
1

Blocking and Filtering Techniques
for Entity Resolution: A Survey

GEORGE PAPADAKIS, University of Athens, Greece

DIMITRIOS SKOUTAS, IMSI, Athena Research Center, Greece

EMMANOUIL THANOS, KU Leuven, Belgium

THEMIS PALPANAS, Paris Descartes University, France

Entity Resolution (ER), a core task of Data Integration, detects different entity profiles that correspond to

the same real-world object. Due to its inherently quadratic complexity, a series of techniques accelerate it

so that it scales to voluminous data. In this survey, we review a large number of relevant works under two

different but related frameworks: Blocking and Filtering. The former restricts comparisons to entity pairs that

are more likely to match, while the latter identifies quickly entity pairs that are likely to satisfy predetermined

similarity thresholds. We also elaborate on hybrid approaches that combine different characteristics. For each

framework we provide a comprehensive list of the relevant works, discussing them in the greater context. We

conclude with the most promising directions for future work in the field.

ACM Reference Format:
George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas. 2019. Blocking and Filtering

Techniques for Entity Resolution: A Survey. ACM Comput. Surv. 1, 1, Article 1 (January 2019), 38 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Entity Resolution (ER) is the task of identifying different entity profiles that describe the same

real-world object [29, 47]. It is a core task for Data Integration, applying to any kind of data, from

the structured entities of relational databases [24] to the semi-structured entities of the Linked Open

Data Cloud (https://lod-cloud.net) [29, 38] and the unstructured entities that are automatically

extracted from free text [148]. ER consists of two parts: (i) the candidate selection step, which
determines the entities worth comparing, and (ii) the candidate matching step, or simply Matching,
which compares the selected entities to determine whether they represent the same real-world

object. The latter step involves pairwise comparisons, i.e., time-consuming operations that typically

apply string similarity measures to pairs of entities, dominating the overall cost of ER [24, 29, 38].

In this survey, we focus on the candidate selection step, which is the crucial part of ER with

respect to time efficiency and scalability. Without it, ER suffers from a quadratic time complexity,

O(n2), as every entity profile has to be compared with all others. Reducing this computational

cost is the goal of numerous techniques from two dominant frameworks: Blocking and Filtering.

The former attempts to identify entity pairs that are likely to match, restricting comparisons

only between them, while the latter attempts to quickly discard pairs that are guaranteed to not

match, executing comparisons only between the rest. The former operates without knowledge

Authors’ addresses: George Papadakis, University of Athens, Greece, gpapadis@di.uoa.gr; Dimitrios Skoutas, IMSI, Athena

Research Center, Greece, dskoutas@imis.athena-innovation.gr; Emmanouil Thanos, KU Leuven, Belgium, emmanouil.

thanos@kuleuven.be; Themis Palpanas, Paris Descartes University, France, themis@mi.parisdescartes.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0360-0300/2019/1-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://lod-cloud.net
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 G. Papadakis et al.

of the Matching step, while the latter is based on it, assuming that two entities match if their

similarity exceeds a specified threshold. Hence, Blocking and Filtering share the same goal, but

are complementary, as they operate under different settings and assumptions. So far, though, they

have been developed independently of one another: their combination and, more generally, their

relation have been overlooked in the literature, with the exception of very few works (e.g., [82]).

Moreover, the rise of Big Data poses new challenges for both Blocking and Filtering approaches

[29, 38]: Volume requires techniques to scale to millions of entities, while Variety calls for techniques

that can cope with an unprecedented schema heterogeneity. Both Blocking and Filtering address

Volume primarily through paralellization. Existing techniques were adapted to split their workload

into smaller chunks that are distributed across different processing units so that they are executed

in parallel. This can be done on a cluster (distributed methods), or through the modern multi-core

and multi-socket hardware architectures. Variety, though, is addressed differently in each field. For

Blocking, the schema-aware methods are replaced by schema-agnostic techniques, which disregard

any schema information, creating blocks of very high recall but low precision. Additionally, a whole

new category of methods, called Block Processing, intervenes between Blocking and Matching to

refine the original blocks, significantly increasing precision at a negligible (if any) cost in recall. For

Filtering, techniques that employ more relaxed matching criteria (e.g., fuzzy set matching or local

string similarity join) are proposed, while the case of low similarity thresholds is also considered.

To the best of our knowledge, this is the first survey to comprehensively cover the aforemen-

tioned aspects and to jointly review the two frameworks for efficient ER. We formally define

Blocking, Block Processing and Filtering, introducing a common terminology that facilitates their

understanding. For each field, we propose a new taxonomy with categories that highlight the dis-

tinguishing characteristics of the corresponding methods. Based on these taxonomies, we provide

a broad overview of every field, elucidating the functionality of the main techniques as well as

the relations among them. As a result, established techniques are now seen in a different light -

Canopy Clustering [97], for instance, may now be viewed as a Block Processing method. We also

elaborate on the parallelization methods for each field. Most importantly, this survey attempts to

place Blocking and Filtering under a common context, taking special care to stress hybrid methods

that combine features from both Blocking and Filtering, to analyze works that experimentally

compare the two frameworks (e.g., [154]) and to qualitatively outline their commonalities and

differences. We also investigate the ER tools that incorporate established efficiency techniques and

propose a series of open challenges that constitute promising directions for future research.

Parts of the material included in this survey have been presented in tutorials at WWW 2014 [157],

ICDE 2016 [123], ICDE 2017 [156], and WWW 2018 [124]. A past survey [25] also covers efficiency

ER techniques, but is restricted to the schema-aware Blocking methods. Other surveys [47] and

textbooks [24, 29, 38] provide a holistic overview of ER, merely examining the main Blocking

and Block Processing techniques. Closer to our work is a recent survey on Blocking [111], which

however offers a more limited coverage and refers neither to parallelization nor to Filtering works.

Recent surveys on string and set similarity joins also exist, but they focus exclusively on centralized

[64, 95, 187] or distributed approaches [50], with the purpose of experimental comparison, and

without covering approximate techniques that allow for more relaxed matching criteria. Most

importantly, none of these surveys considers similarity joins in the broader context of ER.

The rest of the paper is structured as follows: Section 2 provides background knowledge on ER

and its efficiency techniques, while Sections 3 and 4 delve into Blocking and Block Processing,

respectively. Section 5 is devoted to Filtering, whereas Section 6 elaborates on works that combine

Blocking with Filtering. Section 8 enumerates the main ER tools that incorporate efficiency methods,

Section 7 provides a high-level discussion of the relation between Blocking and Filtering, Section 9

provides the main directions for future work, and Section 10 concludes the paper.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:3

2 PRELIMINARIES
At the core of ER lies the notion of entity profile, which constitutes a uniquely identified description

of a real-world object in the form of name-value pairs. Assuming infinite sets of attribute namesN ,

attribute valuesV , and unique identifiers I, an entity profile is formally defined as follows [29, 120]:

Definition 1 (Entity Profile). An entity profile eid is a tuple ⟨id,Aid ⟩, where id ∈ I is a unique
identifier, and Aid is a set of name-value pairs ⟨n,v⟩, with n ∈ N and v ∈ (V ∪ I). A set of entity
profiles E is called entity collection.

This definition is simple, but flexible enough to accommodate a wide variety of (semi-)structured

representations. E.g., nested attributes can be transformed into a flat set of name-value pairs, while

links may be represented by assigning the id of one entity as the attribute value of the other.

Definition 2 (Entity Resolution). Two entity profiles ei and ej match, ei ≡ ej, if they refer to
the same real-world entity. Matching entities are also called duplicates. The task of Entity Resolution
(ER) is to find all matching entities within an entity collection or across two or more entity collections.

In particular, we distinguish between the following two cases [24, 25]:

(1) Deduplication receives as input an entity collection E and produces as output the set of all

pairs of matching entity profiles within E, i.e., D(E) = {(ei , ej) : ei ∈ E, ej ∈ E, ei ≡ ej }.
(2) Record Linkage receives two duplicate-free entity collections, E1 and E2, and returns the pairs

of matching entity profiles between them, i.e.,D(E1, E2)={(ei , ej) : ei ∈ E1, ej ∈ E2, ei ≡ ej }.

Multi-source Entity Resolution involves three or more entity collections and can be performed

by applying Deduplication to the union of all collections, or by executing a sequence of pairwise

Record Linkage tasks, provided that every input collection is duplicate-free.

ER performance is characterized by its effectiveness and its efficiency. The former refers to how

many of the actual duplicates are detected, while the latter expresses the computational cost for

detecting them – usually in terms of the number of performed comparisons, which is referred to as

cardinality and denoted by | |E | |. The naive, brute-force approach performs all pairwise comparisons

between the input entity profiles, having a quadratic complexity that does not scale to large datasets;

for Record Linkage, | |E | | = |E1 | × |E2 |, while for Deduplication | |E | | = |E | · (|E | − 1)/2.

Blocking. To tackle ER’s inherently quadratic complexity, Blocking trades slightly lower ef-

fectiveness for significantly higher efficiency. Its goal is to reduce the number of performed com-

parisons, while missing as few matches as possible. Ideally, one would compare only the pairs of

duplicates, whose number grows linearly with the number of the input entity profiles [53, 156].

To this end, Blocking clusters potentially matching entities in common blocks and exclusively

compares entity profiles that co-occur in at least one block.

Internally, a blocking method employs a blocking scheme, which applies to one or more entity

collections to yield a set of blocks B, called block collection. Cardinality | |B| | denotes the num-

ber of comparisons in B, given that only entity pairs within the same block are compared, i.e.,

| |B| |=
∑
bi ∈B | |bi | |, where | |bi | | stands for the number of comparisons contained in an individual

block bi . We denote the set of detectable duplicates in B asD(B), whileD(E) stands for all existing

duplicates. Since B reduces the number of performed comparisons, D(B)⊆D(E).

A common assumption in the literature is the oracle, i.e., a perfect matching function that, for

each pair of entity profiles, decides correctly whether they match or not [25, 38, 120, 121, 156]. Using

an oracle, a pair of duplicates is detected as long as they share at least one block. This allows for

reasoning about the performance of blocking methods independently of matching methods: there

is a clear trade-off between the effectiveness and the efficiency of a blocking scheme [25, 38, 156]:

the more comparisons are contained in the resulting block collection B (i.e., higher | |B| |), the more

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:4 G. Papadakis et al.

Fig. 1. (a) The internal functionality of Blocking modeled as a deterministic finite automaton with three
states: Block Building (BlBu), Block Cleaning (BlCl) and Comparison Cleaning (CoCl). (b) The end-to-end
workflow for non-learning Entity Resolution [82]. (c) The relative computational cost for the brute-force
approach, Blocking, Filtering and the ideal solution (Duplicate Pairs) over Deduplication.

duplicates will be detected (i.e., higher |D(B)|), raising effectiveness at the cost of lower efficiency.

Thus, a blocking scheme should achieve a good balance between these two competing objectives as

expressed through the following measures [16, 33, 100, 116]:

(1) Pair Completeness (PC) corresponds to recall, estimating the portion of the detectable dupli-

cates in B with respect to those in E: PC(B) = |D(B)|/|D(E)| ∈ [0, 1].
(2) Pairs Quality (PQ) corresponds to precision, estimating the portion of comparisons in B that

correspond to real duplicates: PQ(B) = |D(B)|/| |B|| ∈ [0, 1].
(3) Reduction Ratio (RR) measures the reduction in the number of pairwise comparisons in B

with respect to the brute-force approach: RR(B, E) = 1 − ||B||/| |E | | ∈ [0, 1]..

Higher values for PC indicate higher effectiveness of the blocking scheme, while higher values

for PQ and RR indicate higher efficiency. Note that PC provides an optimistic estimation of recall,

presuming the existence of an oracle, while PQ provides a pessimistic estimation of precision,

treating as false positives the repeated comparisons between duplicates (i.e., only the non-repeated

duplicate pairs are considered as true positives). In this context, we can define Blocking as follows:

Definition 3 (Blocking). Given an entity collection E, Blocking clusters similar entities into a
block collection B such that PC(B), PQ(B) and RR(B, E) are simultaneously maximized.

This definition refers to Deduplication, but can be easily extended to Record Linkage. Simultane-

ously maximizing PC , PQ and RR necessitates that the enhancements in efficiency do not affect

the effectiveness of Blocking, carefully removing comparisons between non-matching entities.

Conceptually, Blocking can be viewed as an optimization task, but this implies that the real duplicate

collection D(E) is known, which is actually what ER tries to compute. Hence, Blocking is typically

treated as an engineering task that provides an approximate solution for the data at hand.

A blocking-based ER workflow may comprise several stages. First, Block Building (BlBu) applies

a blocking scheme to produce a block collection B from the input entity collection(s). This step

may be repeated several times on the same input, applying multiple blocking schemes, in order to

achieve a more robust performance in the context of highly noisy data. Often, there is a second,

optional stage, called Block Processing, which refines B through additional optimizations that

further reduce the number of performed comparisons. This may involve discarding entire blocks
that primarily contain unnecessary comparisons, called Block Cleaning (BlCl), and/or discarding

individual comparisons within certain blocks, called Comparison Cleaning (CoCl). The former may

be applied repeatedly, each time enforcing a different, complementary method to discard blocks,

but the latter can be performed only once; CoCl comprises competitive methods that serve exactly

the same purpose and, once applied to a block collection, they alter it in such a way that turns all

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:5

Fig. 2. Definition of the main similarity measures used by string similarity join algorithms, and how the
input threshold θ for each measure can be transformed into an equivalent Overlap threshold τ .

other methods inapplicable. Figure 1(a) models this workflow as a deterministic finite automaton

with three states, where each state corresponds to one of the blocking sub-tasks.

Filtering. Given two entity collections E1 and E2, a similarity function fS : E1 × E2 → IR, and a

similarity threshold θ , a similarity join identifies all pairs of entity profiles in E1 and E2 that have

similarity at least θ , i.e., E1 1θ E2 = {(ei , ej) ∈ E1 × E2 : fS (ei , ej) ≥ θ }.
Similarity joins can be used for defining ER under the intuitive assumption that matching entity

profiles are highly similar. In fact, the above formulation corresponds to Record Linkage, while

Deduplication can be defined analogously as a self-join operation, where E1 ≡ E2.

To avoid exhaustive pairwise comparisons, similarity joins typically follow the filter-verification
framework, which involves two stages [10, 64]:

(1) Filtering computes a set of candidates for each entity ei , excluding all those that cannot match

with ei . In other words, it prunes all true negatives, but allows some false positives.

(2) Verification computes the actual similarity between candidates (or a sufficient upper bound)

to remove the false positives.

Due to the relatively straightforward implementation of Verification, in the following we exclu-

sively focus on Filtering. The relevant techniques are defined with respect to three parameters:

(i) the representation for each entity, (ii) the similarity function between entity pairs under this

representation, and (iii) the similarity threshold above which two entities are considered to match.

The representation typically relies on signatures extracted from each entity such that two entities

match only if their signatures overlap. Given that we address ER over entities described by one

or more textual attributes, we focus on string similarity joins, which can be character- or token-
based. The former compare two strings by representing them as sequences of characters and by

considering the character transformations required to transform one string into the other. The

latter are also called set similarity joins, since they transform the strings into sets, typically via

tokenization or q-gram extraction, and then compare strings using a set-based similarity measure.

Regarding the similarity function, the most common one for character-based similarity joins is

Edit Distance, which measures the minimum number of edit operations (i.e., insertions, deletions

and substitutions) that are required to transform one string to the other [10]. For token-based

similarity joins, the most commonly used similarity measures include Overlap, Jaccard, Cosine or

Dice. The last three are normalized variants of the Overlap [10, 64, 95].

Finally, the similarity threshold depends on the data at hand. Note, though, that the join algorithms

do not operate directly with thresholds on Jaccard, Cosine or Dice similarity, but first translate the

given threshold θ into an equivalent set overlap threshold τ that depends on the size of the sets, as

shown in Figure 2. A similar transformation is also possible for Edit Distance, which means that

set similarity joins may be applied to this measure as well [10].

Blocking vs Filtering. The relation between the two frameworks is illustrated in Figure 1(b).

Blocking, in the sense of the entire process in Figure 1(a), is applied first, reducing the pairwise

comparisons that are considered by Matching. These comparisons are further cut down by Filtering,

which is subsequently applied, as the initial part of Matching, given that it requires specifying both

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:6 G. Papadakis et al.

a similarity measure and a similarity threshold. Next, Verification is applied to estimate the actual

similarity between the compared attribute values. The Entity Resolution process concludes with

Match Decision, which synthesizes the estimated similarity between multiple attribute values to

determine whether the compared entity profiles are indeed duplicates.

Both Blocking and Filtering are optional steps, but at least one of them should be applied in order

to tame the otherwise quadratic computational cost of ER. As shown in Figure 1(c), Blocking yields

a super-linear, but sub-quadratic time complexity, lying between the two extremes: the brute-force

solution and the ideal one (i.e., Duplicate Pairs). The same applies to the computational cost of

Filtering, except that it typically constitutes an exact procedure that produces no false negatives, i.e.,
missed duplicates. It exclusively allows false positives, which are later removed by Verification [10].

For this reason, Filtering corresponds to a superset of Duplicate Pairs in Figure 1(c). In contrast,

Blocking constitutes an inherently approximate solution that increases ER efficiency at the cost

of allowing both false positives and false negatives [29]. Thus, it intersects Duplicate Pairs, such

that the area of their intersection is inversely proportional to the duplicates that are missed by

Blocking, while the relative complement of the Duplicate Pairs in Blocking is analogous to the

executed comparisons between non-matching entities.

Note that Figure 1(c) corresponds to Deduplication, but can be easily generalized to Record

Linkage, as well. Moreover, the relative performance of Blocking and Filtering, i.e., the relative

position of their circles, depends on the methods and the data at hand. In most cases, though, the

best solution is to use both frameworks, yielding the computational cost that corresponds to their

intersection. However, this approach is rarely used in the literature (e.g., [82]). Most works on

Blocking typically omit Filtering (e.g., [25, 112, 128]), whereas most works on Filtering disregard

Blocking, applying directly to the input entity collections (e.g., [64, 95]). The goal of the present

survey is to cover this gap, elucidating the complementarity of the two frameworks.

