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Abstract

Approximate nearest neighbor search on high-dimensional vectors is a crucial component for numerous
applications in various fields. To solve this problem efficiently, dozens of indexes have been proposed in
the past decades. Among them, graph-based indexes show superior query performance in memory while
tree-based indexes achieve the best scalability and building efficiency. In this paper, we systematically study
the evolution of these two kinds of indexes and the recent progress with ablation studies and analyses, which
help understand where the performance improvement comes from and the difference between different index
families. Moreover, we conduct a comparative study over these two index families and discuss the existing and
potential combinations of them. We believe this study can serve as a guide to the most promising directions
for addressing the open problems in this area.

1 Introduction

Approximate nearest neighbor search (ANNS) on high-dimensional vectors is a crucial component for numerous
applications in various fields, such as web search engines [15], image retrieval [72], recommendation systems [18],
and large language models [1]. Recent studies have further shown that deep neural networks can be augmented by
retrieval to enhance accuracy on the classical problems [40] (e.g., open-domain query-answering problem [14])
and decrease the magnitude of parameters [33], further emphasizing the significance of ANNS in modern AI
applications. Objects, such as images, documents, and videos, can be transformed into dense vectors in the
embedding space. Given a query vector q 2 RD and a distance measure dist(·, ·), ANNS aims to find top-k
most similar objects (i.e., kNN(q)) in the embedding space RD of the dataset. Since the cost to find the exact
kNN(q) is prohibitively high, ANNS finds the approximate nearest neighbors A(q) instead. The search accuracy
is measured by recall, defined as Recall@k = 1

|Q|
P

q2Q
|A(q)\kNN(q)|

k . For many advanced ANNS algorithms,
the recall can reach over 99% with hundreds to thousands of times of speedup over the linear scan. Therefore,
they quickly become practical and well-recognized solutions for the applications mentioned above.

A common way of ANNS algorithms is to first build an index for the dataset and probe the index when
processing queries. In the past decades, researchers have designed dozens of index structures to solve ANNS
problems. They can be roughly categorized into four index families: graph-based [69], tree-based [24, 51],
quantization-based [50] and Locality Sensitive Hashing (LSH)-based [8, 83] index family (other promising
variations of these ideas have also been proposed [38, 39]). Although all these indexes have their specialties and
advantages in certain scenarios, we focus on graph-based and tree-based indexes in this paper, because of their
wide use on production systems [2, 66, 72], and the promising future of the combination of these two techniques.
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Graph-based indexes represent the dataset with a graph where each point is one vector. The query processing
algorithm starts from some entry point(s) and finds the approximate nearest neighbors by stepping towards the
query along the edges of the graph. With an appropriate graph structure, the search route can converge to the
neighbors of the query in only a few steps, which is called the navigability of graph-based indexes. As extensively
evaluated, graph-based indexes are the most efficient and accurate in-memory ANNS index when querying [69].

Tree-based indexes on high-dimensional data are widely adopted by the industry (e.g., Postgres [2], SP-
TAG [16], ADB-V [72]) and famous open-source libraries (e.g., FAISS [36], Scikit-learn [4]), because of its
outstanding scalability, robust performance, index-building efficiency, and high interpretability. Classical tree-
based indexes like kd-tree [61], and ball-tree [12] suffer from the curse of dimensionality. In high-dimensional
space, simple partitioning cannot effectively cluster similar vectors. In recent years, many classical tree indexes
have been re-designed to adapt to high-dimensional space. These indexes show the advantage on large-scale
datasets for in-memory and disk indexes, stand-alone and distributed environments, as well as accuracy-guaranteed
and exact kNN search [15, 23, 24].

Although the design rationales of graph- and tree-based indexes are vastly different, we observe that there
are some common design philosophies, as well as some techniques that could be complementary to each other.
As verified by results of recent studies, solving the scalability problem of graph-based index turns tractable
by combining the strengths of these two kinds of indexes. Moreover, we further propose four important open
problems and directions that could be solved by this combination.

Our paper is organized as follows. In Section 2, we review the structure evolution of the graph-based index
and analyzes its performance by ablation studies. In Section 3, we summarize the recent progress of tree-based
indexes and discuss their relationships. In Section 4, we conduct a comparative study of the two kinds of indexes,
and discuss open research problems. We conclude this paper in Section 5.

2 Graph-based Index Family

Graph-based index builds a directed, unweighted graph G = (V, E) as the index where each vertex 1 v 2 V
represents a vector in the dataset and the directed edge in E represents some kind of proximity between two
vectors. The widely-used greedy search algorithm starts from one or a group of entry points and approaches the
query step by step. Two priority queues C and Res are maintained in this process, ordered by the distance to
the query. C (with unlimited size) stores the points to be visited, while Res stores only the ef nearest points
that have been checked before. In each step, the first point from C is popped and all its out-neighbors will be
checked. If some neighbor point’s distance to the query is smaller than the furthest point in Res, it will be pushed
into C and Res. The algorithm terminates when the distance of the first point in C is larger than all the ones in
Res. Finally, the closest k elements in Res will be returned. Apparently, ef is an important parameter which
controls the accuracy-efficiency trade-off. The query processing algorithm consists of two stages [68, 73], a fast
navigating stage leading the search route from the entry point(s) to the query’s neighbors, and a recall stage that
traverses the neighbors of the query to obtain the final kNN results. Several extensions and improvements of
this search algorithm have recently been proposed, employing query parallelization [58], GPUs [75, 82], learned
early termination [42], and guided search [73]. In this section, we study the basic, common search algorithm, and
focus on the structure of the graph index.

2.1 Overview

In this subsection, we briefly review the building process of graph-based indexes, as well as the structures they
employ. The design inheritance is shown in Figure 1.

1In this paper, we use vertex, node, point, and vector for graph-based indexes interchangeably.
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Figure 1: The evolution of the structures of in-memory graph-based indexes. The solid arrows denote the
inheritance of designs.

K-Graph [19] Each node in K-Graph out-links its K nearest neighbors in the graph. To reduce the linear
complexity of index building, a dozen of accelerating techniques are proposed [19, 28].

