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Abstract: There is evidence that abnormalities in eye movements exist during reading in dyslexic
individuals. A few recent studies applied Machine Learning (ML) classifiers to such eye movement
data to predict dyslexia. A general problem with these studies is that eye movement data sets are
limited to reading saccades and fixations that are confounded by reading difficulty, e.g., it is unclear
whether abnormalities are the consequence or the cause of reading difficulty. Recently, Ward and
Kapoula used LED targets (with the REMOBI & AIDEAL method) to demonstrate abnormalities
of large saccades and vergence eye movements in depth demonstrating intrinsic eye movement
problems independent from reading in dyslexia. In another study, binocular eye movements were
studied while reading two texts: one using the “Alouette” text, which has no meaning and requires
word decoding, the other using a meaningful text. It was found the Alouette text exacerbates eye
movement abnormalities in dyslexics. In this paper, we more precisely quantify the quality of such
eye movement descriptors for dyslexia detection. We use the descriptors produced in the four
different setups as input to multiple classifiers and compare their generalization performances. Our
results demonstrate that eye movement data from the Alouette test predicts dyslexia with an accuracy
of 81.25%; similarly, we were able to predict dyslexia with an accuracy of 81.25% when using data
from saccades to LED targets on the Remobi device and 77.3% when using vergence movements to
LED targets. Noticeably, eye movement data from the meaningful text produced the lowest accuracy
(70.2%). In a subsequent analysis, ML algorithms were applied to predict reading speed based on
eye movement descriptors extracted from the meaningful reading, then from Remobi saccade and
vergence tests. Remobi vergence eye movement descriptors can predict reading speed even better
than eye movement descriptors from the meaningful reading test.

Keywords: saccades; vergence; reading eye movements; Machine Learning; dyslexia; reading speed

1. Introduction

Reading involves complex three-dimensional binocular motor control to maintain
the angle of the optic axes, or the vergence angle, stable while making saccades and fix-
ations from left to right, allowing us to systematically capture and analyze each word.
The saccades of the two eyes must be yoked so that the two eyes fixate on the same letter
to obtain single fused vision. Thus, it is an oversimplification to reduce eye movement
control during reading to a simple sequence of saccades and fixations. Studies focusing
only on abnormalities of saccades and fixations during reading are of limited value to
understand the origin of the problem. Though there have only been a few studies in the
dyslexic population that have demonstrated deficits in eye movements to random targets
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that stimulate vergence or saccades independent from reading, such studies are essential
to assess the existence of eye movement problems per se. For instance, in the dyslexic
population, eye movement abnormalities in vergence have been reported using clinical
subjective tests since 1988 and in binocular coordination of saccades to LED targets [1–5].
Most recently, Ward and Kapoula conducted a complete study of large saccades and ver-
gence eye movements in depth using LED targets [6]. They reported specific abnormalities
not only in the velocity profile of both saccade and vergence eye movements but also
in certain binocular coordination aspects such as increased disconjugate post-saccadic
drifts and saccade disconjugacy. The authors argue that the two phenomena are related;
namely, that it is the vergence delay that compromises the quality of binocular control of
saccades and fixations leading to disconjugacies. Ward and Kapoula note that such testing
with three-dimensional targets in real space (in direction and in depth) is important for
differential diagnosis of eye movement problems in dyslexia.

Despite evidence that demonstrates that physiologic problems with eye movements
exist, dyslexia is mostly considered a learning disability rooted in phonologic processing
deficits. Given these co-existing problems, it is important to establish their relationship;
namely, whether eye movement deficits are the consequence or cause of poor reading and
spelling problems. Despite this unclear relationship between physiologic abnormalities
and phonologic processing deficits, it is clear that abnormalities in eye movements during
reading depend on the text. In the dyslexic population, many studies of eye movements
during reading demonstrated more frequent regressive saccades, longer fixation durations,
larger or smaller saccade amplitudes [7–9], and poor binocular coordination of saccades
and drifts [9,10]. To better characterize this relationship between text difficulty and eye
movement abnormalities, Ward and Kapoula examine eye movements during two reading
tasks: first, the Alouette test which requires word by word decoding of senseless text, and
second, a reading of a meaningful engaging text extracted from a novel. In their study, they
demonstrate that, for dyslexics, some of the aforementioned physiologic eye movement
deficits during reading are exacerbated by the senseless Alouette text [11].