3 BLOCK BUILDING
Block Building receives as input one or more entity collections and produces as output a block

collection B. The process is guided by a blocking scheme, which determines how entity profiles

are assigned to blocks. This scheme typically comprises two parts. First, every entity is processed

to extract signatures (e.g., tokens), such that the similarity of signatures reflects the similarity of

the corresponding profiles. Second, every entity is mapped to one or more blocks based on these

signatures. Let P(S) denote the power set of a set S and K denote the universe of signatures

appearing in entity profiles. We formally define a blocking scheme as follows:

Definition 4 (Blocking Scheme). Given an entity collection E, a blocking scheme is a function
fB : E → P(B) that maps entity profiles to blocks. It is composed of two functions: (a) a transformation

function fT : E → P(K) that maps an entity profile to a set of signatures (also called blocking keys),
and (b) an assignment function fA : K → P(B) that maps each signature to one or more blocks.

This definition applies to Deduplication, but can be easily extended to Record Linkage.

The set of comparisons in the resulting block collection B is called comparison collection and is

denoted by C(B). Every comparison ci , j ∈ C(B) belongs to one of the following types [120, 121]:

• Matching comparison, if ei and ej match.

• Superfluous comparison, if ei and ej do not match.

• Redundant comparison, if ei and ej have already been compared in a previous block.

We collectively call the last two types unnecessary comparisons, as their execution brings no gain.

Note that the resulting block collection B can be modelled as an inverted index that points from

block ids to entity ids. For this reason, Block Building is also called Indexing [24, 25].

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:7

Table 1. Taxonomy of the Block Building methods discussed in Sections 3.2 and 3.3.

Method Key Redundancy Constraint Matching
type awareness awareness awareness

Standard Blocking (SB) [49] hash-based redundancy-free lazy static

Suffix Arrays Blocking (SA) [3] hash-based redundancy-positive proactive static

Extended Suffix Arrays Blocking [25, 112] hash-based redundancy-positive proactive static

Improved Suffix Arrays Blocking [33] hash-based redundancy-positive proactive static

Q-Grams Blocking [25, 112] hash-based redundancy-positive lazy static

Extended Q-Grams Blocking [11, 25, 112] hash-based redundancy-positive lazy static

MFIBlocks [75] hash-based redundancy-positive proactive static

Sorted Neighborhood (SN) [60, 61, 132] sort-based redundancy-neutral proactive static

Extended Sorted Neighborhood [25] sort-based redundancy-neutral lazy static

Incrementally Adaptive SN [185] sort-based redundancy-neutral proactive static

Accumulative Adaptive SN [185] sort-based redundancy-neutral proactive static

Duplicate Count Strategy (DCS) [41] sort-based redundancy-neutral proactive dynamic

DCS++ [41] sort-based redundancy-neutral proactive dynamic

Sorted Blocks [40] hybrid redundancy-neutral lazy static

Sorted Blocks New Partition [40] hybrid redundancy-neutral proactive static

Sorted Blocks Sliding Window [40] hybrid redundancy-neutral proactive static

(a) Non-learning, schema-aware methods.
ApproxRBSetCover [16] hash-based redundancy-positive lazy static

ApproxDNF [16] hash-based redundancy-positive lazy static

Blocking Scheme Learner (BSL) [100] hash-based redundancy-positive lazy static

Conjunction Learner [21] (semi-supervised) hash-based redundancy-positive lazy static

BGP [48] hash-based redundancy-positive lazy static

CBlock [146] hash-based redundancy-positive proactive static

DNF Learner [54] hash-based redundancy-positive lazy dynamic

FisherDisjunctive [72] (unsupervised) hash-based redundancy-positive lazy static

(b) Learning-based (supervised), schema-aware methods.
Token Blocking (TB) [116] hash-based redundancy-positive lazy static

Attribute Clustering Blocking [120] hash-based redundancy-positive lazy static

RDFKeyLearner [154] hash-based redundancy-positive lazy static

Prefix-Infix(-Suffix) Blocking [119] hash-based redundancy-positive lazy static

TYPiMatch [92] hash-based redundancy-positive lazy static

Semantic Graph Blocking [109] - redundancy-neutral proactive static

(c) Non-learning, schema-agnostic methods.
Hetero [73] hash-based redundancy-positive lazy static

Extended DNF BSL [74] hash-based redundancy-positive lazy static

(d) Learning-based (unsupervised), schema-agnostic methods.

3.1 Taxonomy
To facilitate the understanding of the main methods for Block Building, we organize them into a

novel taxonomy that consists of the following dimensions:

• Key selection distinguishes between non-learning and learning-based methods. The former

rely on rules derived from expert knowledge or mere heuristics, while the latter require a

training set to learn the best blocking keys using Machine Learning techniques.

• Schema-awareness distinguishes between schema-aware and schema-agnostic methods. The

former extract blocking keys from specific attributes that are considered to be more appro-

priate for matching (e.g., more distinctive or less noisy), while the latter disregard schema

knowledge, extracting blocking keys from all attributes.

• Key type distinguishes between hash- or equality-based methods, which map a pair of entities

to the same block if they have a common key, and sort- or similarity-based methods, which

map a pair of entities to the same block if they have a similar key. There exist also hybrid
methods, which combine hash- with sort-based functionality.

• Redundancy-awareness classifies methods into three categories based on the relation between

their blocks. Redundancy-free methods assign every entity to a single block, thus creating

disjoint blocks. Redundancy-positive methods place every entity into multiple blocks, yielding

overlapping blocks. The more blocks two entities share, the more similar their profiles are. The

number of blocks shared by a pair of entities is thus proportional to their matching likelihood.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:8 G. Papadakis et al.

Fig. 3. The genealogy trees of non-learning (a) schema-aware and (b) schema-agnostic Block Building
techniques. Hybrid, hash- and sort-based methods are marked in blue, black and red, respectively.

Redundancy-neutral methods create overlapping blocks, where most entity pairs share the

same number of blocks, or the degree of redundancy is arbitrary, having no implications.

• Constraint-awareness distinguishes blocking methods into lazy, which impose no constraints

on the blocks they create, and proactive, which enforce constraints on their blocks (e.g.,

maximum block size), or refine their comparisons by discarding unnecessary ones.

• Matching-awareness distinguishes between static methods, which are independent of the

subsequent matching process, producing an immutable block collection, and dynamic meth-

ods, which intertwine Block Building with Matching, updating or processing their blocks

dynamically, as more duplicates are detected.

Table 1 maps all methods discussed in Sections 3.2 and 3.3 to our taxonomy.

3.2 Schema-aware Block Building
Methods of this type assume that the input entity profiles adhere to a known schema and, based

on this schema and respective domain knowledge, one can select the attributes that are most

suitable for Blocking. We distinguish between non-learning methods, reviewed in Section 3.2.1,

and learning-based methods, reviewed in Section 3.2.2.

3.2.1 Non-learning Methods. The family tree of the methods in this category is shown in Figure

3(a); a parent-child edge implies that the latter method improves upon the former one. Below, we

elaborate on these methods based on their key type.

Hash-based Methods. Standard Blocking (SB) [49] involves the simplest functionality: an

expert selects the most suitable attributes, and a transformation function concatenates (parts

of) their values to form blocking keys. For every distinct key, a block is created containing all

corresponding entities. In short, SB operates as a hash function, conveying two main advantages: (i)

it yields redundancy-free blocks, and (ii) it has a linear time complexity, O(|E |). On the flip side, its

effectiveness is very sensitive to noise, as the slightest difference in the blocking keys of duplicates

places them in different blocks. SB is also a lazy method that imposes no limit on block sizes.

To address these issues, Suffix Arrays Blocking (SA) [3] converts each blocking key of SB into

the list of its suffixes that are longer than a predetermined minimum length lmin . Then, it defines

a block for every suffix that does not exceed a predetermined frequency threshold bmax , which

essentially specifies the maximum block size. This proactive functionality is necessary, as very

frequent suffixes (e.g., “ing") result in large blocks that are dominated by unnecessary comparisons.

SA has two major advantages [33]: (i) it has low time complexity, O(|E |·loд |E |) [4], and is very

efficient, as it results in a small but relevant set of candidate matches; (ii) it is very effective, due to

the robustness to the noise at the beginning of blocking keys and the high levels of redundancy (i.e.,

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:9

it places every entity into multiple blocks). On the downside, SA does not handle noise at the end

of SB keys. E.g., two matches with SB keys “JohnSnith" and “JohnSmith" have no common suffix if

lmin=4, while for lmin=3, they co-occur in a block only if the frequency of “ith" is lower than bmax .

This problem is addressed by Extended Suffix Arrays Blocking [25, 112], which uses as keys not

just the suffixes of SB keys, but all their substrings with more than lmin characters. E.g., for lmin=4,

SA extracts from “JohnSnith" the keys “JohnSnith", “ohnSnith", “hnSnith", “nSnith", “Snith" and

“nith", while Extended SA additionally extracts the keys “John", “ohnS", “hnSn", “nSni", “Snit" as well

as all substrings of “JohnSnith" ranging from 5 to 8 characters.

Another extension of SB is Q-grams Blocking [25, 112]. Its transformation function converts the

blocking keys of SB into sub-sequences of q characters (q-grams) and defines a block for every

distinct q-gram. For example, for q=3, the key france is transformed into the trigrams fra, ran, anc,
nce. This approach differs from Extended SA in that it does not restrict block sizes (lazy method).

Also, it is more resilient to noise than SB, but results in more and larger blocks.

To improve it, Extended Q-Grams Blocking [11, 25, 112] uses combinations of q-grams, instead

of individual q-grams. Its transformation function concatenates at least l q-grams, where l =
max(1, ⌊k · t⌋), with k denoting the number of q-grams and t ∈ [0, 1) standing for a user-defined
threshold. The larger t is, the larger l gets, yielding less keys from the k q-grams. For T = 0.9 and
q=3, the key france is transformed into the following four signatures (k=4 and l=3): [fra, ran, anc,
nce], [fra, ran, anc], [fra, anc, nce], [ran, anc, nce]. In this way, q-gram-based blocking keys become

more distinctive, decreasing the number and cardinality of blocks.

A more advanced q-gram-based approach is MFIBlocks [75]. Its transformation function concate-

nates keys of Q-Grams Blocking into itemsets and uses a maximal frequent itemset algorithm to

define as new blocking keys those exceeding a predetermined support threshold.

Sort-basedMethods. Sorted Neighborhood (SN) [60] sorts all blocking keys in alphabetical order

and arranges the associated entities accordingly. Subsequently, a window of fixed sizew slides over

the sorted list of entities and compares the entity at the last position with all other entities placed

within the same window. The underlying assumption is that the closer the blocking keys of two

entities are in the lexicographical order, the more likely they are to be matching. Originally crafted

for relational data, SN is extended to hierarchical/XML data based on user-defined keys in [132].

SN has three major advantages [25]: (i) it has low time complexity, O(|E | · loд |E |), (ii) it results
in linear ER complexity, O(w · |E |), and (iii) it is robust to noise, supporting errors at the end of

blocking keys. However, it may place two entities in the same block even if their keys are dissimilar

(e.g., "alphabet" and "apple", if no other key intervenes between them). Its performance also depends

heavily on the window sizew , which is difficult to configure, especially in Deduplication, where

the matching entities form clusters of varying size [25, 40].

To ameliorate the effect ofw , a common solution is the Multi-pass SN [61], which applies the

core algorithm multiple times, using a different transformation function in each iteration. In this

way, more matches can be identified, even if the window is set to low size. Another solution is the

Extended Sorted Neighborhood [25, 112], which slides a window of fixed size over the sorted list of

blocking keys rather than the list of entities; this means that each block mergesw SB blocks.

More advanced strategies adapt the window size dynamically to optimize the balance between

effectiveness and efficiency. They are grouped into three categories, depending on the criterion for

moving the boundaries of the window [91]:

1) Key similarity strategy. The window size increases if the similarity of the blocking keys exceeds

a predetermined threshold, which indicates that more similar entities should be expected [91].

2) Entity similarity strategy. The window size relies on the similarity of the entities within the

current window. Incrementally Adaptive SN [185] increases the window size if the distance of the

first and the last element in the window is smaller than a predetermined threshold. The actual

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:10 G. Papadakis et al.

increase depends on the current window size and the selected threshold. Accumulative Adaptive SN
[185] creates windows with a single overlapping entity and exploits transitivity to group multiple

adjacent windows into the same block, as long as the last entity of one window is a potential

duplicate of the last entity in the next window. After expanding the window, both algorithms apply

a retrenchment phase that decreases the window size until all entities are potential duplicates.

3) Dynamic strategy. The core assumption is that the more duplicates are found within a window,

the more are expected to be found by increasing its size. Duplicate Count Strategy (DCS) [41] defines
a windoww for every entity in SN’s sorted list and executes all its comparisons to compute the

ratio d/c , where d denotes the newly detected duplicates and c the executed comparisons. The

window size is then incremented by one position at a time as long as d/c ≥ ϕ, where ϕ ∈ (0, 1) is a
threshold that expresses the average number of duplicates per comparison. DCS++ [41] improves

DCS by increasing the window size with the next w − 1 entities, even if the new ratio becomes

lower than ϕ. Using transitive closure, it skips some windows, saving part of the comparisons.

Hybrid methods. Sorted Blocks [40] combines the benefits of SB and SN. First, it sorts all
blocking keys and the corresponding entities in lexicographical order, like SN. Then, it partitions
the sorted entities into disjoint blocks, like SB, using a prefix of the blocking keys. Next, all pairwise
comparisons are executed within each block. To avoid missing any matches, an overlap parameter

o defines a window of fixed size that includes the o last entities in the current block together with

the first entity of the next block. The window slides by one position at a time until reaching the oth

entity of the next block, executing all pairwise comparisons between entities from different blocks.

Sorted Blocks is a lazy approach that does not restrict block sizes. Thus, it may result in large

blocks that dominate its processing time. To address this, two proactive variants set a limit on the

maximum block size. Sorted Blocks New Partition [40] creates a new block when the maximum size

is reached for a (prefix of) blocking key; the overlap between the blocks ensures that every entity

is compared with its predecessors and successors in the sorting order. Sorted Blocks Sliding Window
[40] avoids executing all comparisons within a block that is larger than the upper limit; instead, it

slides a window equal to the maximum block size over the entities of the current block.

Finally, Improved Suffix Arrays Blocking [33] employs the same blocking keys as SA, but sorts
them in alphabetical order, like SN. Then, it compares the consecutive keys with a string similarity

measure. If the similarity of two suffixes exceeds a predetermined threshold, the corresponding

blocks are merged in an effort to detect duplicates even when there is noise at the end of SB keys, or

their sole common key is too frequent. For example, Improved SA detects the high string similarity

of the keys “JohnSnith" and “JohnSmith", placing the corresponding entities into the same block.

3.2.2 Learning-based Methods. We distinguish these methods into supervised and unsupervised

ones. Both rely on a labelled dataset that includes pairs of matching and non-matching entities, called

positive and negative instances, respectively. This dataset is used to learn blocking predicates, i.e.,
combinations of an attribute name and a transformation function (e.g., {title, First3Characters}).
Entities sharing the same output for a particular blocking predicate are considered candidate

matches (i.e., hash-based functionality). Disjunctions of conjunctions of predicates, i.e., composite

blocking schemes, are learned by optimizing an objective function.

Supervised Methods. ApproxRBSetCover [16] learns disjunctive blocking schemes by solving a

standard weighted set cover problem. The cover is iteratively constructed by adding in each turn

the blocking predicate that maximizes the ratio of the previously uncovered positive pairs over the

covered negative pairs. This is a "soft cover", since some positive instances may remain uncovered.

ApproxDNF [16] alters ApproxRBSetCover so that it learns blocking schemes in Disjunctive

Normal Form (DNF). Instead of individual predicates, each turn greedily learns a conjunction of up

to k predicates that maximizes the ratio of positive and negative covered instances.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:11

A similar approach is Blocking Scheme Learner (BSL) [100]. Based on an adaptation of the

Sequential Covering Algorithm, it learns blocking schemes that maximize RR, while maintaining PC
above a predetermined threshold. Its output is a disjunction of conjunctions of blocking predicates.

BSL is improved by Conjunction Learner [21], which minimizes the candidate matches not only in

the labelled, but also in the unlabelled data, while maintaining high PC . The effect of the unlabelled
data is determined through a weightw ∈ [0, 1];w = 0 disregards unlabelled data completely, falling

back to BSL, whilew = 1 indicates that they are equally important as the labelled ones.

On another line of research, Blocking based on Genetic Programming (BGP) [48] employs a tree

representation of supervised blocking schemes, where every leaf node corresponds to a blocking

predicate. In every turn, a set of genetic programming operators, such as copy, mutation and

crossover, are applied to the initial, random set of blocking schemes. Then, a fitness function infers

the performance of the new schemes from the harmonic mean of PC and RR, and the best ones are

returned as output. Yet, BGP involves numerous internal parameters that are hard to fine-tune.

Another tree-based approach is CBLOCK [146]. In this case, every edge is annotated with a

hash (i.e., transformation) function and every node ni comprises the set of entities that result after

applying all hash functions from the root to ni . CBLOCK is the only proactive learning-based

method, restricting the maximum size of its blocks. Every node that exceeds this limit is split into

smaller, disjoint blocks through a greedy algorithm that picks the best hash function based on the

resulting PC . To minimize the human effort, a drill down approach is proposed for bootstrapping.

Unsupervised Methods. FisherDisjunctive [72] uses a weak training set generated by the TF-

IDF similarity between pairs of entities. Pairs with very low (high) values are considered as negative

(positive) instances. A boolean feature vector is then associated with every labelled instance. The

discovery of DNF blocking schemes is finally cast as a Fisher feature selection problem.

Similarly, DNF Learner [54] applies a matching algorithm to a sample of entity pairs to au-

tomatically create a labelled dataset. Then, the learning of blocking schemes is cast as a DNF

learning problem. To scale it to the exponential search space of possible schemes, their complexity

is restricted to manageable levels (e.g., they comprise at most k predicates).

3.3 Schema-agnostic Block Building
Methods of this type make no assumptions about schema knowledge, disregarding completely

attribute names; they extract blocks from all attribute values. Thus, they inherently support noise

in both attribute names and values and are suitable for highly heterogeneous, loosely structured

entity profiles, such as those stemming from the Web of Data [116, 119, 120].

Non-learningMethods. The family tree of this category appears in Figure 3(b). The cornerstone

approach is Token Blocking (TB) [116]. Assuming that duplicates share at least one common token,

its transformation function extracts all tokens from all attribute values of every entity. A block bt is
then defined for every distinct token t . Hence, two entities co-occur in block bt if they share token

t in their values, regardless of the associated attribute names.

