Additionally, for the encoder and the decoder, we used the timm
library [57] VIT model, adapting it to integrate different model designs as presented in
Appendix A, Figures A3 and A4. Finally, the data generator is implemented in PyTorch.
For each batch, the generator randomly selects a set of recordings, then samples 16 con-
secutive segments from each observation to construct each training batch along with its
corresponding annotation that are used for the second learning stage.

The pre-training is performed using two NVIDIA V100 GPUs, while the second-stage
learning is performed using a different GPU for evaluation (NVIDIA A100 80 GB). The
different hyperparameters are manually optimized.



BioMedInformatics 2024, 4 1913

4.4.1. First-Stage Model Training

We set the minimal masking ratio to 75%. The embedding dimension is set to 192. We
set the patch size to 16 to reduce the temporal dimension to 512. Finally, for the masking
module, the number of splits is set using an incrementation counter modulo 64.

We train the model using AdamW with a learning rate initialized at 5.6 × 10−5. By
minimizing the mean-squared error of the initial and the reconstructed masked regions,
the two beta optimizer parameters (β1 and β2) are set to 0.9 and 0.95, respectively. Finally,
we set the weight decay to 0.05.

In addition, we use the learning rate scheduler defined below, which corresponds to a
cosine annealing schedule, with a linear warm-up phase starting from the first epoch until
epoch 200.

lr(epoch) = min
(

epoch + 1
200 + 1e − 8

, 0.5 · cos
(

epoch
2000

· π

)
+ 1

)
We use a batch size of 96, which corresponds to an effective batch size of 1536 segments.

Additionally, we train the model for 300 epochs, taking approximately 48 h, using one
GPU V100.

4.4.2. Second-Stage Model Training

To learn the classification task, we stack each of the different proposed head classifiers
on top of the learned encoder; then, we use transfer learning to adapt the resulting models
to downstream tasks. We experiment with two transfer learning techniques. In the first
approach, we freeze the encoder weights and train only the head classifier. In the second
approach, we fine-tune the encoder weights along with training the head classifier. Finally,
to evaluate our method, we perform a final training for each head classifier by training the
“en” model (encoder + head) using classical supervised learning, without pre-training.

Optimizer

We used the AdamW with default beta hyperparameters of (0.9,0.999) and the learning
rate scheduler defined below:

lr(epoch) = 0.5
(

cos
(

π · epoch
total_epoch

)
+ 1

)
All the different training settings in the three regimes are similar, except for the

optimization hyperparameters, namely the learning rate, the weight decay, and the model’s
weight state and initialization. The different parameters are summarized in Table A2 of
Appendix A.

Additionally, for the two transfer learning regimes, we experimented with a smaller
learning rate, lower than the final learning rate of the first stage. However, we found that
the resulting model performance was less optimal relative to when retraining with an initial
learning rate of 0.001.

Loss Function

Recall that our classification problem is a multi-annotation problem, where each
sample can have one or multiple positive classes. Thus, we consider learning a binary
classifier for each class by learning a per-class distribution. To mitigate dataset imbalance,
we use focal loss optimization and per-sample loss weighting based on class weight, with
binary focal losses independently optimized for each class using a gamma value of 3. We
experiment with both binary cross-entropy and focal loss. We observe that substituting
focal loss with binary cross-entropy results in a decrease in generalization ability within the
positive classes, consistently for all the methods and for all the head classifiers. Therefore,
we consider using focal loss for all downstream experiments. Additionally, to achieve class
balancing, we perform class balancing by setting the focal loss alpha hyperparameters for
each class. The different alpha parameters are summarized in Table A3. Note that the



BioMedInformatics 2024, 4 1914

different parameters are set by monitoring the loss stability within each class on the first
four epochs and can be further optimized.

Additional Training Setting

Note that when training the head H0 using a frozen encoder weight, which is known
as linear probing in the literature, we follow the training setup as outlined in [29,41], by
disabling weight decay, and normalizing the model output using batch normalization
without learning parameters, followed by a linear layer.

We use a batch size of 64. Note that each sample contains 16 segments of length 512
each, corresponding to an effective batch size of 1024 segments. We train the model for 100
epochs with a warm-up of 10 epochs.

Early Stopping

Additionally, we employ the early stopping callback set for 10 epochs. Each class
demonstrates different convergence speeds, prompting us to strike a balance by focusing
on the most representative class in terms of samples across the four datasets. For instance,
our primary aim is to enhance the screening of scholarly disorders.

Through experimentation, we discovered that setting the early stopping based on the
global F1 score leads to situations where the overall unweighted performance appears good,
yet certain classes exhibit low performance. Consequently, we established the criterion
solely on the macro F1 of three classes to ensure high performance within those three,
which are also the most representative in our dataset: classes 0, 1, and 4, corresponding to
scholarly disorders (dyslexia, reading disorder, attention deficit).

Another consideration is using the weighted global F1 to account for the number of
instances in each class. However, such an approach would result in different criteria per
method, rendering the final results incomparable across the various datasets.

4.4.3. Model Evaluation

To evaluate the generalization ability of our proposed architectures, we consider the
macro F1 score for each class. Additionally, we consider aggregating the different per-class
F1 scores into global metrics. The different metric definitions are presented in ascending
order, with each high-level metric using the metric scores of the lower level to aggregate
different scores:

• Per-class Micro F1: The positive micro F1 is defined by the harmonic mean of precision
and recall, 2 · p·r

p+r . When computing the positive micro F1 score, the precision and
recall of the positive class are used. Similarly, for the negative F1 score, the precision
and recall of the negative class are used.

• Adding additional attention blocks: Per-class Macro F1 score: This corresponds to
the unweighted mean of the positive and negative micro F1 scores for a correspond-
ing class.

• Global F1 score: This corresponds to the mean of the macro F1 scores within each
class. Similarly, we define the global positive F1 score and the global negative F1
score, which are computed using the per-class positive F1 score and the negative F1
score, respectively.

4.4.4. Additional Baseline

In addition to the supervised learning paradigm, we compare our proposed method
with two additional unsupervised learning techniques that have been previously explored
for eye movement analysis: CLRGaze [21] and Gazemae [19]. Both baselines are first
pre-trained on our pretext dataset and then fine-tuned on our different datasets.

• Gazemae: We employ the method presented in [19], which involves training a tempo-
ral convolutional autoencoder using the variational autoencoder (VAE) approach.



BioMedInformatics 2024, 4 1915

• CLRGaze: We utilize the encoder training method proposed in [21], which extends
the SIMCLR approach to eye movement time series.

Finally, the two baselines applied their methods to a temporal convolutional network
(TCN). For a fair comparison, we substitute the TCN used in the two baselines with our
VIT autoencoder for Gazemae, and the VIT encoder only for CLRGaze.

5. Results

We assess the relevance of the learned encoder representation on the multi-annotation
classification task, using the annotated Ora dataset. We first, provide a qualitative estima-
tion of the model performance on the pretext task; then, we present the quantitative result
on the downstream task.

5.1. A Qualitative Overview of the Model Performance on the Pretext Task

In Appendix A, Figure A5, we present an overview of the performance of the au-
toencoder in terms of the ability to reconstruct the signal, evaluated on the test set. The
first column corresponds to the initial signal, the second column corresponds to the noise-
injected signal, the third column corresponds to the target signal masked, the fourth column
corresponds to the masked eye movement signal, and the final column corresponds to
the reconstructed signal. Additionally, the even rows (in red) correspond to the position
conjugate signal within the X-axis, corresponding to the mean values of the eye within the
same axis, while the odd rows (in red) correspond to the disconjugate signal (the difference
between the two eyes). Furthermore, the first four rows correspond to samples where easy
masking with hard noise injection is applied, while on the other hand, the last four rows
correspond to cases where the masking is hard but the injected noise is relatively low.

5.2. A Comparison with the Existing Literature

Table 1 presents the different methods’ performances in terms of global macro F1
score, as well as positive and negative global F1 scores, when training on the four datasets.
Overall, the model performances are higher in the non-reduced datasets relative to the
reduced variants for each of the two visual tasks (saccade and vergence).