A few recent studies have applied ML methods to eye movement data during reading
to predict dyslexia. Rello and Ballesteros [12] performed a study that examined 97 Span-
ish language native speakers aged 11–54 reading 12 different texts. They used a binary
polynomial Support Vector Machine (SVM) classifier and achieved a classification accuracy
of 80.18%. They reported that the reading time, mean fixation duration, and age have
high predictive power. Benfatto et al. also employed linear SVM with sequential optimal
optimization for screening dyslexia. Their study included 185 children, 97 of them with
a high risk of dyslexia. Their feature set, produced using a dynamic dispersion thresh-
old algorithm, consisted of 168 features; they categorized saccades as either progressive
and regressive. A recursive feature elimination algorithm was used to identify dominant
features. They achieved an accuracy of 95.6% ± 4.5% using 48 features of the original
feature space [13]. Al-Edaily et al. developed Dyslexia Explorer in the Arabic language
and studied 14 persons, 7 of whom were diagnosed with dyslexia. Their measurements
included fixation duration, mean fixation duration in each/all Regions of Interest (ROI),
total fixation count for each/all ROI, and backward saccades [14]. In contrast, Smyrnakis
et al. used statistical Bayesian classifiers with various thresholds and binary correlations,
focusing on a narrow age span, which is particularly critical for dyslexia diagnosis [15].

There has been one study that has compared ML analysis on eye movements during
various levels of reading difficulty. Asvestopoulou et al., 2019 [16] used the same data
set as Smyrnakis et al. to evaluate various ML classifiers. The linear SVM classifier on
features selected by the LASSO regression at λ1SE was the classifier with the best accuracy
on noise-free data. The authors concluded that feature selection, via LASSO, enabled
dimensionality reduction, without compromising the accuracy. The mean and median
saccade length, the number of short forward movements, and the number of multiply
fixated words were the four features with the most predictive power for the baseline text,
while for an easier text only the mean saccade length and the number of short forward
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movements were selected. The authors note that text difficulty does play an important
role in the diagnosis; namely, an easy, less challenging text reduces the predictive power of
the word-specific features. Though they did not compare ML analysis during reading and
non-reading tasks, this study strengthens the need to apply ML to eye movements outside
of reading to predict dyslexia.

Though this study presents compelling evidence for variability in predictability based
on reading text difficulty, it does present some problems, including the problem of over-
fitting. In the second phase of learning, the testing data set that was used to evaluate the
generalization ability in each step of the cross-validation was already used for feature
selection, which may introduce bias. Unfortunately, these problems are inherent when
dealing with small numbers of data.

There is additionally an older study with data from 185 children that were used to
train an SVM to learn the same task discussed in the previous study [17]. They used
Particle Swarm Optimization to compute an optimal kernel to train an SVM using cross-
validation. The main drawback in this study is that the 75 descriptors extracted from the
eye movement data are not presented. In addition, the eye tracker used to record eye
movements had a frequency of 100 Hz which is quite low for detecting small saccades or
fixation microsaccades.

Despite the many ML studies that have been conducted on dyslexic eye movements,
they are limited to using data extracted only from eye movements during reading. There-
fore, it is difficult to determine how text difficulty may influence ML interpretation of
data or how eye movements independent of reading may be used to predict dyslexia.
To summarize, there have been no studies that apply ML on a complete physiologically
eye movement data set; namely, on the ensemble of eye movements tested both during
complex and simple reading tasks as well as during neutral tasks such as large saccades
and vergence to LED targets. Given that the predictive value of eye movements during
reading has been shown to be dependent on the text, there is a real need to compare ML
analysis on non-reading tests. The present study uses the data sets from two studies by
Ward and Kapoula: the first testing large saccades and vergence with LED targets, and
the second testing reading in two texts of varying difficulty to evaluate the capacity of
eye movements to predict dyslexia [6,11]. Eye movements from all tasks were analyzed
with the AIDEAL software to produce measurements of multiple physiologically valid spa-
tiotemporal descriptors of eye movements (e.g., latency, amplitude, duration, peak, average
velocity, drifts, etc.) We applied several ML models (linear and non-linear) and evaluated
their differential accuracy and capacity to predict dyslexia, as well as the reading speed.