To improve TB, Attribute Clustering Blocking [120] requires the common tokens of two entities

to appear in syntactically similar attributes. These are attribute names that correspond to similar

values, but are not necessarily semantically matching (unlike Schema Matching). First, it clusters

attributes based on the similarities of their aggregate values. Each attribute is connected to its most

similar one and the transitive closure of the connected attributes forms disjoint clusters. A block

bk ,t is then defined for every token t in the values of the attributes belonging to cluster k .
RDFKeyLearner [154] applies TB independently to the values of specific attributes, which are

selected through the following process: each attribute is associated with a discriminability score,

which amounts to the portion of distinct values over all values in the given dataset. If this is

lower than a predetermined threshold, the attribute is ignored due to limited diversity, i.e., too

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:12 G. Papadakis et al.

many entities have the same value(s). For each attribute with high discriminability, its coverage is
estimated, i.e., the portion of entities that contain it. The harmonic mean of discriminability and

coverage is then computed for all valid attributes and the one with the maximum score is selected

for defining blocking keys as long as its score exceeds another predetermined threshold. If not, the

selected attribute is combined with all other attributes and the process is repeated.

Prefix-Infix(-Suffix) Blocking [119] exploits the naming pattern in entity URIs. The prefix describes
the domain of the URI, the infix is a local identifier, and the optional suffix contains details about the

format, or a named anchor [114]. E.g., in the URI https://en.wikipedia.org/wiki/France#History,

the prefix is https://en.wikipedia.org/wiki, the infix is France and the suffix is History. In this

context, this method uses as keys all (URI) infixes along with all tokens in the literal values.

TYPiMatch [92] improves TB by automatically detecting the entity types in the input data. It

creates a co-occurrence graph, where every node corresponds to a token in any attribute value and

every edge connects two tokens if both conditional probabilities of co-occurrence exceed a prede-

termined threshold. The maximal cliques are extracted and merged if their overlap exceeds another

threshold. The resulting clusters correspond to the entity types, with every entity participating in

all types to which its tokens belong. TB is then applied independently to the profiles of each type.

Finally, Semantic Graph Blocking [109] is based exclusively on the relations between entities, be

it foreign keys in a database or links in RDF data. It completely disregards attribute values, building

a collaborative graph, where every node corresponds to an entity and every edge connects two

associated entities. For instance, the collaborative graph for a bibliographic data collection can be

formed by mapping every author to a node and adding edges between co-authors. Then a new block

bi is formed for each node ni , containing all nodes connected with ni through a path, provided that

the path length or the block size do not exceed predetermined limits (proactive functionality).

Learning-based Methods. Hetero [73] converts the input data into heterogeneous structured

datasets using property tables. Then, it maps every entity to a normalized TF vector, and applies

an adapted Hungarian algorithm with linear scalability to produce positive and negative feature

vectors. Finally, it applies FisherDisjunctive [72] with bagging to achieve robust performance.

Similarly, Extended DNF BSL [74] combines an established instance-based schema matcher with

weighted set covering to learn DNF blocking schemes with at most k predicates.

3.4 Parallelization Approaches
To scale Blocking methods to massive entity collections without altering their functionality, the

MapReduce framework [35] is typically used, as it offers fault-tolerant, optimized execution for

applications distributed across a set of independent nodes.

Schema-aware methods. The hash-based, non-learning methods are adapted to MapReduce

in a straightforward way. The map phase implements the transformation function(s), emitting (key,

entity_id) pairs for each entity. Every reducer acts as an assignment function, placing all entities

with blocking key t in block bt . Dedoop [77] provides such implementations for various methods.

For sort-based methods, the adaptation of SN to MapReduce in [79] can be used as a template.

The map function extracts the blocking key(s) from each input entity, while the ensuing partitioning
phase sorts all entities in alphabetical order of their keys. The reduce function slides a window of

fixed size within every reduce partition. Inevitably, entities close to the partition boundaries need

to be compared across different reduce tasks. Thus, the map function is extended to replicate those

entities, forwarding them to the respective reduce task and its successor.

DCS and DCS++ are adapted to the MapReduce framework in [99], using three jobs. The first

one sorts the originally unordered entities of the data partition assigned to each mapper according

to the selected blocking keys. It also selects the boundary pairs of the sorted partitions. The second

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:13

job generates the Partition Allocation Matrix, which specifies the sorted partitions to be replicated,

while the third job performs DCS(++) locally, to the data assigned to every reducer.

Schema-agnostic methods. A single MapReduce job is required for parallelizing TB [29, 46].

For every input entity ei , the map function emits a (t , ei) pair for every token t in the values of ei .
Then, all entities sharing a particular token are directed to the same reducer to form a new block.

For Attribute Clustering Blocking, four MapReduce jobs are required [29, 46]. The first assembles

all values per attribute. The second computes the pairwise similarities between all attributes, even

if they are placed in different data partitions. The third connects every attribute to its most similar

one. The fourth associates every attribute name with a cluster id and adapts TB’s map function to

emit pairs of the form (k .t , i), where k is the cluster id of ei ’s attribute name that contains token t .
Finally, the parallelization of Prefix-Infix(-Suffix) Blocking involves three MapReduce jobs [29, 46].

The first parallelizes the algorithm that extracts the prefixes from a set of URIs [114]. The second

extracts the URI suffixes. The third applies TB’s mapper to the literal values simultaneously with

an infix mapper that emits a pair (j , ei) for every infix j that is extracted from ei ’s profile. The final
reduce phase ensures that all entities having a common token or infix are placed in the same block.

Load Balancing. For MapReduce, it is crucial to distribute evenly the overall workload among

the available nodes, avoiding potential bottlenecks. The following methods distribute the execution

of comparisons in a block collection - not the cost of building the blocks.

BlockSplit [78] partitions large blocks into smaller sub-blocks and processes them in parallel.

Every entity is compared to all entities in its sub-block as well as to all entities of its super-block,

even if their sub-block is initially assigned to a different node. This yields an additional network

and I/O overhead and may still lead to unbalanced workload, due to sub-blocks of different size.

To overcome this, PairRange [78] splits evenly the comparisons in a set of blocks into a predefined

number of partitions. It involves a single MapReduce job with a mapper that associates every entity

ei in block bk with the output key p.k .i , where p denotes the partition id. The reducer assembles all

entities that have the same p and block id, reproducing the comparisons of each partition.

The space requirements of these two algorithms are improved in [186], which minimizes their

memory consumption by adapting them so that they work with sketches.

Finally, Dis-Dedup [30] is the only method that takes into account both the computational and

the communication cost (e.g., network transfer time, local disk I/O time). Dis-Dedup considers all

possible cases, from disjoint blocks produced by a single blocking technique to overlapping blocks

derived from multiple techniques. It also provides strong theoretical guarantees that the overall

maximum cost per reducer is within a small constant factor from the lower bounds.

3.5 Discussion & Experimental Results
The performance of the above techniques is examined both qualitatively and quantitatively in a

series of individual of papers (e.g., [34, 110, 116, 120]) and experimental analyses (e.g., [25, 112, 128]).

Below, we summarize the main findings in order to facilitate the use of Block Building techniques.

Starting with Standard Blocking (SB), its performance depends heavily on the frequency dis-

tribution of attribute values and, thus, of blocking keys. The best case corresponds to a uniform

distribution, where | |B | | = | |E | |/|B | [25]. Due to its lazy functionality, though, all other key distri-

butions yield a portion of large blocks with many superfluous comparisons, i.e., low PQ and RR.
Suffix Arrays Blocking (SA) improves SB’s PC , by supporting errors at the beginning of blocking

keys. The higher lmin is and the lower bmax is, the lower | |B | | and PC get. For the same settings,

Extended SA raises PC at the cost of higher | |B | |, which inevitably lowers both PQ and RR. Improved
SA is theoretically proven in [34] to result in a PC greater or equal to that of SA, though at the cost

of a higher computational cost and more comparisons, which lower PQ and RR.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:14 G. Papadakis et al.

Q-grams Blocking yields higher PC than SB, but decreases both PQ and RR. Extended Q-grams
Blocking raises PQ and RR at a limited, if any, cost in PC . MFIBlocks reduces significantly the

number of blocks and matching candidates (i.e., very high PQ and RR) [75], but it may come at the

cost of missed matches (insufficient PC) in case the resulting blocking keys are very restrictive for

matches with noisy descriptions [128].

For Sorted Neighborhood (SN), a smallw leads to high PQ and RR but low PC and vice versa for a

largew . For Extended SN, variations in the window size have a large impact on efficiency (PQ and

RR), affecting the portion of unnecessary comparisons, but PC is more stable. Among the other SN
variants, DCS++ is theoretically proven to miss no matches with an appropriate value for ϕ, while
being at least as efficient as SN. Sorted Blocks New Partition outperforms most SN-based algorithms,

but includes more parameters than SN, involving a more complex configuration.

Most importantly, all these non-learning schema-aware methods are quite parameter-sensitive:

even small parameter value modifications may yield significantly different performance [25, 33,

110, 112]. Their most important parameter is the definition of the blocking keys, which requires

fine-tuning by an expert. Otherwise, their PC remains insufficient, placing most duplicates in no

common block [25, 112]. This applies even to methods that employ redundancy for higher recall.

This shortcoming is ameliorated by schema-agnostic methods, which consistently achieve much

higher PC than their schema-aware counterparts [112]. They also simplify the configuration of

Block Building, reducing its sensitivity through the automatic definition of blocking keys [112, 128].

Rather than human intervention or expert knowledge, their robustness emanates from the high

levels of redundancy they employ, placing every entity in a multitude of blocks. On the downside,

they yield a considerably higher number of comparisons, resulting in very low PQ and RR. Both,
however, can be significantly improved by Block Processing [122, 128].

Regarding the relative performance of schema-agnostic methods, TB yields very high PC , at
the cost of very low PQ and RR. It constitutes a very efficient approach, iterating only once over

the input entities, and it is the sole parameter-free Block Building technique in the literature as

well as the most generic one, applying to any entity collection with textual values. Its performance

is improved by Attribute Clustering and Prefix-Infix(-Suffix) Blocking for specific type of datasets:

highly heterogeneous ones, with a large variety of attribute names [120, 128], and semi-structured

(RDF) ones [116], respectively. In these cases, both methods yield a much larger number of smaller

blocks, significantly raising PQ at a minor cost in PC . Both methods, though, involve a much higher

computational cost than TB. The same applies to TYPiMatch, where the detection of entity types is

a rather time-consuming process. Yet, its PC is consistently insufficient, because it falsely divides

duplicate entities different entity types, due to the sensitivity to its parameter configuration [128].

Finally, the learning-based Block Building techniques typically suffer from the scarcity of labelled

datasets; even if a training set is available for a particular dataset, it cannot be directly used for

learning supervised blocking schemes for another dataset. Instead, a complex transfer learning

procedure is typically required [103, 164]. Regarding their efficiency, BSL is typically faster than

ApproxRBSetCover and ApproxDNF, as it exclusively considers positive instances, thus requiring a

smaller training set. Conjunction Learner requires every supervised blocking scheme to be applied

to the large set of unlabelled data, which is impractical. To accelerate it, a random sample of the

unlabelled data is used in practice. CBLOCK is also the only learning-based method that is suitable

for the MapReduce framework: every entity runs through the learned tree and is directed to the

machine corresponding to its leaf node. In terms of effectiveness, there is no clear winner. BSL and

FisherDisjunctive achieve the top performance in [110]. The latter addresses the scarcity of labelled

data, but is not scalable to large datasets.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:15

4 BLOCK PROCESSING
Block Processing receives as input an existing block collectionB and produces as output a new block

collection B ′
that improves the balance between effectiveness and efficiency, i.e., PQ(B) ≪ PQ(B′),

RR(B′,B) ≫ 0, while PC(B) ∼ PC(B′). We distinguish Block Processing methods into Block Cleaning
ones, which decide whether entire blocks should be retained or modified, and Comparison Cleaning
ones, which decide whether individual comparisons are unnecessary.

4.1 Block Cleaning
We classify Block Cleaning methods into two categories: (i) static, which are independent of

matching results, and (ii) dynamic, which are interwoven with the matching process.

Static Methods. A core idea is the assumption that the larger a block is, the less likely it is to

contain unique duplicates, i.e., matches that share no other block. Such large blocks are typically

produced by lazy schema-agnostic techniques and correspond to stop words. In this context, Block
Purging discards blocks that exceed an upper limit on block cardinality [120] or size [119]. Block
Filtering [127] applies this assumption to individual entities, removing every entity from the largest

blocks that contain it. In other words, it retains every entity in r% of its smallest blocks.

On a different line of research, Size-based Block Clustering [51] applies hierarchical clustering

to transform a set of blocks into a new one where all block sizes lie within a specified size range.

It merges recursively small blocks that correspond to similar blocking keys, while splitting large

blocks into smaller ones. A penalty function controls the trade-off between block quality and block

size. A similar approach is the MapReduce-based dynamic blocking algorithm in [98], which splits

large blocks into sub-blocks. MaxIntersectionMerge [102] ensures that all blocks involve at least
|b |min entities. To this end, it merges each block smaller than |b |min entities with the block that has

the most entities in common and is larger than |b |min . Similarly, Rollup Canopies [146] receives as
input a training set with positive examples, a limit on the maximum block size and a set of disjoint

blocks; using a learning-based greedy algorithm, it merges pairs of small blocks to increase PC .
Finally, [139] generalizes Meta-blocking (see Section 4.2) to Multi-source ER: it constructs a

graph, where the nodes correspond to blocks and the edges connect blocks whose blocking keys

are more similar than a predetermined threshold. The edges are weighted using various functions

and all pairs of blocks are then processed in descending edge weights in an effort to maximize the

redundant and superfluous comparisons that are skipped.

Dynamic Methods. Iterative Blocking [179] merges any new pair of detected duplicates, ei and
ej , into a new entity, ei , j , and replaces both ei and ej with ei , j in all blocks that contain them, even

if they have already been processed. The new entity ei , j is compared with all co-occurring entities,

as the new content in ei , j might identify previously missed matches. The ER process terminates

when all blocks have been processed without finding new duplicates.

Iterative Blocking applies exclusively to Deduplication. In Record Linkage, there is no need

for merging two matching entities, due to the 1-1 restriction. Still, the detected duplicates should

be propagated in order to save the superfluous comparisons with their co-occurring entities in

the subsequently processed blocks. The earlier the matches are detected, the more superfluous

comparisons are saved. To this end, Block Scheduling optimizes the processing order of blocks in a

non-iterative way, sorting them in decreasing order of the probability pi (d) that a block bi contains
a pair of duplicates. This is set inversely proportional to block cardinality, i.e., pi (d) = 1/| |bi | | [152],
or to the minimum size of the inner block, i.e., pi (d) = 1/min |bi ,1 |, |bi ,2 |, where |bi ,k | ⊂ Ek [116].

The former definition also applies to Iterative Blocking, which does not specify the exact block

processing order, even though this affects significantly the resulting performance [128].

Block Pruning [116] extends Block Scheduling by exploiting the decreasing density of detected

matches in its processing order (i.e., the later a block is processed, the less unique duplicates it

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:16 G. Papadakis et al.

Fig. 4. The genealogy tree of non-learning Comparison Cleaning methods. Methods in black conform to the
Meta-blocking framework in Figure 5, methods in blue are Meta-blocking techniques following a (partially)
different approach and methods in red are not part of the Meta-blocking framework.

contains). After processing the latest block, it estimates the average number of executed comparisons

per new duplicate. If this ratio falls below a specific threshold, it terminates the ER process.

4.2 Comparison Cleaning
Non-learning Methods. Figure 4 illustrates the family tree of the methods belonging to this

category. The cornerstone method is Comparison Propagation [117], which propagates all executed

comparisons to the subsequently processed blocks. In this manner, it eliminates all redundant

comparisons in a given block collection without losing any pair of duplicates, thus raising PQ and

RR at no cost in PC . It builds an inverted index that points from entity ids to block ids, called Entity
Index, and with its help, it compares two entities ei and ej in block bk only if k is their least common

block id. For example, consider the blocks in Figure 5(a) and their Entity Index in Figure 5(b). The

least common block id of e1 and e3 is 2. Thus, they are compared in b2, but neither in b4 nor in b5.
Given a redundancy-positive block collection, the Entity Index allows for identifying the blocks

shared by a pair of co-occurring entities. This allows for weighting all pairwise comparisons in

proportion to the matching likelihood of the corresponding entities, based on the principle that the

more blocks two entities share, the more likely they are to be matching. This gives rises to a family

of Meta-blocking techniques [121, 127, 150] that go beyond Comparison Propagation by discarding

not only all redundant comparisons, but also the vast majority of the superfluous ones.

The first relevant method is Comparison Pruning [118], which computes the Jaccard co-efficient

of the block lists of two entities. If it does not exceed a conservative threshold that depends on the

average number of blocks per entity, the comparison is pruned, as it designates an unlikely match.

Meta-blocking was formalized into a more principled approach in [121]. The given redundancy-

positive block collection B is converted into a blocking graph GB , where the nodes correspond

to entities and the edges connect every pair of co-occurring entities - see Figure 5(c). Given that

no parallel edges are allowed, all redundant comparisons are discarded by definition. The edges

are then weighted proportionately to the likelihood that the adjacent entities are matching. In

Figure 5(d), the edge weights indicate the number of common blocks. Edges with low weights are

pruned, because they correspond to superfluous comparisons. In Figure 5(e), all edges with a weight

lower than the average one are discarded. The resulting pruned blocking graph GB′ is transformed

into a restructured block collection B ′
by forming one block for every retained edge - see Figure

5(f). As a result, B ′
exhibits a much higher efficiency, PQ(B′)≫PQ(B) and RR(B′,B)≫0, for similar

effectiveness, PC(B′)∼PC(B); in our example, the 12 comparisons in the input blocks of Figure 5(a)

are reduced to 2 matching comparisons in the output blocks in Figure 5(f).

Fourmain pruning algorithms exist: (i)Weighted Edge Pruning (WEP) removes all edges that do not

exceed a specific threshold, e.g., the average edge weight [121]; (ii) Cardinality Edge Pruning (CEP)

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:17

Fig. 5. (a) A block collection B with e1≡e3 and e2≡e4, (b) the corresponding Entity Index, (c) the corresponding
blocking graph GB , (d) the weighted GB , (e) the pruned GB , and (f) the new block collection B′.

retains the globally K top weighted edges, where K is static [121] or dynamic [191]; (iii) Weighted
Node Pruning (WNP) retains in each node neighborhood the entities that exceed a local threshold,

which may be the average edge weight of each neighborhood [121], or the average of the maximum

weights in the two adjacent node neighborhoods, as in BLAST [150]; (iv) Cardinality Node Pruning
(CNP) retains the top-k weighted edges in each node neighborhood [121]. Reciprocal WNP and

CNP [127] apply an aggressive pruning that retains edges satisfying the pruning criteria in both

adjacent node neighborhoods.WNP andWEP are combined through the weighted sum of their

thresholds in [9].