Table 1. Presentation of the global macro, positive (Pos.), and negative (Neg.) F1 scores on the
different downstream experiments, applied to the reduced saccade dataset.

Vergence Red. Vergence Saccade Red. Saccade

Method Neg. Macro Pos. Neg. Macro Pos. Neg. Macro Pos. Neg. Macro Pos.
F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1

Fine-tuning

GazeMAE 77.5 52.3 27.1 71.6 47.9 24.2 82.0 54.4 26.7 76.6 51.9 27.2
CLRGaze 78.6 52.7 26.7 73.6 51.2 28.7 81.1 54.2 27.2 76.1 51.8 27.6

ORA-MAE 84.4 60.5 36.5 82.2 53.5 24.9 84.4 60.9 37.3 78 51.5 25

Encoder
freezing

GazeMAE 78.9 43.6 8.4 75.6 41.7 7.9 59.9 40.5 21.1 65.4 41.6 17.7
CLRGaze 75.3 51.2 26.9 63.6 45.7 27.9 71.9 49.5 26.9 62.1 45.1 28.2

ORA-MAE 83.5 59.3 35 77.1 51.9 26.7 83.1 60.4 37.7 78.2 51.1 24
Linear probing 66.8 47.4 27.9 71 49.8 28.7 68.1 48.6 29.2 67.2 46.9 26.7

Sup. Learning 82.5 58.2 34 80.4 52.9 25.5 83.3 59.8 36.4 80.3 51.9 23.4

Additionally, the fine-tuning transfer learning method consistently shows better perfor-
mance relative to the encoder freezing method across different datasets, with improvements
of 1.2, 1.6, 0.5, and 0.4 points on each of the four datasets, respectively. Notably, the differ-
ence in performance is amplified for the GazeMAE, with improvements of 8.7, 6.2, 13.9,
and 10.3 points for the four datasets, respectively.

For instance, ORA-MAE exhibits the best performance on all datasets except for
the reduced saccade dataset, achieving global F1 scores of 60.5% and 60.9% on the two
unreduced datasets (saccade and vergence), and 53.5% and 51.9% on the two reduced
datasets. Additionally, relative to the supervised learning baseline, SSL improves the global



BioMedInformatics 2024, 4 1916

F1 score by 2.3 and 1.1 points on the two unreduced datasets (saccade and vergence), and
by 0.4 points on the reduced vergence dataset. However, on the reduced saccade dataset,
the performance difference is not consistent; while it improves the global F1 score on the
vergence visual task, the performance on the reduced saccade dataset decreases by 0.4
points.

When considering the overall model performance in screening the positive class, the
best performance is achieved by GazeCLR on the reduced variant of both the saccade
(28.2%) and vergence (28.7%) datasets. On the other hand, when considering the non-
reduced variant, ORA-MAE achieves the best performance (37.7% and 36.5%). Finally,
when considering the performance in screening the negative class, the best performance
is consistently achieved with our method across all datasets except the reduced dataset,
where the classic supervised learning-based method achieves the best performance (80.3%).

5.3. Improving Classification Performance Using Different Head Architecture

To improve the generalization performance on the downstream task, we substitute
our initial head classifier (H1) with the remaining other presented heads, and performed
the training of the two transfer learning methods, as well as their corresponding baseline
trained using supervised learning framework. First, we present the overall performance
across each of the three explored learning methods. Further, we present the overall per-
formance of each head separately, with a focus on the different global F1 scores for each
head and for each of the four datasets separately. Finally, we provide in the appendix
the per-class macro F1 score upon which the global F1 scores are computed for each
presented experiments.

5.3.1. An Overview of the Global Performance of Different Heads

Before analyzing each head classifier separately, we provide, in Table 2, a summary of
the overall head performance for each of the three training regimes and each of the four
datasets. This summary includes the mean, standard deviation, minimum and maximum
values, and the coefficient of variability and the gain, which will be further analyzed in the
discussion section.

Table 2. Summary of the mean, standard deviation, coefficient of variability, minimum and maximum
values, and the gain relative to the initial head classifier’s F1 score across the 7 experimented head
classifiers for each of the three methods and each of the four experimental datasets.

Sac. Verg. Red. Sac. Red. verg.

Model Fine Freez. Sup. Fine Freez. Sup. Fine Freez. Sup. Fine Freez Sup.
-Tuning Learn. -Tuning Learn. -Tuning Learning -Tuning Learn.

mean 60.8 60.25 59.39 60.1 59.93 58.87 52.91 52.61 51.44 54.2 52.81 52
std 0.45 0.787 0.75 0.35 0.85 0.55 0.67 1.08 0.59 0.97 1.57 0.53

coef var 0.007 0.013 0.018 0.006 0.014 0.01 0.012 0.02 0.01 0.017 0.029 0.01
min 59.9 58.4 58 59.6 58.5 58.2 51.5 51.1 50.7 52.6 50.4 51.1
max 61.3 61 60.2 60.5 61.5 59.8 53.9 53.8 52.4 55.7 55.5 52.9
gain 0.4 0.6 0.4 0 1.2 0.6 2.4 2.7 0.5 2.2 3.6 0

Overall, within the four datasets, the fine-tuning regime achieves the highest score in
terms of average performance, with a global F1 score of 60.8%, and the lowest variability.
Moreover, the level of variability is consistent across the four datasets, with the fine-
tuning approach exhibiting the lowest variability while experimenting with the different
datasets, whereas the second transfer learning method (freezing) exhibits the highest
variability, suggesting the importance and relevance of exploring different head designs for
this method.

Finally, considering the maximum achieved global F1 score on the vergence dataset,
the freezing strategy achieves the best score of 61.5%, with a 1-point improvement relative
to the fine-tuning approach. On the remaining datasets, the difference in terms of maximum
score between the two transfer learning methods is less than 0.2, with maximal F1 scores



BioMedInformatics 2024, 4 1917

of up to 61.3%, 53.9%, and 55.7% on the saccade dataset, and the reduced saccade and
vergence datasets, respectively.

5.3.2. Reduced Datasets

Tables 3 and 4 present the global macro F1 score, as well as the positive and negative
global micro F1 when trained and evaluated using the reduced variant of the saccade and
the vergence datasets, respectively.

Table 3. Presentation of the global macro, positive and negative F1 scores on the different downstream
experiments applied to the reduced saccade dataset.

Fine-tuning Freezing Sup. Learning

Head Neg. Macro Pos. Neg. Macro Pos. Neg. Macro Pos.
F1 F1 F1 F1 F1 F1 F1 F1 F1

1 78 51.5 25 78.2 51.1 24 80.3 51.9 23.4
2 81 53.1 25.3 80.6 52.7 24.8 80.2 52.4 24.6
3 77.9 52.9 28 81.1 53.6 26.1 79.5 50.8 22.1
4 82.2 53.2 24.1 81.6 53.7 25.8 80.1 51.2 22.2
5 81.3 53.1 24.8 81.6 52.3 23 80.2 51.9 23.5
6 82.7 53.9 25 78.8 51.1 23.3 81.6 51.2 20.9
7 81.8 52.7 23.5 81.9 53.8 25.7 80.5 50.7 21

Table 4. Presentation of the global macro, positive and negative F1 scores on the different downstream
experiments applied to the reduced vergence dataset.

Fine-tuning Freezing Sup. Learning

Head Neg. Macro Pos. Neg. Macro Pos. Neg. Macro Pos.
F1 F1 F1 F1 F1 F1 F1 F1 F1

1 82.2 53.5 24.9 77.1 51.9 26.7 80.4 52.9 25.5
2 82.5 54.5 26.6 80.6 52.3 23.9 78.1 51.1 24
3 83.2 55.2 27.3 77.7 52.4 27.1 78.1 51.5 24.9
4 81.4 54.2 27 80.8 52.7 24.6 80.5 52.3 24.1
5 82.3 55.7 29 80.3 55.5 30.8 79.1 52.2 25.3
6 82.4 53.3 24.1 79.1 50.4 21.6 80.9 52 23.2
7 78.8 52.6 26.4 81.7 54.5 27.4 79 52 24.9

Overall the, the best performances, in terms of global F1 score, are achieved when
fine-tuning the trained encoder using H5 and H6 on the reduced vergence and saccade
datasets, respectively (55.7 % and 53.9%). Moreover, in the two datasets, when increasing
the head classifier complexity, SSL shows the best performance, relative to the baseline
with an improvement up to 2.8 and 1.5 points in the reduced variant of the vergence and
the saccade datasets, respectively.