2. Materials and Methods
2.1. Participants

Given that the data used for the ML analysis is taken from published studies, please
see Ward and Kapoula for full details regarding methods and materials [6,11]. In brief, eye
movements were recorded during reading and non-reading tasks in 46 dyslexic adolescents
(18 female, 28 male; mean age 15.52, SD 2.45) and 41 non-dyslexic adolescents (20 female,
21 male; mean age 14.78 +/− 2.44) recruited from schools in Paris. Dyslexic adolescents
were diagnosed in specialized medical centers and were admitted to their schools based on
their dyslexia diagnosis. Typically diagnosis by these centers include multiple testing which
confers a diagnosis of visual, phonologic dyslexia, mixed dyslexia, etc. We therefore did
not have children self-identify their condition. Both dyslexic and non-dyslexic adolescents
had no known neurologic or psychiatric abnormalities. Typical readers had no history of
reading difficulty, no visual impairment, or difficulty with near vision. Of dyslexics, 34.0%
(16/47) identified that their primary issue was visual/reading based, 4.3% (2/47) auditory,
2.1% (1/47) writing, and 59.6 (28/47) were mixed or unknown. Unfortunately, our small
sample size limited further analysis by category.
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Dyslexia commonly comports other comorbidities: twelve dyslexics were also di-
agnosed with dysorgraphia, dyscalcula, and/or dyspraxia. A total of 34 had been to an
orthoptist or were currently enrolled in orthoptic rehabilitation.

The investigation adhered to the principles of the Declaration of Helsinki and was
approved by our Institutional Human Experimentation Committee (CPP CNRS 18 011).
Written consent was obtained from the adolescents and/or their parents after they were
given an explanation about the experimental procedure. The tests were conducted by two
research assistants, who were trained together using the same material and conducted the
experiment together for each measurement.

2.2. Eye Movement Recording Device

For each adolescent, eye movements were recorded binocularly with a head-mounted
video-oculography device, Pupil Core [18], enabling binocular recording at 200 Hz per eye
(Pupil Labs, Berlin, Germany).

2.3. Ocular Motor Tests

Adolescents were asked to sit in front of a horizontal visual-acoustic REMOBI device.
The device was placed at eye level so that the first arc of LEDs was 20 cm from their eyes.
Each child was instructed to carefully fixate quickly and accurately on the moving LED, to
not attempt to predict a pattern of motion, and to keep their head still during the 2-min test.

Oculomotor tests were performed in mesopic light conditions. Each test was con-
ducted in a small room in the school that was quiet and free of distractions. The red LED
stimuli were displayed at different distances, laterally or in-depth, always in the horizontal
plane (0◦, Figure 1A). LED characteristics were: nominal frequency 626 nm, intensity
180 mCd, and diameter 3 mm. Adjacent to each LED was embedded a buzzer with the
following characteristics: nominal frequency approximately 2048 Hz, sound pressure level
75 dB, diameter 12 mm.
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Figure 1. (A) The REMOBI device is a trapezoidal surface upon which are displayed LEDs coupled with a buzzer. The
surface is placed at eye level. In (B) are shown in red the fixation point and the two possible target positions for the
vergence test; in (C) is shown the central fixation target and the two possible lateral positions for the saccade test. In (D) the
participant wears the Pupil Labs eye trackers.

2.3.1. Vergence Test

For each trial the fixation LED (0◦) lights up at 40 cm, creating a required vergence
angle of 9◦ for a period varying from 1400 to 2000 ms (see Figure 1B). It was followed
randomly by the target LED during 2000 ms, appearing always at the central axis (0◦) either
20 cm (calling for a convergence movement of 8◦, i.e., from 9◦ to 17◦) or 150 cm (calling
for a divergence movement of 7◦, i.e., from 9◦ to 2◦). The test contained 40 trials (20 trials
of convergence, 20 of divergence, pseudo-randomly interleaved) in an overlap paradigm:
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after an overlap period of 200 ms following the lighting of the target LED, the fixation LED
switched off.

2.3.2. Saccade Test

Each trial started with the fixation central LED lighting at 40 cm from the subject for a
randomized period ranging from 1400 to 2000 ms; it was followed by the lighting of the
saccade target LED for 2000 ms at 20◦ of eccentricity, randomly chosen on the left or the
right (Figure 1C). There were 40 trials (20 left, 20 right, pseudo-randomly interleaved) in an
overlap paradigm.

2.3.3. Reading Test

All children performed two visual reading tasks with binocular vision while seated
comfortably at 40 cm viewing distance from a screen. Each adolescent was instructed
to read the text out loud. First, each adolescent viewed the Alouette text, presented in
16 lines on black lines on a white background. Alouette is a text commonly used for the
evaluation of reading capacity in dyslexia, as the order of the words is unusual and contains
uncommon words for children. The second text was an excerpt of 15 lines in black text
on white background from a children’s book (35 kilos d’espoir, Anna Gavalda, Bayard
Jeunesse) targeted towards children with a reading age of 10 years.