Navigable Small World Graph (NSW) [49] NSW is built by sequential insertions of points of the dataset.
When inserting a point v, we find M nearest neighbors on the previously-inserted sub-dataset by the greedy
search algorithm. Then NSW adds bi-directional links between v and the M nearest neighbors. Note that NSW
does not have a maximal out-degree limit, and the NSW index built with parameter M has nearly the same
number of edges as the K-Graph where K = 2M .

Hierarchical Navigable Small World Graph (HNSW) [48] HNSW has a hierarchical structure where the
graph in the lower layer contains all the points in the upper layers and the bottom layer HNSW0 contains all
points in the dataset. The number of points is reduced exponentially bottom-up, and the level of a point is decided
randomly. The query starts from the top layer to find NNs as the entry points of the next layer until reaching
the bottom layer. Like NSW, HNSW is also built by sequential insertion and greedy search, but with a limited
out-degree 2M . Once a point’s out-degree exceeds 2M , HNSW prunes neighbors using the RNG rule: this is
derived from the Relative Neighborhood Graph [65]. Simply speaking, the RNG rule removes the longest edge in
the triangles existing in the graph. In this way, HNSW tries to preserve the reachability of the graph index while
limiting the out-degree, by removing the “redundant” edges, at the expense of a few more hops when querying.

Relaxed pruning rule: Vamana [64] and ⌧ -MNG [55] Since the heuristic RNG pruning rule tends to be
“strict”, recent studies have verified that some useful edges are also pruned, which leads to a sub-optimal graph
structure. Vamana relaxes the RNG rule by allowing the inclusion of the longest edge in a triangle, if it is not
1 + ↵ times longer than the second longest edge, where ↵ is a user-defined relaxing parameter. In this way,
Vamana shortens the search path when querying, which helps reduce random I/Os when the index is on disk.
A recent study [55] points out that RNG rule is ineffective when the query does not belong to the dataset, and
mitigates this problem by relaxing the RNG pruning rule with a parameter ⌧ . We omit the details for lack of space.
The resulting approach, ⌧ -MNG, is expected to have a lower search time complexity than other graph-based
indexes when the distance between the query and its nearest neighbor is smaller than ⌧ .

Better entry points: HVS [47] and LSH-APG [81] HVS and LSH-APG use auxiliary data structures to
obtain better entry points for the graph-based indexes. HVS leverages an adaptive hierarchical tree index with
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quantization techniques, while LSH-APG builds multiple LSB-trees for coarse-grained indexing. The graph-based
index is HNSW0 [47], or even a simpler variant [81].

Better reachability: NSG [29] and NSSG [30] Although HNSW achieves prominent average query perfor-
mance, it cannot guarantee the reachability to any point in the graph index. Since accomplishing the reachability
starting from any point in the graph is intractable, recent graph-based indexes opt to fix the entry point(s) and
guarantee the reachability from these entry points. NSG uses the medoid point of the dataset as the entry point,
and refines K-Graph to ensure reachability. Specifically, for a specific point v, NSG regards v as a query and
performs approximate greedy search in the graph index. The visited points during the search (along with the
neighbors of v in K-Graph) become the candidate neighbors of v, and are then pruned by RNG rule to limit
the out-degree. After iterating all the points, NSG tests the reachability with a Deep-First-Search Tree rooted at
the entry point. The isolated points will be linked by the nearest point in the tree. In contrast to NSG, NSSG
randomly selects a group of points as entry points, and only uses two-hop neighbors of a point in K-Graph as the
candidates of neighbors for pruning. Besides the reachability to the point in the dataset, NSSG also considers the
points that do not belong to the dataset, by studying the trade-off between the navigability and the sparsity of the
graph index under the RNG rule.

2.2 Understanding the Evolution with Ablation Studies

Although the heuristics of advanced graph-based indexes have been stated in the papers, it is yet not clear why the
proposed techniques work well. In this subsection, we describe the evolutionary process from K-Graph to NSW,
HNSW and more optimizations on HNSW by abundant ablation studies. We aim to help readers understand
which techniques actually enhance the performance and the reasons behind their effectiveness from a novel
perspective, which can inspire the future designs of ANNS algorithms.

2.2.1 The problem of K-Graph

Table 1: Skewness of in-degree distribu-
tion of graph-based indexes

Deep1M SIFT1M

K-Graph 2.436 1.875

NSW 4.642 4.107

pNSW 4.025 3.457

HNSW0 1.209 1.395

We start by examining the K-Graph approach, because not only K-
Graph is a graph-based index, but it also exhibits some inherent prop-
erties (detailed below) of high-dimensional vectors in the context of
ANNS problem. In this paper, we use exact K-Graphs instead of ap-
proximate ones to avoid the effect of approximation errors. A common
argument in the literature for the unsatisfactory query performance
of K-Graph is the loss of navigability [48, 69], which is verified on
real datasets in [34]. However, it is not yet clear the root cause of the
loss of navigability. According to previous studies, the distribution
of in-degree of points is very skewed [59]. That is, a small portion of
points occupy most of the kNN lists for all the points while most of
the other points are rarely linked by others. This is also verified by our
experiments on real datasets as shown in Table 1 with skewness (standardized third moment). For simplicity, we
denote the in-degree of a point in K-Graph by k-occurrence [59]. Note that k-occurrence is a property of a point
in a dataset, independent of the type of index built on the dataset.

Furthermore, we observe that in K-Graph the points with high in-degree (i.e., hubs) always interconnect
with each other. To describe this phenomenon, we define the out-link density of a group of points X ⇢ V

as ⇢out�link(X) = |{(x,y)|x,y2X^(x,y)2E}|
|{(x,y)|x2X^y2V ^(x,y)2E}| .The out-link density describes how much a group of points is

interconnected. A high out-link density means these points tend to connect to themselves rather than other
points in the graph. In Figure 2, we select different number of hubs and compute the average out-link density
of these hubs. The baseline is a random graph, where each point has K out-neighbors selected uniformly
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at random. As we can see, the out-link density of the hubs in K-Graph is much higher than the random
graph and NSW. Over half of the out-links of the 5% hubs connect to themselves instead of other points.

(a) Deep1M (b) Sift1M

Figure 2: Out-link density of the group of points with the largest in-
degree.