Additionally, H5 shows the best performance trade-off when performing fine-tuning
in the two datasets. On the other hand, the performance of the encoder freezing strategy on
the two datasets are optimal when using H7 (55.5% and 53.8%). Finally, increasing the com-
plexity of the different head does not improve the performance. Only H2 performs better
than 23.4% in the saccade visual task, corresponding to the H1 variant when incorporating
the normalization statistics.

When considering the global ability to screen the positive class, H3 shows the best
performance on the two transfer learning methods on the saccade dataset ( 28% and
26%), while on the vergence dataset, flattening the entire encoder feature map further
improves the performance (29% and 30.8 %). Finally, in Appendix A, Tables A6 and A7, we
present the per-class performance in terms of the F1 macro score when evaluated on the
vergence dataset.



BioMedInformatics 2024, 4 1918

5.3.3. Non-Reduced Datasets

Tables 5 and 6 present the macro F1 metrics for each of the seven head classifiers and
each of the three training regimes when trained on the saccade and vergence datasets. Addi-
tionally, for each dataset and each of the seven experimented heads, two proposed transfer
learning methods outperform the supervised learning methods in terms of the global macro
F1 score, corresponding to the mean of the macro F1 score within the different classes.

Table 5. Presentation of the global macro, positive, and negative F1 scores on the different downstream
experiments applied to the saccade dataset.

Fine-tuning Freezing Sup. Learning

Head Neg. Macro Pos. Neg. Macro Pos. Neg. Macro Pos.
F1 F1 F1 F1 F1 F1 F1 F1 F1

1 84.4 60.9 37.3 83.1 60.4 37.7 83.3 59.8 36.4
2 84.7 61.2 37.6 84 60.5 37 83.2 58.9 34.6
3 82.7 59.9 37.2 84.5 60.7 36.9 83.3 59.7 36.1
4 84.4 61 37.5 84.1 60.5 36.9 83 58.9 34.8
5 84.7 61.3 37.8 84.6 60.3 36 83.5 60.2 36.9
6 85.4 61 36.6 83.1 58.4 33.8 83.7 58 32.4
7 83.4 60.5 37.5 85.1 61 36.8 83.9 60.2 36.5

Table 6. Presentation of the global macro, positive, and negative F1 scores on the different downstream
experiments when trained on the vergence dataset. For each regime, the best metrics score is
highlighted in bold.

Fine-tuning Freezing Sup. Learning

Head Neg. Macro Pos. Neg. Macro Pos. Neg. Macro Pos.
F1 F1 F1 F1 F1 F1 F1 F1 F1

1 84.4 60.5 36.5 83.5 59.3 35 82.5 58.2 34
2 84.7 60.2 35.8 83.9 60.2 36.4 82.6 58.5 34.4
3 83.6 59.6 35.6 84.6 60.1 35.7 82.6 58.5 34.4
4 83.7 59.7 35.7 84.4 59.9 35.4 84.2 59.8 35.4
5 83.6 59.7 35.7 84.5 60 35.5 82.6 59.4 36.1
6 86 60.2 34.4 83.4 58.5 33.5 85.2 58.5 31.7
7 84.3 60.5 36.6 85.9 61.5 37.1 84 59.2 34.5

When considering the vergence dataset, H7 achieves the highest scores in terms of
global F1 (61.5%), positive F1 (37.1%), and negative F1 (85.9%) when trained using the
freezing encoder strategy. On the other hand, when considering the saccade dataset, the
same method also achieves the highest macro F1 score (61%), while H5, when trained using
fine-tuning, achieves a slightly higher performance by 0.3 points. It also achieves the best
score in terms of the global positive F1 score (37.8%).

Additionally, when considering the head performance on each learning method, H7
achieves the best overall performance on the two datasets (61.5% and 61.0%). However,
when trained using the fine-tuning regime, both H7 and H5 achieve the best trade-off
within the two datasets. When training H5, we achieve macro F1 scores of 61.3% and 59.7%
on the saccade and vergence datasets, respectively, while using H7, we achieve 60.5% on
both datasets.

Finally, in Appendix A, Tables A6 and A7, we present the per-class macro F1 score for
the two corresponding datasets.

5.3.4. Analyzing the Optimized Overall Method Performance

To assess the importance of head optimization, we present in Figure 2 a barplot
illustrating the best head performance of each of the four learning methods: the fine-tuning



BioMedInformatics 2024, 4 1919

approach, supervised learning, and the freezing of the encoder strategy, including the linear
probing variant.

While H0 exhibits poor results relative to the supervised learning baseline, showing a
decrease of 11.6 and 5.5 points in the two saccade dataset variants, and 2.4 and 3.1 in the
two vergence variants, performing head-based optimization enables the freezing-based
method to outperform the same baseline, with improvements of 0.8 and 1.4 points in the
saccade variants, and 1.7 and 2.6 points in the two vergence variants.

Figure 2. A barplot depicting the performance of the best model variant for each of the four datasets.

For instance, H7, when trained using the freezing of the encoder strategies, consistently
achieves the best performance across all datasets, except for the reduced vergence dataset,
where it attains the second-best performance. This allows the encoder–freezing-based
transfer learning method to achieve the highest performance, with a global macro F1 score
of 61.5%. This corresponds to macro F1 scores of 64.7%, 66.1%, and 61.1% on our main
target classes (0, 1, and 4), namely dyslexia, reading disorder, and attention deficit, thereby
enabling the use of AI for screening scholar disorders to prevent academic failure.

6. Discussion
6.1. Analyzing Performance Gains through Head Classifier Design Optimization

The different heads are trained and evaluated on four different datasets. Therefore,
directly comparing them is not appropriate due to the presence of several biases, including
the task complexity as well as the sample size. As a result, we are interested in comparing
their gains, defined as the difference in terms of global F1 score between each best head
score and the corresponding baseline head (H1). Then, we explore the impact of optimizing
the head classifier in terms of the obtained gain.

Initially, using Table 2, we compare the gain obtained across the three regimes. Then,
we investigate the high variability under the freezing transfer learning regime. Finally,
we analyze the effect of sample size by comparing, for each of the two visual tasks and
each of the two transfer learning methods, their corresponding gains on both the large
(non-reduced) and the small (reduced) datasets.



BioMedInformatics 2024, 4 1920

6.1.1. A Comparison of the Performance Gains Within Different Training Methods

When analyzing the gains of each of the two transfer learning regimes on the reduced
and non-reduced datasets, the gain in the reduced dataset is higher (2.4, 2.7, 2.2, and
3.6 points), relative to the non-reduced dataset (0.4, 0.6, 0, and 1.2 points).

For each of the four datasets, when comparing the difference in gain between the two
transfer learning regimes, we observe a mean difference of 0.3 on the two non-saccade
datasets (0.2 and 0.4) and a mean difference of 1.3 points on the two vergence datasets
(1.2 and 1.4), where the learning task is more complex due to the nature of the vergence
eye movement.

This can be attributed to the nature of the two transfer learning algorithms and the
complexity of the downstream task. While the fine-tuning regime allows for optimizing
the model weights on the second task, thus making the head design optional, the freezing
regime relies heavily on the complexity of the head classifier to learn the downstream task
using the learned representation.

On the other hand, in supervised learning scenarios, the observed gains are relatively
modest (less than 0.6 in loss). In this regime, where the entire network undergoes training,
the addition of a complex head classifier atop corresponds to simply stacking additional
layers, thus resulting in only marginal increases in model expressivity. We hypothesize that
the marginal increase is mainly attributed to the incorporated normalization statistics.