2.4. Data Analysis

Data recorded with the Pupil Labs eye tracker were analyzed with AIDEAL, software
developed in the IRIS laboratory. The vergence signal was derived by calculating the
difference between the two eyes from the individual calibrated eye position signals (i.e., left
eye–right eye). The beginning and end of the vergence movements were defined as the time
point when the eye velocity exceeded or dropped below 5◦/s: these criteria are standard
and were applied automatically by the AIDEAL software; the program estimated the initial
phasic component as the amplitude between these two initial points. It also calculated
the amplitude change during the subsequent 80 ms and 160 ms. The total amplitude was
calculated as the sum of the amplitude of the initial phasic component plus the 160 ms
component. The total duration was calculated as the duration of the phasic component
plus the subsequent 160 ms.

For saccade analysis, AIDEAL treated the conjugate signal, e.g., the L + R eye posi-
tion/2. The onset and the offset of the saccade were defined as the time points where the
peak velocity went above or below 10% of the peak velocity; practically, this corresponded
to values above or below 40◦/s (as the peak velocity of 20◦ saccades is typically above
40◦/s). The total average velocity was defined as the ratio of total amplitude in degrees
divided by time in seconds. To evaluate binocular coordination of saccades, or the discon-
jugacy during saccadic movements, the difference in amplitude between the left and the
right eye signal was calculated. The disconjugate drift, or the difference in drift amplitude
during the first 80 or 160 ms of fixation, was calculated.

Table 1 presents the results of the two reading tasks as the number of mistakes per
word and the reading speed (word per minute).

Table 1. Dyslexic vs. Non-Dyslexic performance for each reading task.

Dyslexic Non-Dyslexic

Median SD Median SD

Mistakes per word (35 Kilos d’Espoir) 0.03 0.03 0.015 0.01
Words per Minute (35 Kilos d’Espoir) 124 33 176 34

Mistakes per word (L’Alouette) 0.06 0.06 0.026 0.02
Words per Minute (L’Alouette) 92 109 136 29
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2.5. Eye Movement Descriptors

Amplitude: the amplitude of the movement (in degrees), i.e., the change in eye
position between the onset and the offset of the eye movement; the onset and offset of
eye movement being determined by velocity threshold criteria as described above using
AIDEAL software.

Duration of the phasic component: the time of execution of the movement (in ms), i.e.,
the time between the onset of the movement and its offset.

Latency: the period between the onset of the LED target and onset of the eye movement
(in ms).

P-Velocity: Peak velocity of the eye movement (in degrees per sec); the peak velocity
is usually achieved at the first 3rd of the trajectory of the movement.

A-velocity: Average velocity, which is obtained via the ratio of the amplitude of the
movement (in degrees) over its duration (in seconds).

Drift 1: is the amplitude (in degrees) of disconjugate drift of the eyes (i.e., subtraction
amplitude of the drift of the right eye from that of the left eye) for the 80 ms period starting
from the offset of the movement.

Drift 2: Is the amplitude of the disconjugate drift during the 160 ms period following
the offset of the movement (in degrees).

Total Amplitude: The addition of the phasic amplitude and the vergence drift during
the 160 ms.

Fixation duration: the period (in ms) between two successive fixations.
Percentage of regressive saccades: “backward” saccades to the left calculated as a

portion of the number of the rightward, progressive saccades.
The descriptors used for each dataset are presented in Appendix C.

2.6. Preprocessing of the Dataset

For each individual and each test, and each of the above-cited parameters, the AIDEAL
software provides the mean value (based on 10 to 20 trials), the standard deviation, the
coefficient of the variation (standard deviation/mean × 100), and the total number of trials
used for each descriptor.

We considered that outlier values from AIDEAL do not occur randomly and thus
convey information on the recorder gaze. For example, aberrant values could be due to
blinks or artefacts of eye movement recording apparatus. We therefore chose to give these
abberrances a value of 0 instead of the population average.

To remove the outliers, for the classification task (Analysis 1), we replaced the aberrant
value by 0. The number of aberrant values in the 1st analysis was 0.29% for meaning-
ful reading, 0.84% for the reading Alouette, 1.10% for the vergence, and 7.3% for the
saccade dataset.

For the regression task (Analysis 2), for each dataset and each eye movement param-
eter, we splitthe dataset by class; then, we replaced values of the first 3% percentile, and
the last 3% percentile of each eye movement parameter by its mean value. The number of
outliers in the 2nd analysis was 8.7% for the vergence dataset, 9.3% for the saccade dataset,
and 4.3% for the meaningful reading dataset.

Finally, we applied a random permutation to change the index of each observation in
the dataset.

2.7. Metrics

To evaluate our ML algorithms, for the analysis 1,we used 3 metrics: accuracy, sensitiv-
ity, and specificity. In our binary classification, the sensitivity (True Positive rate) measures
the proportion of positives that are correctly identified (i.e., the proportion of those who
have some condition (affected) who are correctly identified as having the disease). The
specificity (True Negative rate) measures the proportion of negatives that are correctly
identified (i.e., the proportion of those who do not have the condition or the unaffected
who are correctly identified as not having the condition).
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Moreover, for the analysis 2, we used the mean absolute percentage error [19] and the
Bravais–Pearson correlation metrics.