This phenomenon leads to local
optima in K-Graph, which is a clas-
sical problem of the greedy search al-
gorithm. Consider an extreme case
where ef = 1 for querying, i.e.,
Res only contains the nearest checked
point to the query, which means
that the points further than the cur-
rent visited point will never be vis-
ited. In other words, no backtrack-
ing exists in the search route. In
this case, if the search route steps
into a point which is closer to the
query than all its neighbors, the
search algorithm terminates directly,
as shown in Figure 3, and the actual nearest neighbors (that could be reached by detouring) are
missed. The termination point is a local optimum, in contrast to the global optimum (i.e., real kNN).
Since in K-Graph, most of the out-neighbors of a hub are also hubs, once the search route steps into one hub, it is
hard to escape from the local optimum to other regions, which may actually contain the true nearest neighbors.
Worse still, the hubs are frequently visited when querying since the points with high in-degree have a higher
probability to be visited when starting from a random point. As a result, K-Graph shows weak navigability to
acquire real kNN even with a large ef .

Figure 3: An example of local optimum
in the greedy search algorithm.

We further verify this impact by analyzing the returned results of
the greedy search algorithms. Formally, given a query q, we collect the
true positive set STP = A(q)\kNN(q), the false positive set SFP =
A(q) � kNN(q) and the false negative set SFN = kNN(q) � A(q),
and compute the average k-occurrence of these point sets, denoted by
koccur
STP

, koccur
SFP

and koccur
SFN

, respectively. In the experiments, we use the
same query algorithm and the same sparsity of the graphs with K=32
for K-Graph and M=16 for the other three. As shown in Table 2,
for K-Graph, the difference between koccur

STP
and koccur

SFN
is the largest,

indicating that the points with higher in-degree are easier to be recalled
whereas the missing points are markedly less connected. Moreover,
the average k-occurrence of points in SFP is also higher than SFN for K-Graph, and to achieve a higher recall
(95%), K-Graph needs the most number of steps compared with other indexes. These results verify the above
inference that the search route in K-Graph is prone to get stuck in the local optimum formed by the hubs and thus
needs to pay more effort to escape from this trap.

Recall that the problems of K-Graph is an intrinsic problem for all graph-based indexes on high-dimensional
data. On the one hand, the local proximity of K-Graph is crucial in the recall stage during the search process [68].
On the other, over-rich local connections in the graph lead to more local optimum which hinders the search
accuracy.
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Table 2: Average k-occurrence of different sets returned by the greedy search algorithm on different graph-based
indexes. #hops are the average number of points visited in the search route. NDC stands for the average Number
of Distance Calculations during search, which represents the time cost.

Dataset Accuracy Index koccur
STP

koccur
SFP

koccur
SFN

koccur
STP

� koccur
SFN

#hops NDC

Deep1M

recall@50=0.90

K-Graph 61.08 41.86 14.44 46.64 116 1716

NSW 61.06 40.72 32.99 28.07 57 1709

pNSW 62.15 46.36 24.66 37.49 90 1379

HNSW0 61.00 45.46 37.05 23.95 79 1287

recall@50=0.95

K-Graph 60.38 27.30 7.62 52.76 176 2319

NSW 60.17 28.28 19.55 40.62 108 2734

pNSW 61.22 31.96 15.37 45.85 162 2170

HNSW0 60.72 32.57 24.39 36.33 108 1781

SIFT1M

recall@50=0.90

K-Graph 53.81 28.90 11.72 42.09 386 4927

NSW 54.07 41.78 37.86 16.21 70 2015

pNSW 54.98 45.44 31.84 23.14 106 1690

HNSW0 54.18 44.40 40.10 14.08 71 1336

recall@50=0.95

K-Graph 52.86 37.27 17.17 35.69 423 5336

NSW 54.03 32.77 27.71 26.32 112 2881

pNSW 54.55 35.59 23.01 31.54 169 2464

HNSW0 54.03 34.04 29.70 24.33 108 1890

2.2.2 The Benefit of Long-range Connections

To mitigate the problem of K-Graph, NSW introduces long-range connections to break the traps formed by hubs,
and enhance global navigability. The long-range connections can be defined as the edges that do not exist in
the K-Graph (whose graph sparsity is similar to NSW). NSW introduces these connections by randomization.
Recall that when inserting a point, NSW finds its nearest neighbors by greedy search on the existing graph, and
then builds bi-directional links with these neighbors. In this way, the degree 2 of points in NSW is significantly
influenced by the insertion order: the points inserted earlier have a higher possibility to be linked by other points
than the later ones. This is demonstrated in Table 3, where the NSW (second line) Pearson correlation coefficients
for k-occurrence and insertion order are (almost) the same. Given that the insertion order is usually random, the
lengths of the new links introduced in NSW also tend to be random. Thus, long-range connections are introduced.

We quantify the size of long-range connections by graph quality [34, 69], which is defined as the overlapping
ratio of edges with K-Graph under similar sparsity. As shown in Table 5, NSW preserves nearly half of the short
edges belonging to K-Graph, while introducing long-range connections for the other half. Although affected by
the random selection of the previously inserted points, these connections can substantially improve the navigability
of graph indexes, as we explain below. We note that the hubs do not necessarily have high k-occurrence, but are
also determined by the insertion order. In other words, the distribution of hubs is “disrupted” by randomization.
As a result, the hubs in NSW are not interconnected, and the out-link density of hubs significantly drops compared
to K-Graph (see Figure 2). It means that although the hubs are still visited frequently, the cases of local optimum

2Note that in NSW, the in-degree of a point is equal to its out-degree since all edges are bi-directional. Thus, we simply use the term
degree.
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Table 3: Pearson correlation coefficients
between in-degree and insertion-order/k-
occurrence of points on different indexes.

Deep1M Sift1M

Ins. ord. k-occur. Ins. ord. k-occur.

K-Graph 0.00 1.00 0.00 1.00

NSW -0.53 0.56 -0.53 0.56

pNSW -0.44 0.68 -0.43 0.67

HNSW0 -0.63 0.22 -0.52 0.26

Table 4: Query analyses under re-
call@1=99%, on different graph-
based indexes.