6.1.2. On the Importance of Exploring Various Head Classifier Designs When Freezing
the Encoder

When examining the variability of global F1 scores across the different head classifiers
on each of the four datasets, our analysis reveals a notable increase in the coefficient of
variability within the freezing regime compared to the fine-tuning regime, by a factor of 1.89.
This heightened sensitivity to classifier design variations can be attributed to disparities in
model expressivity among different heads.

In the fine-tuning regime, model expressivity is predominantly influenced by the
trainable encoder’s capacity. However, in the freezing regime, where the entire encoder
weights are fixed, the model’s expressivity in learning classification from a pre-learned
representation is solely dependent on the corresponding trainable head’s expressivity.

As result, in the second transfer learning method, which involves freezing the encoder,
the best performance is obtained with the biggest head in terms of model expressivity (H7).

This phenomenon becomes more pronounced when increasing the complexity of the
downstream task. For instance, when freezing the encoder, the performance gain is more
significant in the vergence visual task compared to the saccade visual task, evident in both
the non-reduced (0.6 vs. 1.2 points) and reduced datasets (2.7 vs. 3.6 points).

6.1.3. Effect of Sample Size on Representation Relevance

For each dataset and transfer learning scenario, when comparing the difference in
gains between the reduced and non-reduced variants, we consistently observe a difference
greater than 2 points. Specifically, we note differences of 2.0 and 2.1 points for the saccade
visual task, and 2.2 and 2.4 points for the vergence dataset. This suggests that the signifi-
cance of enhancing the head classifier complexity, in terms of global F1 score, is inversely
proportional to the sample size.

Thus, increasing the dataset size enriches the learned representation, rendering addi-
tional layers (i.e., head classifiers) relatively unnecessary during retraining. Conversely, for
small datasets, augmenting the head classifier complexity during downstream task learning
enhances generalization ability. For instance, when considering the method showing the
best overall performance, namely the fine-tuning regime, we observe relatively low gains
of 0.4 and 0 in the two non-reduced datasets. However, when training on the two reduced
datasets using the same setting, gains of 2.4 and 2.2 are achieved.



BioMedInformatics 2024, 4 1921

6.2. Comparing SSL and SL Algorithms under Different Settings

Comparing the difference in the model performance, when training using
self-supervised learning (SSL) with fine-tuning and supervised learning (SL), the difference
in global F1 score increases in the reduced dataset: from 1.1 points to 1.5 points in the sac-
cade dataset, and from 0.4 to 3.8 points in the vergence dataset. This confirms the potential
of the SSL algorithm when facing a small-sized dataset. Additionally, when comparing the
same difference in the saccade dataset vs. vergence dataset, which is more complex, we
observe that the same difference increases by increasing the task complexity. For instance,
the difference of the performance, in terms of global macro F1 score, increases from 1.5
(saccade) to 3.8 (vergence) points in the reduced datasets. Finally, when considering
the reduced vergence dataset, the difference in the performance of the two frameworks,
and in the saccade dataset vs. reduced vergence dataset, we observe that the difference
becomes higher due to the presence of the two factors discussed above (increasing the task
complexity and reducing the training set size).

6.3. Additional Design Choice
6.3.1. Architecture Building Block Choice

Traditionally, CNNs have shown great performance compared to Transformer-based
architectures on small datasets, attributed to implicit regularization such as weight sharing.
However, applying the MAE algorithm directly to CNNs has several limitations that are
not evident when incorporating it to build a CNN autoencoder for the MAE task [29].
For instance, ref. [58] investigated solving the distribution shift problem by using sparse
convolution. On the other hand, RNNs have been used for seq2seq modeling before
Transformers [59].

Ref. [30], on the other hand, explored building the autoencoder using an RNN architec-
ture. While the model achieves promising results on the different evaluated datasets, when
varying the input size of the encoder from 336 to 1440 on the ETTh2 dataset, the model’s
mean-squared error (MSE) is correlated with the encoder input information (input size).

For example, with our input size of 8192, which is due to our sample length, RNNs
may not be suited as they suffer from the information bottleneck issue [60]. Instead, we
use Transformer architecture, which shows better performance on long-length input in
seq2seq models [61] by allowing the model to focus on different parts of the input instead
of having fixed-size context vectors. As a result, we build our encoder and decoder using
Vanilla Transformer.

6.3.2. Combining the Masking and Denoising Pretext Task

While the masking-based algorithm can be regarded as an extreme case of the denois-
ing algorithm, with generated noise that makes the signal constant within time (hence,
masked), the two tasks aim to learn different objectives.

For instance, as opposed to the masking algorithm, where the masked zones are
ignored by the encoder, the objective is to reconstruct them using the unmasked zone.
In the denoising algorithm, the objective is to extract the information from the noisy or
corrupted signal.

However, the noise in our signal is very high due to the noise inherent from the
eye-tracking system. As a result, we consider training the model to denoise the signal. On
the other hand, masking autoencoders are more suited for attention-based architecture
and have been used in the literature recently, showing better performance when used as a
pretext task for SSL.

In our approach, we considered the masking heuristic for performance and the denois-
ing heuristic because it is a realistic task and required for the model to correctly perform the
downstream classification. As a result, it is not only a pretext task but can also be regarded
as a preliminary task for classification.



BioMedInformatics 2024, 4 1922

6.3.3. Passing the Target Signal to the Decoder

Adding the target signal to the decoder: Our choice to perform this is motivated by
the fact that this information is never deteriorated, as opposed to eye movement time
series, whose accuracy is mainly influenced by the accuracy of the eye-tracking system.
As a result, our approach aims to encourage the model to reconstruct the inaccurate eye
movement region by observing the accurate region and the target signal, which encodes
the stimulus state.

6.3.4. Using High Sample Signal Frequency

Our time series recordings are registered with a frequency of 200 Hz. As a result, a
2-minute eye movement recording corresponds to a multivariate time series of 24,000 points.
In order to mitigate the long sample length problem, a different approach would be to
downsample each recording to 60 Hz, for example, before processing. However, in our
approach, we aim to study eye movement at a low level, providing the model with the
ability to analyze each saccadic movement.

The average duration of a saccadic movement is between 20 ms and 40 ms, which
corresponds to lengths between 4 and 8 points. As a result, decreasing the frequency further
could compromise the model’s ability to capture such patterns.

7. Limitations and Future Directions
7.1. Cross-Validation Evaluation

This study represents a preliminary exploration into various settings for each of the
two learning stages. Due to computational constraints, we were only able to perform each
training once. However, a promising avenue for future research involves employing multi-
fold cross-validation with the best settings identified in this study. This approach would
help mitigate the variability in performance estimation, thereby enhancing the reliability of
the reported results.

7.2. Comparing the Reduced and Non-Reduced Datasets

The performance on the two variants (reduced and non-reduced) is different and
consistent across the saccade and the vergence datasets. For the saccade dataset, this
difference can be attributed to the reduction in sample size, as presented in Appendix A,
Table A1. Another possible risk, which may contribute to amplifying this difference, is
the presence of a subset of shared unlabeled data to be used in the pretext task and for
evaluating the downstream task.

We hypothesize that the difference in performance is attributed to the differences
in sample size rather than the risk of information leak, because, while the supervised
learning-based training is not concerned with this limitation (risk of leak), the difference in
performance (non-reduced vs. reduced) is also present in supervised learning models (red),
as depicted in Figure 2. Moreover, the difference is bigger relative to the SSL-based model
(7.8 and 7.1 points in the saccade and the vergence datasets, respectively). Meanwhile, a
future direction would be to eliminate this bias risk and perform the two-stage training to
perform all the experiments to confirm our hypothesis.

7.3. Conducting More In-Depth Evaluation

In this exploratory study, our objective is to explore different settings in preliminary
studies to optimize our algorithm’s components. Due to the high number of experiments
conducted and the computational costs associated with each experiment, we conduct each
one only once. However, a future direction is to determine the optimal settings from this
exploration and conduct more in-depth experiments, including cross-validation, and adapt
our evaluation method to evaluate statistically the different findings and comparison.