3. Model Fitting
3.1. ANALYSIS 1: Classifying Dyslexia from Eye Movement Descriptors Provided by AIDEAL

In the first ML analysis, the goal was to test the capacity of the model to predict if
the person is dyslexic or not dyslexic from eye movement descriptors. Therefore, we used
multiple linear classification models such as logistic regression, linear SVM, Gaussian naive
Bayes, and linear discriminant analysis. However, linear models’s decisions boundaries
are linear. Since, in our dataset, the samples were not fully linearly separable, to get a
better decision boundary, we additionally used multiple non-linear models such as radial
basis function SVM (with gamma = 0.01), k-nearest neighbors, gaussian process classifier,
Quadratic discriminant analysis, and multi-layer perceptron. We also used some tree-based
algorithms such as random forest classifier and decision tree classifier.

We also added Lasso regularisation whenever possible to reduce overfitting. Over-
fitting occurs when the models start to adjust their parameters to learn the noise present
in the dataset rather than generalizing. To reduce it, one can reduce the complexity of the
model by adding regularisation techniques such as the l1 norm (Lasso regularisation) and
the l2 norm (Tikhonov regularisation) [20].

To summarize, our training procedure, for the four eye movements tests, we used
cross-validation [21] (5 fold). At each fold, the model is fit with the train set, and its
generalization ability is evaluated on the test set. We report the average test performance
on the five folds.At each fold, the train set and test set were first normalized by subtracting
the mean of the training set then dividing by the standard deviation of the training set.
Since the size of the dataset did not allow for the creation of a representative validation
set, we do not perform any hyperparameter tuning and use the default values of the
different models in their scikit-learn implementation. To compare the performance of
two models, we have combined the three criteria in the following way; we first use the
accuracy to compare the two models. If the accuracy score is the same for two models,
then the sensitivity score was used to select the best model. Finally, if the accuracy and the
sensitivity score of the two models are equal, the specificity score was used.

3.2. ANALYSIS 2: Predicting Reading Speed Based on Eye Movements Descriptors

In this analysis, we applied a ML algorithm on the eye movement descriptors from
the three tests (saccade, vergence, and reading the meaningful text) to predict the reading
speed (defined as the number of words read per minute) with a meaningful text.

Recall that reading speed is the number of words read per minute. It is known that
reading speed is slower in dyslexics, and the reading speed during the Alouette test has
been found to predict dyslexia with high accuracy [22]. We used cross-validation to fit linear
regression, 2-layers neural networks with 60 parameters, and support vector regression
(RBF with gamma 0.01) models by applying the same procedure described in the first
analysis to train the models cited above.

We have also made feature selection by keeping only the 10 most correlated features
with the reading speed. The feature selection was done at each fold of the cross validation,
so that we use only the training set of each iteration to select 10 features that will be used
to train the model. We therefore improved the generalization ability of the models by
reducing their complexity.

Once the best model was selected based on Mean Absolute Percentage Error, we
retrieved its predictions on the test set during each cross-validation iteration, then applied
the Bravais–Pearson correlation to test if the predicted reading speed of the child in the
Alouette test based on eye movement descriptors was positively correlated with measured
reading speed.
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4. Result
4.1. Analysis 1

For the four oculomotor tests, the best linear classifier (in terms of accuracy) was the
Logistic regression. The best non-linear classifier was the SVM with an RBF kernel.

In Tables 2 and 3 we present the score of each best model so that we can compare the
ability of the descriptors extracted from each oculomotor test to predict dyslexia using
the family of models that we have tested. Moreover, the accuracy of all the other trained
models are presented in the Appendix D.

Table 2. Support Vector Machine scores for Analysis 1.

Metric Reading Alouette Reading Meaningful Remobi Saccade Remobi Vergence

accuracy 80.0% 71.57% 80.0% 68.42%
sensitivity 82.5% 54.29% 82.5% 67.5%
specificity 77.5% 76.67% 77.5% 69.17%

Table 3. Logistic regression scores for Analysis 1.