Another family of pruning algorithms is presented in [102], focusing on the edge weights between

the entities in each block. Low Entity Co-occurrence Pruning (LECP) cleans every block from a

specific portion of the entities with the lowest average edge weights. Large Block Size Pruning
(LBSP) applies LECP only to the blocks whose size exceeds the average block size in the input

block collection. Low Block Co-occurrence Pruning (LBCP) removes every entity from the blocks,

where it is connected with the lowest weights, on average, with the rest of the entities. CooSlicer
enforces a maximum block size constraint, |b |max , to all input blocks. In blocks larger than |b |max
all entities are sorted in decreasing order of average edge weight, and the |b |max top-ranked entities

are iteratively placed into a new block. Low Block Co-occurrence Excluder (LBCE) discards a specific
portion of the blocks with the lowest average edge weight among their entities.

All these pruning algorithms can be coupled with any edge weighting scheme [121]. ARCS sums

the inverse cardinalities of the common blocks, giving higher weights to entity pairs that co-occur

in smaller blocks. CBS counts the number of blocks shared by two entities, as in Figure 5(c), with

ECBS extending it to discount the contribution from entities placed in many blocks. JS corresponds
to the Jaccard coefficient of two block lists, while EJS extends it to discount the contribution from

entities appearing in many non-redundant comparisons. Finally, Pearson’s χ 2 test assesses whether
two adjacent entities appear independently in blocks and can be combined with the aggregate

attribute entropy associated with the tokens forming their common blocks [150].

Note that Meta-blocking covers established methods that are considered as Block Building

methods in the literature: given that Block Building is equivalent to indexing [25], any method

based on indexes is in fact aMeta-blocking technique. For example, Transitive LSH [158] converts the

blocks extracted from LSH into an unweighted blocking graph and applies a community detection

algorithm (e.g., [31]) to partition the graph nodes into disjoint clusters, which will become the new

blocks. The process finishes when the size of the largest cluster is lower than a predetermined

threshold. This approach can be applied on top of any Block Building method, not just LSH.
The generalization principle also applies to Canopy Clustering [97], which places all entities in

a pool and, in every iteration, it removes a random entity ei from the pool to create a new block.

Using a cheap similarity measure, all entities still in the pool are compared with ei . Those exceeding
a threshold tex are removed from the pool and placed into the new block. Entities exceeding another

threshold tin (< tex) are also placed in the new block, without being removed from the pool. As

the cheap similarity measure, we can use any of the above weighting schemes on top of any Block

Building method, thus turning Canopy Clustering into a pruning algorithm for Meta-blocking.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:18 G. Papadakis et al.

The generalization applies to Extended Canopy Clustering [25, 112], too, which replaces the

sensitive weight thresholds with cardinality ones: for each randomly selected entity, the n1 nearest
entities are placed in its block, while the n2(≤ n1) nearest entities are removed from the pool.

On another line of research, SPAN [149] converts a block collection into a matrixM , where the

rows correspond to entities and the columns to the tf-idf of blocking keys (tokens or q-grams).

Then, the entity-entity matrix is defined as A = MMT
. A spectral clustering algorithm converts A

into a binary tree, where the root node contains all entities and every leaf node is a disjoint subset

of entities. The Newman-Girvan modularity is used as the stopping criterion for the bipartition of

the tree. Blocks are then derived from a search procedure that carries out pairwise comparisons

based on the blocking keys, inside the leaf nodes and across the neighboring ones.

Finally, the sole dynamic non-learning method is Comparison Scheduling [120]. Its goal is to

detect most matches upfront so as to maximize the superfluous comparisons that are skipped, due

to the 1-1 restriction. It orders all comparisons in decreasing matching likelihood (edge weight)

and executes a comparison only if none of the involved entities has already been matched.

Learning-based Approaches. Supervised Meta-blocking [125] treats edge pruning as a binary

classification problem, where every edge is labelled "likely match" or "unlikely match". Every
edge is represented by a feature vector that comprises five features: ARCS, ECBS, JS and the Node

Degrees of the adjacent entities. Undersampling is employed to tackle the class imbalance problem:

the training set comprises just 5% of the minority class ("likely match") and an equal number of

majority class instances. Several established classification algorithms are used forWEP, CEP and

CNP, with all of them exhibiting robust performance with respect to their internal configuration.

BLOSS [15] restricts the labelling cost of Supervised Meta-blocking by carefully selecting a

training set that is up to 40 times smaller, but retains the original performance. Using ECBS weights,

it partitions the unlabelled instances into similarity levels and applies rule-based active sampling

inside every level. Then, it cleans the sample from non-matching outliers with high JS weights.

Parallelization Approaches. Meta-blocking is adapted to the MapReduce framework in three

ways [45]: (i) The edge-based strategy stores the blocking graph on the disk, bearing a significant

I/O cost. (ii) The comparison-based strategy builds the blocking graph implicitly. A pre-processing

job enriches every block with the list of block ids associated with every entity. The Map phase

of the second job computes the edge weights and discards all redundant comparisons, while the

ensuing Reduce phase prunes superfluous comparisons. This strategy maximizes the efficiency of

WEP and CEP and is adapted to Apache Spark in [9]. (iii) The entity-based strategy aggregates for

every entity the bag of all entities that co-occur with it in at least one block. Then, it estimates the

edge weight that corresponds to each neighbor based on its frequency in the co-occurrence bag.

This approach offers the best implementation for WNP and CNP and their variations (e.g., BLAST).
It is adapted to Apache Spark in [151], leveraging the broadcast join for higher efficiency.

To avoid the underutilization of the available resources, these strategies employ MaxBlock [45]

for load balancing. Based on the highly skewed distribution of block sizes in redundancy-positive

block collections, it splits the input blocks into partitions of equivalent computational cost, which

is equal to the total number of comparisons in the largest input block.

The multi-core parallelization of Meta-blocking is examined in [113]. The input is transformed

into an array of chunks, with an index indicating the next chunk to be processed. Following the

established fork-join model, every thread retrieves the current value of the index and is assigned

to process the corresponding chunk. Depending on the definition of chunks, three alternative

strategies are proposed: (i) Naive Parallelization treats every entity as a separate chunk, ordering

all entities in decreasing computational cost (i.e., the aggregate number of comparisons in the

associated blocks). (ii) Partition Parallelization uses MaxBlock to group the input entities into an

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:19

Fig. 6. The relative performance of the main Comparison Cleaning methods.

arbitrary number of disjoint clusters with identical computational cost. (iii) Segment Parallelization
sets the number of clusters equal to the number of available cores.

4.3 Discussion & Experimental Results
The core characteristic of Block Processing methods is their schema-agnostic functionality, which

typically relies on block features, such as size, cardinality and overlap. This is no surprise, as they

are primarily crafted for boosting the performance of schema-agnostic Block Building methods. In

fact, extensive experiments demonstrate that Block Processing is indispensable for these methods,

raising precision by whole orders of magnitude, at a minor cost in recall [120, 126, 128].

Regarding their relative performance, there is no clear winner among the Block Cleaningmethods.

For example, both Block Filtering and Block Purging boost PQ and RR by orders of magnitude,

while exhibiting a low computational cost and a negligible impact on PC [120, 127]. However, the

top performer among them depends not only on their parameter configuration, but also on the data

at hand [128]. Most importantly, though, Block Cleaning techniques are usually complementary in

the sense that multiple ones can be applied consecutively in a single blocking workflow, as depicted

in Figure 1(b). For example, Block Filtering is typically applied after Block Purging by lowering r to
50% instead of 80%, which is the best configuration when applied independently [126–128].

In contrast, Comparison Cleaning methods are incompatible with each other in the sense that at

most one of them can be part of a blocking workflow. The reason is that applying any Comparison

Cleaning technique to a redundancy-positive block collection deprives it from its co-occurrence

patterns and renders all other techniques inapplicable. These techniques also involve a much higher

computational cost than Block Cleaning methods, due to their finer level of granularity. Their

relative performance is summarized in Figure 6, based on empirical evidence from experimental

studies [128] and individual publications [15, 125–127, 150, 151]. Note that we exclude methods

not compared to other Comparison Cleaning techniques (e.g., the techniques presented in [102]).

In more detail, Figure 6 maps the performance of the main Comparison Cleaning methods to a two

dimensional space defined by ∆PC=PC(B ′)−PC(B) on the vertical axis and ∆PQ=PQ(B ′)−PQ(B)

on the horizontal axis, where B and B′
stand for the input and the output block collections,

respectively. Given that Comparison Cleaning techniques trade lower recall (PC) for higher precision
(PQ), ∆PC and ∆PQ take exclusively negative and positive values, respectively. Therefore, the higher

a method is placed, the better recall it achieves, whereas the further to the right it lies, the better is

its precision. This means that the ideal overall performance corresponds to the upper right corner.

We observe that ∆PC is delimited by two extremes: Comparison Cleaning on the top left corner

and CEP on the bottom right corner. The former has no impact on recall, as it increases precision

only by removing redundant comparisons. All other Comparison Cleaning techniques discard

superfluous comparisons, too, thus achieving larger ∆PQ at the cost of a negative ∆PC . On the

other extreme, CEP prunes a large portion of superfluous comparisons, yielding very high precision,

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:20 G. Papadakis et al.

but the lowest recall. WEP replaces CEP’s cardinality constraint with a weight threshold, dropping

precision to a large extent for a significantly higher recall. Still, WEP’s performance is a major

improvement over the input block collection, while being rather robust across numerous datasets.

WNP moves further towards this direction, shrinking the decrease in recall and the increase in

precision. This is further improved by Reciprocal WNP, which significantly raises WNP’s precision
for slightly lower recall. Thus, it dominates WEP, albeit being sensitive to the characteristics of the

data at hand. Compared to CEP, CNP confines its pruning inside individual node neighborhoods. In

this way, it achieves a much higher recall for a limited decrease in precision. This is further improved

by Reciprocal CNP, which reduces CNP’s recall slightly for much higher precision and, thus, it

often dominates CEP. WNP, CNP and their variants are improved by Supervised Meta-blocking and

BLAST, which achieve comparable recall for significantly higher precision. BLAST takes a lead

in precision, partially because it employs the most effective weighting scheme, namely Pearson’s

χ 2 test. Another advantage is that BLAST requires no labeling effort, due to its unsupervised

functionality. BLOSS, however, achieves almost perfect recall (∆PC ≈ 0) for the highest precision

among all Comparison Cleaning techniques, while requiring merely ∼50 labeled instances. Note

that exceptions to these general patterns of performance are possible for a particular dataset.

5 FILTERING
Given specific similarity predicates, comprising a similarity measure and a corresponding threshold,

Filtering techniques receive as input an entity or a block collection and produce as output pairs of

entities satisfying these predicates. Next, we present the main filtering methods in the literature,

organized in four groups: basic filters proposed by earlier works; prefix filtering and its extensions;

partition-based filtering; and methods using tree indexes. An overview of the discussed methods is

presented in Table 2, characterized by the type of operation they perform (e.g., search or join), the

similarity measure they assume (e.g., token- or character-based), the type of filters they use (e.g.,

prefix- or partition-based) and the index structure they employ (e.g., inverted index or tree).

Basic filtering. GramCount [57] focuses on incorporating string similarity joins inside a DBMS

based on q-grams and edit distance. It is the first work to propose the following techniques:

Length filtering states that if two strings r and s are within edit distance θ , their lengths cannot
differ by more than θ . In the case of set similarity joins, the length filter has been adapted to deal

with set sizes [7]; e.g., for Jaccard similarity threshold θ , the condition becomes θ · |s | ≤ |r | ≤ |s |/θ .
Length filtering is a simple but effective criterion that is employed by many other works alongside

more advanced filters. A position-enhanced length filter offers a tighter upper bound [94].

Count filtering states that if two strings r and s are within edit distance θ , they must have at least

max(|r |, |s |) − 1− (θ − 1) ·q common q-grams. This filter has also been adapted to sets, in particular

in MergeOpt [144], which proposed various optimizations for applying count filtering with both

character-based and token-based similarity measures, and in DivideSkip [83], which proposed

efficient techniques for merging the inverted lists of signatures.

Position filtering also considers the positions of q-grams in the strings. It states that if two strings

r and s are within edit distance θ , a positional q-gram in one cannot correspond to a positional

q-gram in the other that differs from it by more than θ positions.

On another line of research, FastSS [18] introduces the concept of deletion neighborhood, a
filtering criterion specifically tailored to edit distance. For a string s , its deletion neighborhood

contains substrings of s derived by deleting a certain number of characters. These are then used as

signatures for filtering. However, this method is practical only for very short strings.

Prefix-based filtering. Prefix filtering has been proposed by SSJoin [22], which focuses on

similarity joins inside a DBMS, and All-Pairs [12], which is a main memory algorithm. Prefix

filter applies to sets and can also be used for strings represented as sets of q-grams. The elements

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:21

Table 2. Overview of string and set similarity join methods.

Method Operation Similarity Filters Index
GramCount [57] string join Edit Distance length, count, position q-grams table

MergeOpt [144] set join Overlap count inverted index

FastSS [18] string join Edit Distance deletion neighborhood dictionary

SSJoin [22] set join Overlap prefix DBMS

All-Pairs [12] vector join Cosine prefix inverted index

DivideSkip [83] string search Edit Distance, Overlap length, position, prefix inverted index

Ed-Join [180] string join Edit Distance prefix+mismatching q-grams inverted index

QChunk [133] string join Edit Distance prefix+q-chunks inverted index

VChunkJoin [176] string join Edit Distance prefix+chunks inverted index

PPJoin [182, 183] set join Overlap prefix, positional inverted index

PPJoin+ [182, 183] set join Overlap prefix, positional, suffix inverted index

MPJoin [140] set join Overlap min-prefix inverted index

GroupJoin [19] set join Overlap prefix+grouping inverted index

AdaptJoin [169] set join Overlap adaptive prefix inverted index

SKJ [177] set join Overlap prefix-based+set relations inverted index

TopkJoin [181] top-k set join Overlap prefix-based inverted index

JOSIE [195] top-k set search Overlap prefix, position inverted index

PartEnum [7] set join Hamming, Jaccard partition-based clustered index

PassJoin [84] string join Edit Distance partition-based inverted index

PTJ [37] set join Overlap partition-based inverted index

B
ed−Tree [194] string search/join Edit Distance string orders B

+
-tree

PBI [89] string search Edit Distance reference strings B
+
-tree

MultiTree [192] set search Jaccard tree traversal B
+
-tree

Trie-Join [168] string join Edit Distance subtrie pruning trie

HSTree [188] string search Edit Distance partition-based segment tree

Trans [193] top-k set search Jaccard transformation distance R-tree

(a) Exact, centralized, single predicate algorithms
FuzzyJoin [2] set/string join Hamming, ED, Jaccard ball-hashing, splitting, anchor points lookup tables

VernicaJoin [166] set join Overlap prefix, positional, suffix inverted index

MGJoin [143] set join Overlap multiple prefix inverted index

MRGroupJoin [37] set join Overlap partition-based inverted index

FS-Join [142] set join Overlap segment-based inverted index

Dima [160, 161] search, join, top-k Jaccard, ED segment-based global & local

(b) Parallel & distributed algorithms
ATLAS [190] vector join Jaccard, Cosine random permutations inverted index

BayesLSH [147] set join Jaccard, Cosine All-Pairs / LSH All-Pairs / LSH

CPSJoin [28] set join Jaccard LSH-based sketches

(c) Approximate algorithms
LS-Join [173] local string join Edit Distance length, count inverted index

pkwise [174] local set join Overlap k -wise signatures inverted index

pkduck [162] abbreviation matching Custom extension of prefix filter trie

Fast-Join [170] fuzzy set join Bipart. graph matching token sensitive signatures inverted index

SilkMoth [36] fuzzy set join Bipart. graph matching weighted token signatures inverted index

MF-Join [171] fuzzy set join Bipart. graph matching partion-based inverted index

MultiAttr [85] set search/join Overlap tree traversal prefix tree

Smurf [159] string matching Jaccard, Edit Distance random forest inverted indexes

AU-Join [184] string join Syntactic, Synonym, Taxonomy pebbles inverted indexes

(d) Algorithms for complex matching

of each set are first sorted in a global order, typically in increasing order of frequency. Then, the

π -prefix of each set is formed by selecting its π first elements in that order. Prefix filter states that

for two sets to be similar, their prefixes must contain at least one common element. The prefix size

π of a set r is determined based on the similarity measure and threshold being used; e.g., for edit

distance threshold θ , π = q · θ + 1, while for Jaccard similarity threshold θ , π = ⌊(1 − θ) · |r |⌋ + 1.
As described next, numerous subsequent algorithms have adopted prefix filtering and proposed

various optimizations and extensions over it, both for edit distance and set-based similarity joins.

For edit distance, DivideSkip [83] uses prefix filtering in combination with length and position

filtering, taking special care to efficiently merge the inverted lists of signatures. Ed-Join [180]

proposes two optimizations based on analyzing the locations and contents of mismatching q-grams

to further reduce the prefix length by removing unnecessary elements. QChunk [133] introduces the
concept of q-chunks, which are substrings of length q that start at 1+i ·q positions in the string, for

i ∈ [0, (|r | − 1)/q]. Given two strings r and s , QChunk extracts q-grams from the one and q-chunks

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:22 G. Papadakis et al.

from the other; if r and s are within edit distance θ , the size of the intersection between the q-grams

of r and the q-chunks of s should be at least ⌈|s |/q⌉-θ . VChunkJoin [176] uses non-overlapping

substrings called chunks, ensuring that each edit operation destroys at most two chunks. This yields

a tight lower bound on the number of common chunks that two strings must share if they match.

For set similarity joins, PPJoin [182, 183] extends prefix filtering with positional filtering. This
takes also into consideration the positions where the common tokens in the prefix occur, thus

deriving a tighter upper bound for the overlap between the two sets. In addition, PPJoin+ [182, 183]

further uses suffix filtering. Following a divide-and-conquer strategy, this partitions the suffix of

the one set into two subsets of similar sizes. The token separating the two partitions is called pivot
and is used to split the suffix of the other set. This allows to calculate the maximum number of

tokens in each pair of corresponding partitions between the two sets that can match.

MPJoin [140] adds a further optimization over PPJoin that allows for dynamically pruning the

length of the inverted lists. This reduces the computational cost of candidate generation, rather than

the number of candidates. GroupJoin [19] extended PPJoin with group filtering, whose candidate
generation treats all sets with identical prefixes as a single set. Multiple candidates may thus be

pruned in batches. AdaptJoin [169] proposed adaptive prefix filtering, which generalizes prefix

filtering by adaptively selecting an appropriate prefix length for each set. It supports longer prefixes

dynamically, extending their length by n − 1, and then prunes a pair of sets if they contain less

than n common tokens in their extended prefixes. Prefix filtering is a special case where n = 1.