Deep1M Sift1M

#hops NDC #hops NDC

5001 29315 2047 17698

137 3244 150 3644

156 3074 663 7246

156 2422 111 1943

Table 5: Graph quality of
different indexes, where
K=32 and M=16

Deep1M Sift1M

GQ GQ

100% 100%

51.84% 53.76%

51.82% 52.71%

30.80% 32.17%

are reduced and thus the navigability on NSW is enhanced.
Table 2 shows that in order to achieve the same recall, NSW needs on average only 32% of the K-Graph

steps. The difference between koccur
STP

and koccur
SFN

is reduced by half, clearly demonstrating that the missing nearest
neighbors are less susceptible to local optima, and leading to performance improvements. In some cases though,
e.g., in the Deep1M dataset, the improvement is marginal and even negative, despite the short search paths. The
reason is that the degree of NSW is not fixed. Since the search cost of the greedy search algorithm is the product
of the length of the search route and the out-degree of each point in the route, a high out-degree will linearly
increase the time complexity. Worse still, the distribution of degree of points in NSW is even more skewed than
K-Graph (see Table 1), which further degrades the worst-case time complexity.

A simple optimization is to restrict the out-degree to 2M by selecting the nearest 2M neighbors. We call
this method pruned-NSW (pNSW). pNSW mainly removes the long-range connections, which can be verified
by the fact that the graph quality is nearly the same as NSW (see Table 5). As shown in Table 2 pNSW seems
have a better performance than NSW by sacrificing a little navigability and achieves a remarkable gain in overall
performance. However, as shown in Table 4, under high-recall constraint (99% recall@1), pNSW suffers a
significant degradation on Sift1M dataset, nearly two times slower than NSW. The results of pNSW further
demonstrate that the long-range connections, especially the links of the hubs, significantly influence the global
navigability of the graph index.

2.2.3 The RNG Pruning Rule

Up to this point, there seems to exist a tradeoff in the design of graph indexes between search efficiency and
navigability. If we limit the (out-)degree of points for efficiency, navigability will be hurt, as in K-Graph and
pNSW. If we break the degree limit, the search efficiency will degrade, as in NSW. To address this situation, we
observe that the distribution skewness of the points’ in-degree is a key point. A skewed distribution means the
existence of hubs in the graph, and given the high visit frequency of these hubs, these hubs bear the responsibility
of high navigability. In order to provide navigability, hubs need a high degree and more long-range connections,
causing the problem mentioned above. Therefore, if we can render in-degree distribution less skewed, then hubs
will no longer exist and the navigability will be provided equally by all the points in the graph. In this case, the
bounded degree and the navigability can be achieved at the same time.

HNSW is a nice example of this rationale. Given that the skewness of the k-occurrence distribution is an
inherent property of high-dimensional vectors, “amortizing” the navigability to all points is very challenging.
HNSW leverages two techniques to accomplish this target. One is randomization, like NSW, which disrupts the
distribution of hubs. The other is RNG pruning rule, which is a key design inherited by most of the following
graph-based techniques [29, 30, 69]. Specifically, for a point v to be inserted, HNSW first collects sufficient

9



nearest neighbors on the existing graph as candidates by greedy search, and then prunes these candidate neighbors
down to M , using the RNG rule. Finally, like NSW, HNSW tries to add M reversed links from the M selected
neighbors to v. Once the reversed link exceeds the out-degree limit 2M , the RNG rule will be used to prune these
neighbors to no more than 2M . For clarity, we only consider HNSW0 in this section to avoid the influence of the
hierarchy, which will be discussed separately in the next section.

When pruning candidate neighbors, HNSW sorts them according to the distance to the inserted point v and
checks them in order. The inserted neighbor c should satisfy that 8c0 2 C(v), dist(v, c) < dist(c, c0), where
C(v) is the set of already selected neighbor points. Consider the example in Figure 4 (left), where C = {c1, c2}.
The next candidate neighbor c will be pruned, because dist(v, c) > dist(c, c2). The heuristic behind the RNG
rule is that for the pruned neighbors like c, even though v does not directly link to c, v can reach c by detouring
from c2. Since c2 is closer to c, v must not be the local optimum if the query is on, or near to c. As a result,
compared to NSW, HNSW filters out many of the M nearest neighbors found during the greedy search, without
losing the reachability to them 3. In this way, the saved slots of out-neighbors can be used to accommodate more
long-range connections. As shown in Table 5, only about 30% of the edges in K-Graph are preserved in HNSW.

Figure 4: RNG rule.

Besides pruning some “unnecessary” edges, the RNG rule also
helps mitigate the skewness of in-degree distribution for high-
dimensional vectors. Specifically, the points with high k-occurrence
tend to reject more in-links from other points because of the RNG rule.
Consider the example in Figure 4 (right), where C(v) = {a, b}, and
the candidate neighbor H has been linked by some points because
of closeness. In this case, H will be pruned since it can be reached
indirectly from a and b. This example indicates that if a point is close
to many other points (i.e., points with high k-occurrence like H), it
has to “compete” against these close points for becoming the neighbor
of an inserted point. Naturally, the probability of building links with
such points is lower than the point with low k-occurrence. This is exactly the opposite to the linking strategy of
the K-Graph index. As shown in Table 3, the correlation coefficient between the in-degree and k-occurrence for
HNSW is less than 0.3, indicating a very weak correlation. As a result, the inherent skewness of the in-degree
distribution of high-dimensional vectors is optimized by the RNG rule: the skewness value drops to nearly a half
when compared to K-Graph, as shown in Table 1. Moreover, for every point in HNSW, there exists a sufficient
number of short edges for local proximity, but also enough long-range connections for global navigability, which
ensure the query efficiency in the recall and navigation stage respectively. As shown in Tables 2 and 4, even
though HNSW has a limited out-degree, it uses a similar number of steps to NSW in order to reach a low/high
recall. This demonstrates that the RNG rule successfully preserves the navigability in these datasets. As for the
overall query performance, HNSW always achieves the best results (well ahead of the second best), across all
settings.