Metric Reading Alouette Reading Meaningful Remobi Saccade Remobi Vergence

accuracy 81.25% 70.2% 81.25% 77.3%
sensitivity 85.0% 62.38% 80.0% 80.0%
specificity 77.5% 76.67% 82.5% 74.17%

The eye movement parameters extracted by AIDEAL can predict dyslexia by using
the SVM and logistic regression classifiers with an accuracy of 71.57% and 70.2% when
it was trained on the data from the meaningful reading test, 68.42% and 77.3% when it
was trained on the REMOBI vergence dataset, 80.0% and 81.25% when it was trained on
the REMOBI saccade dataset, and 80.0% and 81.25% when it was trained on the Alouette
reading dataset.

The best SVM model in terms of sensitivity is the model trained on the data from the
Alouette reading test with a score of 85.0%. The best logistic regression model in terms of
sensitivity is also the model trained on the REMOBI saccade test with a score of 86.94%,
demonstrating that the Alouette test could also be used to detect dyslexia.

The best model in terms of specificity is the model trained on saccades produced by
the Remobi table with a specificity of 82.5%, which means that the Remobi saccade test
could be used to detect the non-dyslexic population. Note that the performances we report
are obtained without hyper parameter tuning. A larger dataset would likely allow even
better performances by tuning the hyper parameters on a separate validation set.

To investigate the signification of the reported result, we implemented a label permu-
tation test. For each dataset we have fitted the two selected models after having applied a
random permutation to the labels of the entire dataset. We have repeated this procedure
1000 times.

Then, we have computed the probability of getting an accuracy at least equal to
the scores presented in the Tables 2 and 3 in order to estimate the significance of the
reported result.

The significance of the reported results are presented in Table 4 and the histogram of
the scores of each model for each dataset are presented in Figures 2 and 3.
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Table 4. Significance of reported results for Analysis 1.

Model Dataset p-Value

Remobi saccade 0.000
Remobi vergence 0.000

Logistic Reading alouette 0.000
regression Reading meaningfull 0.002

Remobi saccade 0.000
Remobi vergence 0.003

SVM Reading alouette 0.000
RBF Reading meaningfull 0.000
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4.2. Analysis 2

The best model for predicting the meaningful reading speed from the eye movement
parameters of the Remobi saccade test was the RBF SVM. The model achieved a mean
absolute percentage error of 26.50%, and the predicted speed was correlated with the real
speed of 0.46.

For the second task, which was predicting the meaningful reading speed from the eye
movement parameters of the REMOBI Vergence test, the best model was the same as of the
previous task. This model achieved a mean absolute percentage error of 16.78%, and the
predicted speed was correlated with the real speed with a correlation coefficient of 0.56.

Finally, for the last task, which was predicting the meaningful reading speed from the
eye movement parameters of the meaningful reading test itself, the best model was the
same as the previous tasks. The model achieved a mean absolute percentage error of 22.2%,
and the predicted speed was correlated with the real speed with a correlation coefficient
of 0.56.
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In Figure 4, we present the correlation between true speed and the predicted speed of
the three tasks. The accuracy and the mean percentage error for each of the four tasks are
presented in Table 5:

1 
 

 Figure 4. Correlation between true speed vs. predicted speed of the three tasks for the analysis 2: (a) Remobi saccade.
(b) Remobi vergence. (c) Meaningful lecture.

Table 5. Mean percentage error and correlation metrics for the analysis 2.

Metric Remobi Saccade Remobi Vergence Reading Meaningful

correlation 0.46 0.56 0.56
mpe 20.45% 16.78% 22.2%

For each task, the eye movement parameters selected for at least 4 folds are presented
in Tables 6 and 7, the correlation is computed on the base of the entire dataset.
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Table 6. The eye movement parameters selected for the Remobi saccade and vergence datasets.

Model Feature Parameters Correlation p-Value

Remobi Saccade test

Duration left −0.20 0.055
Duration left std −0.28 0.0062

Pvelocity left −0.23 0.02616
Pvelocity left std −0.21 0.0449

Avelocity left 0.25 0.0137
Avelocity left std −0.26 0.0112

Duration right −0.23 0.0248
Duration std right −0.33 0.0013

Pvelocity right −0.21 0.0445

Remobi Vergence test

Divergence Duration −0.26 0.0115
Divergence Avelocity 0.33 0.0012

Convergence
Avelocity 0.32 0.002

Convergence
AVelocity CoV −0.31 0.0026

Convergence Drift 1 0.32 0.0018
Convergence Drift1

CoV −0.28 0.0069

Convergence Drift 2 0.33 0.0014
Convergence Drift2

CoV −0.25 0.0137

Table 7. The eye movement parameters selected for the Alouette and meaningful lecture data sets.

