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Abstract. Complex systems, such as communication networks, gener-
ate thousands of new data points about the system state every minute.
Even if faults are rare events, they can easily propagate, which makes it
challenging to distinguish root causes of errors from effects among the
thousands of highly correlated alerts appearing simultaneously in high
volumes of data. In this context, the need for automated Root Cause
Analysis (RCA) tools emerges, along with the creation of a causal model
of the real system, which can be regarded as a digital twin. The advan-
tage of such model is twofold: (i) it assists in reasoning on the system
state, given partial system observations; and (ii) it allows generating la-
belled synthetic data, in order to benchmark causal discovery techniques
or create previously unseen faulty scenarios (counterfactual reasoning).
The problem addressed in this paper is the creation of a causal model
which can mimic the behavior of the real system by encoding the ap-
pearance, propagation and persistence of faults through time. The model
extends Structural Causal Models (SCMs) with the use of logical noisy-
OR gates to incorporate the time dimension and represent propagation
behaviors. Finally, the soundness of the approach is experimentally veri-
fied by generating synthetic alert logs and discovering both the structure
and parameters of the underlying causal model.

Keywords: Digital Twin, Causality, Alerts, Complex Network Mod-
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1 Introduction

Complex systems such as modern telecommunication networks, or distributed
embedded systems, need to be continuously monitored to allow identification
of failure situations. The monitoring systems generate huge volumes of alert
logs and notifications, where it is extremely challenging to distinguish real fault
symptoms from noisy alerts. Given the large number of highly correlated alerts
that appear simultaneously in faulty situations, one still needs to model causal
relations between alerts, in order to identify root causes of faults.

Experts in charge of monitoring and troubleshooting the system usually have
knowledge about the system architecture, the possible types of faults and the
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connections (dependencies) between components (e.g., topology). What is lack-
ing is the model that can encode the system behavior and assist experts in
understanding and reasoning on the system state. For example, it can be used
to answer questions such as: how likely (and when) alert B will be observed,
given that alert A is currently present?, how two simultaneous alerts B and C,
which were never observed together, will propagate?, what is the most likely
cause of the observed series of alarms?, etc.

The existing tools for modelling variables with causal relations [11, 14, 21,
23] are not suitable for these purposes, since they cannot adequately represent
system behavior. On the other hand, the digital twin is emerging as a paradigm
which can represent relations between system components and allow simula-
tions or reasoning in unprecedented situations [7, 1]. A health monitoring model
described in [12] uses Dynamic Bayesian Network (DBN) to model relations be-
tween variables. Similarly, system graph can be inferred from correlated patterns
in the data [5]. To the best of our knowledge, all these tools and frameworks are
only able to describe correlations or causal relations between variables, without
the ability to encode probabilities of appearance, propagation and persistence of
binary events such as faults, events and notifications.

In this paper, we propose a framework for building a digital twin that models
faulty system behavior based on causal relations between observable alerts. An
alert can be represented as a binary time series, where active state indicates a
fault on the subsequent system component. The framework takes as input his-
torical data i.e. past observed alerts, and builds a model of the system behavior
in two steps. First, it extracts the structure of the causal relations between alerts
(Directed Acyclic Graph - DAG), and then learns the parameters of the depen-
dencies which drive the system behavior (e.g., frequency and duration of alert
appearance, time lag needed to observe effect given presence of cause(s), etc).
Second, it builds a causal model of the system by tackling the rarity of fault
issues. Multi-causal dependencies follow the noisy-OR logic [18], which enables
estimating the effect of multiple causes even if they have never been observed
together. The noisy-OR model is commonly used to simplify the expression and
computation of the parameters of the dependency between multiple independent
causes and one common effect. It has largely been used in network diagnosis and
fault localization problems [2, 8, 25, 13].

The resulting digital twin can answer the above mentioned questions and has
several possible usages: generation of labelled synthetic data for algorithm opti-
misation and tuning, reasoning on the system state given partial observations,
or simulation of unobserved fault scenarios.

The contribution of this paper is twofold. First it describes the framework for
building a digital twin from observed historical data; second, it shows how Struc-
tural Causal Models (SCMs) [6, 19] can be used to encode the system behavior
including alert appearance, propagation and persistence.