A different perspective for speeding up set similarity joins is proposed by SKJ [177]. The idea
is based on the following observation: existing approaches examine each set individually when

computing the join; however, it is possible to improve efficiency through computational cost sharing

between related sets. To this end, the SKJ algorithm introduces index-level skipping, which groups

related sets in the index into blocks, and answer-level skipping, which incrementally generates the

answer of one set from an already computed answer of another related set.

Finally, there are Filtering techniques for computing top-k results progressively, instead of

requiring the user to select a similarity threshold. TopkJoin [181] retrieves the top-k pairs of sets

ranked by their similarity score, based on prefix filtering and on the monotonicity of maximum

possible scores of unseen pairs. JOSIE [195] presents a method for top-k set similarity search. It

exploits prefix and position filtering but, instead of dealing with sets of relatively small size (e.g.,

∼100 tokens), it is crafted for finding joinable tables in data lakes, where sets represent the distinct

values of a table column, comprising millions of tokens. This introduces new challenges, which are

tackled by proposing an algorithm that minimizes the cost of set reads and inverted index probes.

Partition-based filtering. The algorithms in this category partition each string or set into

multiple disjoint segments in such a way that matching pairs have at least one common segment.

PartEnum [7] generates a signature scheme based on the principles of partitioning and enumeration.
The former states that if two vectors with Hamming distance not higher than k are partitioned into

k + 1 equi-sized partitions, then they must have at least one common partition. The latter states

that if these vectors are partitioned instead into n > k equi-sized partitions, then they must have

in common at least n − k partitions. PassJoin [84] partitions a string into a set of segments and

creates inverted indices for the segments. Then, for each string, it selects some of its substrings and

uses them to retrieve candidates from the index. A method is proposed to minimize the number

of segments required to find the candidates pairs. PTJ [37] proposes an approach to increase the

pruning power of partition-based filtering by using a mixture of the subsets and their 1-deletion

neighborhoods, which are subsets derived from a set after eliminating one element.

Essentially, these methods are based on the pigeonhole principle, which states that if n items

are contained in m boxes, at least one box has no more than ⌊n/m⌋ items. This is extended by

the pigeonring principle [134], which organizes the boxes in a ring and constrains the number

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:23

of items in multiple boxes rather than a single one, thus offering tighter bounds. Applying it to

various similarity search problems shows that pigeonring always produces less or equal number

of candidates than the pigeonhole principle does and that pigeonring-based algorithms can be

implemented on top of existing pigeonhole-based ones with minor modifications [134].

Tree-based filtering.Most methods presented so far build inverted indexes on the signatures

extracted from the strings or sets. Next, we present algorithms employing tree-based indexes.

Most approaches are based on the B
+
-tree. Bed -Tree [194] proposes a B+-tree based index for

range and top-k similarity queries as well as similarity joins, using edit distance. It is based on

a mapping from the string space to the integer space to support efficient searching and pruning.

PBI [89] uses a B+-tree index and exploits the fact that edit distance is a metric. The string collection

is partitioned according to a set of selected reference strings. Then, the strings in each partition are

indexed based on their distances to their corresponding reference strings. The proposed approach

supports both range and k-NN queries and can be integrated inside a DBMS. In MultiTree [192],
each element in a set is represented as a vector and is mapped to an integer according to a defined

global ordering, which is then used to insert the element in the B
+
-tree index. Searching for similar

elements is then done via a range query on the index.

On another line of research, Trie-Join [168] proposes a trie-based technique for string similarity

joins with edit distance. Each trie node represents a character in the string. Thus, strings with a

common prefix share the same ancestors. A trie node is called an active node of a string s if their
edit distance is not larger than the given threshold. This leads to a technique called subtrie pruning:
given a trieT and a string s , if node n is not an active node for every prefix of s , then n’s descendants
cannot be similar to s . HSTree [188] recursively partitions strings into disjoint segments and builds

a hierarchical segment tree index. This is then used to support both threshold-based and top-k
string similarity search based on edit distance. Finally, a transformation-based framework for top-k
set similarity search is presented in [193]. It transforms sets of various lengths into fixed-length

vectors in such a way that similar sets are mapped closer to each other. An R-tree is then used to

index these records and prune the space during search.

5.1 Parallel & Distributed Algorithms
MapReduce-based approaches have been proposed to tackle scalability issues when dealing with

very large collections of sets or strings. A theoretical analysis of different methods for performing

similarity joins on MapReduce is presented in [2]. It considers algorithms that operate in a single

MapReduce job, avoiding the overhead associated with initiating multiple ones. It shows that

different algorithms provide different tradeoffs with respect to map, reduce and communication cost.

VernicaJoin [166] is based on prefix filtering. It computes prefix tokens and builds an inverted

index on them. Then, it generates candidate pairs from the inverted lists, using additionally the

length, positional and suffix filters to prune candidates. A deduplication step is finally employed

to remove duplicate result pairs generated from different reducers. MGJoin [143] follows a similar

approach to VernicaJoin, but introduces multiple prefix orders and a load balancing technique

that partitions sets based on their length. MRGroupJoin [37] is a MapReduce extension of PTJ [37].

It applies a partition-based technique, where records are grouped by length and are partitioned in

subrecords, such that matching records share at least one subrecord. The process is performed in a

single MapReduce job. FS-Join [142] sorts the tokens in each set in increasing order of frequency,

and then splits each set into disjoint subsets using appropriate pivot tokens. These subsets are then

grouped together so that subsets from different groups are non-overlapping.

Finally, Dima [160, 161] is a distributed in-memory system built on top of Spark that supports

threshold and top-k similarity search and join with both token-based and character-based similari-

ties. It relies on signature-based global and local indexes for efficiency. The proposed signatures

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:24 G. Papadakis et al.

are adaptively selectable based on the workload, which allows to balance the workload among

partitions. Dima extends the Catalyst optimizer of Spark SQL to introduce cost-based optimizations.

5.2 Approximate Algorithms
Approximate algorithms for similarity search and join increase the efficiency of Filtering step at

the cost of allowing both false positives and false negatives, thus missing some matches [10, 172].

They typically rely on locality sensitive hashing (LSH) [55], which transforms an item to a low-

dimensional representation such that similar items have much higher probability to be mapped to

the same hash code than dissimilar ones. This property allows LSH to be exploited in the filtering

phase to generate candidates [32, 90, 163]. The basic idea is that each object is hashed several times

using randomly chosen hash functions. Then, candidates are those pairs of objects that have been

hashed to the same code by at least one hash function.

ATLAS [190] is a probabilistic algorithm that is based on random permutations both to generate

candidates and to estimate the similarity between candidate pairs. It also proposes a method

to efficiently detect cluster structures within the data, which are then exploited to search for

similar pairs only within each cluster. BayesLSH [147] combines Bayesian inference with LSH
to estimate similarities to a user-specified level of accuracy. It uses LSH for both Filtering and

Verification, providing probabilistic guarantees on the resulting accuracy and recall. CPSJoin [28]

is a randomized algorithm for set similarity joins. It uses a recursive filtering technique, building

upon a previously proposed index for set similarity search [27], as well as sketches for estimating

set similarity. The algorithm has 100% precision and provides a probabilistic guarantee on recall.

5.3 Algorithms for Complex Matching
The works discussed so far assume a single similarity predicate, i.e, they apply to the values of a

specific attribute. Moreover, when comparing sets, they assume binary matching between their

elements, while in the case of strings, they compare strings in their entirety. In the following, we

present methods that employ multiple similarity predicates or more complex ones.

Localmatching.A local string similarity join finds pairs of strings that contain similar substrings.
Under edit distance constraints, it can be defined as matching any l-length substring with up to k
errors. LS-Join [173] is based on the observation that if two strings are locally similar, they must

share at least one common q-gram, for a suitably calculated gram length q. An inverted index is

constructed incrementally during the search. For every examined string, its q-grams are generated

and the candidates are retrieved from the index by finding those strings that have matching q-grams.

pkwise [174] detects pieces of text in a given collection that share similar sliding windows, i.e.,
multisets containing w consecutive tokens of a given document. The similarity of two sliding

windows is defined as the overlap of those sets. Prefix filtering is used but instead of relying on

single tokens to build the signatures, it proposes k-wise signatures, which comprise combinations

of k tokens. Larger values of k increase the signatures’ selectivity but also the cost of signature

generation. An additional optimization is to share common signatures across adjacent windows.

Finally, pkduck [162] matches strings with abbreviations, based on a new similarity measure that

accounts for abbreviations. It also proposes an appropriate signature scheme that extends prefix

filtering and generates signatures without iterating over all strings derived from an abbreviation.

Fuzzy matching. Rather than assuming a binary match, in this setting, the similarity between

the elements of two sets may take any value between 0 and 1. In fact, it is defined as the maximum

matching score in the bipartite graph representing the matches between their elements.

In Fast-Join [170], edge weights in this bipartite graph denote the edit similarities between

matching elements. The proposed method follows the filter-verification framework, creating a

signature for each set such that matching sets have overlapping signatures. The signature of a set

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:25

comprises an appropriately selected subset of its tokens. SilkMoth [36] generalizes and improves

upon this work, providing a formal characterization of the space of valid signatures. Given that

finding the optimal signature is NP-complete, it proposes heuristics to select signatures. To further

reduce candidates, a refinement step is added: it compares each set with its candidates and rejects

those for which certain bounds do not hold. Both edit distance and Jaccard coefficient are supported

for measuring the similarity between elements. MF-Join [171] performs element- and record-level

filtering. The former utilizes a partition-based signature scheme with a frequency-aware partition

strategy, while the latter exploits count filtering and an upper bound on record-level similarity.

Multiple predicates.Amethod for similarity search and join onmulti-attribute data is presented
in [85]. For instance, given an entity collection where each entity is described by its name and

address, this work identifies pairs of entities having both similar names and similar addresses.

To enable simultaneous filtering on multiple attributes, a combined prefix tree index is built on

these attributes. The construction of the index is guided by a cost model and a greedy algorithm.

In another direction, Smurf [159] performs string matching between two collections of strings

based on multiple-predicate matching conditions in the form of a random forest classifier that is
learned via active learning. Filtering techniques for string similarity joins are exploited to speed

up the execution of the random forest. The focus and novelty of this work is on how to reuse

computations across the trees in the forest to further increase efficiency. Finally, AU-Join [184]

presents a new framework for string similarity joins that supports not only syntactic similarity

measures, such as Jaccard similarity on q-grams, but also semantic similarities, including synonym-
based and taxonomy-based matching. It partitions strings into segments and applies different types

of similarity measures on different pairs of segments. A new signature scheme, called pebble, handles
multiple similarity measures: pebbles are q-grams for gram-based similarity, the left-hand side of a

synonym rule for synonym similarity, and ancestor nodes in the taxonomy for taxonomy similarity.

5.4 Discussion & Experimental Results
Filtering techniques for string and set similarity joins have attracted a lot of research interest over

the past two decades. Early works view this operation as an extension of the standard join operator

in relational databases, where the join condition is based on similarity rather than equality [22, 57].

The same perspective is shared by more recent works, like those proposing B
+
-tree based indexes,

which can be easily integrated into an existing DBMS [89, 192, 194]. Another characteristic example

is Dima [160, 161], which extends the Catalyst optimizer of Spark SQL to support similarity-based

queries. In this sense, similarity joins are sometimes referred to as approximate or fuzzy joins,

although this should not be confused with the approximate algorithms in Sec. 5.2, or the fuzzy

set joins in Sec. 5.3. Numerous Filtering techniques have been proposed by more recent works,

which focus on main memory execution. Prefix-based filtering is the most popular approach [12, 19,

22, 83, 133, 140, 169, 176, 180, 182, 182, 183, 183], followed by partition-based filtering [7, 37, 84].

Furthermore, to scale similarity joins to large collections, distributed [2, 37, 142, 143, 160, 161, 166]

and approximate [28, 147, 190] algorithms have been proposed.

More recently, there has been an increasing focus and interest on works that deal with more

complex similarity predicates. These include the matching of strings based on substrings or abbre-
viations [162, 173, 174], matching of sets based on fuzzy matching of their elements [36, 170, 171],

and the combination of multiple similarity predicates [85, 159]. These works can be considered as

more closely relevant to matching entity profiles in Entity Resolution.

Regarding performance, a series of experimental analyses provides interesting insights [50, 64, 95].

However, each study focuses on a certain subset of the aforementioned methods. Below, we briefly

summarize their findings, including additional results from individual papers to fill the gaps.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:26 G. Papadakis et al.

Similarity joins using Edit Distance. A comparison between FastSS, All-Pairs, DivideSkip,
Ed-Join, QChunk, VChunkJoin, PPJoin, PPJoin+, AdaptJoin, PartEnum, PassJoin and Trie-Join
is conducted in [64]. The results demonstrate that PassJoin is the most efficient algorithm, with

FastSS providing a reliable alternative in the case of very short strings.

Similarity joins using set-based measures. AdaptJoin and PPJoin+ are reported as the best

algorithms in the aforementioned study [64]. Different results, though, are reported in a subsequent

study that compares All-Pairs, PPJoin, PPJoin+, MPJoin, AdaptJoin and GroupJoin. It indicates
that the plain prefix filtering, i.e., All-Pairs, is still quite competitive, winning in the majority

of cases. PPJoin and GroupJoin exhibit the best median and average performance, respectively,

while more sophisticated filters are found to provide only moderate improvements in some cases

or even to negatively affect performance. The difference with the results in [64] is attributed to

the more efficient verification step; reducing the cost of Verification means that complex and, thus,

time-consuming filters often do not pay off, despite reducing the number of candidate pairs.

Prefix vs. partition filtering. PTJ is compared against PPJoin+ and AdaptJoin in [37], showing that
it outperforms bothmethods. The same comparison is performed in [177], showing that PTJ does not
outperform those methods in most cases. As noted in [177], this discrepancy seems to be caused by

differences in implementation; specifically, the comparison in [37] uses the original implementations

of PPJoin+ and AdaptJoin, while the one in [177] uses the optimized implementations provided

by [95]. Overall, PTJ may generate fewer candidates, but uses complex index structures, thus

spending much more time on the filtering phase compared to prefix-based algorithms. Another

factor that affects the performance of prefix filtering is the frequency distribution of the tokens in

the dataset. The core idea of prefix filtering is to select rare tokens as signatures so as to reduce the

number of candidates. In [64], an experiment involving different dataset distributions shows that

PPJoin(+) and AdaptJoin perform better in datasets with Zipfian distribution than uniform one.

Set relations. Another interesting finding is that set relations can be effectively exploited to speed

up the computation of similarity joins [177]. In the presented experiments, the proposed algorithm,

SKJ, consistently outperforms PPJoin, PPJoin+, AdaptJoin and PTJ across all datasets.
Tree-based algorithms. These algorithms typically focus on similarity search rather than join.

HSTree and PBI are compared against Bed -Tree in [188] and [89], respectively, reporting better

performance. Also, Trans shows better performance than MultiTree in [193]. BiTrieJoin, an
improved variant of TrieJoin, is reported in [64] to have comparable performance to PassJoin
for short strings, but it underperforms for medium and long strings.

Distributed algorithms. VernicaJoin, MGJoin, MRGroupJoin and FS-Join are experimentally

compared in [50]. VernicaJoin exhibits the best performance in most cases, but all algorithms are

often outperformed by non-distributed ones. This should be attributed to the overhead introduced

by the MapReduce framework as well as to high or skewed data replication between map and

reduce tasks. The latter constitutes an inherent limitation of the distributed algorithms that cannot

be overcome by simply increasing the number of nodes in the cluster. In [160], Dima is shown to

outperform the adaptation of VernicaJoin to Apache Spark.

Approximate algorithms. The experimental survey in [64] included a comparison between

BayesLSH-lite and exact algorithms. Moreover, ATLAS, BayesLSH and CPSJoin have been com-

pared against All-Pairs in [190], [147] and [28], respectively. Overall, the experiments indicate

that approximate algorithms are preferable for low similarity thresholds, e.g., for Jaccard similarity

below 0.5, while exact algorithms perform better for high thresholds.

6 JOIN-BASED BLOCKING METHODS
We now elaborate on Block Building methods that incorporate Filtering techniques, converting

Blocking into a nearest neighbor search. As illustrated in Figure 7(a), we categorize these hybrid

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:27

Fig. 7. (a) The taxonomy of the hybrid, join-based blocking methods. (b) Timeline of the landmarks in the
evolution of Blocking, Filtering and their convergence.

techniques into three major categories according to the filtering techniques they employ: the

lossless ones rely on exact, single predicate filtering techniques (cf. Table 2(a)), the lossy ones rely

on approximate filtering (cf. Section 5.2), while the spatial ones leverage spatial join techniques

for filtering. Note that the lossy hybrid methods are further distinguished into static and dynamic
ones, depending on whether they are independent or interwoven with Matching, respectively.

Starting with the lossless hybrid methods, the simplest approach is to combine Prefix Filtering

with Token Blocking, creating one block for every token that appears in the prefix of at least

two entities [29]. Another approach is Adaptive Filtering [59], which couples schema-aware, non-

learning Block Building techniques with two filteringmethods. First, blocks are created by extracting

keys from specific attributes. In every block with a size exceeding a predetermined threshold, Length

and Count Filtering are applied for Comparison Cleaning, using an edit distance threshold on an

attribute that is not considered by the initial transformation function.

Another lossless hybrid method is LIMES, which operates only on metric spaces [107]. Its core

idea is to leverage the triangle inequality to approximate the distance between entities based on

previous comparisons. Utilizing sets of entities as reference points, called exemplars, this method

computes lower and upper bounds to filter out superfluous comparisons before their execution.

In another direction, MultiBlock [62] optimizes the execution of complex matching rules that

comprise special similarity functions for textual, geographic and numeric values. A block collection

is created for every similarity function such that similar entities share multiple blocks. E.g., edit

distance is supported for textual values and blocks are created for character q-grams such that

entity pairs satisfying the distance threshold co-occur in a sufficient number of blocks. Then, all

block collections are aggregated into a multidimensional index that respects the co-occurrence

patterns of similar entities and guarantees no false dismissals, i.e., PC=1.
Regarding the lossy approaches, they are dominated by techniques based on LSH [55], which

efficiently estimates the similarity between two attribute values vi and vj by randomly sampling

hash functions f from a sim-sensitive family F such that the probability Pr (f (vi) = f (vj)) equals
to sim(vi ,vj) for any pair of attribute values and any function f ∈ F . This means that LSH derives

sim(vi ,vj) from the proportion of hash functions f such that f (vi) = f (vj). Typically, the required
number of these functions is relatively small for a sufficiently small sampling error; e.g., for 500

functions, the maximum sampling error is about ±4.5% with 95% confidence interval [42].