Model Feature Parameters Correlation p-Value

Meaningful lecture test

Reading Left PVelovity CoV 0.53 0.000008
Reading Left Avelocity 0.53 0.00000008

Reading Left AVelocity CoV −0.50 0.0000005
Reading Left Drift CoV −0.40 0.00007

Reading Right Amplitude 0.47 0.000004
Reading Right Avelocity 0.52 0.0000002

Reading Total Number Left Sacc −0.47 0.000003
Reading Total Number Right Sacc −0.54 0.0000000005

5. Discussion

ML has been applied to numerous fields including health and neuroscience. Research
on the neurology of eye movements has been a pioneering field of cognitive neuroscience
for almost a century. Nevertheless, the application of Machine or Deep Learning (DL) in
the field of dyslexia and oculomotor movements is rather scarce. This could be related
to the fact that eye movement researchers have already extensively characterized many
spatio-temporal parameters of eye movements in relation to their specific functions and
their neural substrates. Indeed, eye movement control is the best-understood sensorimotor
system in neurosciences.

Yet, ML/DL can bring some new insights and advantages: first, such an approach is
more data-driven. Second, such methods apply a variety of different models including
linear and non-linear. Therefore, our approach was to apply ML on data to quantify more
precisely the quality of such eye movement descriptors for dyslexia detection. To this end,
we used the descriptors produced from four eye movement tests as input to common ML
classifiers to compare their generalization performances.

A review of the existing literature in this field reveals that the few existing prior ML
studies use a limited set of data applied to reading concerning only saccades and fixa-
tions [23]. Therefore, the present study aims to use ML to further the fields of neuroscience,
dyslexia, and ML itself. First, in its very practice, our study unites the fields of computer
science and neuroscience. Second, our study uses a complete data set carefully assembled
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from cohorts diagnosed with dyslexia by medical reference centers in France. Third, the
data used covers almost the entire ensemble of physiologic eye movements we make to
explore the three-dimensional space, namely, saccades and vergence eye movements to
LED targets using the REMOBI device, and reading of two types of text: a meaningful
text and the Alouette text used by orthophonists and psychologists in France to diagnose
dyslexia. Another advantage of the study is that we have used many biologic descriptors
of the eye movements (latency, peak, average velocity, amplitude, duration, coordination,
drifts, disconjugacy) that are well established in the field of the neurology of eye move-
ments. Such descriptors enable us to describe not only the eye displacement onset and
offset of the saccade and fixation but also the trajectory of the movements themselves. The
ML models, pre-processing, and post-evaluation methods were carefully done to provide
plausible physiological results, uniting neuro-physiologic and ML expertise.

The results show that an ML approach on such data is useful and provides convincing
power to determine dyslexic vs. non-dyslexic classifications. Further, the fact that we were
able to create an ML approach that could classify dyslexic from non-dyslexic adolescents
based on eye movements during reading is a novel result, shedding light on the importance
of eye movements during reading, which is often overlooked by many language-oriented
researchers who consider reading solely to be a language issue. It is remarkable that the
power of classification is modulated according to text (senseless or meaningful); that the
meaningless text stresses dyslexics’ more fragile oculomotor system reveals how we can
classify dyslexic’s eye movements based on their deficits. Perhaps the most remarkable
finding is that we were able to powerfully classify large saccades and vergence eye move-
ments to LED targets into dyslexic and non-dyslexic categories. Finally, we were also able
to predict reading speed based on eye movement descriptors from tests with LED targets,
an approach that has not been previously seen. Our results based on ML classification
confirm previous studies that have performed classic group comparison analysis [6,11].
The present study confirms classification power with multiple linear and non-linear models
with significant results. Clinically, this study also raises the possibility of a ML diagnostic
help assistant, the development of which under progress.

Finally, we should address the physiologic significance of such results. Recall that
eye movements are essential for reading during the learning process and exploration of
the environment. There is ample evidence in the neuroscience field that eye movements
are related to attention and cognition, most frequently referenced via the well-established
theory of the motor basis of attention introduced by Rizolatti [24]. Prior research from our
team has expanded this theory to a broader motor basis that includes not only saccades as
was introduced by Rizolatti but also vergence eye movements and accommodation [25–27].
As previously mentioned, eye movement control during reading is complex, binocular,
and three-dimensional, involving the control of movements of the two eyes in multiple
directions (horizontal and vertical) and in depth (vergence). Though the motor theory of
visual attention is generally accepted in neurosciences, when it comes to reading, such
physiologic approaches are rarely considered in favor of the predominantly phonologic
and language-based approach.

Typical arguments against such a physiologic approach are that people with visual
problems (for example, the elderly) can oftentimes still read well. Although this is often
the case, senior readers who develop problems later in life can usually compensate for
visual and motor control issues. People such as dyslexic adolescents, who experience
these deficits from an early age during development, before coordination of oculomotor
movements is truly learned and cemented, are unable to compensate for these deficits,
which can have devastating consequences for reading throughout their lives.