The rest of this paper is organized as follows: Prerequisites regarding noisy-
OR and SCMs are given in Section 2. Section 3 describes our framework for
building a causal model of a digital twin which models faulty system behaviour.
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The experiments that simulate creation of a digital twin, by inferring both causal
relations between variables and SCM parameters are discussed in Section 4,
followed by the conclusion and future work.

2 Prerequisites

The approach presented in this paper is based on Structural Causal Models and
uses noisy-OR gate to represent the impact of multiple causes on the same effect.
This section briefly introduces the theory behind those two notions.

2.1 Structural Causal Models

A common way to represent causal relationships between variables is to use
Structural Causal Models (SCM), referred also as Structural Equation Models
(SEM) [3, 20, 10] in the case of linear relationships between the variables. Graph-
ically, SCMs can be seen as Directed Acyclic Graphs (DAGs) [24] in which sets
of Endogenous V and Exogenous U variables are connected by a set of functions
F . This set of equations determine the values of the variables in V based on
the values of the variables in U . They correspond to causal assumptions and
can be seen as assignments, rather than mathematical equations. Intuitively, a
DAG represents a flow of information, where the variables U are the inputs of
the system, while the variables V are the nodes where that information is pro-
cessed. Exogenous variables U correspond to unobserved influences in the model
which can be treated as noise factors. In the simplest case with two variables,
an SCM can be described as shown in Figure 1a, where variable Y (effect) is a
child of a variable X (cause). NX and NY are statistically independent noises
i.e. NX ⊥⊥ NY . Variable X depends only on a noise term NX (X := NX) while
variable Y depends on the values of the parent variable X and its own noise NY

(Y := f(X, NY )).

(a) Structural Causal Model (SCM)
representing X →Y.

(b) Collider DAG (also called
immorality or v-structure).

Fig. 1: Example of a SCM and a DAG.

2.2 Noisy-OR

The basic idea behind noisy-OR gate is to compactly represent the effect of
multiple independent causes which are responsible for producing the same effect.
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According to the leaky noisy-OR definition [9], equation allows the transfer of
influence from multiple parent Boolean variables x1, . . . , xn , where the child
Boolean variable y can become active with probability:

Pnor(y = 1 | x1, . . . , xn) = 1− (1− λ)

n∏
i=1

(1− νi)xi (1)

For each i = 1, ..., n, the number νi (associated with xi) that takes value between
0 and 1 is called weight. Number λ which also takes value between 0 and 1, is
called leak factor. For the leak factor λ = 0, leaky noisy-OR function transforms
to the original (standard) noisy-OR. In the following sections we will refer to the
leaky noisy-OR as the noisy-OR, since in the majority of causality and Bayesian
Network (BN) literature authors do the same.

As a comparison, causal probabilistic networks, also known as Bayesian Net-
works, would require 2n probability parameters to express all states using Con-
ditional Probability Tables (CPTs), where n is the number of parent variables.
The main advantage of a noisy-OR gate is that it provides a practical compact
representation of CPTs, by describing conditional probabilities using only n+ 1
parameters (one parameter per parent variable plus one for the noise).

3 Causal Modelling for a Digital Twin

This section presents our framework for building a digital twin that mimics faulty
behavior of a real system. First, we present steps needed to build a digital twin
just by observing system alerts. Second, we define variables and rules needed to
model fault appearance, propagation and persistence in time. Then, we describe
how to build a causal model that encodes relations between system components.
Lastly, we define steps needed to infer model structure and parameters from
observational data.

3.1 Digital Twin Architecture

Many complex systems are composed of multiple interdependent components
and use alerts to communicate on issues/faults in the system, where faults can
propagate from one component to another. For example, fault on a base station
can be caused by a fault on power equipment connected to that base station
(Figure 2 - System Layers). Similarly, lack of computing resources on a server
can cause faulty behavior on a base station. We separate three reasons for an
alert occurrence:

– alert becomes active independently from other alerts i.e. indicates new fault
in the component (case 1);

– alert becomes active due to the activity of some other alert i.e. indicates the
propagation of a fault from another component (case 2);

– alert remains active after its occurrence at the previous time instant, i.e. the
fault persists (case 3).
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Fig. 2: Creation of a Digital twin : modelling behaviour of observable system
states, enables mimicking fault appearance, propagation and persistence in time.