In the context of ER, LSH is typically combined with MinHash signatures [20], which efficiently

estimate the Jaccard similarity as follows [58, 158]. Given an entity collection E, the values of

selected attribute names are converted into a bag ofk-shingles, i.e.,k consecutive words or characters.

Then, a matrixM of size K × |E| is formed, with the rows corresponding to the K distinct shingles

that appear in all attribute values and the columns to the input entities. The value of every cell

M(i, j) indicates whether the entity ej contains the shingle sj ,M(i, j)=1, or not,M(i, j)=0. Given that

M is a sparse matrix, p random minhash functions are used to reduce its dimensionality: they are

applied to each column, deriving a new matrixM ′
of size p × |E|. The p rows are then partitioned

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:28 G. Papadakis et al.

into b non-overlapping bands and a hash function is applied to every band of each column. The

resulting buckets are treated as blocks that provide probabilistic guarantees that the pairs of similar

entities co-occur in at least one block. In fact, the desired probabilistic guarantees can be used for

configuring the parameters of LSH, i.e., the number of hash functions, rows and bands [58].

In this context, LSH is combined with K-Means in KLSH [158]. KMeans is applied to the low-

dimensional columns ofM ′
, which represent the input entities. The resulting clusters form a disjoint

block collection B, with |B| determined by the desired average number of entities per block.

LSH is applied to the distributed representations (i.e., embeddings) of the input entities in DeepER
[43]. Every entity is transformed into a dense, real-valued vector by aggregating the embeddings of

all attribute value tokens, which are pre-trained by word2vec [101], Glove [131] etc. This vector is

then hashed into multiple buckets with LSH. A block is then created for every entity containing its

top-N most likely matches, which are detected using Multiprobe-LSH [90].

LSH is also combined with a semantic similarity in SA-LSH (i.e., semantic-aware LSH) [175]. A

taxonomy tree is used to model the concepts that describe the input entity collection. The semantic

similarity of two entities is inversely proportional to the length of the paths that connect the

corresponding concepts and their children: the longer the paths, the lower the semantic similarity.

The concepts of every entity are converted into a hash signature through a semantic hashing

algorithm. The resulting low-dimensional signatures are directly combined with the signatures

that are extracted from the n-grams of selected attribute values, capturing the textual similarity of

entities. However, the construction of the taxonomy tree requires heavy human intervention.

Regarding the dynamic lossy methods, LSH is combined with R-Swoosh [14] in [93] through a

MapReduce parallelization. Initially, a job is used for defining blocks using LSH. Then, a graph-
parallel Pregel-based platform applies R-Swoosh, iteratively executing the non-redundant compar-

isons in the blocks and computing the transitive closure of the detected duplicates.

LSH also lies at the core of cBV-HB [70, 71], which embeds the textual values of selected attributes

into a compact binary Hamming space that is efficient, due to the limited size of its embeddings

(e.g., 120 bits for 4 attributes), and preserves the original distances in the sense that certain types of

errors correspond to specific distance bounds. Special care is taken to support composite matching

rules that involve the main logical operators (i.e., AND, OR and NOT).

Similarly,HARRA [76] uses LSH to hash similar entities into the same buckets. Inside every bucket,

all pairwise comparisons are executed and duplicates are merged into new profiles. The new profiles

are hashed into the existing hash tables and the process is repeated until no entities are merged or

another stopping criterion is met (e.g., the portion of merged profiles drops below a predetermined

threshold). In every iteration, special care is taken to avoid redundant and superfluous comparisons.

Finally, spatial hybrid methods combine spatial joins with Block Building. The core approach is

StringMap [65], which converts schema-aware blocking keys to a similarity-preserving Euclidean

space, whose dimensionality d is heuristically derived from a random sample (typically, d ∈ [15, 25]).
For each dimension, a linear algorithm initially selects two pivot attribute values that are (ideally)

as far apart as possible. Subsequently, the coordinates of all other attribute values are determined

through a comparison with the pivot strings. Using an R-tree or a grid-based index in combination

with two weight thresholds, similar attribute values are clustered together into overlapping blocks.

This approach is enhanced by Extended StringMap [25], which replaces the weight thresholds

with cardinality ones, and the Double embedding scheme [1]. The latter initially maps the input

entities to the same d-dimensional Euclidean space. Next, the embedded attribute values are mapped

to another Euclidean space of lower dimensionality d ′ < d . A similarity join is performed in the

second Euclidean space using a k-d tree index. The resulting candidate matches are then clustered in

the first, d-dimensional Euclidean space. The experimental study suggests that the d ′
-dimensional

space significantly reduces the runtime of StringMap by 30% to 60%.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:29

7 BLOCKING VS FILTERING: COMMONALITIES AND DIFFERENCES
The timeline in Figure 7(b) summarizes the landmarks in the evolution of the two frameworks

showing their gradual convergence. We observe that Blocking is the oldest discipline, with the first

relevant technique, namely SB, presented in 1969 [49]. For several decades, research focused on

schema-based techniques, with the most significant breakthrough taking place in 1995, with the

introduction of SN [60]. The first schema-agnostic Block Building technique is Semantic Graph
Blocking [109], introduced in 2007, but it considers only entity links. In 2011, it was followed by

TB [116], which exclusively applies to textual values. Block Processing was introduced in 2009 by

Iterative Blocking [179], followed by the use of Canopy Clustering for Blocking in 2012 [25] and

the introduction of Meta-blocking in 2014 [121]. For Filtering, the first similarity join to be used in

an RDBMS can be traced back to 2001 [57], while the techniques for in-memory execution were

coined in 2007 [12]. Attempts to further increase efficiency by allowing approximate results were

first presented in 2011 [190]. The first works on massive parallelization for Filtering appear in 2010

[166], for Blocking in 2012 [77], and for Block Processing in 2015 [44]. The convergence of the two

frameworks essentially starts in 2011 with MultiBlock [62], which introduces Join-based Blocking,

whereas multiple-predicate Filtering for efficient Matching, is introduced by Smurf in 2018 [159].

Regarding the qualitative comparison of the two frameworks, we observe that they have a

number of commonalities: (i) Both serve the same purpose: they increase ER efficiency by reducing

the number of performed comparisons. To this end, both employ a stage producing candidate

matches, which are subsequently examined analytically in order to remove false positives. (ii)

Both usually operate either on two clean but overlapping data collections (Record Linkage for

Blocking, Cross-table Join for Filtering) or on a single dirty data collection (Deduplication for

Blocking, Self-join for Filtering). (iii) Both extract signatures such that the similarity of two entities

is reflected in the similarity of their signatures. (iv) Both also apply similar implementation-level

optimizations, representing signatures with integer ids, instead of strings, so as to reduce the

memory footprint and facilitate in-memory execution. (v) Both include character- and token-based

methods. For Blocking, the former methods mainly pertain to schema-aware techniques that apply

character-level transformations to blocking keys (e.g., q-grams, suffixes etc), while token-based

methods primarily pertain to schema-agnostic methods. For Filtering, similarity measures can also

be distinguished between character-based (e.g., edit similarity) and token-based ones (e.g., Jaccard),

even though many algorithms can be adapted to handle both. (vi) In both cases, textual data have

been combined with other types of data, particularly with spatial or spatio-temporal data, including

[106] for Blocking and [13, 19, 52, 63] for Filtering. (vii) Both can be used in real-time applications,

where the input comprises a query entity and the goal is to identify the most similar ones in the

minimum possible time. This is called Similarity Search in the case of Filtering and Real-time ER in

the case of Blocking (see Section 9 for more details).

Due to these commonalities, several works use the two frameworks interchangeably, consider-

ing Filtering as a means for Blocking (e.g., [29]). In reality, though, Blocking and Filtering have

several distinguishing characteristics: (i) By definition, a blocking scheme applies to a single entity,

considering all its attribute values (schema-agnostic methods), or combinations of multiple values

(schema-aware techniques). In contrast, Filtering usually applies to a pair of values from the same

attribute of two entities. (ii) Blocking relies on positive evidence, clustering together similar entities,

while Filtering relies on negative evidence, detecting dissimilar entities early on. (iii) Blocking is

typically independent of Entity Matching, whereas Filtering is interwoven with it, as its goal is to

optimize the execution of a matching rule. (iv) Blocking is an inherently approximate procedure that

falls short of perfect recall (PC), even when providing probabilistic guarantees (e.g., LSH Blocking

in DeepER [43]). In contrast, most Filtering methods provide an exact solution, returning all pairs

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:30 G. Papadakis et al.

of values that exceed the predetermined threshold along with false positives. (v) Blocking trades

slightly lower recall (PC) for much higher precision (PQ), while Filtering trades filtering power

for filtering cost. (vi) Blocking may be modelled as a learning problem, where the goal is to define

supervised blocking schemes that simultaneously optimize PC , PQ and RR, but Filtering requires
no labelled set for learning to mark a comparison as true negative. Instead, it relies on a theoretical

analysis based on the given similarity measure and threshold. (vii) Preserving privacy is orthogonal

to Filtering, with very few works examining privacy-preserving similarity joins [67, 87, 189]. In

contrast, Blocking constitutes an integral part of privacy-preserving ER, with several relevant

works (for details, refer to a recent survey [165]). (viii) Blocking constitutes an integral part of

pay-as-you-go ER applications, conveying a significant body of relevant works, as described below.

This does not apply to Filtering, given that the only relevant technique is TopkJoin [181].

Regarding the quantitative comparison between Blocking and Filtering, few works have actu-

ally examined their relative performance. The two frameworks are experimentally juxtaposed

in [153–155] in terms of effectiveness and time efficiency. Using a series of real-world datasets,

RDFKeyLearner is compared against AllPairs, PPJoin(+) and EdJoin in [153, 154] and against EdJoin,
PPJoin+ and FastJoin in [155]. All methods are fine-tuned using a sample of each dataset. The

outcomes indicate no significant difference in effectiveness, but regarding time efficiency, Filtering

is consistently faster in generating candidate matches and consistently slower in executing the

corresponding pairwise comparisons, due to their larger number. In [155], the relative scalability of

RDFKeyLearner and EdJoin is examined over synthetic datasets of 10
5
, 2·105, ..., 106 entities. Again,

EdJoin produces more candidate matches and, thus, is slower than RDFKeyLearner.
In [82], an experimental analysis over 4 real-world datasets investigates the combined effect of

Blocking and Filtering on ER efficiency, implementing the workflow in Figure 1(b). The results

suggest that together, the two frameworks reduce the overall ER running time from 33% to 76%,

with an average of 50%. However, only one method per framework is considered: the manually

fine-tuned SB and PPJoin in combination with Cosine and Jaccard similarity. Note that, due to its

careful, manual fine-tuning, Blocking has no impact on ER effectiveness.

However, more experimental analyses are required for drawing safe conclusions about the relative

performance of Blocking and Filtering. These analyses should include a large, representative variety

of techniques per framework along with several established benchmark datasets and should examine

the benefits of combining the two frameworks in more depth.

8 BLOCKING AND FILTERING IN ENTITY RESOLUTION SYSTEMS
We now present the main systems that address ER, examining whether they incorporate any of the

aforementioned methods to improve the runtime and the scalability of their workflows. We analyti-

cally examined the 18 non-commercial and 15 commercial systems listed in the extended version

of [80]
1
along with the 10 Link Discovery frameworks surveyed in [105]. Table 3 summarizes the

characteristics of 12 open-source ER systems that include at least one Blocking or Filtering method.

Half of the tools offer a graphical user interface and are implemented in Java. Regarding the

type of the input data, most systems support structured data. The only exceptions are the three

Link Discovery frameworks, which are crafted for semi-structured data. JedAI is the only tool that

applies uniformly to both structured and semi-structured data.

We also observe that all systems include Blocking methods, with Standard Blocking (SB) and
Sorted Neighborhood (SN) being the most popular ones. The first four systems are Link Discovery

frameworks that implement custom approaches: KnoFuss and SERIMI apply Token Blocking only

to the literal values of RDF tiples, while Silk and LIMES implement hybrid methods, MultiBlock

1
The extended version of [80] is available here: http://pages.cs.wisc.edu/~anhai/papers/magellan-tr.pdf.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://pages.cs.wisc.edu/~anhai/papers/magellan-tr.pdf

Blocking and Filtering 1:31

Table 3. Blocking and Filtering methods in open-source systems for Entity Resolution.

Tool Blocking Filtering GUI Language Data Formats

KnoFuss [108] Literal Blocking - No Java RDF, SPARQL

SERIMI [8] Literal Blocking - No Ruby SPARQL

Silk [167] Multiblock - Yes Scala RDF, SPARQL, CSV

LIMES [107] custom methods PPJoin+, Ed-

Join, custom

methods, e.g.,

ORCHID [106]

Yes Java RDF, SPARQL, CSV

Dedupe [17] SB with learning-based techniques - No Python CSV, SQL

DuDe [39] SB, SN, Sorted blocks - No Java CSV, JSON, XML, BibTex,

Databases(Oracle, DB2,

MySQL and PostgreSQL)

Febrl [23] SB, SN, Sorted Blocks, Suffix Arrays,

Extended Q-Grams, Canopy Clustering,

StringMap

- Yes Python CSV, text-based

FRIL [66] SB, SN - Yes Java CSV, Excel, COL, Database

OYSTER [104] SB - No Java text-based

RecordLinkage

[145]

SB (with SOUNDEX) - No R Database

Magellan [80] SB, SN, it also supports user-specified

blocking methods

Overlap,

Length, Prefix,

Position, Suffix

Yes Python CSV

JedAI [129] SB, SN, Extended SN, Suffix Arrays, Ex-

tended Suffix Arrays, LSH, Q-Grams, Ex-

tended Q-Grams + Block Processing

to be added in

the forthcom-

ing version

3

Yes Java CSV, RDF, SPARQL, XML,

Database

and LIMES, respectively (see Section 6). Febrl and JedAI offer the largest variety of established

techniques. The former provides their original, schema-aware implementation, while the latter

provides their schema-agnostic adaptations. For this reason, JedAI is the only tool that implements

Block Processing techniques, as well.

Note that Block Building is also a core part of the ERworkflow in several commercial systems, such

as IBM Infosphere and Informatica Data Quality [80]. These systems are generally required to handle

diverse types of data, focusing on data exploration and cleaning. They typically provide variations

of SB, allowing users to extract blocking keys from specific attributes through a sophisticated GUI

that provides statistics and data analysis. As a result, users’ expertise and experience with specific

domains is critical for the performance of these systems’ blocking components.

Surprisingly, only two systems currently include Filtering algorithms for improving the runtime

of their matching process: LIMES and Magellan. The latter actually offers the largest variety of

established techniques through the py_stringsimjoin package. Filtering techniques are also

provided by FEVER [81], which is a closed-source ER tool, as well as by JedAI’s forthcoming version

3. Still, a mere minority of ER tools enables users to combine the benefits of Blocking and Filtering,

despite the promising potential of their synergy (see below for more details). Most importantly,

these tools exclusively consider traditional Filtering algorithms that apply to the values of individual

attributes. Hence, they disregard the recent Filtering techniques for Complex Matching (cf. Section

5.3), which are more suitable for Entity Resolution. Therefore, more effort should be devoted on

developing ER tools that make the most of the synergy between Blocking and Filtering.

9 FUTURE DIRECTIONS
Various directions seem promising for future work, from entity evolution [115] to deep learning

[43] and summarization algorithms [69], which minimize the memory footprint of blocks, while

accelerating their processing. The following are more mature fields, having assembled a critical

mass of methods already.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:32 G. Papadakis et al.

Progressive Entity Resolution. Due to the constant increase of data volumes, new progressive
or pay-as-you-go ER applications have emerged. Their goal is to provide the best possible partial
solution within a limited budget of temporal or computational resources. In such applications,

Blocking lays the ground for Prioritization, which schedules the processing of entities, comparisons

or blocks according to the likelihood that they involve duplicates. We distinguish the relevant

techniques into schema-aware and schema-agnostic ones.

The schema-aware progressive methods require domain knowledge [130, 178]. Progressive Sorted
Neighborhood (PSN) [178] uses schema-based SN to create a sorted list of entities and then applies

an incremental window sizew . Starting from the top of the list, all entities in consecutive positions

(w=1) are compared; then, all entities at distancew=2 are compared and so on and so forth, until

reaching the user-defined budget. Dynamic PSN [130] extends this static approach by adjusting the

processing order of comparisons on-the-fly, according to the results of a perfect matcher. It arranges

the sorted entities in a two-dimensional arrayA, and ifA(i, j) corresponds to a pair of duplicates, the
processing moves on to checkA(i+1, j) andA(i, j+1), as well. Progressive Blocking [130] generalizes
this principle to SB. Hierarchy of Record Partitions [178] creates a static hierarchy of blocks, where

the matching likelihood of two entities is proportional to the level in which they co-occur for

the first time. This hierarchy is then progressively resolved, level by level, from leaves to root. A

variation of this approach is adapted to MapReduce in [6], while the Ordered List of Records [178]
converts it into a list of entities that are sorted by their likelihood to produce matches. A progressive

solution for relational Multi-source ER over different entity types is proposed in [5]. Finally, P-RDS
adapts LSH-based blocking to a progressive functionality by rearranging the processing order of its

hash tables according to the number of matching and unnecessary comparisons in their buckets

that have been resolved so far.

The schema-agnostic methods, which disregard any domain knowledge, are classified into two

types [152]: (i) The sort-based methods order all entities alphabetically, according to their attribute

value tokens, leveraging schema-agnostic SN. Local Schema-agnostic Progressive SN [152] slides

an incremental window over the sorted list of entities and, for each window size, it orders the

non-redundant comparisons according to the co-occurrence frequency of their entities and the

number of blocking keys per entity. Global Schema-agnostic Progressive SN [152] does the same,

but for a predetermined range of windows, eliminating all redundant comparisons they contain. (ii)

The hash-based methods leverage the blocking graph for Prioritization. Progressive Block Scheduling
[152] orders the blocks in ascending number of comparisons and then prioritizes all comparisons

per block in decreasing edge weight. Progressive Profile Scheduling [152] orders entities in decreasing
average edge weight and then prioritizes all comparisons per entity in decreasing edge weight.