6. Limitations

As mentioned in our methods section, 34% of the dyslexic population studied had
visual/reading predominant dyslexia, 4.3% were classified as auditory dyslexics, and
59.6% were mixed or unknown. We were unfortunately unable to further break down our
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analysis to study each type of dyslexia given our relatively small sample size. In addition,
the concept of breaking dyslexia down further into different subtypes is controversial: a
number of articles detail different methodologies to determine dyslexic subgroups, which
are not routinely described in necessarily the same fashion (see [28–30] for a small sample
of such articles). Further, one such paper describes how dyslexics most often have a mixed
picture with multiple phenotypes [31]. Finally, it is open to question whether it is even
possible to accurately categorize further subgroups of dyslexia [32].

In any case, despite the fact that the dyslexic population was largely classified as
visual predominant and mixed/unknown, it was still possible for us to determine that
the larger dyslexic group demonstrated significantly different oculomotor movements as
compared to the control group, giving the impression that oculomotor abnormalities are
important distinguishing factor in the dyslexic population as a whole.

Further interdisciplinary research with larger population and use of different types
of reading tests should aim to establish specific link of the eye movement disorders with
morphological, phonological, syntactic, or semantic errors.

7. Controversy about Dyslexia

In his article “Does dyslexia exist” [33], Stein argues that is important to test auditory
and temporal processing in the potential dyslexic child in addition to the standard phono-
logical testing in order to better distinguish true dyslexia from pathologies that may cause
other types of phonological deficits.

In his article “What is developmental dyslexia?” [34], Stein reiterates that a purely
phonologic etiology of dyslexia excludes involvement of visual processing or other reason-
ing skills. Alternative to a purely phonologic theory, he proposes the magnocellular deficit
theory, which could explain deficits in both visual and auditory sequential processing
in dyslexics.

A more provocative view by Elliott and Gibbs [35] criticizes the differentiation between
dyslexics, poor readers, and normal readers, writing that there is no solid scientific basis for
such differentiation and appropriate treatment can even be hindered by such a dichotomy.

Returning to the present study, all dyslexic participants were found to have difficulties
with literacy. Further, problems of binocular motor control were systematically present,
suggesting that dyslexia does indeed have some component of visual deficiency. Indeed,
until 1950, dyslexia was primarily categorized as a visual disability. Unfortunately, this
view is also quite reductive in its singularity.

A more comprehensive physiologic approach may be that poor sensorimotor binocular
control prevents a clear, unified vision of letters and words. Reciprocally, these motor
deficits may persist due to impaired visual input, given vision and eye movements are
intimately linked. Such an explanation does not exclude other factors such as deficiencies
in auditory and sequential temporal processing, such as those mentioned by Stein. If
attention is a byproduct of eye movements, particularly of movements in depth, this theory
could be expanded to other multisensory processes, including audiovisual integration.
Essentially, there is a need for a multidisciplinary approach in which we can build efficient
multisensory retraining programs to improve eye movements and attention.

8. Conclusions

Our results demonstrate that eye movement parameters from the saccade and vergence
Remobi tests can successfully predict both dyslexia diagnosis and reading speed; further
studies with larger populations are of interest. The ML results applied to reading itself are
highly dependent on the type of text read. The results from ML presented here are in full
agreement with our prior studies, showing statistically significant differences in many eye
movement parameters with the classic group. The ML approach provides quantification
and prediction power, opening the possibility of creating an early diagnostic tool to detect
dyslexia independent of reading.
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9. Patents

Zoi Kapoula has applied for patents for the technology used to conduct this exper-
iment: REMOBI table (patent US8851669, WO2011073288); AIDEAL analysis software
(EP20306166.8, 7 October 2020; EP20306164.3, 7 October 2020—Europe).
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Appendix C

Table A1. List of the descriptor used for each model.

Dataset. Eye Movement Descriptors

Remobi
Saccade

Amplitude, Duration of the phasic component,
Latency, P-Velocity, A-velocity, Drift 1, Drift 2

Remobi
Vergence

Amplitude, Duration of the phasic component,
Latency, P-Velocity, Drift 1, Drift 2, Total

Amplitude, Average velocity

Meaningful
Reading

Amplitude, Duration of movement, Latency,
P-Velocity, A-velocity, Drift 1, Drift 2, Fixation

duration, Percentage of regressive saccades

Alouette
Reading

Amplitude, Duration of movement, Latency,
P-Velocity, A-velocity, Drift 1, Drift 2, Fixation

duration, Percentage of regressive saccades
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