In order to model the system behavior and represent the three above men-
tioned cases, we introduce a framework for building a digital twin (Figure 2).
It uses as input historical data coming from observable system layer to discover
the system’s model. This requires structure extraction and parameter learning.
Structure extraction consists in learning causal relations between alerts. It can
be done using existing causal discovery techniques [23, 22, 15, 17], which can in
addition, discover causal dependency time lag (time series DAG). Then parame-
ters can be learnt using techniques that infer conditional probability distribution
of noisy-OR gates once the structure is known [16].

Once all parameters are inferred, causal model for a digital twin can be
built, as will be described in more detail in the following subsections. The main
advantage of having a digital twin for the real system lies in the ability to
mimic system behavior. This allows (i) simulating previously unseen faulty sce-
narios and generating labelled data for algorithm optimization (ii) identifying
root causes of faults by explaining observed alert logs using real time observa-
tions. Lastly, knowing the dynamics of fault propagation between components
enables predictive maintenance tasks. Once an alert appears on a component,
knowing when and which component will be affected next, can be used to predict
the appearance of alerts. In the sequel, we will consider that active state of the
alert corresponds to binary time series having value equal to one.

3.2 Defining Variables and Rules

In order to define the causal model used for modelling system behavior, this sec-
tion starts by describing the rules used to express causal dependencies between
variables, as well as the corresponding parameters. The model uses two types
of endogenous SCM variables: gate variables and observed variables, where the
latter correspond to system alerts. Given that the framework represents depen-
dencies through time, all states of a given observed variable, which are involved
in causal relations, are represented by a separate endogenous variable, indexed
by the time instance they represent. For example, there can be two variables Xt

and Xt−1 representing the same observed variable X at two different moments, t
and t−1 respectively. Gate variables are used to manage the probabilistic causal
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dependencies between observed variables. Each gate variable has indexes for the
cause variable and the effect variable that it links. When representing fault prop-
agation, cause and effect variables have different names (and possibly different
time indexes if the cause takes time to propagate). On the other hand, when
representing fault persistence, the cause and the effect variables correspond to
the same time series variable, just in different time states (the cause should have
older time index that the effect).

Each endogenous variable has an exogenous variable associated with it, whose
semantics differs, whether the endogenous variable is a gate or not. For observed
(non-gate) variables, the corresponding exogenous variable controls the prior
probability of turning the endogenous variable to 1 i.e. probability of a new
fault, while for gate variables, it controls the propagation probability from the
cause to the effect.

Once the graphical model of causal dependencies is defined, it is translated
into equations based on the following rules:

– Rule 1: for each exogenous variable Ei, create an equation which assigns a
value to it, using a random probabilistic generator with a given probability
distribution. For example, a discrete random generator disc with parameter
λi, denoted disc(1 − λi, λi) will assign to Ei a value 1 with probability λi
and a value of 0 with probability 1− λi:

Ei = disc(1− λi, λi) (2)

– Rule 2: for each observed endogenous variable Xti which is not causally
dependent from any other variable (i.e. is root variable), create an equation
which assigns to it the value of its exogenous variable EXti

:

Xi
t := EXi

t
(3)

– Rule 3: for each endogenous gate variable GateXY , create an equation which
assigns a value to it using a logical AND operator over its exogenous variable
EGateXY

and the value of the input cause variable X:

GateXY := AND[X, EGateXY
] (4)

– Rule 4: for each non root, non-gate, endogenous variable Y i
t , create an

equation which assigns a value to it using a logical OR operator over the
values of all input gate variables {GatePA

Y i
t
Y i
t
} and its exogenous variable

EY i
t
:

Y i
t := OR[EY i

t
, {GatePA

Y i
t
Y i
t
}] (5)

where PA corresponds to all parent nodes i.e. causes for variable Y i
t .

3.3 Noisy-OR SCM Models

The digital twin takes as input a causal model, which allows modelling the three
cases described in Subsection 3.1 in the following way. Probability of a new fault
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(case 1) is represented by parameters of exogenous variables associated to non-
gate endogenous variables, using Rule 1, which translates this probability into
faults. These exogenous variables are then assigned to the non-gate endogenous
variables using Rules 2 or 4, depending on whether the variable is a root or not,
respectively. If variable is not a root node, the model includes propagation of
a fault from parent components (case 2), incorporating also Rule 3. The SCM
that models these two cases using all four rules is presented on Figure 3. This
model corresponds to the noisy-OR definition (Equation 1) for collider structure
on Figure 1b, where parents X1 and X2 independently cause child Y .