The schema-agnostic methods excel in recall and precision [152], but exclusively support static
prioritization, defining an immutable processing order that disregards the detection of duplicates.

Hence, more research is needed for developing dynamic schema-agnostic progressive methods.

Real-time Entity Resolution. This is the task of matching an entity that is given as query

to the available entity collections in (ideally) sub-second run-time. To meet this goal, several

specialized dynamic indexing techniques have been proposed in the literature. An early approach

is presented in [26]. The core idea is to pre-calculate similarities between the attribute values of

entities co-occurring in the blocks of Standard Blocking, thus avoiding similarity calculations at

query time. Three indexes are created for this purpose, containing all the necessary information.

This approach is extended by DySimII [138] so that all three indexes are updated as query entities

arrive. The experimental results demonstrate that both the average record insertion time and the

average query time remain practically stable, even when the index size grows.

Another family of relevant techniques extends SN. F-DySNI [135, 137] converts the sorted list

of blocking keys into an index that is faster to search: it creates a braided AVL tree [141] that

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:33

combines a height balanced binary tree with a double-linked list, where every node is linked to

its alphabetically sorted predecessor node, to its successor node and to the ids of all entities that

correspond to its blocking key. There is one tree for each blocking key definition that gets updated

whenever a query entity arrives. The window is fixed or adaptive, considering as neighbors the

nodes that exceed a specific similarity threshold. F-DySNI is extended in [136] with an automatic

approach for selecting blocking keys; the weak training set of [72] is coupled with a scoring function

that assesses the coverage of each key along with the distribution of its block sizes.

Another group of methods relies on LSH. MinHash LSH is combined with SN in [88]: when

searching for the nearest neighbors of a query entity, the entities in large LSH blocks are sorted via

a custom scoring function and, then, a window of fixed size slides over the sorted list of entities.

CF-RDS [68] leverages Hamming LSH, ranking the most similar entities to each query without

performing any profile comparison. Instead, it merely aggregates the number of occurrences of

each candidate match in the buckets associated with the query entity.

On another line of research, BlockSketch [69] organizes the entities inside every block into

sub-blocks according to their similarity. A representative is assigned to each sub-block based on its

distance from the corresponding blocking key. In this way, every query suffices to be compared

with a constant number of entities in the target block in order to detect its most similar entities.

SBlockSketch [69] adapts this approach to a stream of query entities through an eviction strategy

that bounds the number of blocks that need to be maintained in memory.

All these methods are crafted for structured data, assuming a fixed schema of known quality.

New techniques are required, though, for the noisy, heterogeneous entities of semi-structured data.

Parameter Configuration. Except TB, all Blocking methods involve at least one internal param-

eter that affects their performance to a large extent [25, 128]. This affects their relative performance,

rendering the selection of the best performing method for the data at hand into a non-trivial task.

To mitigate this issue, parameter fine-tuning is modelled as an optimization problem in [96]. The

large, heterogeneous space of possible configurations is searched through a genetic algorithm, whose

fitness function exploits the labels (i.e., match vs non-match) of part of the candidate matches. After

applying the typical series of genetic operators, (i.e., mutation, crossover, elite capture and parental

selection) is applied for a specific number of generations, the configuration maximizing the fitness

function is selected as optimal. However, this approach involves a large number of parameters itself.

In another direction, MatchCatcher [86] implements a human-in-the-loop approach combining

expert knowledge with labelled instances in order to learn composite blocking schemes. Using

string similarity joins, duplicates sharing no block are efficiently detected. To capture them, the

expert user adapts the transformation and assignment functions iteratively. Finally, a method’s

performance over several labelled datasets is used for fine-tuning its parameters over a given

unlabelled dataset in [110]. At its core lies a two-dimensional metric space formed by the overall

running time and F-Measure (horizontal and vertical axis, respectively). The closer a method is

mapped to the ideal point (0,1), the better is its performance. A graph is then built such that every

node corresponds to a different configuration or blocking method, while a directed edge points

from node ni to nj if nj is closer to (0,1). The node with no outgoing edges or the largest difference

between incoming and outgoing edges corresponds to the best choice. However, this is a rather

time-consuming approach, given the large number of computations it requires.

None of the above methods satisfies the requirement for automatic, data-driven, a-priori parame-

ter configuration of Blocking methods, which thus remains an open problem.

Filtering for Entity Resolution. We believe that more opportunities exist for transferring

ideas and approaches between Blocking and Filtering. Another interesting direction is to investigate

in practical settings to what extent similarity joins suffice for ER, i.e., representing entity profiles

by strings or sets and defining a matching function based on a similarity threshold. We expect

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:34 G. Papadakis et al.

that techniques supporting relaxed matching criteria and/or lower similarity thresholds will be

required to achieve high recall. Yet, as explained in Section 5.3, relatively few Filtering techniques

are designed for these cases. Moreover, scalability remains an open challenge for string and set

similarity joins, as shown in [50]. Finally, there is a need for extensible, open-source ER tools that

incorporate the majority of established Blocking and Filtering methods and apply seamlessly to

structured, semi-structured and unstructured data [56].

10 CONCLUSIONS
Efficiency techniques are an integral part of Entity Resolution, since its infancy. We organize the

relevant works into Blocking, Filtering and hybrid techniques, facilitating their understanding

and use. We also provide an in-depth coverage of each category, further classifying its works into

novel sub-categories. Lately, the rise of big semi-structured data poses challenges to the scalability

of efficiency techniques and to their core assumptions: the requirement of Blocking for schema

knowledge and of Filtering for high similarity thresholds. The former led to the introduction of

schema-agnostic Blocking and of Block Processing techniques, while the latter led to more relaxed

criteria of similarity. We cover these new fields in detail, putting in context all relevant works.

Acknowledgements. This work was partially funded by EU H2020 projects ExtremeEarth (825258)

and SmartDataLake (825041).

REFERENCES
[1] N. Adly. Efficient record linkage using a double embedding scheme. In DMIN, pages 274–281, 2009.
[2] F. Afrati, A. D. Sarma, D. Menestrina, A. Parameswaran, and J. Ullman. Fuzzy joins using mapreduce. In ICDE, pages 498–509, 2012.
[3] A. N. Aizawa and K. Oyama. A fast linkage detection scheme for multi-source information integration. In WIRI, pages 30–39, 2005.
[4] A. Allam, S. Skiadopoulos, and P. Kalnis. Improved suffix blocking for record linkage and entity resolution. DKE, 117:98–113, 2018.
[5] Y. Altowim, D. V. Kalashnikov, and S. Mehrotra. Progressive approach to relational entity resolution. PVLDB, 7(11):999–1010, 2014.
[6] Y. Altowim and S. Mehrotra. Parallel progressive approach to entity resolution using mapreduce. In ICDE, pages 909–920, 2017.
[7] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In VLDB, pages 918–929, 2006.
[8] S. Araújo, D. T. Tran, A. P. de Vries, and D. Schwabe. SERIMI: class-based matching for instance matching across heterogeneous

datasets. IEEE TKDE, 27(5):1397–1410, 2015.
[9] T. B. Araújo, C. E. S. Pires, and T. P. da Nóbrega. Spark-based streamlined metablocking. In IEEE ISCC, pages 844–850, 2017.
[10] N. Augsten and M. H. Böhlen. Similarity Joins in Relational Database Systems. Morgan & Claypool Publishers, 2013.

[11] R. Baxter, P. Christen, and T. Churches. A comparison of fast blocking methods for record linkage. In KDD Workshops, 2003.
[12] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In WWW, pages 131–140, 2007.

[13] A. Belesiotis, D. Skoutas, C. Efstathiades, V. Kaffes, and D. Pfoser. Spatio-textual user matching and clustering based on set similarity

joins. VLDB J., 27(3):297–320, 2018.
[14] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and J. Widom. Swoosh: a generic approach to entity resolution.

VLDB J., 18(1):255–276, 2009.
[15] G. D. Bianco, M. A. Gonçalves, and D. Duarte. BLOSS: effective meta-blocking with almost no effort. Inf. Syst., 75:75–89, 2018.
[16] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive blocking: Learning to scale up record linkage. In ICDM, pages 87–96, 2006.

[17] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string similarity measures. In KDD, pages 39–48, 2003.
[18] T. Bocek, E. Hunt, and B. Stiller. Fast Similarity Search in Large Dictionaries. Technical Report ifi-2007.02, Department of Informatics,

University of Zurich, April 2007. http://fastss.csg.uzh.ch/.

[19] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual similarity joins. PVLDB, 6(1):1–12, 2012.
[20] A. Z. Broder. On the resemblance and containment of documents. In SEQUENCES, pages 21–29, 1997.
[21] Y. Cao, Z. Chen, J. Zhu, P. Yue, C. Lin, and Y. Yu. Leveraging unlabeled data to scale blocking for record linkage. In IJCAI, pages

2211–2217, 2011.

[22] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins in data cleaning. In ICDE, pages 5–5, 2006.
[23] P. Christen. Febrl-: an open source data cleaning, deduplication and record linkage system with a graphical user interface. In KDD,

pages 1065–1068, 2008.

[24] P. Christen. Data Matching - Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection. Springer, 2012.
[25] P. Christen. A survey of indexing techniques for scalable record linkage and deduplication. IEEE TKDE, 24(9):1537–1555, 2012.
[26] P. Christen, R. W. Gayler, and D. Hawking. Similarity-aware indexing for real-time entity resolution. In CIKM, pages 1565–1568, 2009.

[27] T. Christiani and R. Pagh. Set similarity search beyond minhash. In STOC, pages 1094–1107, 2017.
[28] T. Christiani, R. Pagh, and J. Sivertsen. Scalable and robust set similarity join. In ICDE, pages 1240–1243, 2018.
[29] V. Christophides, V. Efthymiou, and K. Stefanidis. Entity Resolution in the Web of Data. Morgan & Claypool Publishers, 2015.

[30] X. Chu, I. F. Ilyas, and P. Koutris. Distributed data deduplication. PVLDB, 9(11):864–875, 2016.
[31] A. Clauset, M. E. Newman, and C. Moore. Finding community structure in very large networks. Physical review E, 70(6):066111, 2004.
[32] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In SOCG,

pages 253–262, 2004.

[33] T. de Vries, H. Ke, S. Chawla, and P. Christen. Robust record linkage blocking using suffix arrays. In CIKM, pages 305–314, 2009.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:35

[34] T. de Vries, H. Ke, S. Chawla, and P. Christen. Robust record linkage blocking using suffix arrays and bloom filters. TKDD, 5(2):9:1–9:27,
2011.

[35] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM, 51(1):107–113, 2008.

[36] D. Deng, A. Kim, S. Madden, and M. Stonebraker. Silkmoth: An efficient method for finding related sets with maximum matching

constraints. PVLDB, 10(10):1082–1093, 2017.
[37] D. Deng, G. Li, H. Wen, and J. Feng. An efficient partition based method for exact set similarity joins. PVLDB, 9(4):360–371, 2015.
[38] X. L. Dong and D. Srivastava. Big Data Integration. Morgan & Claypool Publishers, 2015.

[39] U. Draisbach and F. Naumann. Dude: The duplicate detection toolkit. In QDB, 2010.
[40] U. Draisbach and F. Naumann. A generalization of blocking and windowing algorithms for duplicate detection. In ICDKE, pages

18–24, 2011.

[41] U. Draisbach, F. Naumann, S. Szott, and O. Wonneberg. Adaptive windows for duplicate detection. In ICDE, pages 1073–1083, 2012.
[42] S. Duan, A. Fokoue, O. Hassanzadeh, A. Kementsietsidis, K. Srinivas, and M. J. Ward. Instance-based matching of large ontologies

using locality-sensitive hashing. In ISWC, pages 49–64, 2012.
[43] M. Ebraheem, S. Thirumuruganathan, S. R. Joty, M. Ouzzani, and N. Tang. Distributed representations of tuples for entity resolution.

PVLDB, 11(11):1454–1467, 2018.
[44] V. Efthymiou, G. Papadakis, G. Papastefanatos, K. Stefanidis, and T. Palpanas. Parallel meta-blocking: Realizing scalable entity reso-

lution over large, heterogeneous data. In IEEE Big Data, pages 411–420, 2015.
[45] V. Efthymiou, G. Papadakis, G. Papastefanatos, K. Stefanidis, and T. Palpanas. Parallel meta-blocking for scaling entity resolution over

big heterogeneous data. Inf. Syst., 65:137–157, 2017.
[46] V. Efthymiou, K. Stefanidis, and V. Christophides. Big data entity resolution: From highly to somehow similar entity descriptions in

the web. In IEEE Big Data, pages 401–410, 2015.
[47] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A survey. IEEE TKDE, 19(1):1–16, 2007.
[48] L. Evangelista, E. Cortez, A. da Silva, and W. M. Jr. Adaptive and flexible blocking for record linkage tasks. JIDM, 1(2):167–182, 2010.

[49] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American Statistical Association, 64(328):1183–1210, 1969.
[50] F. Fier, N. Augsten, P. Bouros, U. Leser, and J. Freytag. Set similarity joins on mapreduce: An experimental survey. PVLDB, 11(10):1110–

1122, 2018.

[51] J. Fisher, P. Christen, Q. Wang, and E. Rahm. A clustering-based framework to control block sizes for entity resolution. In KDD, pages
279–288, 2015.

[52] D. Gao. Temporal joins. In Encyclopedia of Database Systems, pages 2982–2987. 2009.
[53] L. Getoor and A. Machanavajjhala. Entity resolution: Theory, practice & open challenges. PVLDB, 5(12):2018–2019, 2012.
[54] P. Giang. A machine learning approach to create blocking criteria for record linkage. Health care manag. science, 18(1):93–105, 2015.
[55] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In VLDB, pages 518–529, 1999.
[56] B. Golshan, A. Y. Halevy, G. A. Mihaila, and W. Tan. Data integration: After the teenage years. In ACM PODS, pages 101–106, 2017.
[57] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D. Srivastava. Approximate string joins in a database

(almost) for free. In VLDB, pages 491–500, 2001.
[58] T. Gschwind, C. Miksovic, K. Mirylenka, and P. Scotton. Fast record linkage for company entities. CoRR, abs/1907.08667, 2019.
[59] L. Gu and R. A. Baxter. Adaptive filtering for efficient record linkage. In SIAM, pages 477–481, 2004.

[60] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. In SIGMOD, pages 127–138, 1995.
[61] M. A. Hernández and S. J. Stolfo. Real-world data is dirty: Data cleansing and the merge/purge problem. Data Min. Knowl. Discov.,

2(1):9–37, 1998.

[62] R. Isele, A. Jentzsch, and C. Bizer. Efficient multidimensional blocking for link discovery without losing recall. InWebDB, 2011.
[63] E. H. Jacox and H. Samet. Spatial join techniques. ACM TODS, 32(1):7, 2007.
[64] Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An experimental evaluation. PVLDB, 7(8):625–636, 2014.
[65] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large data sets. In DASFAA, pages 137–146, 2003.
[66] P. Jurczyk, J. J. Lu, L. Xiong, J. D. Cragan, and A. Correa. Fine-grained record integration and linkage tool. Birth Defects Research Part

A: Clinical and Molecular Teratology, 82(11):822–829, 2008.
[67] M. Kantarcioglu, A. Inan, W. Jiang, and B. Malin. Formal anonymity models for efficient privacy-preserving joins. DKE, 68(11):1206–

1223, 2009.

[68] D. Karapiperis, A. Gkoulalas-Divanis, and V. S. Verykios. Fast schemes for online record linkage. Data Min. Knowl. Discov., 32(5):1229–
1250, 2018.

[69] D. Karapiperis, A. Gkoulalas-Divanis, and V. S. Verykios. Summarization algorithms for record linkage. In EDBT, pages 73–84, 2018.
[70] D. Karapiperis, D. Vatsalan, V. S. Verykios, and P. Christen. Efficient record linkage using a compact hamming space. In EDBT, pages

209–220, 2016.

[71] D. Karapiperis and V. S. Verykios. A fast and efficient hamming lsh-based scheme for accurate linkage. KAIS, 49(3):861–884, 2016.
[72] M. Kejriwal and D. P. Miranker. An unsupervised algorithm for learning blocking schemes. In ICDM, pages 340–349, 2013.

[73] M. Kejriwal and D. P. Miranker. A two-step blocking scheme learner for scalable link discovery. In OMWorkshop, pages 49–60, 2014.
[74] M. Kejriwal and D. P. Miranker. A DNF blocking scheme learner for heterogeneous datasets. CoRR, abs/1501.01694, 2015.
[75] B. Kenig and A. Gal. Mfiblocks: An effective blocking algorithm for entity resolution. Inf. Syst., 38(6):908–926, 2013.
[76] H. Kim and D. Lee. HARRA: fast iterative hashed record linkage for large-scale data collections. In EDBT, pages 525–536, 2010.
[77] L. Kolb, A. Thor, and E. Rahm. Dedoop: Efficient deduplication with hadoop. PVLDB, 5(12):1878–1881, 2012.
[78] L. Kolb, A. Thor, and E. Rahm. Load balancing for mapreduce-based entity resolution. In ICDE, pages 618–629, 2012.
[79] L. Kolb, A. Thor, and E. Rahm. Multi-pass sorted neighborhood blocking with mapreduce. Computer Science - R&D, 27(1):45–63, 2012.
[80] P. Konda, S. Das, P. S. G. C., A. Doan, A. Ardalan, J. R. Ballard, H. Li, F. Panahi, H. Zhang, J. F. Naughton, S. Prasad, G. Krishnan,

R. Deep, and V. Raghavendra. Magellan: Toward building entity matching management systems. PVLDB, 9(12):1197–1208, 2016.
[81] H. Köpcke, A. Thor, and E. Rahm. Comparative evaluation of entity resolution approaches with FEVER. PVLDB, 2(2):1574–1577, 2009.
[82] H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity resolution approaches on real-world match problems. PVLDB, 3(1):484–493,

2010.

[83] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for approximate string searches. In ICDE, pages 257–266, 2008.
[84] G. Li, D. Deng, J. Wang, and J. Feng. PASS-JOIN: A partition-based method for similarity joins. PVLDB, 5(3):253–264, 2011.
[85] G. Li, J. He, D. Deng, and J. Li. Efficient similarity join and search on multi-attribute data. In SIGMOD, pages 1137–1151, 2015.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:36 G. Papadakis et al.