At this stage, we propose a self-learning method tailored for stimulus-driven datasets.
This method focuses solely on eye movement data obtained during stimulus-driven tests,
where the information relative to the stimulus is encoded in a time series. Such a constraint



BioMedInformatics 2024, 4 1923

aims to simplify our task’s complexity [12], thereby reducing the intricacy of the learning
process. Consequently, the generalizability of our findings to non-stimulus-driven datasets
remains unexplored.

7.4. Pretext Task Reconstruction

The results are very promising for the signal reconstruction task; the model was
able to remove noise corruption. Figure A5 in Appendix A presents an illustration of the
reconstructed signal. The model was evaluated only visually by inspecting its predictions
and comparing them to the baseline. The model achieved an MSE of 0.017; however, it is
difficult to interpret this score. A future direction would be to integrate this architecture
into the ideal preprocessing for the denoising task and as a backbone for the classification
task. Another important direction is to introduce the confidence level time series to the
model and update it according to the quantity of noise added.

7.5. Exploiting the First-Layer Decoders

Another important direction is exploring the incorporation of the first-layer decoders
within the final encoder architecture. For instance, the encoder embedding and the stimulus
target signal are combined at the decoder level, allowing the decoder to capture the relation-
ship between these two sources of information. By incorporating the first decoder layers,
we aim to integrate the knowledge learned from the pretext task into the analysis of eye
movement data relative to the target signal. Such a mechanism improves the generalization
performance on the downstream task. For example, our findings in the ablation study
published in [62] reveal that incorporating the REMOBI target signal improves the global
macro F1 score by an average of 2 points across the three folds.

7.6. Toward a Unified Meta Model

In contrast to the conventional practice of employing a distinct model for each study
and screening task, our objective is to establish a singular meta model trained on the
entirety of available annotated data. This approach not only facilitates an increase in model
complexity but also maximizes the data size accessible for training purposes. The unified
meta model serves as a comprehensive representation of the underlying patterns present in
the diverse datasets. In the proposed methodology, for each specific study, we leverage
the pre-trained meta model to derive a meaningful representation from the input space.
This process allows us to extract essential features and patterns encapsulated within the
vast and heterogeneous data. Subsequently, a secondary classifier is trained atop the meta
model’s output, specifically tailored to the target class distribution and eye movement
types relevant to the corresponding study.

By utilizing a pre-trained meta model, instead of the model learning a mapping
from the original input space of 8192, it focuses on the more condensed and informative
representation of size 512 generated by the meta model. we thus substantially reduce the
amount of data required for training the subsequent classifiers.

8. Conclusions

In this preliminary study, we introduce a novel self-supervised learning pretext task,
tailored to stimulus-driven eye movement data, coupled with a denoising task to enhance
resilience against simulated eye tracking errors.

The proposed pretext task aims to capture both the cognitive (brain) and the motor
(eye) aspects by reconstructing the eye movement position signal using up to 12.5% of
unmasked eye movement signal patches, along with the entire REMOBI target signal.
Consequently, the encoder learns a high-dimensional representation of a multivariate
time series of length 8192 points, corresponding to approximately 40 s, while the decoder
learns the reconstruction task, using the learned representation along with the REMOBI
target signal.



BioMedInformatics 2024, 4 1924

In the subsequent learning phase (downstream task), we evaluate the learned encoder
representation on screening eight groups of pathological tasks, including dyslexia, reading
disorders, and attention deficit disorders, using various datasets, and compare our method
with two different SSL approaches as well as a supervised learning regime. Moreover, we
conduct an exploratory analysis employing various head architectures and different transfer
learning techniques to optimize performance on the downstream task. Our approach
achieved macro F1 scores of 61.5% on the vergence dataset and 64.7%, 66.1%, and 61.1%
on dyslexia, reading disorders, and attention deficit disorders, respectively. These results
highlight the potential of self-learning algorithms in facilitating the screening process for a
spectrum of pathologies, paving the way for further advancements in this field.

9. Patents

Zoï Kapoula has applied for patents for the technology used to conduct this exper-
iment: REMOBI table (patent US8851669, WO2011073288); AIDEAL analysis software
(EP20306166.8, 7 October 2020; EP20306164.3, 7 October 2020—Europe). Patent application
pending EP22305903.1.

Author Contributions: Supervision, Z.K. and T.P.; methodology, A.E.E.H.; software, A.E.E.H.; valida-
tion, T.P. and Z.K.; formal analysis, A.E.E.H.; investigation, A.E.E.H.; resources, Z.K. and T.P.; data
curation, A.E.E.H.; Conceptualization, A.E.E.H.; writing—original draft, A.E.E.H.; writing—review
and editing, Z.K. and T.P.; visualization, A.E.E.H.; project administration, Z.K. and T.P.; funding
acquisition, Z.K. All authors have read and agreed to the published version of the manuscript.

Funding: Alae Eddine El Hmimdi is funded by Orasis-Ear and ANRT, CIFRE.

Informed Consent Statement: This meta-analysis drew upon data sourced from Orasis Ear, in
collaboration with clinical centers employing Remobi and Aideal technology. Participating centers
agreed to store their data anonymously for further analysis.

Data Availability Statement: The datasets generated and/or analyzed during the current study are
not publicly available. This meta-analysis drew upon data sourced from Orasis Ear, in collaboration
with clinical centers employing REMOBI and Aideal technology. Participating centers agreed to store
their data anonymously for further analysis. However, upon reasonable request, they are available
from the corresponding author.

Acknowledgments: This work was granted access to the HPC resources of IDRIS under the allocation
2024-AD011014231 made by GENCI.

Conflicts of Interest: Zoï Kapoula is the founder of Orasis-EAR.



BioMedInformatics 2024, 4 1925

Appendix A

Figure A1. An overview of the left and right position signals during the saccade (right columns)
and vergence (left columns) tests. The first and second rows correspond to the left eye and right eye
position signals, respectively. Additionally, the last two rows correspond to the disconjugate and
conjugate signals. Note that the conjugate signal allows for better analysis of the saccade recording,
while the disconjugate signal facilitates better analysis of the vergence recording.

Figure A2. Visual task distribution pie chart for the different eye movement recording types on Ora-M.



BioMedInformatics 2024, 4 1926

Table A1. Train and test sets’ per-class counts for each dataset of the four datasets, used for the
downstream task.

Saccade Vergence

Reduced Non-Reduced Reduced Non-Reduced

Class Train Test Train Test Train Test Train Test

0 5302 9170 17,458 33,090 4830 9076 16,714 33,676
1 3970 12,898 24,180 46,864 6696 13,136 24,714 47,998
2 7552 2832 5612 12,056 3622 2750 5616 12,088
3 4162 3212 6572 14,022 2960 3358 6134 13,734
4 5200 12,132 22,606 43,520 4496 11,840 21,066 42,862
5 2904 4752 7956 17,974 2212 5712 12,200 18,730
6 5156 7570 14,280 28,826 2552 6708 12,258 25,158
7 1802 1784 3490 7,178 1616 2812 4958 10,728

Figure A3. An overview of the proposed architecture; note that the decoder takes as input the encoder
embedding as well as the REMOBI target signal.



BioMedInformatics 2024, 4 1927

Figure A4. An overview of the 8 explored head classifiers for the downstream task. For simplicity,
we omit the activation layers, dropout layer, as well as the layers expanding the normalization
features’ dimensional tensors to have a compatible shape with the output feature map. The flattening
layer reduces the temporal dimension. For the Transformer block (Block), we use the timm library
implementation. Furthermore, block-LN corresponds to the block implementation followed by a
LayerNorm layer.



BioMedInformatics 2024, 4 1928

Figure A5. Overview of autoencoder performance in signal reconstruction. Columns represent
(1) initial signal, (2) noise-injected signal, (3) target signal masked, (4) masked eye movement signal,
and (5) reconstructed signal. Even rows (in red) show the position of conjugate signals within the
X-axis, corresponding to mean eye values, while odd rows (in red) display disconjugate signals (the
difference between the eyes). The first four rows depict samples with easy masking and hard noise
injection, while the last four rows illustrate cases with hard masking and relatively low noise injection.