2.2.4 Hierarchy and Selection of Entry Points

The classical hierarchical index structure of HNSW is widely employed in both research and industrial settings [29,
34, 64, 66]. Intuitively, the upper layers in HNSW form long-range connections providing navigability, while
the bottom layer uses small-range links to cover “the last mile”. However, we claim that this strategy does not
provide any significant benefits in the case of high-dimensional spaces. As shown in Figure 5, using HNSW0

(the bottom layer of HNSW) alone, leads to nearly the same query performance as (the original, hierarchical)
HNSW. This result, which is verified on a dozen of public datasets (omitted due to lack of space) as well as by
other studies [43], casts some doubt about the usefulness of the hierarchical structure. We make the following

3This is not strict since there is no guarantee on the existence of edge (c2, c).
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(a) Sift1M (b) Deep1M (c) Deep10M

Figure 5: The query performance of HNSW and HNSW0: the difference is negligible.

two observations that try to explain the above result: (i) Due to the distance concentration phenomenon [27], the
query is not far away from a random point in the same dataset. For example, in Sift1M and Deep1M datasets,
the average distance between a random point and the query is merely 5.3x and 3.5x, respectively, larger than the
average length of the short edges in K-Graph. (ii) The bottom layer can provide the navigability necessary to
quickly approach the local neighborhood. For example, to achieve 99% recall@1, HNSW0 needs 111 hops on the
Sift1M dataset, compared to 108 hops for HNSW; on Deep1M, HNSW0 needs 156 hops, compared to 151 hops
for HNSW. These small differences verify the efficient navigability of HNSW0.

In this case, the benefit of the selection of entry points for graph-based indexes relies on the accuracy of
the entry points and the cost of obtaining these entry points. Unfortunately, the upper layers of HNSW do not
show an obvious benefit since they only contain a small portion of data. According to our experiments, only less
than half of the queries obtain one of the 50NN in the upper layers, which means that a significant part of the
work actually takes place at the bottom layer. To break this limit, subsequent works, including HVS [47] and
LSH-APG [81] (both discussed earlier), use another index as an auxiliary structure to help obtain high-quality
entry points. The quality of entry points is largely improved, and as reported, HVS achieves over 3x faster query
answering time than HNSW on hard datasets and high recall range, while LSH-APG achieves 1.5x faster query
answering time, while offering more efficient index construction.

3 Tree-based Index Family

The tree-based index family hierarchically partitions the high-dimensional space, which may be transformed or
projected, and groups similar vectors in the same partition as leaf nodes. Usually, the root node of the tree-based
indexes covers the whole high-dimensional space and the children nodes of it cover disjoint or overlapped
sub-spaces. When querying, we traverse the tree-based index from the root node to one or more leaf nodes by
judging which sub-spaces the query vector belongs to or is close to. Then the data inside these leaf nodes are
candidates of kNN . In this section, we will survey the latest tree-based indexes proposed in the past five years
and summarize the evolution in Figure 6. It can be viewed as an extension of the previous survey of tree-based
indexes [51].

3.1 Preliminaries and Overview

The designs of tree-based indexes (in a single machine) can be decomposed into three parts, including data
summarization (i.e., dimension reduction), indexing, and querying algorithms. In this subsection, we briefly
describe the preliminaries of these techniques leveraged in recent works.
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Figure 6: The evolution of tree-based index in the past 6 years, as an extended figure of [51]. The solid arrows
denote the inheritance of the index design; the dashed arrows denote the correlation of the design features; indexes
in double-lined boxes are in-memory solutions, while the rest are on-disk solutions. Note that HNSW is not a
tree-based index; it is included, because ELPIS (discussed in Section 4.2) inherits some of its features.

iSAX-index family iSAX summarization is a dynamic prefix of SAX words [44], and SAX is a symbolization
of Piecewise Aggregate Approximation (PAA for short). PAA represents a vector with the means of disjoint
equal-length segments, and SAX discretizes PAA with symbols. iSAX word is a prefix of the corresponding
SAX word, which can flexibly represent a sub-space in the reduced space. Based on iSAX, the iSAX index
family [51] organizes data in a tree structure, where each node is summarized by an iSAX word. The root node
covers the whole space and it can be split by refining one segment of its iSAX word. The children nodes own
disjoint sub-spaces of their parent. When querying, the iSAX word of each node can be used to prune irrelevant
data benefiting from that the distance between iSAX summarization lower bounds the actual distance.

EAPCA-index family The EAPCA-index family [71] differs itself from iSAX by 1) using dynamic segmenta-
tion that is determined on the fly when building index, 2) using mean and standard deviation to represent each
segment and thus providing tighter bounds when querying, 3) more splitting choices and adaptive split criteria.

Ordered-index family The Ordered-index family [37] sorts high-dimensional data with space-filling curves
(e.g., Z-order curve, Hilbert-order curve) and then index them with classical B-tree, etc. Space-filling curves
approximately preserve the proximity between points that are close in high-dimensional space. The approximation
error increases as the dimensionality goes larger. So usually dimension-reduction techniques are used beforehand.
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3.2 Optimized Disk Index Structure

Managing large-scale high-dimensional vectors on disk is challenging since the data locality (i.e., similar vectors
should be placed together such that they can be fetched by one I/O) and the index quality (i.e., nearest neighbors
should be quickly located by the index) should be considered at the same time. Recent progress has remarkably
advanced the state-of-the-art to hour-level indexing time and ms-level query time on billion-sized datasets.

HD-Index [9]. HD-Index, as an ordered index, builds multiple B+ trees each of which stores the Hilbert keys
of a segment of dimensions. In this way, HD-Index mitigates the loss of accuracy due to the dimensionality
reduction. To facilitate the refinement, HD-Index randomly places pivots and stores in the index the distance
between an entry and the nearest reference point, which provides the ability to prune when querying. However,
the search cost of HD-Index increases linearly with dimensionality, leading to an inefficient solution for very
high-dimensional vectors.

Coconut [37]. In contrast to HD-Index which sorts raw (sub)-vectors, Coconut first reduces dimensionality
using SAX, and then sorts SAX words by the z-order curve. In this way, the most significant dimensions (i.e.,
bits) of the SAX words are considered first. This process matches exactly the principle of SAX summarization,
i.e., coarse-grained partitioning is encoded in the most significant bits, while fine-grained partitioning in the least
significant bits. Using only one B-tree to index the keys, Coconut has a very fast query time, and the highly
packed leaves also lead to a small improvement in the results of approximate search.