Fig. 3: Noisy-OR SCM.

Persistence of a fault on the same component (case 3) is realised by intro-
ducing (unobserved) endogenous gate variable between two time instances of the
same variable (GateXt−1Xt i.e. GateYt−1Yt on Figure 4). Likewise, introducing
gate variable between two time instances of different time series (GateXt−1Yt

)
creates a time lag for propagation of fault from another component. The SCM
on Figure 4 combines previously described effects, therefore modelling all three
cases from the Subsection 3.1. Alert Yt can become active due to the activity
of alert Xt, regarded as parent in causal graph. At the same time, both alerts
have the probability of entering and maintaining their active state, indepen-
dently from each other. Methodology and all equations can be easily generalized
to multiple children and parents (Xi

t ; i = 1, ..., n) with propagation intervals of
arbitrary length t− lag.

3.4 Model Discovery from Observable Data

Building a digital twin requires inferring structure and parameters from his-
torical data, which will serve as input for a causal model (Figure 2 - Model
Discovery). Once the structure (DAG and lag-s) are properly identified using
causal discovery techniques, the parameters of the SCM need to be estimated.

This consists in learning the parameters of the probability distributions used
to assign values to n random variables (alerts - nodes in a DAG) which is similar
to learning parameters in Bayesian Networks structure [16]. The order in which
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Fig. 4: Example of an SCM for modelling 2 binary time series (Xt causing Yt)
where propagation time lag between variables is 1 (lag = 1).

parameters are learnt is important. First, for each variable Xi
t (i = 1, ..., n), the

new fault appearance probability λXi
t

is computed from all observations in which

all parent variables of Xi
t are inactive, including its own past. Then, the alert

persistence probability νXi
t−lagX

i
t

is inferred from samples where all parents of Xi
t

are inactive, except the samples representing its own past (i.e. Xi
t−lag). Finally,

alert propagation probabilities νXi
t−lagX

j
t

are estimated by considering the cases

in which only one of the parents for Xj
t is active at a time (j 6= i). In this last

case, due to alert persistence, the sample representing the past of Xj
t may also

be active, but as it’s propagation probability has already been estimated, there
is only one unknown parameter to be learnt.

4 Experiments

The goal of this section is to validate the framework’s capability to infer the
digital twin of a system, using just the observational data coming from the
system alert logs. Synthetic datasets used in the tests are generated using the
framework presented in Section 3. The experiment is performed in two phases:
first, we test the capability of different causal discovery techniques to infer the
causal relations between alerts (DAG) from observational data. Second, we test
the ability to correctly learn noisy-OR SCM parameters, which corresponds to
alert characteristics, once the structure is properly identified.

4.1 Setup

The data generation process of the proposed framework is implemented in Python.
The implementation code, dataset samples and the notebooks for running the
simulations are publicly available3. Each test is repeated 10 times, time series
length is 1000 points and evaluation results are shown as average and standard
deviation across the 10 runs. Tests are executed on a VM with CPU @ 2.2 GHz
and 16GB of RAM.

3https://github.com/nokia/causal-digital-twin
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Datasets The data generation process consists in 3 steps:
1) Defining the structure of the underlying model, represented as a

DAG. Directed Acyclic Graphs with n nodes are randomly generated and the
mean edge degree is fixed to d = 3 (taking into account in and out edges in di-
rected graph). Graphs of different size n are generated with n ∈ {5, 10, 15, 20, 50}.
DAGs are generated according to ER (Erdős–Rényi) model using probability of
p to assign new edges, where p is computed as p = d

n−1 .
2) Parametrizing the model is done by assigning λXi

t
and νXi

t−lagX
i
t

prob-

abilities to graph nodes and νXi
t−lagX

j
t

and lag are assigned to graph edges, where

i, j = 1, ..., n. Given that some causal discovery techniques, such as PCMCI, do
not apply on instantaneous propagation, lag equal to zero is not used in data
generation process. DAG attributes are used to instantiate exogenous and en-
dogenous variables of the SCM, where nodes in a DAG correspond to variables
in SCM, while edges correspond to causal relation in SCM.

3) Generating a dataset with n variables, each representing a binary time
series. Edges in DAG represent ground truth causal relations between variables.