Table A2. Second-stage optimization settings.

Training Type Initial Learning Rate Weight Decay Initialization Encoder Weights

Freezing 0.001 0 Pretext Weight Frozen
Fine-tuning 1 × 10−4 0.2 × 10−5 Pretext Weight Trainable

Sup. Learning 1 × 10−4 0.2 × 10−5 Random Trainable

Table A3. Alpha (class balancing) parameters on the focal loss for non-reduced and reduced values.
Note that the different hyperparameters are shared across the two visual tasks.

Non-Reduced Reduced

Class 0 0.73 0.8
Class 1 0.61 0.8
Class 2 0.9 0.8
Class 3 0.88 0.8
Class 4 0.67 0.8
Class 5 0.83 0.8
Class 6 0.81 0.8
Class 7 0.31 0.2



BioMedInformatics 2024, 4 1929

Table A4. Per-class sample macro F1 scores for each downstream method when training the vergence
dataset. The best metrics for each head classifier are highlighted in bold. Note that Head0 corresponds
to the linear probing method.

Technique Head Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Fine-tuning

1 60.5 64.9 54.1 53.1 61.0 63.0 59.8 67.4
2 61.4 63.6 56.2 53.1 59.0 61.9 59.8 67.0
3 62.2 66.6 56.0 49.0 60.1 60.7 58.0 64.2
4 61.6 64.9 54.9 50.6 59.6 61.1 59.9 65.0
5 64.0 66.0 55.4 50.6 58.3 60.3 55.4 67.3
6 63.9 65.2 54.2 51.3 58.7 59.8 59.6 69.1
7 61.9 65.6 56.2 50.6 59.2 62.3 62.0 66.0

Freezing

0 52.6 53.6 47.1 40.5 47.0 50.5 41.9 45.8
1 61.0 63.7 57.0 51.2 57.4 63.3 58.9 61.7
2 62.3 64.8 56.5 52.3 58.2 60.6 58.9 68.0
3 62.1 63.6 55.3 52.4 59.3 62.4 57.5 68.5
4 61.4 64.1 54.4 51.0 59.7 63.0 58.5 67.0
5 61.7 63.0 56.3 51.7 58.2 62.4 58.0 68.7
6 58.9 61.5 53.5 50.9 57.0 59.5 57.7 68.7
7 64.7 66.1 56.6 53.5 61.1 63.4 58.2 68.4

Sup.
Learning

1 59.8 61.9 53.1 50.0 57.5 60.7 57.7 65.1
2 59.7 63.1 53.5 51.1 56.0 60.0 57.9 66.9
3 60.4 61.7 54.3 50.7 55.8 60.9 56.8 67.2
4 62.2 63.4 55.4 52.7 57.7 61.5 58.5 66.9
5 60.0 62.9 55.2 51.0 57.3 62.7 58.2 67.8
6 59.3 62.4 53.1 49.7 57.3 60.7 57.9 67.5
7 59.6 63.8 55.8 51.8 58.1 61.0 58.3 65.3

Table A5. Per-class sample macro F1 scores for each downstream method when training the saccade
dataset. The best metrics for each head classifier are highlighted in bold. Note that Head0 corresponds
to the linear probing method.

Technique Head Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Fine-tuning

1 64.6 64.8 57.3 54.4 60.2 63.3 61.2 61.3
2 63.9 65.6 57.5 56.3 60.2 63.2 61.7 60.9
3 64.3 64.4 56.6 53.9 59.2 63.0 58.5 59.6
4 64.5 65.9 57.5 55.0 60.5 64.2 59.9 60.2
5 64.6 65.2 56.3 56.0 61.5 64.3 61.1 61.3
6 64.1 66.0 56.6 55.0 59.3 65.3 61.2 60.7
7 64.9 63.6 56.2 54.4 59.9 64.0 61.0 59.9

Freezing

0 48.9 53.5 50.5 43.8 46.0 53.1 44.8 48.5
1 64.3 63.5 58.4 54.8 58.4 62.4 60.8 60.5
2 62.4 63.4 58.9 55.6 58.8 64.9 60.8 59.0
3 63.2 65.0 56.9 56.3 60.1 63.4 61.2 59.4
4 61.4 61.8 57.2 56.2 60.0 67.1 59.1 61.2
5 63.5 63.7 56.2 53.6 57.9 65.5 61.9 60.3
6 59.5 59.9 55.9 53.2 57.0 62.0 59.1 61.0
7 62.8 64.4 57.7 54.3 60.7 67.6 60.7 59.7

Sup.
Learning

1 62.9 62.2 57.8 55.5 56.8 62.7 59.4 61.5
2 61.8 61.8 56.0 53.9 57.0 61.1 60.0 59.5
3 63.5 63.0 57.2 53.8 58.1 61.6 60.9 59.4
4 61.9 62.5 56.8 54.2 55.5 62.7 59.3 58.2
5 63.6 61.8 56.8 53.1 59.8 64.0 60.5 62.1
6 61.1 59.2 56.1 53.1 56.4 59.7 57.9 60.6
7 63.6 65.0 57.1 54.9 57.6 61.7 59.5 62.1



BioMedInformatics 2024, 4 1930

Table A6. Per-class sample macro F1 scores for each downstream method when training the reduced
vergence dataset. The best metrics for each head classifier are highlighted in bold. Note that Head0
corresponds to the linear probing method.

Technique Head Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Fine-tuning

1 59.6 61.4 45.7 52.6 51.5 51.1 54.3 52.3
2 57.3 62.6 47.0 55.3 58.3 56.5 52.3 46.8
3 61.9 67.0 52.3 50.6 54.6 54.3 52.4 48.9
4 55.7 62.8 48.8 52.2 56.2 52.2 53.5 52.2
5 58.6 62.8 57.1 54.1 59.7 53.2 52.6 47.1
6 57.8 62.1 45.0 52.9 54.3 57.1 49.0 47.9
7 55.5 61.7 46.8 52.3 53.5 54.2 48.8 48.1

Freezing

0 55.7 56.7 49.1 46.7 46.3 50.7 42.4 51.2
1 60.5 61.0 49.0 48.7 49.8 52.1 46.6 47.5
2 59.7 61.2 48.2 47.8 47.0 52.7 54.0 47.5
3 58.6 59.4 57.7 49.5 49.1 49.1 48.3 47.5
4 57.3 59.0 52.6 48.8 54.2 51.4 51.4 47.0
5 60.5 63.9 58.6 49.6 53.1 51.5 53.6 53.5
6 57.0 54.5 49.8 47.2 49.5 46.8 50.5 47.5
7 60.8 64.1 51.0 51.2 56.1 50.0 53.8 49.3

Sup.
Learning

1 57.1 56.4 49.5 48.9 51.2 52.7 54.0 53.7
2 55.2 58.7 48.9 51.1 47.1 49.6 45.6 52.4
3 56.9 58.9 52.5 49.6 47.8 51.0 47.9 47.4
4 57.3 58.7 53.1 51.2 48.7 54.6 47.1 47.6
5 59.2 58.9 53.2 50.1 47.1 54.3 47.3 47.7
6 53.7 56.0 47.0 51.3 50.2 56.0 55.6 46.6
7 53.2 56.6 51.7 53.6 50.6 49.5 52.6 47.9

Table A7. Per-class sample macro F1 scores for each downstream method when training the reduced
saccade dataset. The best metrics for each head classifier are highlighted in bold. Note that Head0
corresponds to the linear probing method.