Dumpy [67]. Dumpy is an iSAX-based index designed for high-precision approximate search and fast index-
building for large datasets. Dumpy leverages the trade-off between the proximity inside the leaf node and the
compactness (i.e., the fill factor) of these nodes by dynamically selecting the number of segments and which
segments to split along according to the data distribution. It also proposes a leaf node packing algorithm and a
vector duplication mechanism that further optimizes the data layout on the index. As a result, Dumpy can provide
high-recall answers with much fewer random I/Os.

3.3 Parallel Processing

Parallel indexing and querying on the tree-based index is not trivial for dynamic structure and pruning-based
query [54, 57]. The difficulties include the reduction of race conditions and load balancing among threads. The
ParIS+ index [57], parallelizes the building and querying algorithms of ADS+ [84], an adaptive variant of the
iSAX index. MESSI [54] further optimizes the race conditions for in-memory datasets, while SING [56] extends
the query answering algorithm to make use of GPUs. In recent years, the research boundary has been pushed by a
parallel and fully-materialized disk index, and a novel lock-free parallelism mechanism.

Hercules [22]. Hercules is an EAPCA-based parallel disk-based index. Designed for large-scale datasets,
Hercules optimizes memory management with a two-level buffer model to reduce the time cost of memory
management. Besides that, Hercules delicately schedules different tasks with a given number of threads,
resulting in (1) CPU-intensive tasks being executed in parallel to I/O-intensive tasks, (2) the number of I/Os being
significantly reduced, and (3) avoiding race conditions. Moreover, Hercules proposes a composite query algorithm
with hierarchical pruning by different distance approximations. Being the first parallel dynamic (EAPCA-based)
tree index, Hercules shows robust and remarkable index-building and query answering performance improvements.
(Hercules also inherits properties to ELPIS [23], a parallel in-memory index for approximate search, which we
discuss in Section 4.2.)
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FreSh [26]. FreSh is an iSAX-based parallel in-memory index, proposing a novel lock-free approach for
building and querying the index. FreSh modularizes iSAX-based indexes, and parallelizes the tasks of these
modules under Refresh, a generic framework that can be applied on top of any locality-aware data series algorithm
to ensure lock-freedom. FreSh also designs a helping mechanism with a small synchronization cost for load
balancing among threads. The combination of the tree-based index and lock-free mechanism opens more
directions for improving the parallelism of tree-based indexes.

3.4 Distributed Processing

The core challenges of distributed indexes are how to place the dataset into different machines, how to achieve
load balancing among these machines, and how to coordinate these machines to serve queries. The previous
study in this area, i.e., DPiSAX [74], partitions data by the distribution on the SAX space of the sampling data
and dispatches queries to corresponding partitions. Recent studies have advanced it from the aspects of partition
quality, load balance, and scalability of indexing and querying, by introducing and designing novel techniques for
distributed systems.

TARDIS [79]. As an iSAX-based index, the rationale of TARDIS is to cluster similar nodes into the same pack.
The pack is organized as middle-sized and the placement of these packs depends on the downstream distributed
file systems (e.g., HDFS). The clustering is based on a variant of iSAX, invSAX, which places the prior bits into
the first positions and then the later bits. TARDIS prominently advances DPiSAX [74] by load balancing and
cooperative querying. However, it loses the ability to prune and suffers from the low proximity of data inside a
pack, limiting the practicability and the improvement.

PARROT [76]. PARROT is built as a secondary index for a partitioned data warehouse. PARROT identifies
patterns by clustering on dimension-reduced SAX space, and stores the distribution of patterns in a global index
with exception points. However, PARROT relies on the existence of a strong correlation pattern between the
partition key and the vector inside. Otherwise, the vectors of the same pattern will distribute sparsely across the
data warehouse and querying will deteriorate to a linear scan.

Odyssey [13]. Odyssey is a scalable framework for distributed in-memory data series similarity search in
clusters with multi-core servers, thus, exploiting parallelization both inside and across system nodes. Odyssey
follows the classical design principle of horizontal splitting and vertical duplication in distributed systems. Unlike
TARDIS, Odyssey tries to achieve load balancing through carefully partitioning the data across machines (by
storing similar series to different machines), assigning queries to machines using a clever scheduling algorithm
(by estimating the execution time of each query), and employing more resources for hard queries (by using a
light-weight work-stealing technique). Odyssey also duplicates the data splits across several machines, which
enables further parallelization in query answering, as well as load-balancing (through work-stealing). As a result,
Odyssey achieves nearly linear scalability on an increasing number of machines, or queries.

3.5 Discussion

From the summarization and analyses above, we can observe that tree-based indexes are developed toward
practical, large-scale, parallel, and distributed scenarios. These extensions fully leverage the data locality and
high efficiency of tree-based indexes. On the other hand, an inherent drawback of the tree-based indexes is that it
is hard to overcome the curse of dimensionality. The similarity between the points in a partition of a tree index is
decided by a hyperplane in high dimensions, which usually needs to balance separability and the proximity of the
data. As the height of a tree is limited (which influences the search performance), only limited dimensions and
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Table 6: A comparative study of graph- and tree-based indexes.

Comparison Items Graph Tree

Basic Properties

Rationale Navigability Space-partitioning

Data locality ⇥ X
Dimension reduction ⇥ X

Query Answering

Search pattern Best-first-search Prioritized tree traversal

Two-stage search X X
Navigating stage Fast Fast

Recall stage Fast Slow

Progressive search X X
Pruning/ ✏-accuracy

guarantee ⇥ X

Early termination of
distance calculation X X

Parallelism
Index construction X X

Intra-query parallelism X X

Distributed
indexing

Load balance ⇥ X
Query collaboration ⇥ X

features are considered to form the hyperplane. Therefore, it is not easy to quickly locate all the nearest neighbors
in a tree index.

4 Comparative Study and Open Directions

4.1 Comparison Between Graph- and Tree-based Indexes

As shown in Table 6, we compare graph- and tree-based indexes along four dimensions, namely, basic properties,
query answering, parallelism, and distributed indexing.