Causal Discovery Techniques Four state-of-the-art multivariate causal dis-
covery techniques are used for evaluation across the tests, as representatives of
different methods for learning causal relations, as listed in Table 1.

Table 1: Causal Discovery techniques.

Algorithm Short Description Parameters used

PCMCI [23] constraint-based α = 5%, τmax = 3, CMIsymb
PCMCI+ [22] constraint-based α = 5%, τmax = 3, CMIsymb

TCDF [15] convolutional neural networks K = 4, L = 0
DYNOTEARS [17] score-based τW = 5%, lagmax = 3

Evaluation Measures The accuracy of discovered causal relations is mea-
sured based on the fact that the discovery of a directed edge in a DAG can
be treated as a binary classification problem, since all techniques used in ex-
periments output directed edges. In [4], the precision and recall (true positive
rate) are defined as TP/(TP+FP) and TP/(TP+FN), respectively, where True
Positives (TP) are defined as correctly identified links in the underlying DAG.
Similarly for False Positives (FP) and False Negatives (FN). The F1 score is
defined as 2 ∗ Precision ∗Recall/(Precision+Recall). Tested causal discovery
algorithms can additionally output specific time lag along with detected edge.
If technique outputs wrong or multiple time lags for the same causal relation,
it is not penalized i.e. only incorrectly detected edge (causal relation between
variables) is penalized.
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4.2 Results

Parameter range in synthetic datasets is chosen to mimic the behavior of alerts
in real systems, where faults are rare events. In addition, faults propagate on
interconnected components, while alerts turn off once the system recovers from
faults. Probability for SCM parameters, used in experiments, are listed in Ta-
ble 2, where uncertainty of 5% is introduced in order to have more probabilistic
scenario.

Table 2: Parameter ranges for the tests in Figure 5.

Parameter Value range Description

λXi
t

(0 - 0.05] probability of a new fault on Xi
t

νXi
t−lag

Xi
t

(0 - 0.05] probability that fault persists on Xi
t

ν
Xi

t−lag
X

j
t

[0.95 - 1.0] probability of a fault propagating from Xi
t to Xj

t

lag [1,2,3] causal dependency time lag

First, the ability of causal discovery techniques to detect underlying causal
graph from observational datasets is tested. Figure 5 represents the F1, preci-
sion and recall scores of different algorithms for various graph sizes. PCMCI+
and PCMCI are able to correctly identify a DAG and maintain high F1 score as
graph size grows. TCDF has high precision for small graph structures, although
this technique suffers from lower accuracy as the number of variables increases.
DYNOTEARS has stable precision across datasets of different sizes, yet suf-
fers from low recall, since it only detects around 20% of edges from the ground
truth set. Second, given correctly identified graph structure, our approach using
Maximum Likelihood Estimation (MLE) is able to learn the SCM parameters
asymptotically as the number of time samples increases (RMSE of ˜1% for vari-
able length of 100k).

5 Conclusions

This work proposes a general-purpose framework for modelling faulty behaviors
in complex systems. The model relies on noisy-OR logic components combined
into a causal DAG structure by using Structural Causal Models (SCMs). Ex-
plicit representation of fault propagation rules characterizes the impact of mul-
tiple causes on the same node, while introduction of lagged variables in SCM
incorporates the time dimension. Our approach enables modelling the appear-
ance, propagation and persistence of faults, which is suitable for representing
multivariate binary time series such as alerts, events, or notifications. Synthetic
datasets are generated from this model, showcasing that we are able to recover
both causal relations and parameters in the SCM only from observational data,
which allows creation of digital twins for the real systems. Our framework can



Digital Twin of Complex System using Causal Modelling 11

Fig. 5: Accuracy and execution time for different graph sizes (d = 3 and SCM
parameters are listed in Table 2).

be broadened to allow modelling categorical and continuous time series by using
generalizations of the noisy-OR gate. In our future work, we will study exten-
sions to enable changes in causal graph structure and function parameters, which
would allow reasoning on interventions, counterfactuals and distribution shifts.
In particular, structure changes and distribution shifts can model occurrences of
severe fault modes preceded by normal situations with recurrent minor alarms.
Last but not the least, we are planning evaluation campaigns of our framework
confronted to alarm data collected from deployed communication networks.
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