Technique Head Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Fine-tuning

1 56.4 55.7 49.8 48.5 49.3 52.7 47.7 51.7
2 56.8 60.6 50 50.2 55.1 52.6 51.8 48
3 55.4 57.6 59.1 47.6 50.9 54.5 46 52.4
4 58.2 60.7 53.3 50.2 52.3 54.1 49.4 47
5 52.5 56.4 51.4 50.6 60.1 55.1 50.6 47.7
6 55.7 60.1 54.3 48.1 54.6 56.7 53.6 47.9
7 58.4 56.7 52.7 50.7 52.8 53.8 47.4 48.6

Freezing

0 49.3 51.6 52 46.3 41.7 48.3 40.3 46.1
1 54.2 54.1 52.2 50.8 49 51 49.6 48
2 59.8 56.7 53.1 49.7 50.9 55 48.9 47.5
3 60.9 57.9 54.4 49.9 49.1 54.5 52.5 49.7
4 59 58.3 54.4 54.8 50.1 51.6 54.1 47.4
5 57 55.8 55.8 46.1 51.3 55.1 49.3 48
6 50.7 51.1 50.4 53.3 50.8 53.2 51 47.8
7 58.8 59.1 54.9 50.8 51.6 53.6 53.3 48

Sup.
Learning

1 51.5 55.8 53.2 48.1 52.2 56 50.9 47.2
2 57.7 57.9 56.1 46.8 47.6 52.5 51 49.7
3 53.1 56.7 50.2 45.6 51.5 52.7 49 47.9
4 54.9 53.8 51 49.5 51.9 51.4 49.1 47.5
5 53.5 59.3 49.7 53.5 49.6 51.4 48.8 49
6 55.4 54.7 48.7 50.6 48.8 50.2 51.9 49.6
7 58.1 55.5 50.9 46.4 49.2 51.1 46.5 48



BioMedInformatics 2024, 4 1931

References
1. Ward, L.M.; Kapoula, Z. Dyslexics’ Fragile Oculomotor Control Is Further Destabilized by Increased Text Difficulty. Brain Sci.

2021, 11, 990. [CrossRef] [PubMed]
2. Ward, L.M.; Kapoula, Z. Differential diagnosis of vergence and saccade disorders in dyslexia. Sci. Rep. 2020, 10, 22116. [CrossRef]
3. Ward, L.M.; Kapoula, Z. Creativity, Eye-Movement Abnormalities, and Aesthetic Appreciation of Magritte’s Paintings. Brain Sci.

2022, 12, 1028. [CrossRef] [PubMed]
4. Kapoula, Z.; Morize, A.; Daniel, F.; Jonqua, F.; Orssaud, C.; Bremond-Gignac, D. Objective evaluation of vergence disorders and a

research-based novel method for vergence rehabilitation. Transl. Vis. Sci. Technol. 2016, 5, 8. [CrossRef]
5. El Hmimdi, A.E.; Ward, L.M.; Palpanas, T.; Kapoula, Z. Predicting dyslexia and reading speed in adolescents from eye movements

in reading and non-reading tasks: A machine learning approach. Brain Sci. 2021, 11, 1337. [CrossRef]
6. El Hmimdi, A.E.; Ward, L.M.; Palpanas, T.; Sainte Fare Garnot, V.; Kapoula, Z. Predicting Dyslexia in Adolescents from Eye

Movements during Free Painting Viewing. Brain Sci. 2022, 12, 1031. [CrossRef]
7. Rizzo, A.; Ermini, S.; Zanca, D.; Bernabini, D.; Rossi, A. A machine learning approach for detecting cognitive interference based

on eye-tracking data. Front. Hum. Neurosci. 2022, 16, 806330. [CrossRef] [PubMed]
8. Bixler, R.; D’Mello, S. Automatic gaze-based user-independent detection of mind wandering during computerized reading. User

Model. User-Adapt. Interact. 2016, 26, 33–68. [CrossRef]
9. Asvestopoulou, T.; Manousaki, V.; Psistakis, A.; Smyrnakis, I.; Andreadakis, V.; Aslanides, I.M.; Papadopouli, M. Dyslexml:

Screening tool for dyslexia using machine learning. arXiv 2019, arXiv:1903.06274.
10. Nilsson Benfatto, M.; Öqvist Seimyr, G.; Ygge, J.; Pansell, T.; Rydberg, A.; Jacobson, C. Screening for dyslexia using eye tracking

during reading. PLoS ONE 2016, 11, e0165508. [CrossRef]
11. Vajs, I.A.; Kvaščev, G.S.; Papić, T.M.; Janković, M.M. Eye-tracking Image Encoding: Autoencoders for the Crossing of Language

Boundaries in Developmental Dyslexia Detection. IEEE Access 2023, 11, 3024–3033. [CrossRef]
12. El Hmimdi, A.E.; Kapoula, Z.; Sainte Fare Garnot, V. Deep Learning-Based Detection of Learning Disorders on a Large Scale

Dataset of Eye Movement Records. BioMedInformatics 2024, 4, 519–541. [CrossRef]
13. Chen, S.; Zhao, Q. Attention-based autism spectrum disorder screening with privileged modality. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1181–1190.
14. Jiang, M.; Zhao, Q. Learning visual attention to identify people with autism spectrum disorder. In Proceedings of the IEEE

International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3267–3276.
15. Tao, Y.; Shyu, M.L. SP-ASDNet: CNN-LSTM based ASD classification model using observer scanpaths. In Proceedings of

the 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shanghai, China, 8–12 July 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 641–646.

16. Vajs, I.; Ković, V.; Papić, T.; Savić, A.M.; Janković, M.M. Dyslexia detection in children using eye tracking data based on VGG16
network. In Proceedings of the 2022 30th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 29 August–2
September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1601–1605.

17. Harisinghani, A.; Sriram, H.; Conati, C.; Carenini, G.; Field, T.; Jang, H.; Murray, G. Classification of Alzheimer’s using
Deep-learning Methods on Webcam-based Gaze Data. Proc. ACM Hum.-Comput. Interact. 2023, 7, 1–17. [CrossRef]

18. Sun, J.; Liu, Y.; Wu, H.; Jing, P.; Ji, Y. A novel deep learning approach for diagnosing Alzheimer’s disease based on eye-tracking
data. Front. Hum. Neurosci. 2022, 16, 972773. [CrossRef] [PubMed]

19. Bautista, L.G.C.; Naval, P.C. Gazemae: General representations of eye movements using a micro-macro autoencoder. In
Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; IEEE:
Piscataway, NJ, USA, 2021; pp. 7004–7011.

20. Jindal, S.; Manduchi, R. Contrastive representation learning for gaze estimation. In Proceedings of the Annual Conference on
Neural Information Processing Systems, New Orleans, LA, USA, 10–16 December 2023; pp. 37–49.

21. Bautista, L.G.C.; Naval, P.C. CLRGaze: Contrastive Learning of Representations for Eye Movement Signals. In Proceedings of the
2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; IEEE: Piscataway, NJ, USA,
2021; pp. 1241–1245.

22. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

23. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving language understanding by generative pre-training. OpenAI
Blog 2018, preprint.

24. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI
Blog 2019, 1, 9.

25. Song, K.; Tan, X.; Qin, T.; Lu, J.; Liu, T.Y. Mass: Masked sequence to sequence pre-training for language generation. arXiv 2019,
arXiv:1905.02450.

26. Chen, M.; Radford, A.; Child, R.; Wu, J.; Jun, H.; Luan, D.; Sutskever, I. Generative pretraining from pixels. In Proceedings of the
International Conference on Machine Learning, Virtual Event, 13–18 July 2020; pp. 1691–1703.

27. Bao, H.; Dong, L.; Piao, S.; Wei, F. Beit: Bert pre-training of image transformers. arXiv 2021, arXiv:2106.08254.

http://doi.org/10.3390/brainsci11080990
http://www.ncbi.nlm.nih.gov/pubmed/34439612
http://dx.doi.org/10.1038/s41598-020-79089-1
http://dx.doi.org/10.3390/brainsci12081028
http://www.ncbi.nlm.nih.gov/pubmed/36009091
http://dx.doi.org/10.1167/tvst.5.2.8
http://dx.doi.org/10.3390/brainsci11101337
http://dx.doi.org/10.3390/brainsci12081031
http://dx.doi.org/10.3389/fnhum.2022.806330
http://www.ncbi.nlm.nih.gov/pubmed/35572006
http://dx.doi.org/10.1007/s11257-015-9167-1
http://dx.doi.org/10.1371/journal.pone.0165508
http://dx.doi.org/10.1109/ACCESS.2023.3234438
http://dx.doi.org/10.3390/biomedinformatics4010029
http://dx.doi.org/10.1145/3591126
http://dx.doi.org/10.3389/fnhum.2022.972773
http://www.ncbi.nlm.nih.gov/pubmed/36158627


BioMedInformatics 2024, 4 1932

28. Xie, Z.; Zhang, Z.; Cao, Y.; Lin, Y.; Bao, J.; Yao, Z.; Dai, Q.; Hu, H. Simmim: A simple framework for masked image modeling. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA., 18–24 June
2022; pp. 9653–9663.