Basic properties. The motivations of these two kinds of indexes are different. Graph-based indexes are
motivated by the navigability of a small-world graph model whereas tree-based indexes organize data according
to the proximity of neighboring vectors. Therefore, tree-based indexes group similar vectors together and own
data locality while graph-based indexes are not aware of the data locality explicitly. Since graph-based indexes
only use the absolute distance between points for indexing, the dimensions of the vectors are usually ignored
and hence no dimension reduction techniques are used, despite that the dimensions of space are impacting the
quality of indexes implicitly. On the contrary, tree-based indexes need to explicitly split the partitions and a high
dimensionality will severely impact the quality of splits. Thus, dimensionality reduction has become the rule of
thumb for tree-based indexes.

Tree-based indexes can usually be deployed either on disk or in memory, and enjoy cache acceleration by
virtue of the data locality. However, it is hard for graph-based indexes to leverage data locality as they are
secondary indexes (i.e., the data is not stored inside the index). Moreover, inserting a vector into a graph-based
index usually means a change in the topology of the graph. This indicates that ingestion throughput is limited,
especially when the graph is large. Some promising studies propose efficient on-disk solutions [15, 64, 80]
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and effective update strategies [63] to address these problems, which nevertheless, remain interesting research
directions for graph-based indexes.

Query answering. As for querying, graph-based indexes follow a best-first-search pattern on the graph, while
tree-based indexes find the closest partitions to the query vector by prioritized tree traversal. Nevertheless, both
these two algorithms are reminiscent of two-stage searching [77] (i.e., navigating and recall stages). For both
algorithms, the navigating stage can be very fast while in the recall stage, graph-based indexes are far more
efficient than the tree-based ones. This is because the kNN of the candidates are directly linked in the graph
index. On the other hand, the tree-based index provides a bound for the query vector and a group of database
vectors, allowing multi-level pruning with no false negatives, which can also be used to build mechanisms that
provide (deterministic or probabilistic) guarantees for the approximate search answers [24, 32]. On the contrary,
graph-based indexes cannot safely prune any of the visited points. As a common point, when pruning fails, both
graph- and tree-based indexes can early stop the exact distance calculations between the query and the candidate
answers (i.e., without having to process all the dimensions) [31, 60]. Note that while graph-based indexes can
only support ANNS (with no quality guarantees), the tree-based indexes discussed in this paper support all flavors
of similarity search, ranging from ANNS without and with (probabilistic and deterministic) quality guarantees to
exact similarity search.

Another direction that has been studied in the context of both graph- and tree-based indexes is progressive
search [32, 35, 42, 78]. In the recall stage, ANNS tries to answer two questions: (i) Is the current Best-So-Far
(BSF) answer the exact kNN? (ii) If not, when will the exact kNN occur? Note that the answers to these questions
are not known during query answering. However, estimations of the answers to these questions can benefit
the query algorithms. First, if the answer to the first question is positive, the query algorithm can terminate
immediately. As demonstrated in an earlier study [32], the time needed for ANNS to determine the answer to
the first question after having already found the exact kNN, corresponds to the vast majority of the total query
answering time. Therefore, an agile termination can significantly accelerate high-precision search. Recently,
ProS [32] proposed the use of simple machine learning models to provide various probabilistic quality guarantees
(such as, on the current result being the exact kNN, the distance of the current answer being less than ✏ from
the exact kNN distance, and others) for intermediate (i.e., progressive) results during the query answering
process. Moreover, by answering the second question, we can dynamically schedule the computing resources by
controlling the search parameters, such as ef , and the number of leaves to visit for a precision target. To achieve
this, for tree-based indexes, ProS uses quantile regression that estimates the 1 � � quantile of the time needed to
find the exact answer with the BSF answers. For graph-based indexes, a recent study [42] enriches the features by
(a) the query itself, (b) the progress made from the start point to the current point, and (c) the ratio of existing
features. With these features, it trains Gradient Boosting Decision Trees for regression.

Parallelism. Both kinds of indexes have been extended to support parallelization. For index construction,
tree-based indexes have evolved to the solutions described above, and such parallelism for graph-based indexes is
also natural. For intra-query parallelism, these two kinds of index families also propose corresponding extensions,
like Hercules [22], MESSI [54], SING [56], FreSh [26] and ELPIS [23] for tree-based indexes, and SONG [82]
and iQAN [58] for graph-based indexes.

Distributed indexing. While some studies have focused on distributed solutions for tree-based indexes [13, 74,
76, 79], the direction of distributed graph-based indexes has not been studied in depth. Existing solutions [29, 66]
use random data partitioning and independent building of the corresponding parts of the index. Therefore, the
computing power of the machines is not fully leveraged, and there are untapped opportunities for improving
scalability [21, 78].
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4.2 Existing Combinations of the Two Kinds of Indexes

In this subsection, we survey the existing solutions that combine these two kinds of indexes and analyze their
common points and design principles.

SPTAG [16] and SPANN [15]. Similar to HVS and LSH-APG, SPTAG adopts a balanced K-means tree [45]
to locate better entry points. While SPANN as a disk index, partitions data by a balanced K-means tree, and each
partition is stored sequentially on disk. The data partitions are further refined by duplication. To quickly find the
nearest partitions, SPANN builds a SPTAG index in memory for the partition centroids. As a result, it shows
remarkable improvement compared with dumping an optimized graph into the disk [64].

LANNS [20] and ELPIS [23]. Another family of solutions constructs a tree index to partition the data, and
builds a graph within each partition (leaf node). LANNS uses a learned hyperplane for splitting and a multi-path
search in the tree. ELPIS [23] leverages Hercules [22] to partition the data. In contrast to LANNS, ELPIS can
prioritize the leaf node according to the lower bound distance to the EAPCA of the query. In this way, ELPIS
provides higher intra-query parallelism, leading to a remarkable improvement in query performance on large-scale
datasets. Since the indexing cost of the tree index is lower than a graph index, ELPIS significantly improves
indexing efficiency by 3x-8x, and reduces memory consumption by 40%. Interestingly, ELPIS shows the trade-off
between query efficiency and accuracy when varying the number of partitions. That is, more partitions improve
search efficiency at the expense of accuracy, but there exists a sweet point that optimizes performance.