[86] H. Li, P. Konda, P. Suganthan, A. Doan, B. Snyder, Y. Park, G. Krishnan, R. Deep, and V. Raghavendra. Matchcatcher: A debugger for

blocking in entity matching. In EDBT, pages 193–204, 2018.
[87] Y. Li and M. Chen. Privacy preserving joins. In ICDE, pages 1352–1354, 2008.
[88] H. Liang, Y. Wang, P. Christen, and R. W. Gayler. Noise-tolerant approximate blocking for dynamic real-time entity resolution. In

PAKDD, pages 449–460, 2014.
[89] W. Lu, X. Du, M. Hadjieleftheriou, and B. C. Ooi. Efficiently supporting edit distance based string similarity search using B $ˆ+$-trees.

IEEE TKDE, 26(12):2983–2996, 2014.
[90] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe LSH: efficient indexing for high-dimensional similarity search. In

VLDB, pages 950–961, 2007.
[91] K. Ma, F. Dong, and B. Yang. Large-scale schema-free data deduplication approach with adaptive sliding window using mapreduce.

Comput. J., 58(11):3187–3201, 2015.
[92] Y. Ma and T. Tran. Typimatch: type-specific unsupervised learning of keys and key values for heterogeneous web data integration.

In WSDM, pages 325–334, 2013.

[93] P. Malhotra, P. Agarwal, and G. Shroff. Graph-parallel entity resolution using LSH & IMM. In EDBT Workshops, pages 41–49, 2014.
[94] W. Mann and N. Augsten. PEL: position-enhanced length filter for set similarity joins. In Grundlagen Datenbanken, pages 89–94, 2014.
[95] W. Mann, N. Augsten, and P. Bouros. An empirical evaluation of set similarity join techniques. PVLDB, 9(9):636–647, 2016.
[96] R. Maskat, N. W. Paton, and S. M. Embury. Pay-as-you-go configuration of entity resolution. T-LSD-KCS, 29:40–65, 2016.
[97] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of high-dimensional data sets with application to reference matching.

In KDD, pages 169–178, 2000.
[98] W. McNeill, H. Kardes, and A. Borthwick. Dynamic record blocking: efficient linking of massive databases in mapreduce. In QDB,

2012.

[99] D. G. Mestre, C. E. S. Pires, and D. C. Nascimento. Adaptive sorted neighborhood blocking for entity matching with mapreduce. In

SAC, pages 981–987, 2015.
[100] M. Michelson and C. A. Knoblock. Learning blocking schemes for record linkage. In AAAI, pages 440–445, 2006.
[101] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their composition-

ality. In NIPS, pages 3111–3119, 2013.
[102] D. C. Nascimento, C. E. S. Pires, andD. G.Mestre. Exploiting block co-occurrence to control block sizes for entity resolution. Knowledge

and Information Systems, pages 1–42, 2019.
[103] S. Negahban, B. I. P. Rubinstein, and J. Gemmell. Scaling multiple-source entity resolution using statistically efficient transfer learning.

In CIKM, pages 2224–2228, 2012.

[104] E. Nelson and J. Talburt. Entity resolution for longitudinal studies in education using oyster. In IKE, 2011.
[105] M. Nentwig, M. Hartung, A. Ngomo, and E. Rahm. A survey of current link discovery frameworks. Semantic Web, 8(3):419–436, 2017.
[106] A. Ngomo. ORCHID - reduction-ratio-optimal computation of geo-spatial distances for link discovery. In ISWC, pages 395–410, 2013.
[107] A. Ngomo and S. Auer. LIMES - A time-efficient approach for large-scale link discovery on the web of data. In IJCAI, pages 2312–2317,

2011.

[108] A. Nikolov, V. Uren, and E. Motta. Knofuss: a comprehensive architecture for knowledge fusion. In K-CAP, pages 185–186, 2007.
[109] J. Nin, V. Muntés-Mulero, N. Martínez-Bazan, and J. Larriba-Pey. On the use of semantic blocking techniques for data cleansing and

integration. In IDEAS, pages 190–198, 2007.
[110] K. O’Hare, A. Jurek, and C. de Campos. A new technique of selecting an optimal blocking method for better record linkage. Inf. Syst.,

77:151–166, 2018.

[111] K. O’Hare, A. Jurek-Loughrey, and C. de Campos. A review of unsupervised and semi-supervised blocking methods for record linkage.

In Linking and Mining Heterogeneous and Multi-view Data, pages 79–105. 2019.
[112] G. Papadakis, G. Alexiou, G. Papastefanatos, and G. Koutrika. Schema-agnostic vs schema-based configurations for blocking methods

on homogeneous data. PVLDB, 9(4):312–323, 2015.
[113] G. Papadakis, K. Bereta, T. Palpanas, and M. Koubarakis. Multi-core meta-blocking for big linked data. In SEMANTICS, pages 33–40,

2017.

[114] G. Papadakis, G. Demartini, P. Fankhauser, and P. Kärger. The missing links: discovering hidden same-as links among a billion of

triples. In iiWAS, pages 453–460, 2010.
[115] G. Papadakis, G. Giannakopoulos, C. Niederée, T. Palpanas, andW. Nejdl. Detecting and exploiting stability in evolving heterogeneous

information spaces. In JCDL, pages 95–104, 2011.
[116] G. Papadakis, E. Ioannou, C. Niederée, and P. Fankhauser. Efficient entity resolution for large heterogeneous information spaces. In

WSDM, pages 535–544, 2011.

[117] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl. Eliminating the redundancy in blocking-based entity resolution

methods. In JCDL, pages 85–94, 2011.
[118] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl. To compare or not to compare: making entity resolution more

efficient. In SWIM, page 3, 2011.

[119] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl. Beyond 100 million entities: large-scale blocking-based resolution

for heterogeneous data. In WSDM, pages 53–62, 2012.

[120] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederée, andW. Nejdl. A blocking framework for entity resolution in highly heterogeneous

information spaces. IEEE TKDE, 25(12):2665–2682, 2013.
[121] G. Papadakis, G. Koutrika, T. Palpanas, andW. Nejdl. Meta-blocking: Taking entity resolution to the next level. IEEE TKDE, 26(8):1946–

1960, 2014.

[122] G. Papadakis and W. Nejdl. Efficient entity resolution methods for heterogeneous information spaces. In ICDE Workshops, pages
304–307, 2011.

[123] G. Papadakis and T. Palpanas. Blocking for large-scale entity resolution: Challenges, algorithms, and practical examples. In ICDE,
pages 1436–1439, 2016.

[124] G. Papadakis and T. Palpanas. Web-scale, schema-agnostic, end-to-end entity resolution. In WWW Companion Volume, 2018.
[125] G. Papadakis, G. Papastefanatos, and G. Koutrika. Supervised meta-blocking. PVLDB, 7(14):1929–1940, 2014.
[126] G. Papadakis, G. Papastefanatos, T. Palpanas, andM. Koubarakis. Boosting the efficiency of large-scale entity resolutionwith enhanced

meta-blocking. Big Data Research, 6:43–63, 2016.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Blocking and Filtering 1:37

[127] G. Papadakis, G. Papastefanatos, T. Palpanas, andM. Koubarakis. Scaling entity resolution to large, heterogeneous data with enhanced

meta-blocking. In EDBT, pages 221–232, 2016.
[128] G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas. Comparative analysis of approximate blocking techniques for entity resolution.

PVLDB, 9(9):684–695, 2016.
[129] G. Papadakis, L. Tsekouras, E. Thanos, G. Giannakopoulos, T. Palpanas, and M. Koubarakis. The return of jedai: End-to-end entity

resolution for structured and semi-structured data. PVLDB, 11(12):1950–1953, 2018.
[130] T. Papenbrock, A. Heise, and F. Naumann. Progressive duplicate detection. IEEE TKDE., 27(5):1316–1329, 2015.
[131] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP, pages 1532–1543, 2014.
[132] S. Puhlmann, M. Weis, and F. Naumann. XML duplicate detection using sorted neighborhoods. In EDBT, pages 773–791, 2006.
[133] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin. Efficient exact edit similarity query processing with the asymmetric signature scheme. In

SIGMOD, pages 1033–1044, 2011.
[134] J. Qin and C. Xiao. Pigeonring: A principle for faster thresholded similarity search. PVLDB, 12(1):28–42, 2018.
[135] B. Ramadan and P. Christen. Forest-based dynamic sorted neighborhood indexing for real-time entity resolution. In CIKM, pages

1787–1790, 2014.

[136] B. Ramadan and P. Christen. Unsupervised blocking key selection for real-time entity resolution. In PAKDD, pages 574–585, 2015.
[137] B. Ramadan, P. Christen, H. Liang, and R. W. Gayler. Dynamic sorted neighborhood indexing for real-time entity resolution. J. Data

and Information Quality, 6(4):15:1–15:29, 2015.
[138] B. Ramadan, P. Christen, H. Liang, R. W. Gayler, and D. Hawking. Dynamic similarity-aware inverted indexing for real-time entity

resolution. In PAKDD Workshops, pages 47–58, 2013.
[139] T. Ranbaduge, D. Vatsalan, and P. Christen. Scalable block scheduling for efficient multi-database record linkage. In ICDM, pages

1161–1166, 2016.

[140] L. A. Ribeiro and T. Härder. Generalizing prefix filtering to improve set similarity joins. Inf. Syst., 36(1):62–78, 2011.
[141] S. V. Rice. Braided avl trees for efficient event sets and ranked sets in the simscript iii simulation programming language. InWestern

MultiConference on Computer Simulation, pages 150–155, 2007.
[142] C. Rong, C. Lin, Y. N. Silva, J. Wang, W. Lu, and X. Du. Fast and scalable distributed set similarity joins for big data analytics. In ICDE,

pages 1059–1070, 2017.

[143] C. Rong, W. Lu, X. Wang, X. Du, Y. Chen, and A. K. H. Tung. Efficient and scalable processing of string similarity join. IEEE TKDE,
25(10):2217–2230, 2013.

[144] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates. In SIGMOD, pages 743–754, 2004.
[145] M. Sariyar, A. Borg, and K. Pommerening. Controlling false match rates in record linkage using extreme value theory. Journal of

biomedical informatics, 44(4):648–654, 2011.
[146] A. D. Sarma, A. Jain, A. Machanavajjhala, and P. Bohannon. An automatic blocking mechanism for large-scale de-duplication tasks.

In CIKM, pages 1055–1064, 2012.

[147] V. Satuluri and S. Parthasarathy. Bayesian locality sensitive hashing for fast similarity search. PVLDB, 5(5):430–441, 2012.
[148] W. Shen, J. Wang, and J. Han. Entity linking with a knowledge base: Issues, techniques, and solutions. IEEE TKDE, 27(2):443–460,

2015.

[149] L. Shu, A. Chen, M. Xiong, and W. Meng. Efficient spectral neighborhood blocking for entity resolution. In ICDE, pages 1067–1078,
2011.

[150] G. Simonini, S. Bergamaschi, andH. V. Jagadish. BLAST: a loosely schema-awaremeta-blocking approach for entity resolution. PVLDB,
9(12):1173–1184, 2016.

[151] G. Simonini, L. Gagliardelli, S. Bergamaschi, and H. V. Jagadish. Scaling entity resolution: A loosely schema-aware approach. Inf.
Syst., 83:145–165, 2019.

[152] G. Simonini, G. Papadakis, T. Palpanas, and S. Bergamaschi. Schema-agnostic progressive entity resolution. IEEE TKDE, 31(6):1208–
1221, 2019.

[153] D. Song. Scalable and domain-independent entity coreference: Establishing high quality data linkages across heterogeneous data

sources. In ISWC, pages 424–432, 2012.
[154] D. Song and J. Heflin. Automatically generating data linkages using a domain-independent candidate selection approach. In ISWC,

pages 649–664, 2011.

[155] D. Song, Y. Luo, and J. Heflin. Linking heterogeneous data in the semantic web using scalable and domain-independent candidate

selection. IEEE TKDE, 29(1):143–156, 2017.
[156] K. Stefanidis, V. Christophides, and V. Efthymiou. Web-scale blocking, iterative and progressive entity resolution. In ICDE, pages

1459–1462, 2017.

[157] K. Stefanidis, V. Efthymiou, M. Herschel, and V. Christophides. Entity resolution in the web of data. In WWW Companion Volume,
pages 203–204, 2014.

[158] R. C. Steorts, S. L. Ventura, M. Sadinle, and S. E. Fienberg. A comparison of blocking methods for record linkage. In Privacy in
Statistical Databases, pages 253–268, 2014.

[159] P. Suganthan, A. Ardalan, A. Doan, and A. Akella. Smurf: Self-service string matching using random forests. PVLDB, 12(3):278–291,
2018.

[160] J. Sun, Z. Shang, G. Li, Z. Bao, and D. Deng. Balance-aware distributed string similarity-based query processing system. PVLDB,
12(9):961–974, 2019.

[161] J. Sun, Z. Shang, G. Li, D. Deng, and Z. Bao. Dima: A distributed in-memory similarity-based query processing system. PVLDB,
10(12):1925–1928, 2017.

[162] W. Tao, D. Deng, and M. Stonebraker. Approximate string joins with abbreviations. PVLDB, 11(1):53–65, 2017.
[163] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high dimensional nearest neighbor search. In SIGMOD, pages 563–576,

2009.

[164] S. Thirumuruganathan, S. A. P. Parambath, M. Ouzzani, N. Tang, and S. R. Joty. Reuse and adaptation for entity resolution through

transfer learning. CoRR, abs/1809.11084, 2018.
[165] D. Vatsalan, P. Christen, and V. S. Verykios. A taxonomy of privacy-preserving record linkage techniques. Inf. Syst., 38(6):946–969,

2013.

[166] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins using mapreduce. In SIGMOD, pages 495–506, 2010.
[167] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Silk-a link discovery framework for the web of data. LDOW, 538, 2009.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:38 G. Papadakis et al.

[168] J. Wang, G. Li, and J. Feng. Trie-join: Efficient trie-based string similarity joins with edit-distance constraints. PVLDB, 3(1):1219–1230,
2010.

[169] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an adaptive framework for similarity join and search. In SIGMOD, pages
85–96, 2012.

[170] J. Wang, G. Li, and J. Feng. Extending string similarity join to tolerant fuzzy token matching. ACM TODS, 39(1):7:1–7:45, 2014.
[171] J. Wang, C. Lin, and C. Zaniolo. Mf-join: Efficient fuzzy string similarity join with multi-level filtering. In ICDE, pages 386–397, 2019.
[172] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity search: A survey. CoRR, abs/1408.2927, 2014.
[173] J. Wang, X. Yang, B. Wang, and C. Liu. Ls-join: Local similarity join on string collections. IEEE TKDE, 29(9):1928–1942, 2017.
[174] P. Wang, C. Xiao, J. Qin, W. Wang, X. Zhang, and Y. Ishikawa. Local similarity search for unstructured text. In SIGMOD, pages

1991–2005, 2016.

[175] Q. Wang, M. Cui, and H. Liang. Semantic-aware blocking for entity resolution. IEEE TKDE, 28(1):166–180, 2016.
[176] W. Wang, J. Qin, C. Xiao, X. Lin, and H. T. Shen. Vchunkjoin: An efficient algorithm for edit similarity joins. IEEE TKDE, 25(8):1916–

1929, 2013.

[177] X. Wang, L. Qin, X. Lin, Y. Zhang, and L. Chang. Leveraging set relations in exact set similarity join. PVLDB, 10(9):925–936, 2017.
[178] S. E. Whang, D. Marmaros, and H. Garcia-Molina. Pay-as-you-go entity resolution. IEEE TKDE., 25(5):1111–1124, 2013.
[179] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina. Entity resolution with iterative blocking. In SIGMOD,

pages 219–232, 2009.

[180] C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient algorithm for similarity joins with edit distance constraints. PVLDB, 1(1):933–944,
2008.

[181] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity joins. In ICDE, pages 916–927, 2009.
[182] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for near duplicate detection. InWWW, pages 131–140, 2008.

[183] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient similarity joins for near-duplicate detection. ACM TODS, 36(3):15:1–15:41,
2011.

[184] P. Xu and J. Lu. Towards a unified framework for string similarity joins. PVLDB, 12(11):1289–1302, 2019.
[185] S. Yan, D. Lee, M. Kan, and C. L. Giles. Adaptive sorted neighborhood methods for efficient record linkage. In JCDL, pages 185–194,

2007.

[186] W. Yan, Y. Xue, and B. Malin. Scalable load balancing for mapreduce-based record linkage. In IPCCC, pages 1–10, 2013.
[187] M. Yu, G. Li, D. Deng, and J. Feng. String similarity search and join: a survey. Frontiers Comput. Sci., 10(3):399–417, 2016.
[188] M. Yu, J. Wang, G. Li, Y. Zhang, D. Deng, and J. Feng. A unified framework for string similarity search with edit-distance constraint.

VLDB J., 26(2):249–274, 2017.
[189] X. Yuan, X. Wang, C. Wang, C. Yu, and S. Nutanong. Privacy-preserving similarity joins over encrypted data. IEEE TIFS, 12(11):2763–

2775, 2017.

[190] J. Zhai, Y. Lou, and J. Gehrke. ATLAS: a probabilistic algorithm for high dimensional similarity search. In SIGMOD, pages 997–1008,
2011.

[191] F. Zhang, Z. Gao, and K. Niu. A pruning algorithm for meta-blocking based on cumulative weight. In Journal of Physics: Conference
Series, volume 887, 2017.

[192] Y. Zhang, X. Li, J. Wang, Y. Zhang, C. Xing, and X. Yuan. An efficient framework for exact set similarity search using tree structure

indexes. In ICDE, pages 759–770, 2017.
[193] Y. Zhang, J. Wu, J. Wang, and C. Xing. A transformation-based framework for knn set similarity search. IEEE TKDE, 2018.
[194] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava. Bed-tree: an all-purpose index structure for string similarity search based

on edit distance. In SIGMOD, pages 915–926, 2010.
[195] E. Zhu, D. Deng, F. Nargesian, and R. J. Miller. JOSIE: overlap set similarity search for finding joinable tables in data lakes. In SIGMOD,

pages 847–864, 2019.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Block Building
	3.1 Taxonomy
	3.2 Schema-aware Block Building
	3.3 Schema-agnostic Block Building
	3.4 Parallelization Approaches
	3.5 Discussion & Experimental Results

	4 Block Processing
	4.1 Block Cleaning
	4.2 Comparison Cleaning
	4.3 Discussion & Experimental Results

	5 Filtering
	5.1 Parallel & Distributed Algorithms
	5.2 Approximate Algorithms
	5.3 Algorithms for Complex Matching
	5.4 Discussion & Experimental Results

	6 Join-based Blocking Methods
	7 Blocking vs Filtering: Commonalities and Differences
	8 Blocking and Filtering in Entity Resolution Systems
	9 Future Directions
	10 Conclusions