29. He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked autoencoders are scalable vision learners. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16000–16009.

30. Tang, P.; Zhang, X. MTSMAE: Masked Autoencoders for Multivariate Time-Series Forecasting. In Proceedings of the 2022 IEEE
34th International Conference on Tools with Artificial Intelligence (ICTAI), Macao, China, 31 October–2 November 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 982–989.

31. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A.; Bottou, L. Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.

32. Lee, W.H.; Ozger, M.; Challita, U.; Sung, K.W. Noise learning-based denoising autoencoder. IEEE Commun. Lett. 2021,
25, 2983–2987. [CrossRef]

33. Hinton, G.E.; Zemel, R. Autoencoders, minimum description length and Helmholtz free energy. Adv. Neural Inf. Process. Syst.
1993, 6, 3–10.

34. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.
[CrossRef]

35. Baldi, P. Autoencoders, unsupervised learning, and deep architectures. In Proceedings of the ICML Workshop on Unsupervised
and Transfer Learning, JMLR Workshop and Conference Proceedings, Bellevue, WA, USA, 2 July 2011; pp. 37–49.

36. Kingma, Diederik P.; Welling M.; An introduction to variational autoencoders. Found. Trends® Mach. Learn. 2019, 12, 307–392.
[CrossRef]

37. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
38. Bajaj, K.; Singh, D.K.; Ansari, M.A. Autoencoders based deep learner for image denoising. Procedia Comput. Sci. 2020,

171, 1535–1541. [CrossRef]
39. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In

Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.
40. Li, Z.; Rao, Z.; Pan, L.; Wang, P.; Xu, Z. Ti-MAE: Self-Supervised Masked Time Series Autoencoders. arXiv 2023, arXiv:2301.08871.
41. Doersch, C.; Gupta, A.; Efros, A.A. Unsupervised visual representation learning by context prediction. In Proceedings of the

IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1422–1430.
42. Noroozi, M.; Favaro, P. Unsupervised learning of visual representations by solving jigsaw puzzles. In Proceedings of the

European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 69–84.

43. Gidaris, S.; Singh, P.; Komodakis, N. Unsupervised representation learning by predicting image rotations. arXiv 2018,
arXiv:1803.07728.

44. Yang, X.; Zhang, Z.; Cui, R. Timeclr: A self-supervised contrastive learning framework for univariate time series representation.
Knowl.-Based Syst. 2022, 245, 108606. [CrossRef]

45. Yue, Z.; Wang, Y.; Duan, J.; Yang, T.; Huang, C.; Tong, Y.; Xu, B. Ts2vec: Towards universal representation of time series. In
Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36, pp. 8980–8987.

46. Tonekaboni, S.; Eytan, D.; Goldenberg, A. Unsupervised representation learning for time series with temporal neighborhood
coding. arXiv 2021, arXiv:2106.00750.

47. Zhang, X.; Zhao, Z.; Tsiligkaridis, T.; Zitnik, M. Self-supervised contrastive pre-training for time series via time-frequency
consistency. Adv. Neural Inf. Process. Syst. 2022, 35, 3988–4003.

48. Yoon, J.; Jarrett, D.; Van der Schaar, M. Time-series generative adversarial networks. Adv. Neural Inf. Process. Syst. 2019, 32.
49. Desai, A.; Freeman, C.; Wang, Z.; Beaver, I. Timevae: A variational auto-encoder for multivariate time series generation. arXiv

2021, arXiv:2111.08095.
50. Esteban, C.; Hyland, S.L.; Rätsch, G. Real-valued (medical) time series generation with recurrent conditional gans. arXiv 2017,

arXiv:1706.02633.
51. Meng, Q.; Qian, H.; Liu, Y.; Xu, Y.; Shen, Z.; Cui, L. Unsupervised Representation Learning for Time Series: A Review. arXiv 2023,

arXiv:2308.01578.
52. Lee, S.W.; Kim, S. Detection of Abnormal Behavior with Self-Supervised Gaze Estimation. arXiv 2021, arXiv:2107.06530.
53. Du, L.; Zhang, X.; Lan, G. Unsupervised Gaze-aware Contrastive Learning with Subject-specific Condition. arXiv 2023,

arXiv:2309.04506.
54. Yu, Y.; Odobez, J.M. Unsupervised representation learning for gaze estimation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7314–7324.
55. Park, S.; Mello, S.D.; Molchanov, P.; Iqbal, U.; Hilliges, O.; Kautz, J. Few-shot adaptive gaze estimation. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9368–9377.
56. Pupila Capture Eye Tracker. Available online: https://pupil-labs.com/ (accessed on 29 March 2024).
57. Pytorch Image Models (timm). Available online: https://timm.fast.ai/ (accessed on 29 March 2024).
58. Tian, K.; Jiang, Y.; Diao, Q.; Lin, C.; Wang, L.; Yuan, Z. Designing bert for convolutional networks: Sparse and hierarchical masked

modeling. arXiv 2023, arXiv:2301.03580.

http://dx.doi.org/10.1109/LCOMM.2021.3091800
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1561/2200000056
http://dx.doi.org/10.1016/j.procs.2020.04.164
http://dx.doi.org/10.1016/j.knosys.2022.108606
https://pupil-labs.com/
https://timm.fast.ai/


BioMedInformatics 2024, 4 1933

59. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30. arXiv:1706.03762.

60. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
61. Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.L.; Chen, S.C.; Iyengar, S.S. A survey on deep learning:

Algorithms, techniques, and applications. ACM Comput. Surv. (CSUR) 2018, 51, 1–36. [CrossRef]
62. El Hmimdi, A.E.; Palpanas, T.; Kapoula, Z. Efficient Diagnostic Classification of Diverse Pathologies through Contextual Eye

Movement Data Analysis with a Novel Hybrid Architecture. BioMedInformatics 2024, 4, 1457–1479. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3234150
http://dx.doi.org/10.3390/biomedinformatics4020080

	Introduction
	Related Work
	Materials and Methodology
	Saccade and Vergence Eye Movement
	Eye Movement Recording
	REMOBI Saccade and Vergence Tests
	Dataset Overview
	Train/Test Split
	Problem Statement
	Preprocessing 

	Method
	Architecture
	Pretext Task
	Masking Strategy
	Learning to Capture Eye and Brain Response Characteristics Relative to the Target 
	Corruption Strategy

	Downstream Task
	Model Training
	First-Stage Model Training
	Second-Stage Model Training
	Model Evaluation
	Additional Baseline


	Results
	 A Qualitative Overview of the Model Performance on the Pretext Task
	A Comparison with the Existing Literature
	 Improving Classification Performance Using Different Head Architecture 
	An Overview of the Global Performance of Different Heads
	Reduced Datasets
	Non-Reduced Datasets
	Analyzing the Optimized Overall Method Performance


	Discussion
	Analyzing Performance Gains through Head Classifier Design Optimization
	A Comparison of the Performance Gains Within Different Training Methods
	On the Importance of Exploring Various Head Classifier Designs When Freezing the Encoder
	Effect of Sample Size on Representation Relevance

	Comparing SSL and SL Algorithms under Different Settings
	Additional Design Choice
	Architecture Building Block Choice
	Combining the Masking and Denoising Pretext Task
	Passing the Target Signal to the Decoder
	Using High Sample Signal Frequency


	Limitations and Future Directions
	Cross-Validation Evaluation
	Comparing the Reduced and Non-Reduced Datasets
	Conducting More In-Depth Evaluation
	Pretext Task Reconstruction
	Exploiting the First-Layer Decoders
	Toward a Unified Meta Model

	Conclusions
	Patents
	Appendix A
	References