Discussion. So far we have studied three kinds of combinations of graph- and tree-based indexes, including (1)
using the tree index to obtain better entry points for the graph index (HVS, LSH-APG, and SPTAG); (2) using the
graph index to find the closest leaf nodes in the tree index (SPANN); (3) using the tree index to partition data and
building graph indexes on each leaf node (LANNS and ELPIS). We can deduce the following key ideas from
these combinations. (i) The tree index can promote the representation granularity from vector-level to node level,
even in sub-tree level, which makes it easy to handle large-scale and disk-resident datasets. (ii) The cases in
large-sized datasets (billion-level) are not the same as middle-sized (million-level), where the pros and cons of
different index families should be re-considered carefully. (iii) The tree index still suffers from the boundary issue
and must be adapted to improve the search accuracy (e.g., duplication). (iv) It is yet intractable to build the graph
index on the whole dataset, while at the same time, the graph index is irreplaceable for achieving high recall
efficiently. Based on these explorations, in the next section, we will introduce more possible directions where
tree-based, as well as other kinds of indexes can assist the graph index to overcome more inherent limitations.

4.3 Open Problems and Promising Future Directions

In this subsection, we propose four open problems that are crucial for solving ANNS problems in practice and at
scale. More importantly, combining the techniques from the tree- and graph-based index is a promising way to
solve these problems.

Dimension reduction and pruning. The most costly operation for graph-based indexes is the distance cal-
culation, reducing dimensions can provide a linear improvement on query [31]. For example, by rotating the
vectors in the directions of the principal component vectors, the early termination mechanisms can behave more
efficiently as most of the variations are concentrated in the first dimensions. The results are shown in Figure 7,
where the query time is reduced to 50% with this simple optimization. Moreover, representation learning is also
a promising way of embedding high-dimensional vectors in a low-dimensional space. A lower bound of the
distance measure in the embedded space is often designed at the same time, in order to safely perform pruning. As
demonstrated by GRAIL [53] and SEAnet [70], representation learning is more flexible in capturing the “shape” of
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high-dimensional vectors than traditional methods, because it can adapt to the data at hand. Similar data-adaptive
techniques have been studied in the context of quantization [7, 52]. Besides that, inspired by the hierarchical
structure of tree-based indexes, after dimension reduction (or rotation, projection), it would be helpful if different
vectors can be summarized with a common representation and be safely pruned, i.e., through node-level pruning.

Figure 7: Early termination techniques in HNSW on
Gist1M. ADS [31] is the state-of-the-art technique.

Distributed indexing. Distributed indexing is a must
for managing large-scale high-dimensional data in pro-
duction. Distributed tree-based indexes, like Odyssey,
have been designed for exact kNN search; their ANNS
performance can be further improved. On the other
hand, partitioning a graph index is inherently difficult
since it is not evident how to partition the graph with
load-balanced partitions. As demonstrated in [78],
combining the results from multiple disjoint graph in-
dexes split at random is sub-optimal for this problem,
and other clustering algorithms like k-means, suffer
from imbalance problems. Therefore, designing a load-
balance-oriented data partition scheme that minimizes
the loss of efficiency will provide substantial improve-
ments to vector database performance [3, 66, 72]. In this case, a promising direction is to leverage the space-
partitioning scheme of tree-based indexes for splitting data, while estimating the load of each split dynamically,
in order to provide more opportunities for collaborative (parallel) work during query answering time.

Reliable ANNS. Current ANNS algorithms are not reliable. In different datasets (similar cardinality and
dimensionality), the search performance is significantly different. For example, to achieve 90% recall@20 on
HNSW, the search cost is 90x larger for Glove dataset than Deep1M dataset. Such a result is not a special
case [31, 43, 55, 68]. The reason is closely related to our analyses in Section 2. Although HNSW removes the
hubs and mitigates the skewness, the effect of these techniques actually depends on the distribution of the original
dataset. If the distribution of the original dataset is very skewed, the phenomenon that hubs are clustered to
trap the search route occurs again in HNSW. It means that the high efficiency for navigation, and the high local
proximity for recalling no longer exist in graph-based indexes. To further mitigate the skewness, it will be helpful
to use (approximate) range search to further filter edges. It is possible to remove the bias on the nodes with high
k-occurrence and provide a robust performance over datasets of any distribution.

Reliable benchmarks. With the rapid growth of the ANNS area, the development of appropriate benchmarks is
urgently required, in order to evaluate the solutions based on the different index families we outlined earlier, as well
as new solutions that combine and extend the ideas of existing techniques. Some works in the literature [24, 25, 41]
have been pioneering in this respect, but the latest techniques are not included in them. Other benchmarks such
as [62] and [10, 11] provide an open framework to evaluate the performance of different ANNS algorithms.
However, many engineering tricks can be added to improve the literal performance which on the other hand, might
confuse readers without detailed ablation studies. Moreover, common public datasets such as Sift [6], Gist [6],
Deep [5], were produced over a decade ago representing the application of ANNS in the machine learning era.
As the model architecture has evolved significantly in the past decade, it would be beneficial to produce and use
newer datasets that correspond to modern applications (e.g., Transformer-based models).

Furthermore, it would be interesting to assess the difficulty of similarity search queries: the different difficulty
levels represented by various datasets, as well as various queries on the same dataset, have been observed in the
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literature [10, 85]. However, we still lack a comprehensive analysis and theoretical characterization of the difficulty
level of datasets and queries alike, which directly affect the performance of the various indexing approaches, and
may also lead to biased evaluation results. Previous work has studied local intrinsic dimensionality [10], as well
as measures related to the tightness of lower bound and data distribution [85], in order to evaluate the difficulty
of a query and a dataset, or more precisely, of a query with respect to a given dataset. These approaches study
the difficulty of pruning candidate points in the dataset, in response to a given kNN query. Nevertheless, more
extensive and comprehensible studies and benchmarks are needed to more accurately and fairly characterize and
evaluate the performance of different ANNS indexes.

5 Conclusions

In this paper, we study the evolution of the graph-based index family with ablation studies and observe that the
keys to its success lie in the randomization and the RNG-based pruning rule. These techniques preserve the local
proximity with fewer edges while building effective long-range connections to enhance navigability. We also
survey the recent progress of the tree-based index family and discuss their relationships. Moreover, we conduct a
comparative study over these two index families and observe that several of these techniques can complement
each other in solving practical problems in ANNS. Finally, we point to some interesting research directions in the
context of ANNS.
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